
HP Computer Systems
Training Course

Fundamentals of the UNIX
System

Instructor Guide

Version G.02
51434S Instructor
Printed in USA 7/99

Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD PROVIDES THIS MATERIAL “AS IS” AND MAKES NO WARRANTY
OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOST
PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF
THIS MATERIAL WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL
THEORY).

Some states do not allow the exclusion of implied warranties or the limitations or exclusion of
liability for incidental or consequential damages, so the above limitations and exclusion may
not apply to you. This warranty gives you specific legal rights, and you may also have other
rights which vary from state to state.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. No part of this document may be photocopied, reproduced or translated to another
language without the prior consent of Hewlett-Packard Company.

OSF, OSF/1, OSF/Motif, Motif, and Open Software Foundation are trademarks of the Open
Software Foundation in the U.S. and other countries.

UNIX® is a registered trademark of The Open Group.

X/Open is a trademark of X/Open Company Limited in the UK and other Countries.

HP Education
100 Mayfield Avenue
Mountain View, CA 94043 U.S.A.

© Copyright 1999 by the Hewlett-Packard Company

Contents

Overview
Course Description . 1
Student Performance Objectives . 1
Student Profile and Prerequisites . 5
Reference Documentation . 5

Notes to the Instructor
Reporting Errors in This Course . 7
Orientation and Philosophy . 8
Instructor Profile and Prerequisites . 13
Classroom Setup . 13
Preparation Tasks . 13
Materials List . 15
Supplementary Information . 15
UNIX to VMS Command Mapping . 16
Phonebook Project . 18
Phonebook Project — Part 1 . 19
Phonebook Project — Part 2 . 21
Phonebook Project — Part 3 . 22
Phonebook Project — Part 4 . 23
Phonebook Project — Part 5 . 24
Lab Notes for MPE Users . 25
Logging In . 25
Commands . 28
File System . 29
Permissions . 30
Text Editing . 31
Shell Programming . 31
Batch Processing . 32

Module 1 — Introduction to UNIX
Objectives . 1-1
Overview of Module 1 . 1-3
1-1. SLIDE: What Is an Operating System? 1-4
1-2. SLIDE: History of the UNIX Operating System 1-8
1-3. TEXT PAGE: History of the UNIX Operating System 1-14
1-4. SLIDE: Features of UNIX . 1-18
1-5. SLIDE: More Features of UNIX . 1-24
1-6. SLIDE: The UNIX System and Standards 1-28
1-7. SLIDE: What Is HP-UX? . 1-36

iii 51434S G.02
© 1999 Hewlett-Packard Company

Contents

Module 2 — Logging In and General Orientation
Objectives . 2-1
Overview of Module 2 . 2-3
2-1. SLIDE: A Typical Terminal Session . 2-6
2-2. SLIDE: Logging In and Out . 2-10
2-3. SLIDE: The Shell — Command Interpretation 2-16
2-4. SLIDE: Command Line Format . 2-18
2-5. SLIDE: The Secondary Prompt . 2-22
2-6. SLIDE: The Manual . 2-24
2-7. SLIDE: Content of the Manual Pages . 2-28
2-8. TEXT PAGE: The Reference Manual — An Example 2-32
2-9. SLIDE: The Online Manual . 2-34
2-10. SLIDE: Some Beginning Commands . 2-40
2-11. SLIDE: The id Command . 2-42
2-12. SLIDE: The who Command . 2-46
2-13. SLIDE: The date Command . 2-48
2-14. SLIDE: The passwd Command . 2-50
2-15. SLIDE: The echo Command . 2-54
2-16. SLIDE: The banner Command . 2-56
2-17. SLIDE: The clear Command . 2-58
2-18. SLIDE: The write Command . 2-60
2-19. SLIDE: The mesg Command . 2-62
2-20. SLIDE: The news Command . 2-64
2-21. LAB: General Orientation . 2-68

Module 3 — Using CDE
Objectives . 3-1
Overview of Module 3 . 3-3
3-1. SLIDE: Front Panel Elements . 3-4
3-2. SLIDE: Front Panel Pop-Up Menus . 3-8
3-3. SLIDE: Workspace Switch . 3-12
3-4. SLIDE: Getting Help . 3-14
3-5. SLIDE: File Manager . 3-18
3-6. SLIDE: File Manager Menu Tasks . 3-22
3-7. SLIDE: Using File Manager to Locate Files 3-26
3-8. SLIDE: Deleting Objects . 3-30
3-9. SLIDE: Using the Text Editor . 3-34
3-10. SLIDE: Running Applications Using the Application Manager 3-42
3-11. SLIDE: Using Mailer . 3-46
3-12. SLIDE: Sending Mail . 3-52
3-13. SLIDE: Customizing Mailer . 3-56
3-14. SLIDE: Using Calendar . 3-60
3-15. SLIDE: Scheduling Appointments . 3-64
3-16. SLIDE: To Do Items . 3-68
3-17. SLIDE: Browsing Calendars on a Network 3-72
3-18. SLIDE: Granting Access to your Calendar 3-76
3-19. LAB: Using CDE . 3-80

51434S G.02 iv
© 1999 Hewlett-Packard Company

Contents

Module 4 — Navigating the File System
Objectives . 4-1
Overview of Module 4 . 4-3
4-1. SLIDE: What Is a File System? . 4-6
4-2. SLIDE: The Tree Structure . 4-8
4-3. SLIDE: The File System Hierarchy . 4-10
4-4. SLIDE: Path Names . 4-14
4-5. SLIDE: Some Special Directories . 4-18
4-6. SLIDE: Basic File System Commands . 4-22
4-7. SLIDE: pwd — Present Working Directory 4-24
4-8. SLIDE: ls — List Contents of a Directory 4-26
4-9. SLIDE: cd — Change Directory . 4-30
4-10. SLIDE: The find Command . 4-34
4-11. SLIDE: mkdir and rmdir — Create and

Remove Directories . 4-36
4-12. SLIDE: Review . 4-40
4-13. SLIDE: The File System — Summary . 4-42
4-14. LAB: The File System . 4-44

Module 5 — Managing Files
Objectives . 5-1
Overview of Module 5 . 5-3
5-1. SLIDE: What Is a File? . 5-8
5-2. SLIDE: What Can We Do with Files? . 5-12
5-3. SLIDE: File Characteristics . 5-14
5-4. SLIDE: cat — Display the Contents of a File 5-18
5-5. SLIDE: more — Display the Contents of a File 5-22
5-6. SLIDE: tail — Display the End of a File 5-24
5-7. SLIDE: The Line Printer Spooler System 5-26
5-8. SLIDE: The lp Command . 5-28
5-9. SLIDE: The lpstat Command . 5-32
5-10. SLIDE: The cancel Command . 5-36
5-11. SLIDE: cp — Copy Files . 5-42
5-12. SLIDE: mv — Move or Rename Files . 5-46
5-13. SLIDE: ln — Link Files . 5-50
5-14. SLIDE: rm — Remove Files . 5-56
5-15. SLIDE: File/Directory Manipulation Commands — Summary 5-60
5-16. LAB: File and Directory Manipulation . 5-62

Module 6 — File Permissions and Access
Objectives . 6-1
Overview of Module 6 . 6-3
6-1. SLIDE: File Permissions and Access . 6-6
6-2. SLIDE: Who Has Access to a File? . 6-8
6-3. SLIDE: Types of Access . 6-12
6-4. SLIDE: Permissions . 6-16
6-5. SLIDE: chmod — Change Permissions of a File 6-20
6-6. SLIDE: umask — Permission Mask . 6-24

v 51434S G.02
© 1999 Hewlett-Packard Company

Contents

6-7. SLIDE: touch — Update Timestamp on File 6-26
6-8. SLIDE: chown — Change File Ownership 6-30
6-9. SLIDE: The chgrp Command . 6-34
6-10. SLIDE: su — Switch User Id . 6-38
6-11. SLIDE: The newgrp Command . 6-42
6-12. SLIDE: Access Control Lists . 6-46
6-13. SLIDE: File Permissions and Access — Summary 6-50
6-14. LAB: File Permissions and Access . 6-52

Module 7 — Shell Basics
Objectives . 7-1
Overview of Module 7 . 7-3
7-1. SLIDE: What Is the Shell? . 7-6
7-2. SLIDE: Commonly Used Shells . 7-10
7-3. SLIDE: POSIX Shell Features . 7-14
7-4. SLIDE: Aliasing . 7-16
7-5. SLIDE: File Name Completion . 7-20
7-6. SLIDE: Command History . 7-24
7-7. SLIDE: Re-entering Commands . 7-28
7-8. SLIDE: Recalling Commands . 7-30
7-9. SLIDE: Command Line Editing . 7-34
7-10. SLIDE: Command Line Editing (continued) 7-38
7-11. SLIDE: The User Environment . 7-44
7-12. SLIDE: Setting Shell Variables . 7-48
7-13. SLIDE: Two Important Variables . 7-52
7-14. TEXT PAGE: Common Variable Assignments 7-56
7-15. SLIDE: What Happens at Login? . 7-60
7-16. SLIDE: The Shell Startup Files . 7-64
7-17. SLIDE: Shell Intrinsics versus UNIX Commands 7-68
7-18. SLIDE: Looking for Commands — whereis 7-70
7-19. TEXT PAGE: Sample .profile . 7-74
7-20. TEXT PAGE: Sample .kshrc and .logout 7-76
7-21. LAB: Exercises . 7-78

Module 8 — Shell Advanced Features
Objectives . 8-1
Overview of Module 8 . 8-3
8-1. SLIDE: Shell Substitution Capabilities . 8-6
8-2. SLIDE: Shell Variable Storage . 8-8
8-3. SLIDE: Setting Shell Variables . 8-12
8-4. SLIDE: Variable Substitution . 8-14
8-5. SLIDE: Command Substitution . 8-22
8-6. SLIDE: Tilde Substitution . 8-26
8-7. SLIDE: Displaying Variable Values . 8-30
8-8. SLIDE: Transferring Local Variables to the Environment 8-32
8-9. SLIDE: Passing Variables to an Application 8-36
8-10. SLIDE: Monitoring Processes . 8-40
8-11. SLIDE: Child Processes and the Environment 8-46
8-12. LAB: The Shell Environment . 8-50

51434S G.02 vi
© 1999 Hewlett-Packard Company

Contents

Module 9 — File Name Generation
Objectives . 9-1
Overview of Module 9 . 9-3
9-1. SLIDE: Introduction to File Name Generation 9-6
9-2. SLIDE: File Name Generating Characters 9-8
9-3. SLIDE: File Name Generation and Dot Files 9-10
9-4. SLIDE: File Name Generation — ? . 9-12
9-5. SLIDE: File Name Generation — [] . 9-14
9-6. SLIDE: File Name Generation — * . 9-16
9-7. SLIDE: File Name Generation — Review 9-18
9-8. LAB: File Name Generation . 9-22

Module 10 — Quoting
Objectives . 10-1
Overview of Module 10 . 10-3
10-1. SLIDE: Introduction to Quoting . 10-6
10-2. SLIDE: Quoting Characters . 10-8
10-3. SLIDE: Quoting — \ . 10-10
10-4. SLIDE: Quoting — ’ . 10-12
10-5. SLIDE: Quoting — " . 10-14
10-6. SLIDE: Quoting — Summary . 10-18
10-7. LAB: Quoting . 10-20

Module 11 — Input and Output Redirection
Objectives . 11-1
Overview of Module 11 . 11-3
11-1. SLIDE: Input and Output Redirection — Introduction 11-6
11-2. SLIDE: stdin, stdout, and stderr . 11-10
11-3. SLIDE: Input Redirection — < . 11-14
11-4. SLIDE: Output Redirection — > and >> 11-18
11-5. SLIDE: Error Redirection — 2> and 2>> 11-22
11-6. SLIDE: What Is a Filter? . 11-24
11-7. SLIDE: wc — Word Count . 11-26
11-8. SLIDE: sort — Alphabetical or Numerical Sort 11-30
11-9. SLIDE: grep — Pattern Matching . 11-36
11-10. SLIDE: Input and Output Redirection — Summary 11-40
11-11. LAB: Input and Output Redirection . 11-42

Module 12 — Pipes
Objectives . 12-1
Overview of Module 12 . 12-3
12-1. SLIDE: Pipelines — Introduction . 12-6
12-2. SLIDE: Why Use Pipelines? . 12-8
12-3. SLIDE: The | Symbol . 12-10
12-4. SLIDE: Pipelines versus Input and Output Redirection 12-14
12-5. SLIDE: Redirection in a Pipeline . 12-16

vii 51434S G.02
© 1999 Hewlett-Packard Company

Contents

12-6. SLIDE: Some Filters . 12-20
12-7. SLIDE: The cut Command . 12-22
12-8. SLIDE: The tr Command . 12-26
12-9. SLIDE: The tee Command . 12-28
12-10. SLIDE: The pr Command . 12-32
12-11. SLIDE: Printing from a Pipeline . 12-36
12-12. SLIDE: Pipelines — Summary . 12-38
12-13. LAB: Pipelines . 12-40

Module 13 — Using Network Services
Objectives . 13-1
Overview of Module 13 . 13-3
13-1. SLIDE: What Is a Local Area Network? 13-6
13-2. SLIDE: LAN Services . 13-10
13-3. SLIDE: The hostname Command . 13-14
13-4. SLIDE: The telnet Command . 13-16
13-5. SLIDE: The ftp Command . 13-18
13-6. SLIDE: The rlogin Command . 13-22
13-7. SLIDE: The rcp Command . 13-24
13-8. SLIDE: The remsh Command . 13-28
13-9. SLIDE: Berkeley — The rwho Command 13-32
13-10. SLIDE: Berkeley — The ruptime Command 13-34
13-11. LAB: Exercises . 13-36

Module 14 — Introduction to the vi Editor
Objectives . 14-1
Overview of Module 14 . 14-3
14-1. SLIDE: What Is vi? . 14-6
14-2. SLIDE: Why vi? . 14-10
14-3. SLIDE: Starting a vi Session . 14-14
14-4. SLIDE: vi Modes . 14-16
14-5. SLIDE: A vi Session . 14-20
14-6. SLIDE: Ending a vi Session . 14-24
14-7. SLIDE: Cursor Control Commands . 14-26
14-8. SLIDE: Input Mode: i, a, O, o . 14-34
14-9. SLIDE: Deleting Text: x, dw, dd, dG . 14-38
14-10. LAB: Adding and Deleting Text and Moving the Cursor 14-42
14-11. SLIDE: Moving Text: p, P . 14-48
14-12. SLIDE: Copying Text: yw, yy . 14-52
14-13. SLIDE: Changing Text: r, R, cw, . 14-56
14-14. SLIDE: Searching for Text: /, n, N . 14-60
14-15. SLIDE: Searching for Text Patterns . 14-64
14-16. SLIDE: Global Search and Replace — ex Commands 14-68
14-17. SLIDE: Some More ex Commands . 14-72
14-18. TEXT PAGE: vi Commands — Summary 14-78
14-19. LAB: Modifying Text . 14-80

Module 15 — Process Control

51434S G.02 viii
© 1999 Hewlett-Packard Company

Contents

Objectives . 15-1
Overview of Module 15 . 15-3
15-1. SLIDE: The ps Command . 15-6
15-2. SLIDE: Background Processing . 15-10
15-3. SLIDE: Putting Jobs in Background/Foreground 15-14
15-4. SLIDE: The nohup Command . 15-16
15-5. SLIDE: The nice Command . 15-18
15-6. SLIDE: The kill Command . 15-22
15-7. LAB: Process Control . 15-26

Module 16 — Introduction to Shell Programming
Objectives . 16-1
Overview of Module 16 . 16-3
16-1. SLIDE: Shell Programming Overview . 16-6
16-2. SLIDE: Example Shell Program . 16-8
16-3. SLIDE: Passing Data to a Shell Program 16-12
16-4. SLIDE: Arguments to Shell Programs . 16-16
16-5. SLIDE: Some Special Shell Variables — # and * 16-22
16-6. SLIDE: The shift Command . 16-28
16-7. SLIDE: The read Command . 16-32
16-8. SLIDE: Additional Techniques . 16-38
16-9. LAB: Introduction to Shell Programming 16-42

Module 17 — Shell Programming — Branches
Objectives . 17-1
Overview of Module 17 . 17-3
17-1. SLIDE: Return Codes . 17-6
17-2. SLIDE: The test Command . 17-10
17-3. SLIDE: The test Command — Numeric Tests 17-12
17-4. SLIDE: The test Command — String Tests 17-16
17-5. SLIDE: The test Command — File Tests 17-20
17-6. SLIDE: The test Command — Other Operators 17-24
17-7. SLIDE: The exit Command . 17-28
17-8. SLIDE: The if Construct . 17-30
17-9. SLIDE: The if-else Construct . 17-34
17-10. SLIDE: The case Construct . 17-40
17-11. SLIDE: The case Construct — Pattern Examples 17-44
17-12. SLIDE: Shell Programming — Branches — Summary 17-46
17-13. LAB: Shell Programming — Branches . 17-48

Module 18 — Shell Programming — Loops
Objectives . 18-1
Overview of Module 18 . 18-3
18-1. SLIDE: Loops — an Introduction . 18-6
18-2. SLIDE: Arithmetic Evaluation Using let 18-8
18-3. SLIDE: The while Construct . 18-12
18-4. SLIDE: The while Construct — Examples 18-16
18-5. SLIDE: The until Construct . 18-18

ix 51434S G.02
© 1999 Hewlett-Packard Company

Contents

18-6. SLIDE: The until Construct — Examples 18-22
18-7. SLIDE: The for Construct . 18-24
18-8. SLIDE: The for Construct — Examples 18-28
18-9. SLIDE: The break, continue and exit Commands 18-32
18-10. SLIDE: break and continue — Example 18-36
18-11. SLIDE: Shell Programming — Loops — Summary 18-38
18-12. LAB: Shell Programming — Loops . 18-40

Module 19 — Offline File Storage
Objectives . 19-1
Overview of Module 19 . 19-3
19-1. SLIDE: Storing Files to Tape . 19-6
19-2. SLIDE: The tar Command . 19-10
19-3. SLIDE: The cpio Command . 19-14
19-4. LAB: Offline File Storage . 19-20

Appendix A — Commands Quick Reference Guide
Objectives . A-1
Overview of Appendix A . A-3
A-1. Commands Quick Reference Guide . A-4

Solutions

Glossary

51434S G.02 x
© 1999 Hewlett-Packard Company

Figures
3-1. 3-19
3-2. 3-19
3-3. 3-20
3-4. 3-35
3-5. 3-37
3-6. 3-38
3-7. 3-47
3-8. 3-47
3-9. 3-48
3-10. 3-54
3-11. 3-65
5-1. 5-53
5-2. 5-54
17-3. 17-31
17-4. 17-35
17-5. 17-41
18-6. 18-13
18-7. 18-19
18-8. 18-25
19-9. 19-7

xi 51434S G.02
© 1999 Hewlett-Packard Company

Figures

51434S G.02 xii
© 1999 Hewlett-Packard Company

Tables
1. 11
2. 12
1-1. 1-21
2-1. 2-38
6-1. 6-47
6-2. 6-49
6-3. 6-49
7-1. 7-11
14-1. 14-78
17-1. 17-25

xiii 51434S G.02
© 1999 Hewlett-Packard Company

Tables

51434S G.02 xiv
© 1999 Hewlett-Packard Company

Overview

Course Description

This course is designed to be the first course in the UNIX® curriculum presented by
Hewlett-Packard. It is intended to give anyone (system administrators, programmers, and
general users) a general introduction to UNIX®. It assumes that the student knows nothing
about UNIX®. (UNIX® is a registered trademark of The Open Group in the U.S.A. and other
countries) or any other UNIX-based operating system.

Student Performance Objectives

Upon completion of this course, you will be able to do the following:

Module 1 — Introduction to UNIX

• Describe the basic structure and capabilities of the UNIX operating system.

• Describe HP-UX.

Module 2 — Logging In and General Orientation

• Log in to a UNIX system.

• Log out of a UNIX system.

• Look up commands in the HP-UX Reference Manual.

• Look up commands using the online manual.

• Describe the format of the shell’s command line.

• Use some simple UNIX system commands for identifying system users.

• Use some simple UNIX system commands for communicating with system users.

• Use some simple UNIX system commands for miscellaneous utilities and output.

Module 3 — Using CDE

• Describe the Front Panel Elements.

• Understand how the Front Panel Pop-Up Menus work.

• Describe the Workspace Switch.

• Describe the Subpanel Controls.

1 51434S G.02
© 1999 Hewlett-Packard Company

Overview

• Understand how to use the Help System.

• Describe the File Manager.

• Understand how to use the File Manager Menu.

• Locate files using the File Manager.

• Delete files.

• Print files using the Front Panel, the File Manager, and the Print Manager.

• Display Print Spooler Information.

• Understand Printer Management.

• Use the Text Editor.

• Run Applications using the Application Manager.

• Use the Mailer and the Mailer Options, as well as how to create Mailboxes.

• Use the Calendar Manager to Schedule Appointments and To Do Items.

• Describe how to Browse Other Calendars on the Network.

• Describe how to Grant or Prevent Access to Your Calendar.

Module 4 — Navigating the File System

• Describe the layout of a UNIX system’s file system.

• Describe the difference between a file and a directory.

• Successfully navigate a UNIX system’s file system.

• Create and remove directories.

• Describe the difference between absolute and relative path names.

• Use relative path names (when appropriate) to minimize typing.

Module 5 — Managing Files

• Use the common UNIX system file manipulation commands.

• Explain the purpose of the line printer spooler system.

• Identify and use the line printer spooler commands used to interact with the system.

• Monitor the status of the line printer spooler system.

51434S G.02 2
© 1999 Hewlett-Packard Company

Overview

Module 6 — File Permissions and Access

• Describe and change the ownership and group attributes of a file.

• Describe and change the permissions on a file.

• Describe and establish default permissions for new files.

• Describe how to change user and group identity.

Module 7 — Shell Basics

• Describe the job of the shell.

• Describe what happens when someone logs in.

• Describe user environment variables and their functions.

• Set and modify shell variables.

• Understand and change specific environment variables such as PATH and TERM.

• Customize the user environment to fit a particular application.

Module 8 — Shell Advanced Features

• Use shell substitution capabilities, including variable, command, and tilde substitution.

• Set and modify shell variables.

• Transfer local variables to the environment.

• Make variables available to subprocesses.

• Explain how a process is created.

Module 9 — File Name Generation

• Use file name generation characters to generate file names on the command line.

• Save typing by using file name generating characters.

• Name files so that file name generating characters will be more useful.

Module 10— Quoting

• Use the quoting mechanisms to override the meaning of special characters on the command
line.

Module 11 — Input and Output Redirection

• Change the destination for the output of UNIX system commands.

3 51434S G.02
© 1999 Hewlett-Packard Company

Overview

• Change the destination for the error messages generated by UNIX system commands.

• Change the source of the input to UNIX system commands.

• Define a filter.

• Use some elementary filters such as sort, grep, and wc.

Module 12 — Pipes

• Describe the use of pipes.

• Construct a pipeline to take the output from one command and make it the input for another.

• Use the tee, cut, tr, more, and pr filters.

Module 13 — Using Network Services

• Describe the different network services in HP-UX.

• Explain the function of a Local Area Network (LAN).

• Find the host name of the local system and other systems in the LAN.

• Use the ARPA/Berkeley Services to perform remote logins, remote file transfers, and remote
command execution.

Module 14 — Introduction to the vi Editor

• Use vi to effectively edit text files.

Module 15 — Process Control

• Use the ps command.

• Start a process running in the background.

• Monitor the running processes with the ps command.

• Start a background process which is immune to the hangup (log off) signal.

• Bring a process to the foreground from the background.

• Suspend a process.

• Stop processes from running by sending them signals.

Module 16— Introduction to Shell Programming

• Write basic shell programs.

• Pass arguments to shell programs through environment variables.

51434S G.02 4
© 1999 Hewlett-Packard Company

Overview

• Pass arguments to shell programs through the positional parameters.

• Use the special shell variables, *, and #.

• Use the shift and read commands.

Module 17 — Shell Programming — Branches

• Describe the use of return codes for conditional branching.

• Use the test command to analyze the return code of a command.

• Use the if and case constructs for branching in a shell program.

Module 18 — Shell Programming — Loops

• Use the while construct to repeat a section of code while some condition remains true.

• Use the until construct to repeat a section of code until some condition is true.

• Use the iterative for construct to walk through a string of white space delimited items.

Module 19 — Offline File Storage

• Use the tar command for storing files to tape.

• Use the find and cpio commands for storing files to tape.

• Retrieve files that were stored using tar or cpio.

Student Profile and Prerequisites

There are no prerequisites for this course. It is assumed, however that students have been
exposed to computers, and that they are familiar with the keyboard.

Reference Documentation

• HP-UX Reference, P/N B2355-90033.

• Shells: User’s Guide, P/N B2355-90046.

5 51434S G.02
© 1999 Hewlett-Packard Company

Overview

51434S G.02 6
© 1999 Hewlett-Packard Company

Notes to the Instructor

Reporting Errors in This Course

The Worldwide HP Education Development Team wants to provide you with accurate and
up-to-date course materials. To do this better, we need your help. Please identify and report
errors in the course materials (slides, student workbook, instructor guide, and labs) and
submit them for correction through our on-line defect tracking system, SETI.

SETI (the Search for Errors, Typos, and Inconsistencies) is available via the World Wide Web
and has been created to improve the quality of course materials by collecting defect
information from instructors. All information you enter into SETI is given a status and can be
viewed by all instructors around the world.

Bug Fixes

Some of the most irritating errors are among the easiest to fix:

• spelling

• grammar

• formatting

• technical inaccuracies

• source files that do not match output

• source files with tag errors

• missing source files

We will fix such reported errors on a tight turnaround time, triggered by the priorities of our
team management. Other changes are more complex to implement:

Enhancements

• reorganization of content

• change in course design, audience, and course length

• addition of content (labs, examples, notes, topics, and so forth)

Requested design changes or course enhancements like these will be documented and
considered for the next update of the course.

How to Report Errors

Errors should be submitted to the SETI web page:

7 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

http://hppsda.mayfield.hp.com/cgi-bin/seti

You can also locate the SETI web page from the WW HP Education web site at http://
hppsda.mayfield.hp.com. Click on the link to Course Material and scroll down to the
bottom of the Course Material page. Click on Course Defect Tracking System—SETI.

From this WWW location, you can:

• List the courses currently being tracked by SETI.

• Retrieve a report of all defects submitted against a particular version and release of any
course being tracked by SETI.

• Submit a defect report for any course. (If the course is not currently being tracked, your
defect report will initiate such tracking automatically.)

• Submit a request to modify the SETI tracking system .

• Obtain on-line help and guidelines on the use of SETI.

Please be prepared to identify and characterize the error in detail:

• source material

• course number

• version letter

• release number

• module number

• page number

• paragraph number or slide number

• instructions for the correction (for example, change "............" to "..............")

• characterize severity of defect

For source file errors, identify the file name and line number where the error occurs.

Orientation and Philosophy

This course is designed to give a general overview of the UNIX system. It covers basic concepts
such as command syntax, commonly used commands, and basic shell programming techniques.

HP 51434S is a 5-day lecture/lab course targeting all users of the UNIX operating system, and
provides preparation for the entire curriculum of system administration and software
development courses. It provides an in-depth coverage of the UNIX operating system and shell
programming, based upon HP-UX Releases 10.xx and 11.00.

Operating system features and functions are referred to as UNIX, unless they are specific

51434S G.02 8
© 1999 Hewlett-Packard Company

Notes to the Instructor

to HP-UX.

Additional Materials Provided

At the end of this overview you will find some supplementary documents that you may wish to
copy and hand out as needed, or use for your own reference:

HP-UX to VMS Command Mapping A simple mapping of some common VMS commands
to their HP-UX counterparts. No claim is made as to
the accuracy of this material. It was provided by a
student in one of our classes. You may have someone
in your class who comes from a VMS background,
and you may find this material helpful. You should
use it at your discretion.

Lab Notes for MPE Users These are additional notes and explanations for
students who have worked with the HP 3000. The
goal of this information is to relate HP-UX to the
MPE user’s past experience by highlighting
similarities and differences between HP-UX and
MPE. This should allow MPE users to draw on their
prior knowledge to develop HP-UX skills more
quickly and competently, and reduce areas of
confusion.

Phonebook Project An exercise that can be assigned or recommended to
advanced students who are looking for a more
challenging exercise. Copy the six pages and hand
out (perhaps only to select students) after the
appropriate modules. More detailed directions
accompany the project itself.

9 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

A Note About the Labs

In many modules there are more lab exercises than can be completed in the allotted time. The
instructor notes for each lab indicate which exercises are appropriate for beginning,
intermediate, and advanced user levels. You should assign exercises based on the students’
knowledge and ability. It is not expected that every student complete every exercise.

A continuing lab (the phonebook project) is provided as part of these Instructor Notes. You
may choose whether or not to use it. It follows the sequence of the topics as they are presented
in the course. If you teach the modules in a different sequence or omit some modules, this lab
may not function properly. Alternatively, you can provide students with the solutions to
portions of the lab they may not have received lecture and notes for.

Appendices and Optional Modules

There is one appendix to the course:

Commands Quick Reference Guide A categorized listing of the commands and structures
presented in this class.

Sample Schedule

The following is a sample daily schedule. Times may vary depending on the experience level
and interests of the students. You should vary this schedule as necessary and as students’
needs and interests dictate.

You may wish to survey your students to decide which if any of the appendixes you will cover,
and at what point in the class.

51434S G.02 10
© 1999 Hewlett-Packard Company

Notes to the Instructor

Table 1.

Approximate Times

Module Lecture Lab

Day One

Module 1 — Introduction to UNIX 30 min 0min

Module 2— Logging In and General Orientation 45 min 45 min

Module 3— Using CDE 45 min 45min

Module 4— Navigating the File System 45 min 45min

Module 5— Managing Files 45 min 30min

Module 6— File Permissions and Access 45 min 0 min

Day Two

Module 6 — File Permissions and Access (continued) 0 min 30min

Module 7 — Shell Basics 45 min 30min

Module 8 — Shell Advanced Features 90 min 45min

Module 9 — File Name Generation 30 min 30min

Module 10 — Quoting 60 min 0 min

Day Three

Module 10 — Quoting (continued) 0 min 45min

Module 11 — Input and Output Redirection 30 min 30min

Module 12 — Pipes 60 min 45min

Module13 — Using Network Services 30 min 30min

Module 14 — Introduction to the vi Editor 60 min 60min

11 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Table 2.

Approximate Times

Module Lecture Lab

Day Four

Module 15 — Process Control 30 min 30min

Module 16— Introduction to Shell Programming 60 min 75min

Module 17— Shell Programming - Branches 60 min 45min

Day Five

Module 18 — Shell Programming — Loops 60 min 90min

Module 19 — Offline File Storage 45 min 30min

Appendix A — Commands Quick Reference Guide

51434S G.02 12
© 1999 Hewlett-Packard Company

Notes to the Instructor

Instructor Profile and Prerequisites

The instructor should have completed the student prerequisites and this course. Ideally, the
instructor should team teach this course with an experienced instructor before teaching it
alone.

Classroom Setup

There are many places in the course where it would be to the instructor’s advantage to be able
to demonstrate certain tasks. If it is possible, we recommend that you set up a demonstration
system.

Equipment List

Each student or pair of students should have a terminal to log in on an HP-UX system. An
available tape drive is desirable but not absolutely required.

Software

Release 10.xx or 11.00 of HP-UX operating system.

Preparation Tasks

Lab Setup

Log in as root and create a directory called labs. Restore the lab tape to the labs directory.
The lab tape is in tar format. Use the command

tar xvf /dev/devicename

Read the README file and follow the instructions to set up the student accounts.

README
FUNDAMENTALS OF THE UNIX SYSTEM (51434S)

UNIX SYSTEM BASICS I (51489S)
UNIX SYSTEM BASICS II (H2572S)

The lab tape for these courses contains the following:

README This file. A text file explaining the installation procedure
lab_setup* a shell script to install user accounts
students a text file containing user account names
lab_files/ a master directory containing all required files for this course
restore_dirs* a shell script to delete lab files from user accounts
infinite.c a C Program that will be compiled and loaded into the lab_files

directory. This program will be required for the exercises in the
Multi-tasking module.

13 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Create Student Accounts

Before you install the lab files for these courses, you should have created entries for your
student accounts in /etc/passwd and /etc/group.

Each student account must be assigned to at least two groups. The default primary group is
"class", and the secondary group is "class2". The installation script will verify that there is an
entry for each student in /etc/passwd, and two entries in /etc/group. You can modify the
default group designation by modifying the variable PRIM_GROUP in lab_setup. All student
accounts should use the Posix shell (/usr/bin/sh).

Default student names are stored in the file students. This allows you to easily customize
the installation procedure for the names that you select for the accounts at your local site.

To create your user accounts:

1. Create an entry for each user in /etc/passwd.

2. Each user’s primary group should be class.

3. Each user’s login shell should be /usr/bin/sh.

4. Create an entry in /etc/group for each user in group class and group class2.

5. Modify students if your user account names are not user1, user2,

6. Modify the PARENT_DIR variable in lab_setup if your user accounts will not be under
/users.

Modify lab_files.rhosts

Edit the file .rhosts in the directory lab_files to contain the names of other systems on
your network from which you will allow users to log on remotely.

Install Student Files

The directory lab_files contains all of the files that will be used throughout the
presentation of the Fundamentals of the UNIX System class, and the UNIX System Basics I
and UNIX System Basics II classes. They are set up as a directory in case you would like to
add any local files to your student accounts. All you need to do is copy any customized files to
the lab_files directory, and they will be automatically installed for you the next time you
run lab_setup.

Each student account will be installed under the /home directory. If you would like your
student accounts under some other directory, modify the PARENT_DIR variable in lab_setup.

To install student accounts:

Run lab_setup. This script will verify that there is an entry in /etc/passwd and
/etc/group for each of your user accounts. It will create the HOME directory for each
student account, if it does not already exist, and then copy all of the lab_files to each
student directory. The default permissions for the files do NOT include write access for group

51434S G.02 14
© 1999 Hewlett-Packard Company

Notes to the Instructor

and others. This script will call restore_dirs if the directories have not been cleared out
from your last class.

Setting the TERM type

The .profile file installed under each student account uses:

eval ‘tset -s -Q -h‘

to determine the TERM type. You will need to set up your /etc/ttytype file, or modify the
master lab_files/.profile according to your local configuration to guarantee that TERM
is properly defined when your students log in.

In order to run the rwho and ruptime commands in the networking appendix you will need to
configure the rwho daemon (rwhod). The rwho daemon is initiated from
/etc/rc.config.d.netdaemons.

Post-Class Cleanup

The script "restore_dirs" can be executed when the class is over to clear out the directories
associated with your student accounts. It will delete all files, and then install each student
account with only the DOT FILES.

Materials List

Classroom Materials

• Overhead projector

• White board

• Flip chart

Library List

• HP-UX Reference (3 vols), P/N B2355-90033

• Shells: User’s Guide, P/N B2355-90046

Supplementary Information

The following information can be copied and used as handouts in class.

15 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

UNIX to VMS Command Mapping

Here are some basic UNIX commands and their corresponding VMS commands:

UNIX VMS

ls dir

cp copy

cd set default

rm delete

mv rename

cat type

more type/page

pwd show default

ps show process or show system

man help

mkdir, rmdir create/dir, delete __.dir

kill stop or delete/entry

tail/head, grep search

chmod set protection

wc
diff

difference

file
f77,cc

fortran, cc

logout/exit/^d logout

df /bdf show device

ln assign or define (sort of)

du dir/size/total

who/w show users, show sys (sort of)

set/unset local symbol assignment/delete/sum

stty
echo

write sys$output

51434S G.02 16
© 1999 Hewlett-Packard Company

Notes to the Instructor

passwd set password

date show time

17 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Phonebook Project

The following exercise is a phonebook project. It can be assigned/recommended to advanced
students who are looking for a more challenging exercise. Copy the following six pages and
hand out (perhaps only to select students) after the appropriate modules, as follows:

After Module: Shell Advanced Features Phonebook Project — Part 1

After Module: Pipes Phonebook Project — Part 2

After Module: Introduction to Shell Programming Phonebook Project — Part 3

After Module: Shell Programming—Branches Phonebook Project — Part 4

After Module: Shell Programming—Loops Phonebook Project — Part 5

51434S G.02 18
© 1999 Hewlett-Packard Company

Notes to the Instructor

Phonebook Project — Part 1

The Phonebook Project is intended to allow you to develop a series of shell programs that will
implement an online phone book. As you continue through the course, you can work on this
project as time permits. As new programming techniques are presented, there will be
additional assignments to enhance the functionality of your online phone book.

The list of names and phone numbers will be stored in a text file. Each line will be a single
entry consisting of:

Lastname:Firstname:area code:phone number:address

The : will be the separator between the different fields in a line. You can go into more detail if
you like by splitting the address into street, city, state, and zip fields. It all depends on how
much information and flexibility you want.

The following summary provides the minimal functionality that your program should perform.
It is recommended that each function be supported by a corresponding shell program. This
modular approach will make it easier to implement the separate features and add functionality.

Minimal Functions:

1. Add—Add a name, address, and phone number to the phonebook file.

2. Lookup—Prompt the user for a name, and then print out the phone number and address
associated with the name.

3. List—List the contents of the phonebook in alphabetical order.

4. Delete—Prompt the user for a name and then remove that entry from the phonebook file.

5. Change—Prompt the user for a name and new phone number or address. Update the
phonebook file with the new information.

6. Report—Print a report with headings that lists the information requested by the user.

7. User friendly interface—In order for your users to not have to remember all the names of
the phonebook commands, you should prompt them with a menu from which they can
select the appropriate option.

What to Do Now?

1. Use an editor to create a sample phonebook file.

2. Create a shell script that will add an entry to your phonebook file. HINT: assign the new
entry to an environment variable, and append the value of this variable to your phonebook
file.

3. Create a shell script that will search the phonebook file for an entry associated with a
specific name. HINT: assign the name that you are interested in to an environment
variable, and look for the entry that contains the value of this variable.

4. Create a shell script that will list the contents of the book in alphabetical order.

19 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

5. Create a shell script that will delete an entry from the phonebook file. HINT: assign the
name that you are interested in deleting to an environment variable.

6. Create a shell script that will allow an entry to be changed. At this point, you will need to
replace the entire line.

7. Create a shell script that will provide a report capability. For example, all listings whose
phone number is in a specific area code, or a specific city. Format the output and include
headers.

51434S G.02 20
© 1999 Hewlett-Packard Company

Notes to the Instructor

Phonebook Project — Part 2

Update the filters you implemented in your shell programs to use pipelines instead of file
redirection, where appropriate.

21 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Phonebook Project — Part 3

Modify the following shell programs developed for your phonebook project.

1. Add a name: The shell program should prompt the user for the name, area code, phone,
and address information. After this information is input, it should be appended to the
phonebook file.

2. Lookup a name: The shell program should prompt the user for the name of the party on
which he or she wants information. Once the name has been entered, the associated data
should be displayed.

3. Delete a name: The shell program should prompt the user for the name of the entry that
should be deleted from the phonebook file. After the name is entered, the corresponding
data should be deleted.

4. Change a name: The shell program should prompt the user for the name of the entry that
needs to be modified. The old entry should be deleted, and then the shell program should
prompt the user for the new information. This could combine the Delete and Add functions.

51434S G.02 22
© 1999 Hewlett-Packard Company

Notes to the Instructor

Phonebook Project — Part 4

Enhance your phonebook project to

1. Create a menu interface that prompts the user for which option he or she would like to
execute. If you have been developing each of the phonebook functions in a separate shell
program, all you will need to do is create the menu interface, prompt the user for input,
and set up each menu option to invoke the shell programs that you have been developing.

2. Include error checking. For example, verify that a requested name exists in the
phonebook. If it does not, provide an informative error message to the user.

23 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Phonebook Project — Part 5

Enhance your phonebook project so that the menu you created in the last module is repeatedly
displayed until the user selects the option to quit.

51434S G.02 24
© 1999 Hewlett-Packard Company

Notes to the Instructor

Lab Notes for MPE Users

These are additional notes and explanations for students who have worked with the HP 3000.
The goal of this information is to relate HP-UX to the MPE user’s past experience by
highlighting similarities and differences between HP-UX and MPE. This should allow MPE
users to draw on their prior knowledge to develop HP-UX skills more quickly and competently,
and reduce areas of confusion. This information is broken up into several sections:

• Logging In

• Commands

• File System

• Permissions

• Text Editing

• Shell Programming

• Batch Processing

These notes are designed as a self study to be read independently by the student either before
or after appropriate labs.

Logging In

On MPE, a login ID consists of two required pieces of information: an MPE user name and an
MPE account name. In addition, a third identifier, the MPE group name, can optionally be
used to specify which MPE group the user logs into. The group name is required if the user
has no home group. On HP-UX, a login ID consists of only a user name. In MPE, the user,
account, and group name information is stored in the MPE System Directory. This information
is accessible through LISTDIR5 on MPE V or, on MPE/iX,:LISTUSER, :LISTACCT;
:LISTGROUP; and is maintained through :NEWUSER, :ALTUSER, :PURGEUSER,
:NEWACCT, :ALTACCT, :PURGEACCT, :NEWGROUP, :ALTGROUP, :PURGEGROUP. In HP-UX, all
information related to a user name is kept in the file/etc/passwd and can be maintained by
editing this ASCII file. HP-UX also provides sam, a menu-driven system administrator utility
which edits this file for you. The user names and associated information are accessible simply
by looking at the contents of this file. That is cat /etc/passwd . Section four of the HP-UX
reference manual documents the layout of /etc/passwd. Each line contains a separate user
name. Several fields, separated by colons, are stored as follows:

sally:tekXeRorZ0qXQ:201:20::/home/planets/sally:/usr/bin/sh

• login name (sally from example above)

User name. All user names as well as file names and commands are case sensitive in HP-UX.

• encrypted password (tekXeRorZ0qXQ from example)

In MPE, a user could be prompted for as many as three different passwords at login time,
for the account password, user password, and group password. At most one password is

25 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

required for HP-UX. In HP-UX, all passwords are stored in an encrypted format; therefore,
no one, not even super-user, can read these passwords. The super-user can, however, edit
/etc/passwd to remove an encrypted password. On HP-UX, users maintain their own
passwords through the passwd command.

• numerical user ID (201 from example)

Each user name has associated with it a user ID number. A 0 signifies super-user privilege.
Super-user privilege can be assigned to one or more HP-UX users. Super-user privilege
allows access to special administrative tools and overrides many operating system controls.
MPE capabilities can be assigned selectively to MPE users. The MPE user MANAGER.SYS
has full MPE capabilities. So too, the HP-UX user root has super-user privilege. Having
super-user privilege on HP-UX is similar to having a combination of SM, PM, and OP
capabilities on MPE.

• group ID number (20 from example)

This is the ID number of the group this user initially belongs to. MPE and HP-UX use the
term group. In MPE, a group is a collection of files. We will see that on HP-UX a collection
of files is called a directory.

In HP-UX a group is a collection of users. Groups are used for security purposes. Each file is
owned by a group. A group, that is all its members, can be assigned permission to access the
files the group owns. And access can be denied to other users of the system who are not
members of the group.

Each user is permitted to be a member of one or more groups (one group at a time).

Let’s say we have a group named payroll with the user names sally, hank, and sue
permitted to be members. The file /employee/pay is owned by the payroll group. I allow
only members of the payroll group read access to /employee/pay.

The user sally can also be permitted to be a member of a group named benefits. Only
members of the benefits group are permitted read access to the file /employee/ben.
/employee/ben is owned by the benefits group.

Let us say sally is initially assigned to the payroll group. That is, the fourth field in
/etc/passwd for sally has the payroll group’s ID number.

So when sally issues the command id she would see her current user ID is sally and her
current group ID is payroll. At this point, sally is permitted access to the file
/employee/pay but is denied access to the file /employee/ben. To switch to the
benefits group and gain access to the file /employee/ben, sally would issue the
command newgrp benefits.

Now the id command will reflect that her user ID is still sally but her group ID is now
benefits, thus now allowing her access to the file called /employee/ben.

The list of user-group relations is contained in the file, /etc/group. Specifically, each line
contains a group name, an optional password, a group ID number, and a list of user names
permitted as members of the group. This information is accessible by looking at the contents
of this ASCII file and is maintained by editing it with any text editor such as vi . The
section of the file we described would look like

51434S G.02 26
© 1999 Hewlett-Packard Company

Notes to the Instructor

payroll::20:sally,hank,sue
benefits::21:sally

• reserved field (empty in the example)

Can be used for personal identification such as user’s full name, office location, extension,
home phone.

• initial working directory (/home/planets/sally in the example)

This is similar in concept to a home group in MPE. When a user logs on, he is initially
placed in this home directory. Relative path names will be evaluated relative to this
directory. On MPE/iX, the :CHGROUP could be used to switch to other groups of files without
logging off. On HP-UX, a user can issue a cd (change directory) command to switch
directories. We will see that the user does need appropriate permissions (file security) to a
directory in order to switch to it.

• shell program (/usr/bin/ksh in example above)

This is the shell program or command interpreter that will be run for this user upon login.
A command interpreter is the part of the operating system that reads the user’s commands
and initiates execution of these commands. MPE provides only one command interpreter,
but on HP-UX there are several command interpreters (or shells) to choose from. The
primary shells available are

— Bourne shell (/bin/sh) oldest shell

— C shell (/bin/csh) Berkeley shell

— Korn shell or K shell (/bin/ksh) newer shell, incorporates best of C shell extensions and
maintains compatibility with Bourne shell.

— POSIX shell (/usr/bin/sh), default shell, compliant with POSIX.2 standard, features
are most like the Korn shell.

The HP 3000 system manager must specify in the configuration the type of terminal each user
is working with. That means MPE knows what type of terminal you are using before you log in.

HP-UX, on the other hand, determines what type of terminal you are using at the time you log
in. UNIX was originally designed to run on virtually any hardware, using a variety of
terminals. Some older terminals supported on HP-UX don’t have backspace keys and have
only uppercase. For these reasons, terminals work in a special way at login time on HP-UX. In
order to allow users to correct errors during login in a consistent manner regardless of what
terminal they are working with, the backspace key is not used. Instead of backspace, a single
character is erased with # and the entire line is erased with @. Also, if uppercase is entered at
login time, HP-UX assumes you are using a terminal that is strictly uppercase and all
characters are shifted to lowercase before being executed. To avoid this, user names should
always be entered in lowercase when logging in.

27 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Commands

Many HP-UX commands have MPE commands that are similar.

HP-UX MPE

touch build
cat fcopy (to screen)
more print (iX)
ls listf
cp fcopy, copy (iX)
mv rename
rm purge
mkdir newgroup
rmdir purgegroup
who showjob job=@s (sessions only)
whoami showme
ps showjob, showproc (iX)
mail HPDESKMANAGER (the product)
pwd showme (to see the group name)
id showme (to see the user name)
write tell
cd chgroup (iX)
chmod (on a file) altsec
chmod (on a directory) altgroup access=, altacct access=
ln file equation
chown no equivalent
vi editor
sort sort
nice job ;pri=es
kill abortjob
if if
tar store/restore
man help
fc -l (Korn shell) listredo (iX)
r (Korn shell) do (iX, redo without editing)
read input (iX)
nohup (with &as suffix) stream
at (no &required) stream ;at=

The man command is similar to MPE :HELP. It allows online access to the HP-UX reference
manual. Many MPE users are familiar with UDCs (or command files) that are abbreviations
for commands. Many MPE users create UDCs for longer command lines in an effort to save
keystrokes. For example:

SJ = SHOWJOB
SJJ = SHOWJOB JOB=@J
SJS = SHOWJOB JOB=@S

HP-UX was designed with similar time savers already built in, that is, ID = copy, mv = move,
cd = change directory, pwd = present working directory, man = manual, and so forth. On
HP-UX you must use these abbreviations.

51434S G.02 28
© 1999 Hewlett-Packard Company

Notes to the Instructor

Many UNIX commands can operate in a slightly different way by providing options. The man
command contains a -k option which allows an online reference manual search based on a key
word.

The MPE :LISTREDO and :REDO commands provide access to commands the MPE user has
previously executed. In the HP-UX Korn shell, (/usr/bin/sh), the escape key followed by the
k key brings up the last command the HP-UX user just executed. At this point the user can
use vi commands to edit the line displayed before re-executing this line. By entering the k key
over and over the user can retrieve earlier commands that had been executed and can edit
them with vi.

File System

On MPE, all files reside within a MPE group. Each group resides within a MPE account. So
all files can be identified by filename.groupname.accountname. The lists of valid accounts,
groups and files are all located in the MPE system directory.

On HP-UX, the term directory is used to mean something quite different from the MPE system
directory. A directory on HP-UX is simply a collection of files; very much like a MPE group is a
collection of files. There are, however, some differences. MPE groups contain only files. I
cannot have one MPE group contained within second MPE group. On HP-UX, however, I can
have one directory stored within another directory. That is, a directory can contain files or
directories. Looking back, MPE could be thought of as a two-level directory file system where
the upper-level directory is the account name and the lower-level directory (or subdirectory) is
the group name.

HP-UX has a parent directory for all files and directories on the system called root, written as
/; therefore, all files and directories are contained within /.

On MPE a fully qualified file name is filename.groupname.accountname.

On HP-UX the absolute path name is similar to this fully qualified file name. All directories
that the file is located within are specified. On MPE, the file name is listed first, followed by
the subdirectory (group), followed by the parent directory (account). On HP-UX the sequence is
reversed. The absolute path name always starts with the highest level directory containing the
file which will always be /. The / is followed by all other directories containing the file with
the higher level directories preceding the lower-level directories. All intermediary directory
names are suffixed with a /. The last piece of information is the file name.

So /etc/passwd refers to the absolute path name for the file passwd which is located within
the directory etc. etc is located within the directory / (root).

The file /home/planets/earth/funfile refers to the file funfile (notice the HP-UX file
names allow special characters like a . and can be longer than eight characters) which is
located within the directory earth. Remember HP-UX is case sensitive; therefore, Earth is
not the same directory as earth. earth is located within the directory planets; planets is
located within the directory home; home is located within the directory / .

On MPE, if the file we want to access resides within our logon group and account, we do not
need to fully qualify the file name to access it. So if we were logged into the group DB within
the account MFG and we wanted to access the file TRS (full file name is TRS.DB.MFG), we
could specify simply TRS.

29 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

Similarly, on HP-UX, we can specify a relative path name as opposed to an absolute path
name. We do this by specifying only the portion of the path name that is "below" our present
working directory.

So if our present working directory were /home/planets/earth and we wanted to view the
contents of the file /home/planets/earth/funfile with the cat command, we could simply
enter

cat funfile

as opposed to writing out

cat /home/planets/earth/funfile

which would also work.

Permissions

On MPE, file security includes provisions to differentiate between five types of file access:
read, write, lock, append and execute. Also, the ability to create new files is controlled by
assigning save access to a group.

Additionally, on MPE, in order to be able to access the file the user must have the appropriate
access at the account, group and file level.

Finally, on MPE, users are segregated into categories, Account Member, Group User, Any,
Account Librarian, Group Librarian, and Creator.

On HP-UX, read, write, and execute permissions may be assigned to both files and directories.
HP-UX segregates users into three mutually exclusive categories:

• user (owner of the file or directory). Every file and directory has an owner. Ownership can
be changed with the chown command.

• group (every file and directory is owned by a group). All logons who are currently members
of the group that owns the file fall in this category. Group ownership of a file can be changed
with the chgrp command.

• other (anyone else on the system).

The HP-UX user is similar to MPE creator. HP-UX group membership is initially based on the
group ID entry in the /etc/passwd file and can be changed with the newgrp command.

Read, write, and execute mean something special when applied to directories.

Read access to a directory means that we can use the ls command to get a list of files in that
directory. On MPE the LISTF command is always available to get a list of files from any
group/account and cannot be disabled through file security.

Write access to a directory means that we can add or remove files from the directory. On MPE,
save access to a group allows us to add files to the group. On MPE, the ability to purge files is
strictly limited to creator and SM capability and cannot be further controlled with file security.

51434S G.02 30
© 1999 Hewlett-Packard Company

Notes to the Instructor

On MPE/iX we need to know the group password to issue the CHGROUP command to switch to
a different group. In order to use the HP-UX cd command to switch to another directory we
need execute permission to the directory we are switching to.

Similar to MPE, having read access to a file at the file level is not sufficient access for us to
read the file. We also need appropriate access to the directory in which the file resides and to
all additional directories included in the path name of the file.

So, in order to access a file in any way (read, write, or execute), not only do we need
appropriate access to the file; we also need search access (execute access) to that file’s parent
directory and to any additional directories included in that file’s path name.

For example, let’s say our present working directory is /home and we are trying to read the file
/home/planets/earth/funfile. In order for our command

cat planets/earth/funfile

to succeed, we need read access to the file funfile and search access (that is, execute access)
to the directories planets and earth.

Text Editing

Many editors are available on both MPE and UNIX. EDITOR is available on every MPE system
and for that reason is taught in introductory MPE classes. vi is taught in this class because it
is so widely available on UNIX systems.

MPE EDITOR is a line editor. vi works differently. vi relies heavily on command mode and
input mode. In EDITOR the add command allows lines to be added to the text. Everything that
is typed after entering the add command is included as contents of the file until you key // .
In vi this is called input mode. In EDITOR you terminate input mode for the add command by
typing //. In vi several commands put you into input mode. For example, a, i, o, and O all
initiate input mode. In each case, everything typed from that point until the escape key is hit
is added to the file. So the escape key in vi serves a similar purpose as the // serves for the
add command in EDITOR.

Shell Programming

An MPE UDC catalog is a file that can contain multiple command definitions. For example,

purgeudc
file a=listout
purge l
run purgprog

buildfil
.
.
.

anotherudc
.

31 51434S G.02
© 1999 Hewlett-Packard Company

Notes to the Instructor

.

.

UNIX provides the ability to create our own commands through shell programs. Both the body
of a UDC and the contents of a shell program are made up of operating system commands.
One MPE UDC file can contain multiple command definitions as in the example above. An
HP-UX shell program contains the definition of a single command. The command is executed
by typing the name of the HP-UX file. Shell programs can use parameters just as UDCs can.
The following UDC and shell programs both purge four files.

purgeudc f1,f2,f3,f4
purge !f1
purge !f2
purge !f3
purge !f4
*
purgeshellprogram f1 f2 f3 f4
rm $1
rm $2
rm $3
rm $4

In MPE several commands, including :LISTF, :STORE, and :RESTORE, allow for wildcards in
file names. Here @ matches any pattern, ? matches any single character, and # matches any
digit. HP-UX has a similar file name matching facility which works on all commands, where *
matches any pattern (* = @), ? matches any single character (? = ?), and []can be used to
identify a character class to match a single position. So [0-9] matches any single digit.

MPE HP-UX

?### ?[0-9][0-9][0-9] any character followed by three digits
@a@ *a* a anywhere in filename
@t *t ends with t

Many features of UNIX such as redirection of command input and output, command variables,
command files (shell programs), implied run, the PATH variable (called HPPATH), and
character classes are part of MPE/iX.

The logon option of MPE UDCs allows a UDC to be executed automatically when the user logs
into MPE. The .profile file in the user’s home directory is executed automatically when a
HP-UX user first logs in and provides similar functionality.

The nobreak option of an MPE UDC disables the break key. The HP-UX trap command can
be used to provide the same functionality in a shell program.

Batch Processing

The :STREAM command in MPE can be used to initiate a batch job. The batch job logs on
independent of the online user who issued the STREAM command. An HP-UX command that
has an ampersand (&) at the end will run as a background process. This background process is
similar to a batch job in that both allow the user to continue working interactively and both
share the CPU with any online users.

51434S G.02 32
© 1999 Hewlett-Packard Company

Notes to the Instructor

The HP-UX background process is not independent of the online user. The MPE batch job
sends all its default output ($STDLIST) to the printer. The HP-UX background process sends
all its default output (stdout) to the user’s screen. If the MPE user who streamed the job logs
off, the job continues to execute. If the HP-UX user who initiated the background process logs
off, the background process will abort.

The HP-UX nohup command allows the HP-UX background process to work more like an MPE
job in that nohup processes will continue to execute after the online user logs off.

For example, in MPE

STREAM MYJOB

initiates a batch job.

In HP-UX

nohup myjob &

initiates the background process.

The HP-UX at command provides the ability to schedule jobs to run at a future time similar
to the MPE command STREAM ;AT=. The background process will execute at the future time
even if the user logs out.

In order to remove a job or session on MPE we would first issue a :SHOWJOB to determine the
job or session number and then issue an :ABORTJOB to abort the job or session. The HP-UX
user would first issue a ps command to determine the process id of the background process or
online user and then issue a kill command to send the process a signal causing the process
to abort. Signal number 9 is a sure kill and cannot be disabled by the trap command. For
example in MPE,

SHOWJOB determine which job or session number to abort
ABORTJOB #J154 remove job number #J154 from the system

in HP-UX:

ps -ef determine which process id to abort
kill -9 16882 remove process id number 16882 by sending it signal 9

33 51434S G.02
© 1999 Hewlett-Packard Company

Introduction to UNIX

51434S G.02 34
© 1999 Hewlett-Packard Company

Module 1 — Introduction to UNIX

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the basic structure and capabilities of the UNIX operating system.

• Describe HP-UX.

1-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

51434S G.02 1-2
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

Overview of Module 1

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

This module is designed to introduce the student to operating systems in general and to the
UNIX system specifically. There is only general information in this module and there is no lab
associated with it.

Time

Lab 0 minutes

Lecture 30 minutes

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Language

USEnglish US English

Trademarks

UNIX UNIX® is a registered trademark of The Open Group in the U.S.A. and other
countries.

OSF OSF/Motif® is a registered trademark of the Open Software Foundation.

XWIN X Windowstm is a trademark of the Massachusetts Institute of Technology.

1-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-1. SLIDE: What Is an Operating System?

Student Notes

An operating system is a special computer program (software) that controls the computer
(hardware). The operating system serves as a liaison between the consumers and the
resources, often coordinating the allocation of limited resources among numerous consumers.
The resources include, for example, the CPU, disks, memory, and printers and the consumers
are running programs requiring access to the resources. As an example, a user (or a program)
requests to store a file on the disk, the operating system intervenes to manage the allocation
of space on the disk, and the transfer of the information from memory to the disk.

When a user requests program execution, the operating system must allocate space in memory
to load and access the program. As the program executes, it is allowed access to the Central
Processing Unit (CPU). In a time-sharing system, there are often several programs trying to
access the CPU at the same time.

The operating system controls how and when a program will have its turn in the CPU, similar
to a policeman directing traffic in a complex intersection. The intersection is analogous to the
CPU; there is only one available. Each road entering the intersection is like a program. Traffic
from only one road can access the intersection at any one time, and the policeman specifies

51434S G.02 1-4 (1-2)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

which road has access to the intersection, eventually giving all roads access through the
intersection.

1-5 (1-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

51434S G.02 1-6
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-1. SLIDE: What Is an Operating System? Instructor Notes

Teaching Tips

Point out that the operating system acts as a traffic cop and resource allocator, regulating the
flow of data and the use of resources to fulfill a variety of demands.

1-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-2. SLIDE: History of the UNIX Operating System

Student Notes

The UNIX operating system started at Bell Laboratories in 1969. Ken Thompson, supported
by Rudd Canaday, Doug McIlroy, Joe Ossana, and Dennis Ritchie, wrote a small general
purpose time-sharing system which started to attract attention. With a promise to provide
good document preparation tools to the administrative staff at the Labs, the early developers
obtained a larger computer and proceeded with the development.

In the mid 1970s the UNIX system was licensed to universities and gained a wide popularity
in the academic community for the following reasons:

• It was small—early systems used a 512-kilobyte disk, using 16 kilobytes for the system,
8 kilobytes for user programs, and 64 kilobytes for files.

• It was flexible—the source was available, and it was written in a high-level language that
promoted the portability of the operating system.

51434S G.02 1-8 (1-4)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

• It was cheap—universities were able to receive a UNIX system license basically for the price
of a tape. Early versions of the UNIX system provided powerful capabilities that were
available only in operating systems that were running on more expensive hardware.

These advantages offset the disadvantages of the system at the time:

• It had no support—AT&T had spent enough resources on MULTICS and was not interested
in pursuing the UNIX operating system.

• It was buggy—and since there was no support, there was no guarantee of bug fixes.

• It had little or no documentation, but you could always go to the source code.

When the UNIX operating system reached the University of California at Berkeley, the
Berkeley users created their own version of the system. Supported by the Department of
Defense, they incorporated many new features. Berkeley, as a research institute, offered its
licensees a support policy similar to AT&T’s — none!

AT&T recognized the potential of the operating system and started licensing the system
commercially. To enhance their product, they united internal UNIX system development that
was being completed in different departments within AT&T, and also started to incorporate
enhancements that Berkeley had developed.

Later success can be attributed to

• A flexible user interface, and an operating environment that includes numerous utilities.

• The modularity of the system design that allows new utilities to be added.

• Capability to support multiple processes and multiple users concurrently.

• DARPA support at Berkeley.

• Availability of relatively powerful and cheap microcomputers.

• Availability of the UNIX system on a wide range of hardware platforms.

• Standardization of the interface definition to promote application portability.

1-9 (1-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

51434S G.02 1-10
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-2. SLIDE: History of the UNIX Operating
System

Instructor Notes

Teaching Tips

Briefly explain the history of the UNIX operating system.

Additional information is available in the student notes and the following text page for those
students who are interested in reading more of the details related to the history of the UNIX
operating system.

There are currently numerous implementations of the UNIX system, but most
implementations originate from either AT&T’s System V version or Berkeley’s BSD version of
the UNIX system. Since so many implementations have been developed, standards have
become increasingly important. Standards will be briefly introduced later in this module.

The Open Software Foundation (OSF)

The goal of the Open Software Foundation (now called the Open Group) is to develop and
license technologies to promote software portability, interoperability, and scalability. OSF
develops their offerings through contributions of existing technologies and incorporating
current standards (POSIX, XPG, ANSI, and so on).

The first offering, Motif, provided technology for user interface development, where consistent
user interfaces could be developed across multiple hardware platforms. The second offering
was the operating system, OSF/1 based on BSD 4.2 and System V Release 2 while
incorporating the capabilities for advanced features such as multi-processors, the ability of a
file system to span disks, dynamic kernel configuration, and more. Other development that
OSF is currently researching include:

Distributed Computing Environment (DCE) The capability to distribute the execution of a
process among several networked processors.

Distributed Management Environment
(DME)

The capability to centrally manage a
heterogeneous network.

Architecture Neutral Distribution Format
(ANDF)

The release of a common tape format that can
be used across multiple hardware platforms.

For more information on OSF refer students to Hewlett-Packard’s OSF seminar series:

• Introduction to Programming with OSF/Motif Widgets and the X Toolkit—H2595S

• The OSF Computing Environment Seminar—H2594S

• OSF DCE Application Programming—H5097S

• OSF DCE Internals—H5098S

1-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

• User Interface Design with OSF/Motif—H5095S

51434S G.02 1-12
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-3. TEXT PAGE: History of the UNIX Operating System

The following provides some more detail on the history of the UNIX system:

1956 AT&T Consent Decree—AT&T antitrust lawsuit that prohibited them from
participating in certain nonregulated areas.

1965 Bell Labs, MULTIplexed Information and Computing System (MULTICS)—
research begins on the ultimate multi-user environment, a joint project with
Massachusetts Institute of Technology and General Electric.

1969 Bell Labs, the UNIX system is born—Ken Thompson, during research on file
system development creates Space Travel, a program to simulate the motion
of bodies in space on a discarded PDP-7 minicomputer. Created a file system,
assembler, editor and a simple shell. WHY a PDP7? It had good graphics, it
was cheap when compared to the DEC-10 that supported an interactive,
time-sharing interface, and he wanted convenient, interactive computer
service. Previous work was done on a GE645 mainframe that operated in
batch mode and was expensive to access. Programs were originally
cross-compiled for the PDP-7 and loaded through paper tape.
Due to the Consent Decree, Bell Labs was allowed to research the UNIX
system, but could not market, advertise or support any the UNIX
system-based products. They were allowed to distribute software to
universities for educational purposes only.

1970 Assembler based UNIX system ported to PDP-11/20 (16 bit minicomputer) to
research text processing capabilities.

1971 1st edition—Bell Labs Patent Office are the first UNIX system customers.
Big advantage for users to not have to go through central computing services.
Ken Thompson develops interpreted language B, based on Martin Richards’
BCPL language, and subsequently the language NB (new B).

1972 2nd edition—pipes, language support, attempt to write kernel in NB (a
predecessor to C). 10 systems.
Dennis Ritchie develops the C language.

1973 4th edition— The kernel and shell are rewritten in C. UNIX Systems Group
created at Bell Labs for internal support. 25 systems.
First unofficial distribution to universities.

1974 5th edition—Officially available to universities for educational purposes only.
AT&T provides NO support, NO trial period, NO warranty, NO bug fixes, you
MUST pay in advance.

1975 6th edition—Licenses are available to government & commercial users.
Thompson attends University of California at Berkeley (UCB) on sabbatical.
Berkeley development starts.

1977 500 systems, mostly at 125 universities. 1 BSD developed on PDP-11.
First ports to non-DEC equipment.

51434S G.02 1-14 (1-6)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1978 7th edition—portability is a major design goal. Swapping, the K&R C
Compiler, the Bourne Shell, and larger files are supported. The UNIX system
is ported to VAX 11/780 (32-bit address space, with 4Gb virtual address
space). Outcome is UNIX/32V.

1979 3.0 BSD—enhanced UNIX/32V to incorporate virtual memory and support
demand paging. Major design goal is the capability to run processes that are
larger than physical memory.

1980 4.0 BSD—incorporates job control, virtual memory, paging, device drivers for
third party (non-DEC) peripherals, terminal independent support for
screen-based applications such as vi. Caught the interest of Department of
Defense Advanced Research Projects Agency (DARPA)—looking for a
non-proprietary operating system standard for networked research systems
for CAD/CAM, artificial intelligence, and vision applications. Berkeley’s
virtual memory development was more advanced than AT&T’s.

1981 /usr/group founded—first organization to initiate definition of standards in
the UNIX system environment.

1982 System III—combined features from several UNIX system variants
developed with AT&T, also integrated some BSD features such as curses, job
control, termcap and vi. HP-UX was introduced.

1983 System V Release 1— AT&T announces official support and lowers the price.
AT&T authorizes microprocessor manufacturers to support the UNIX system.
BSD 4.2—released based on DARPA research, incorporates IPC, virtual
memory, high-speed file system, network architecture (TCP/IP).
Introduction of 16- and 32-bit microcomputers. BSD-IPC, network, fast file
system 100,000 UNIX system sites.

1984 Consent decree lifted, Bell divestiture—allows AT&T to compete in the
computer business.
System V Release 2—supports paging, shared memory.
/usr/group Standard submitted to POSIX.

1985 System V Interface Definition (SVID)—defines the system call interface.
System V Verification Suite (SVVS)—test suite that must be passed to be
marked SVID compliant.

1986 4.3 BSD—primarily bug fixes, job control, reliable signals.

1987 System V Release 3— STREAMS, IPC, Job Control.
X/Open Portability Guide (XPG)—specify kernel interface and many utility
programs to promote portability of applications between the UNIX system
implementations. 300,000 UNIX systems shipped. 750,000 UNIX systems,
total.

1988 SVID Issue 2— file locking.
Open Software Foundation founded—an independent company formed to
develop and provide a computing environment that is based on industry
standards and the best technologies that are available.

1989 System V Release 4—POSIX.1 compliance.

1-15 (1-7) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

XPG/3—support POSIX.1 and Common Application Environment, selects
standards that will be incorporated for several aspects of the computing
environment, not just the operating system interface to promote portability.

1990 SVID Issue 3—POSIX.1, FIPS 151-1 and C Standard.

1991 HP-UX 8.0—licensee of System V Release 3, SVID2 compliant, incorporating
BSD4.2 and BSD4.3 extensions that have become defacto industry standards,
incorporating POSIX-, FIPS-, XPG2-, and XPG3-compliant interfaces.

1992 HP-UX 9.0—licensee of System V Release 3, SVID2 compliant, incorporating
X/Open Portability Guide Issue 3, POSIX 1003.1 and POSIX 1003.2, X11R5,
FIPS-2 and FIPS-3, POSIX.1, OSF/Motif 1.2, and others.

1995 HP-UX 10.0—SVID3 kernel compliance, incorporating X/Open Portability
Guide Issue 4, POSIX.4 Realtime Phase 1 and others assuring portability
from 9.0 to 10.0. The major difference is that the file system layout has been
changed to follow the AT&T SVR4 and OSF/1 paradigm.

1997 HP-UX 11.0 — SVID3 Release 4 — POSIX.2 compliance. IA64 compliant for
64-bit implementations. Implements kernel threads.

51434S G.02 1-16 (1-8)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-3. TEXT PAGE: History of the UNIX
Operating System

Instructor Notes

Purpose

This text page is provided for those students who are interested in reading a little more about
the history of the UNIX operating system.

1-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-4. SLIDE: Features of UNIX

Student Notes

The UNIX system provides a time-sharing operating system that controls the activities and
resources of the computer, and an interactive , flexible operating interface. It was designed to
run multiple processes concurrently and support multiple users to facilitate the sharing of
data between members of a project team. The operating environment was designed with a
modular architecture at all levels. When installing the UNIX system, you only need install the
pieces that are relevant to your operating needs, and omit the excess. For example, the UNIX
system supplies a large collection of program development utilities, but if you are not doing
program development you need only to install the minimal compiler. The user interface also
effectively supports the modular philosophy. Commands that know nothing about each other
can be easily combined through pipelines, to perform quite complex manipulations.

The Operating System

The kernel is the operating system. It is responsible for managing the available resources and
access to the hardware. The kernel contains modules for each hardware component that it
interfaces with. These modules provide the functionality that allows programs access to the

51434S G.02 1-18 (1-9)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

CPU, memory, disks, terminals, the network, and so forth. As new types of hardware are
installed on the system, new modules can be incorporated into the kernel.

The Operating Environment

Tools and Applications

The modular design of the UNIX system environment is most evident in this layer. The UNIX
system command philosophy is that each command does one thing well, and the collection of
commands make up a tool box. When you have a job to complete you pull out the appropriate
tools. Complex tasks can be performed by combining the tools appropriately.

From its inception, the UNIX system "toolbox" has included much more than just the basic
commands required to interact with the system. The UNIX system also provides utilities for

electronic mail (mail, mailx)
file editing (ed, ex, vi)
text processing (sort, grep, wc, awk, sed)
text formatting (nroff)
program development (cc, make, lint, lex)
program management (SCCS, RCS)
inter-system communications (uucp)
process and user accounting (ps, du, acctcom)

Since the UNIX system user environment was designed with an interactive, programmable,
modular implementation, new utilities can easily be developed and added to the user’s toolbox,
and unnecessary tools can be omitted without impairing system operation.

As an example, an application programmer and a technical writer are using UNIX systems.
They will use many common commands, even though their applications are very different.
They will also use utilities that are appropriate just for their development. The application
programmer’s system will include utilities for program development and program
management, while the technical writer’s system will contain utilities for text formatting and
processing, and document management. It is interesting to note that the utility that the
application developer uses for program revision control can also be used by the technical
writer for document revision control. Therefore, their systems will look very similar, yet each
user has selected and discarded the modules that are relevant to his or her application needs.

The popularity of the UNIX system can largely be attributed to

• The completeness and the flexibility of the UNIX system allowing it to fit into many
application environments.

• The numerous utilities that are included in the operating environment enhancing users’
productivity.

• The availability on and portability to many hardware platforms.

The Shell

The shell is an interactive command interpreter. Commands are entered at the shell prompt,
and acted upon as they are issued. A user communicates with the computer through the shell.
The shell gathers the input the user enters at the keyboard and translates the command into
a form the kernel can understand. Then the system will execute the command.

1-19 (1-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

You should notice that the shell is separate from the kernel. If you do not like the interface
provided by the supplied shell, you can easily replace it with another shell. Many shells are
currently available. Some are command driven and some provide a menu interface. The
common shells that are supplied with the UNIX system include both a command interpreter
and a programmable interface.

There are four shells that are commonly available in the UNIX system environment. They are

• Bourne Shell (/usr/old/bin/sh)—the original shell provided on AT&T based systems
developed by Stephen Bourne at Bell Laboratories. It provides a UNIX system command
interpreter and supports a programmable interface to develop shell programs, or scripts as
they are commonly called. The programmable and interactive interfaces provide capabilities
such as variable definition and substitution, variable and file testing, branching, and loops.

• C Shell (/usr/bin/csh)—the shell developed at the University of California Berkeley by
Bill Joy, and is provided on BSD-based systems. This shell was referred to as the California
Shell, which was shortened to just the C Shell. It was considered an improvement over the
Bourne Shell because it offered interactive features such as a command stack which allows
simple recalling and editing of previously entered commands, and aliasing which provides
personalized alternative names for existing commands.

• Korn Shell (/usr/bin/ksh)—is a more recent development from Bell Laboratories
developed by David Korn. It can be considered an enhanced Bourne Shell because it
supports the simple programmable interface of the Bourne Shell, but has the convenient
interactive features of the C Shell. The code has also been optimized to provide a faster,
more efficient shell.

• POSIX Shell (/usr/bin/sh)—POSIX-conformant command programming language and
command interpreter residing in file /usr/bin/sh. This shell is similar to the Korn shell in
many respects; it provides a history mechanism, supports job control, and provides various
other useful features.

51434S G.02 1-20 (1-11)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

Table 1-1. Comparison of Shell Features

Features Description Bourne Korn C POSIX

Command history A feature allowing
commands to be stored in a
buffer, then modified and
reused.

No Yes Yes Yes

Line editing The ability to modify the
current or previous
command lines with a text
editor.

No Yes No Yes

File name
completion

The ability to automatically
finish typing file names in
command lines.

No Yes Yes Yes

Alias command A feature allowing users to
rename commands,
automatically include
command options, or
abbreviate long command
lines.

No Yes Yes Yes

Restricted shells A security feature providing
a controlled environment
with limited capabilities.

Yes Yes No Yes

Job control Tools for tracking and
accessing processes that
run in the background.

No Yes Yes Yes

1-21 (1-12) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

51434S G.02 1-22
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-4. SLIDE: Features of UNIX Instructor Notes

Key Points

• The shell is a command interpreter.

• It also provides an extensive programmable interface.

• The shell is not built into the operating system.

• The shell could be replaced with another program.

• Many command interpreters are available.

Many students notice as they progress through the course that many commands do not share
a common syntax or even style. The collection of the UNIX system utilities is largely
evolutionary. Most early commands were terse with single letter options. But many of the
early UNIX system enhancements and utilities were contributed, with little or no control over
the consistency of syntax with other similar utilities. Therefore, you will find commands like

• find that has complete word options, instead of single letter options.

• cut and sort that have similar options with different identifiers such as -t and -d.

• Some commands use a hyphen (-) prior to the options, and some do not.

NOTE: The POSIX.2 standard requires that on a POSIX-compliant system,
executing the command sh activates the POSIX shell (located in file
/usr/bin/sh on HP-UX systems).

1-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-5. SLIDE: More Features of UNIX

Student Notes

Hierarchical File System

Information is stored on the disk in containers known as files. Every file is assigned a name,
and a user accesses a file by referencing its name. Files normally contain data, text, programs,
and so on. A UNIX system normally contains hundreds of files, so another container, the
directory is provided that allows users to organize their files into logical groupings. In the
UNIX system, a directory can be used to store files or other directories.

The file system structure is very flexible, so if a user’s organizational needs change, files and
directories can be easily moved, renamed, or grouped into new or different directories through
simple UNIX system commands. The file system, therefore, is like an electronic filing cabinet.
It allows users to separate and organize their information into directories that are most
appropriate for their environment and application.

51434S G.02 1-24 (1-13)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

Multi-tasking

In the UNIX system several tasks can be performed at the same time. From a single terminal,
a single user can execute several programs that all seem to be running simultaneously. This
means that a user can edit a text file, while another file is being formatted, while yet another
file is being printed.

In actuality, the CPU can execute only one task at a time, but the UNIX operating system has
the capability to time-share the CPU between multiple processes that are scheduled to run at
the same time. So, to the user, it appears that all programs are executing simultaneously.

Multi-user

Multi-user capability allows more than one user to log in and use the system at the same time.
Multiple terminals and keyboards can be attached to the same computer. This is a natural
extension of the multi-tasking capability. If the system can run multiple programs
simultaneously, some of those multiple programs should be able to support other user sessions.
In addition, a single user could log in multiple times to the same system through multiple
terminals. A big advantage of this architecture is that members of a work group can have
access to the same data at the same time, either from a development or a user viewpoint.

1-25 (1-14) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

51434S G.02 1-26
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-5. SLIDE: More Features of UNIX Instructor Notes

Key Points

• A file is a container for information and data.

• A directory is a container for files and other directories.

• The UNIX system provides a hierarchical file system.

• The UNIX system supports the execution of multiple processes simultaneously.

• The UNIX system supports multiple users to be logged in concurrently.

Teaching Tips

You might want to contrast the UNIX system’s hierarchical file system against a flat file
system that does not allow directories. Note that there is no limit to the number of
subdirectories that can be created, and subdirectories are just containers for files; they are not
tied into the user accounts structure of the system, though a hierarchy could be created that
resembles the organization structure.

1-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-6. SLIDE: The UNIX System and Standards

Student Notes

From its inception, the UNIX system was developed with a focus on portability. Since most of
the operating system and utilities have been written in C (as opposed to assembler), the UNIX
system has not been restricted to one processor or hardware platform. On the other hand,
since the UNIX system is written in a high level language, it is easy to modify, as exemplified
by the over 100 companies that offer UNIX-based implementations (licensed from The Open
Group) and the UNIX system clones (new implementations of a UNIX-like interface that do
not require an Open Group license). Even though most systems are derived from AT&T UNIX,
BSD UNIX, or a combination of both, each implementation may incorporate unique extensions
to the operating system, such as real time capabilities, that may negate the compatibility
between different UNIX system implementations. (Actually, System V has already incorporated
many of the popular features of BSD.) To encourage consistency from implementation to
implementation standards are being formulated for the UNIX system operating environment.

The goal of these standards is to promote the following:

1. Portability—the ability to easily transfer an application from one UNIX system
implementation to another.

51434S G.02 1-28 (1-15)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

2. Interoperability—the ability for applications running on different UNIX system
implementations to share information.

3. Scalability—provide a range of hardware options, from small systems to large systems,
users can select from depending on their application needs. Plus allow flexible system
upgrade capabilities as application needs grow.

Despite the many implementations of the UNIX system, the differences at the user level are
slight, since most have been developed from common origins. Therefore, the standards initially
focused on the source code interface to the kernel, and are only recently evaluating
standardization of the interactive user interface.

Goals of the Standards Bodies

Define Interface Not Implementation

Standards are not intended to define a totally new interface but to create a well-defined,
portable interface based on current UNIX system implementations. It is important to
understand that standards are intended to define interfaces to the UNIX system operating
environment, not how a standard is to be implemented. Therefore, the UNIX system standards
do not dictate that all UNIX system computers be complete duplicates, rather that they will
all support a common set of functions that specific implementations can be formed around.

A good analogy would be an automobile. The basic interface defined by the automobile
"standard" is

Go—step on accelerator

Stop—step on brake

Change directions—turn wheel

Start engine—turn key

Automobiles that support these standard interfaces can be designed with many different
implementations. For example, the automobile could have an electric engine or a gas engine,
but stepping on the accelerator would make either go.

An interesting side effect of this philosophy is that it will be possible for non-UNIX operating
systems to comply with the defined standards by supporting the prescribed interfaces.

Modularity

The computing environment is continually changing and growing. The standards should be
extensible. They should be able to keep up with advances in technology and user demands.

Standards are being defined in a modular fashion so that they can be added to or possibly
replaced when a better interface emerges.

1-29 (1-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

AT&T System V Interface Definition (SVID)

AT&T was the first to develop a standard in the UNIX system operating environment. Their
standard, based on AT&T’s System V, focuses on the function level interface to the operating
system (system calls), interprocess communications, the UNIX system shell and some basic
utilities.

AT&T also developed the System V Verification Suite (SVVS) to verify SVID compliance.

Although the SVID was the first attempt to develop a standard, the standard was not
vendor-neutral, since AT&T was the definitive body. For example, at System V Release 3
(System V.3), AT&T enforced such strict qualifications for implementations that desired System
V.3 endorsement, that certain Berkeley extensions would negate System V.3 compliance.

IEEE/POSIX

The Institute of Electrical and Electronics Engineers (IEEE) sponsors the Portable Operating
System Interface for computer environments (POSIX). POSIX originated from the 1984 /usr/
group Standard, whose goal was to define standards beyond the SVID (/usr/group is the
predecessor to UniForum). POSIX 1003 was set up to develop standards for the complete
operating environment, not just the kernel interface. Unlike AT&T, POSIX defines a
programming interface without defining the implementation. Therefore, POSIX-compliant
systems can be developed that are not derived from AT&T code.

POSIX has also been submitted to the ISO for inclusion in the international standard. It is
associated with the draft proposed standard TC22 WG15.

To advance the standard development, POSIX has been partitioned into several components,
and a working group assigned to each

1003.1 System Interface (formed 1981).
Provides a source code, programmatic interface bound to a high level
language that facilitates application portability. POSIX.1 is closely related to
SVID Issue 2 (SVID2), but also includes features from BSD 4.3 and
additional features that are not supplied with either interface definition.

1003.2 Shells and Utilities (formed 1984).
Defines a shell command language and interactive utilities.

1003.3 Testing Methods (formed 1986).
Defines the general requirements for how test suites should be written and
administered. Provides a list of test assertions showing exactly what in the
POSIX standard has to be tested. This work group will not be authoring the
test suites, and the method of testing is left up to the vendor.

1003.4 Real Time
4a Thread Extensions
4b Language Independent Specification

1003.5 Ada Binding for POSIX

1003.6 Security

51434S G.02 1-30 (1-17)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1003.7 System Administration

1003.8 Networking

1003.9 FORTRAN Binding for POSIX

1003.10 Supercomputing Application Execution Profile (AEP)

1003.11 Transaction Processing AEP

1003.12 Protocol Independent Interfaces

1003.13 Real Time AEP

1003.14 Multiprocessing AEP

X/Open and The Open Group

X/Open has been an international consortium of information system suppliers, users, system
integrators and software developers who joined to define a Common Application Environment.
Their mission was not to define new standards, but select from existing standards those that
will ensure portability and interworking of applications, and allow users to move between
systems without additional training. X/Open also has its origins from SVID, but is a superset
of POSIX. X/Open’s Portability Guide (XPG, currently revision 4) includes a set of relevant
standards that address the entire application environment.

X/Open has recently merged with the Open Software Foundation (OSF) to form The Open
Group.

Some elements include the following:

Component Defining Standard

System Calls & Libraries POSIX 1003.1

Commands & Utilities POSIX 1003.2

C Language ANSI

COBOL Language ANSI/ISO

FORTRAN Language ANSI

Pascal Language ISO

SQL ANSI

Window Manager X Window System

American National Standards Institute (ANSI)

The coordinating organization for voluntary standards in the USA. IEEE is an accredited
standards committee of ANSI.

1-31 (1-18) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

International Standards Organization (ISO)

Coordinates the adoption of international standards for distributed information systems in an
open systems environment (an environment of heterogeneous networked systems). Most
notable developments have been in the area of networking and the definition of the seven
layer Open Systems Interconnection (OSI) network reference model.

The ISO participants generally come from national standards organizations of the member
countries. In the USA, ANSI is an ISO participant.

National Institute of Standards and Technology Federal
Information

Processing Standard (NIST/FIPS)

The NIST was formerly the National Bureau of Standards (NBS) and is under the direction of
the Department of Commerce. This organization is developing standards requirements for
governmental agencies. Their original mission was to evaluate the proposed POSIX.1
standards, and the resulting Federal Information Processing Standard (FIPS) incorporated
POSIX plus additional features the POSIX.1 considered optional or did not specify.

They are also evaluating the other components of POSIX as they are made available.

51434S G.02 1-32 (1-19)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-6. SLIDE: The UNIX System and Standards Instructor Notes

Teaching Tips

This slide is intended to provide some insight into what organizations have what
responsibilities with respect to standards development within the UNIX system environment.
It should be presented from left to right.

The left side of the slide depicts that much of the standards definition is derived from the
SVID and BSD interface definitions, but there are other implementations that are also making
contributions, such as Carnegie Mellon’s Mach for mutiprocessing extensions.

IEEE/POSIX and ANSI are the United States organizations that are attempting to define the
standards for the programming interface, the user interface and the operating interface.

International and federal organizations adopt various standards, such as IEEE/POSIX and
ANSI to promote the development of international standards in the case of ISO and X/OPEN,
or extend the standard for governmental standards as in the case of NIST/FIPS.

The ultimate goals of the organizations are illustrated on the far right side of the slide.
Different implementations of the UNIX system that allow:

• Portability of applications.
• Sharing of data and resources (interoperability).
• Progressive hardware solutions, which can be selected based on application requirements.

Other Information

If you are interested in the published POSIX standards you can contact

Secretary, IEEE Standards Board
Institute of Electrical and Electronics Engineers
P.O. Box 1331
Piscataway, NJ 08855-1331
(908) 562-3809

1-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

There are also several publications that discuss the standards development that are published
by UniForum including: Your Guide to POSIX, POSIX Explored: System Interface, POSIX
Update: Shell and Utilities. These publications are informative on the position of the POSIX
standards with relation to the System V, BSD, and FIPS requirements.

UniForum
2901 Tasman Drive
Suite 201
Santa Clara, CA 95054-1138
(408) 986-8840

51434S G.02 1-34
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-7. SLIDE: What Is HP-UX?

Student Notes

HP-UX 11.0 is an implementation of the AT&T System V UNIX operating system, complying
with the following standards:

• POSIX.1:1996 (IEEE Standard 1003.1:1996)
• POSIX.2:1992 (IEEE Standard 1003.2:1992)
• System V Interface Definition (SVID3)
• OSF/Motif 1.2
• X Window System Version 11, Release 4
• X Window System Version 11, Release 5
• X Window System Version 11, Release 6.2
• OSF AES OS Component, Revision A (S300, S400, and HHP 9000 workstations)
• X/Open Portability Guide Issue IV
• FIPS 151-1, FIPS 151-2, and FIPS 189
• ANSI C (ANS X3.159-1989)
• X/OPEN UNIX95 - Branding
• LP64 Industry 64-bit De-facto Standard
• SPEC 1170

51434S G.02 1-36 (1-20)
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

The following additional capabilities are also available from Hewlett-Packard:

• X Windows and the Motif graphical user interface
• Common Desktop Environment—a Motif-based user interface (CDENext)
• Visual Editor—a Motif-based text editor
• Graphics languages
• Native language support
• Menu-based system administration tools (SAM)
• CD ROM-based installation and documentation services
• BIND 4.9
• POSIX.3 (IEEE Standard 1003.3c) Kernel-Based Threads
• Stream-Based transport stack for TCP/IP
• BSD 4.3

1-37 (1-21) 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

51434S G.02 1-38
© 1999 Hewlett-Packard Company

Module 1

Introduction to UNIX

1-7. SLIDE: What Is HP-UX? Instructor Notes

Teaching Tips

Explain the value that Hewlett-Packard has added to the operating system, but be sure to
stress that HP-UX conforms to the SVID definition of compatibility, as well as the other
emerging standards.

1-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 1

Logging In and General Orientation

51434S G.02 1-40
© 1999 Hewlett-Packard Company

Module 2 — Logging In and General Orientation

Objectives

Upon completion of this module, you will be able to do the following:

• Log in to a UNIX system.

• Log out of a UNIX system.

• Look up commands in the HP-UX Reference Manual.

• Look up commands using the online manual.

• Describe the format of the shell’s command line.

• Use some simple UNIX system commands for identifying system users.

• Use some simple UNIX system commands for communicating with system users.

• Use some simple UNIX system commands for miscellaneous utilities and output.

2-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-2
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Overview of Module 2

Audience

general user General System users

Product Family Type

open sys Open Systems environment

Abstract

This module is designed to acquaint the student with the process of logging in and out, and to
introduce the shell and some basic commands. Since students will need to know how to use
Section 1 of the HP-UX Reference Manual , the format of the manual pages and the man
command will also be introduced.

Time

The given times are approximate.

Lab 45 minutes

Lecture 45 minutes

Prerequisites

m44m Introduction to HP-UX

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to HP-UX system

Software Requirements

UX11 HP-UX release 11.0

2-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

printer A printer should be installed in the classroom, and configured as the default
printer.

catman In order to use the -k option of the man command catman -w must be
executed to create the /usr/share/lib/whatis database.

51434S G.02 2-4
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-1. SLIDE: A Typical Terminal Session

Student Notes

To communicate with your computer you will require:

• a terminal with a full American Standard Code for Information Interchange (ASCII)
character set

• a data communication line to the computer
• a login ID
• a password

A terminal session begins by logging in through a recognized terminal and ends by logging off.
The computer will do work for you in response to the commands that you enter during your
terminal session.

The UNIX system identifies the many users on the system by their user name (sometimes
called the login ID). Your login, which is assigned to you by your system administrator, is
normally your name or initials. A password may optionally be assigned to your account. Your
system administrator may provide you with an initial password that you will be able to
change, or you can provide one of your own. Your password is yours alone. You decide what it

51434S G.02 2-6 (2-2)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

will be, and no one knows or can find out what your password is. If you forget your password,
you will have to ask your system administrator for assistance. Only the system administrator
has the authority to delete a user’s password from his or her account.

You will enter your user name and password, if required, at the login prompt that will be
displayed on your terminal.

Once you are logged in, you can enter commands. The shell will interpret them, and the
operating system will execute them on your behalf. Any response generated from the execution
of the command will be displayed on your screen.

When you have finished, you terminate your terminal session by logging off. This frees up the
terminal so that another user can log in. It is also recommended that you log off when leaving
your terminal unattended to prohibit others from accessing your terminal session and user
account.

2-7 (2-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-8
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-1. SLIDE: A Typical Terminal Session Instructor Notes

Key Points

The basics of a terminal session are: log in, do work, and log out.

Users cannot access the system’s programs or files until they log in.

If a user forgets his or her password, no one can find out what it is because it is encrypted in
the file /etc/passwd. The only solution available is to have the system administrator remove
the encrypted password from the /etc/passwd file and then reenter a new password.

You may want to inform the students of the dangers of leaving their terminals unattended
while logged in. You might want to mention the lock command, which allows users to lock an
unattended (alphanumerical) terminal. The lock command prompts the user to enter a special
key that must be reentered to unlock the terminal.

In a networked environment, it is recommended that users have the same login ID and
password on all systems.

2-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-2. SLIDE: Logging In and Out

Student Notes

Perform the following steps to log in:

• Turn on the terminal. Some terminals have display timeouts, so you may only have to press
a key (Shift for example) to reactivate the display.

• If you do not get the login: prompt or if garbage is printed, press Return . If this still
doesn’t work, press the Break key. The garbage usually means that the computer was trying
to communicate with your terminal at the wrong speed. The Break key tells the computer to
try another speed. You can press the Break key repeatedly to try different speeds, but wait
for a response each time after you try it.

• When the login: prompt appears, type your login ID.

• If the password: prompt appears, type your password. To ensure security, the password
you type will not be printed. For both the login and password, the # key acts as a backspace
and the @ key deletes the entire line. Be careful: the keyboard backspace key will not have
the deleting function during the login process that it has once you are logged in.

51434S G.02 2-10 (2-4)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

A $ symbol is the standard prompt for the Bourne shell (/usr/old/bin/sh), Korn
shell (/usr/bin/ksh) or POSIX shell (/usr/bin/sh) command interpreter. A % symbol
usually denotes the C shell (/usr/bin/csh). We will be using the POSIX shell, so you will
notice a $ prompt. A # prompt is usually reserved for the system administrator’s account. This
provides a helpful visual reminder while you are logged in as the system administrator, as the
administrator can modify (or remove) anything on the system.

Specifying a Password

The first time you log in, your user account may be set up so that you must provide a
password. The password that you provide must satisfy the following conditions:

• Your password must have at least six characters.

• At least two of the first six characters must be alphabetic.

• At least one of the first six characters must be non-alphabetic.

After you have entered your password the first time, the system will prompt you to reenter it
for verification. Then the system will reissue the log in prompt, and you may complete the
login sequence with your new password.

NOTE: When logging in with CDE or HP-VUE, you may have to select (with the
mouse) the field in front of login and type in your logname. Then, the
field in front of password will be automatically selected if you have a
password. So, you have to type in your password that doesn’t appear. To
correct your log name or password, you can use the Back space key. It is
already mapped by the CDE or HP-VUE login process.

2-11 (2-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-12
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-2. SLIDE: Logging In and Out Instructor Notes

Teaching Tips

Assign the students their login IDs. You might ask them to log in now and see what problems
they encounter. The backspace key will not work. This is covered in the next slide.

If your students must provide a password when they log in for the first time, you should
review the password restrictions. The passwd command is presented later in this module,
which will also describe the password specifications.

When you are logging in, the UNIX system does not know what type of a terminal you are
communicating through, so special erase and kill characters are defined for the login process.
These allow you to make corrections as you are logging in:

The # character deletes the previous character, but it does not erase the character from the
display.

The @ character effectively deletes the current line, and gives you a new line with no new
prompt. It will not erase your previous input from the terminal display.

Once you have logged in, the erase and kill characters may change. The user can customize
the key sequences for erase and kill using the stty command. Common definitions for erase
and kill during a UNIX system session are

• erase character — Backspace or CTRL + h , which deletes the previous character

• kill character — CTRL + u , which deletes the current line and starts you on a new line with
a new prompt

Point out that the students’ own computers may have different keys mapped in for erase and
kill. Tell them that it is the system administrator’s job to map in the correct keys. You may
point out the stty -a command to see the mapped-in key.

You should log in with lowercase letters. If you log in with the uppercase version of your login
identifier, the system will assume you are communicating through a terminal that supports
only uppercase characters. As a result, all commands and messages will be displayed in
uppercase, but interpreted as lowercase, and the Shift key will be disabled. You may need to
show the class the stty -lcase command, if anyone tries to log in using capital letters.

NOTE: Instead of remembering the # and @, you can just press Return when you
have mistyped your login name. If your login name is not recognized, the
UNIX system will issue the password: prompt. Press Return one more
time, and the login: prompt will be reissued.

2-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

NOTE: You can talk about CDE or HP-VUE login right now or tell the students
you will talk about the CDE and/or HP-VUE environment only once at
the end of the class. In both cases, tell them that they will find some
notes concerning CDE or HP-VUE in several chapters.

51434S G.02 2-14
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-3. SLIDE: The Shell — Command Interpretation

Student Notes

During your login process, a shell is started for you (the POSIX shell in our case). The shell is
responsible for issuing the prompt and interpreting the commands that you enter. We will be
discussing various commands for the remainder of this module that allow you to access the
online reference manual, find out about users who are logged in to your system, and
communicate with other users on your system.

As you can see from the slide, the shell has many other functions that supplement command
interpretation.

51434S G.02 2-16 (2-6)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-3. SLIDE: The Shell — Command
Interpretation

Instructor Notes

Teaching Tips

The intention of this diagram is to provide the students with a "big picture" of what the shell
has to offer, as well as a simple graphical summary of the shell’s capabilities.

If you have decided to speak about CDE or HP-VUE every time there is a difference with
alphanumerical stuff, you can tell the students that during CDE or HP-VUE login, a shell is
started but they cannot access it directly. They have to open a window called terminal
emulator to start another shell process and to gain a $ prompt.

2-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-4. SLIDE: Command Line Format

Student Notes

After you see the shell prompt ($) you can type a command. A recognized command name will
always be the first item on the command line. Many commands also accept options for
extended functionality, and arguments often represent a text string, a file name, or a directory
name that the command should operate upon. Options are usually prefixed with a hyphen (-).

White space is used to delimit (separate) commands, options, and arguments. White space is
defined as one or more blanks (Space)or tabs (Tab). Thus, for example, there is a big
difference between banner Hi and bannerHi . The computer will understand the first one as
the command banner with an argument to the command (Hi). The second one will be
interpreted as a command bannerHi, which is probably not a valid command name.

Every command will be concluded with a carriage return (Return). This transmits the
command to the computer for execution. After this slide the concluding Return will be
understood, and generally will not be presented on the slide.

51434S G.02 2-18 (2-7)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

The terminal input/output supports typing ahead. This allows you to enter a command and
then enter the next command(s) before the prompt is returned. The command will be buffered
and executed when the current command has finished.

Multiple commands can be entered on one command line by separating them with a semicolon.

NOTE: The UNIX system command input is case-sensitive. Most commands and
options are defined in lowercase. Therefore, banner hi is a legal
command whereas BANNER hi would not be understood.

NOTE: You can type two commands on a single command line separated by a
semicolon (;). For example, $ ls;pwd

2-19 (2-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-20
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-4. SLIDE: Command Line Format Instructor Notes

Teaching Tips

Point out the difference between banner Hi and bannerHi . You can also mention that
commands can be separated by semicolons instead of Return .

Stress that the UNIX system is case sensitive and that most commands are defined as
lowercase. This is especially important for users from environments that are not case-sensitive
(such as DOS and MPE), or environments that are normally uppercase oriented.

2-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-5. SLIDE: The Secondary Prompt

Student Notes

The Bourne, Korn, and POSIX shells support interactive multiline commands. If the shell
requires more input to complete the command, the secondary prompt (>) will be issued after
you enter the carriage return. Some commands require closing commands, and some
characters require a closing character. For example, an opening if requires fi to close,
opening parentheses require closing parentheses, and likewise an opening apostrophe requires
a closing apostrophe.

If you enter a command incorrectly, as illustrated on the slide, the shell will issue you a
secondary prompt. A special key sequence should be defined to interrupt the currently
executing program. Commonly Ctrl + c will terminate the currently running program and
return the shell prompt. You can issue the stty -a command to confirm the interrupt key
sequence for your session.

51434S G.02 2-22 (2-9)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-5. SLIDE: The Secondary Prompt Instructor Notes

Key Points

It is common for students to issue a command line that displays the secondary prompt early in
the class. Therefore, make sure that students are aware of the technique to interrupt the
command line and get back to the prompt. You may want to inform your students that they
will be taking advantage of the secondary prompt later.

2-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-6. SLIDE: The Manual

Student Notes

"The Manual" is the HP-UX Reference Manual. The manual is very useful for looking up
command syntax, but was not designed as a tutorial. Also, this was not very useful for
learning how to use the UNIX operating system. Experienced UNIX system users refer to the
manual for details about commands and their usage. The manual is divided into several
sections, as illustrated in the slide.

51434S G.02 2-24 (2-10)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Following is a brief description of each section:

Section 1 User Commands
This section describes programs issued directly by users or from shell
programs. These are generally executable by any user on the system.

Section 1M System Maintenance
This section describes commands that are used by the system administrator
for system maintenance. These are generally executable only by the user root
, the login that is associated with the system administrator.

Section 2 System Calls
This section describes functions that interface into the UNIX system kernel,
including the C-language interface.

Section 3 Functions and Function Libraries
This section illustrates functions that are provided on the system in binary
format other than the direct system calls. They are usually accessed through
C programs. Examples include input and output manipulation and
mathematical operations.

Section 4 File Formats
This section defines the fields of the system configuration files (such as
/etc/passwd), and documents the structure of various file types (such as
a.out).

Section 5 Miscellaneous Topics
This section contains a variety of information such as descriptions of header
files, character sets, macro packages, and other topics.

Section 7 Device Special Files
This section discusses the characteristics of the special (device) files that
provide the link between the UNIX system and the system I/O devices (such
as disks, tapes, and printers).

Section 9 Glossary
This section defines selected terms used throughout the reference manual.

Within each section, commands are listed in alphabetical order. In order to find a given
command, users can reference the manual index.

2-25 (2-11) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-26
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-6. SLIDE: The Manual Instructor Notes

Teaching Tips

Have the students look up the date command in the paper version of the manual. Have them
use the index. Point out the multiple volumes of the HP-UX Reference Manual in its current
configuration.

The notes here contain the first real reference to the system administrator and the root
account. You might want to take a moment here to define the super-user (root) account, and
inform the students the responsibilities attached to logging in as root.

NOTE: Some of the section classifications have changed between HP-UX 7 and
HP-UX 8. Specifically, Section 4: HP-UX 7.0 concerns special files; Section
5: HP-UX 7.0 concerns file formats; and Section 7: HP-UX 7.0 concerns
miscellaneous facilities.

HP-UX Reference Manual Sections

In the HP-UX Reference Manual students may notice that sections 6 and 8 are missing. Section
6 listed games on the original UNIX system; no games are currently supported on HP-UX.
Section 8 described administrative commands; this material has been moved to section 1M.

NOTE: You may want to describe the LaserROM product or, if it’s set up, you can
show it to the students. It is a CD-ROM application that contains
manuals, software status bulletins, application notes, product catalogs,
and system support information about HP computer systems.

NOTE: You may want to introduce the cde or vuehelp facility on HP-UX
workstations.

2-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-7. SLIDE: Content of the Manual Pages

Student Notes

It is important to know the format of the manual pages. Throughout the UNIX system
documentation, references are given in the format cmd(n), in which cmd is the name of the
command and n is one of the eight sections of the manual. Thus, date(1) refers to the date
command in section 1 of the manual. In each section, the commands are listed alphabetically.
Because of the way the manual is maintained, page numbering is not used. Each command
starts on a page 1.

Each manual "page" (some commands take up more than one page) has several major
headings. Manual pages do not always have all the headings on them.

51434S G.02 2-28 (2-12)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

The following lists each heading and gives a description of its contents:

NAME This contains the name of the command and a brief
description. The text in this section is used to generate
the index.

SYNOPSIS This indicates how the command is invoked. Items in
boldface are to be typed at the terminal exactly as
shown. Items in square brackets ([])are optional. Items
in regular type are to be replaced with appropriate text
that you choose. Ellipses (...) are used to show that the
previous argument may be repeated. If in doubt about
the meaning of the synopsis, read the DESCRIPTION.

DESCRIPTION This contains a detailed description of the function of
each command and each option.

EXTERNAL INFLUENCES This provides information on programming for various
spoken languages, which is useful for international
support.

NETWORKING FEATURES This lists network-feature-dependent functionality.

RETURN VALUE This describes values returned on the completion of a
program call.

DIAGNOSTICS This explains error messages that the command may
issue.

ERRORS This lists error conditions and their corresponding error
message or return value.

EXAMPLES This provides examples of the command use.

WARNINGS This points out potential pitfalls.

DEPENDENCIES This points out variations in the UNIX system operation
that are related to the use of specific hardware.

AUTHOR This describes the developer of the command.

FILES This describes any special files that the command uses.

SEE ALSO This refers to other pages in the manual or other
documentation containing additional information.

BUGS This discusses known bugs and deficiencies and
occasionally suggests fixes.

STANDARDS CONFORMANCE This describes standards to which each entry conforms.

2-29 (2-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-30
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-7. SLIDE: Content of the Manual Pages Instructor Notes

Teaching Tips

Briefly present each of the sections. The next page will illustrate an example of the man page
for the banner command.

2-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-8. TEXT PAGE: The Reference Manual — An Example

banner(1) banner(1)

NAME

banner - make posters in large letters

SYNOPSIS

banner strings

DESCRIPTION

banner prints its arguments (each up to 10 characters long) in large
letters on the standard output.

Each argument is printed on a separate line. Note that multiple-word
arguments must be enclosed in quotes in order to be printed on the
same line.

EXAMPLES

Print the message ‘‘Good luck Susan’’ in large letters on the screen:

banner "Good luck" Susan

The words Good luck are displayed on one line, and Susan is displayed
on a second line.

WARNINGS
This command is likely to be withdrawn from X/Open standards.
Applications using this command might not be portable to other
vendors’ platforms.

SEE ALSO

echo(1).

STANDARDS CONFORMANCE

banner: SVID2, SVID3, XPG2, XPG3

51434S G.02 2-32 (2-14)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-8. TEXT PAGE: The Reference Manual —
An Example

Instructor Notes

Point out the different sections of a manual page. Also point out that not all commands will
include entries for all manual sections.

2-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-9. SLIDE: The Online Manual

Student Notes

There is another way of retrieving information from the manual.

On most UNIX systems, the manual is available online. The online manual is accessed using
the man command.

The syntax is

man -k keyword

or

man [12345791m] command

in which

man -k keyword This lists all commands that have the string keyword in
their description.

51434S G.02 2-34 (2-15)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

man [12345791m] command This displays the manual page for command in the
specified section of the manual.

man command This displays the default manual entry for command. There
may be an entry in more than one section for the command.

All of these commands require that the system administrator has installed the online manual
correctly. In the first example of the slide, man passwd shows the command to change the
password. man 4 passwd is password file layout. When the first page of the manual entry for
the specified command has been displayed, the following keys can be used at the Standard
input prompt:

Return Displays the next line

Space Displays the next page

Q or q Exits the man command and returns to the shell

Occasionally, when accessing the online manual you will get the message:

Reformatting Entry. Wait...

This message means the manual page for the specified command needs to be uncompressed
because it is being used for the first time during the current session. The message will not
appear the next time the command is referenced.

Screen Control

Special keys are available on Hewlett-Packard keyboards to assist you in viewing the output
of your man command, or any other command. NOTE: these keys are a function of the HP
keyboard and terminal emulator products and not a feature of the UNIX system.

Prev Scroll the display back to the previous screen.

Next Scroll the display forward to the next screen.

Shift + " Scroll down line by line.

Shift + # Scroll up line by line.

Home Move the cursor to the first row, first column.

Clear Display Clear the display from the cursor to the end of the screen.

Home Clear Display Clear the entire display.

Multiple Manual Entries

Some commands have an entry in more than one section of the reference manual. You can use
the whereis command to display the sections that provide a manual reference. For example:

2-35 (2-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

$ whereis passwd

passwd: /sbin/passwd /usr/bin/passwd /usr/share/man/man1.Z/passwd.1

/usr/share/man/man4.Z/passwd.$

whereis nothere

nothere:

This reports that there is a manual entry for the passwd command in sections 1 and 4, and
there is no manual entry for a command called nothere.

51434S G.02 2-36 (2-17)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-9. SLIDE: The Online Manual Instructor Notes

Teaching Tips

Students should be logged in by now, but if they are not, they can log in at this time to run the
following exercise.

Exercise

Objective: To practice with the man command and the screen control keys, the students can
do the following:

• Log in, if you have not done so yet.

• Display the manual entry for the ls command: man ls

• Press Space twice to advance forward two screens.

• Press Prev once.

• Quit the man command: press q .

• Press Return . Note where the prompt is.

• Press Clear Display to clear the screen.

Students often want to know how to display the previous screen and how to scroll up and
down. The Screen Control section in the student notes will describe how students can scroll
their display when using HP keyboards and terminals.

Point out the fact that the system administrator has several tasks to do if the online manual
is to work as described. This is a chance to describe the value of the system administration
class. Note that the -k option requires that the system administrator set up the file
/usr/share/lib/whatis . This can be done with a catman -w command.

The following summarizes the manual directory entries:

2-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Table 2-1. Online Manual Entries

nroff Source Formatted Entry

Compressed /usr/share/man/manX.Z/* /usr/share/man/catX.Z/*

Uncompressed /usr/share/man/manX/* /usr/share/man/catX/*

Transition

Now that you know how to log in and how to access the online manual pages, you are ready to
learn some UNIX system commands.

Break

If your students are getting restless and need a break, this would be a good place to take a
short break before moving into the presentation of the beginning commands.

51434S G.02 2-38
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-10. SLIDE: Some Beginning Commands

Student Notes

We will present some basic commands that allow you to practice submitting simple commands
to the UNIX system shell. Most of the commands presented have many options in addition to
those presented in the student workbook. Refer to the man pages for these commands if you
would like to investigate other options.

51434S G.02 2-40 (2-18)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-10. SLIDE: Some Beginning Commands Instructor Notes

The remainder of the module introduces some simple commands to the students so that they
can get comfortable with the keyboard and have some fun sending mail and messages to the
other students.

2-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-11. SLIDE: The id Command

Student Notes

In order to access files and execute programs, the UNIX system must know your user and
group identifications. The computer maintains numerical identifiers; corresponding text
names are provided for the user’s convenience. Your identification will be defined initially when
you log in. After you are logged in, you may have authorization to change your user and/or
your group identifiers. The id command will display your current user and group identifiers.

All of the user identifications recognized by the computer are stored in the file /etc/passwd,
while all of the group identifications are stored in the file /etc/group.

Groups

Groups provide a method for a subset of users to share access to a file. Users to be included in
a specific group are defined by the system administrator, and each user can be a member of one
or more groups. Groups are normally formed using the normal work groups already defined in
an organization. For example, an organization may include manufacturing, engineering, and
accounting groups. The user structure within these groups may be defined as follows:

51434S G.02 2-42 (2-19)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

groups: manufacturing engineering accounting
| | |

----------------- -------- ---------------
| | | | | | | |

users: chris* pat* mike chris joe* chris mike* terry*

* denotes the group identification at login

• chris is a member of all three groups.
• mike is a member of two groups.

With this organization, chris could access the files that are associated with the
manufacturing, engineering, and accounting groups. mike could access files that are
associated with the
manufacturing and accounting groups. All other users can access only the files associated
with their login group.

2-43 (2-20) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-44
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-11. SLIDE: The id Command Instructor Notes

Key Points

• The computer must know your user and group identifiers in order to determine if you have
permission to access a file or to run a program.

• Make sure users understand the group concept.

2-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-12. SLIDE: The who Command

Student Notes

The who command reports which users are logged into a system, what terminal port each is
connected to and login time information. who am i just reports the user name and port
information of the local terminal session. Finally, the whoami command reports the user name
that the system associates with the local terminal port. Authorization to execute a command is
dependent upon a user’s identification, and a user may be able to change his or her user
identification interactively to access additional commands or programs.

51434S G.02 2-46 (2-21)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-12. SLIDE: The who Command Instructor Notes

Teaching Tips

If you are presenting your class with a network of systems, instead of terminals connected to a
single system, the who command is not very informative. You might want to try the rwho
command instead. This will display the users’ names and the system name that they are
logged into.

2-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-13. SLIDE: The date Command

Student Notes

The date command is used to report the system date and time. It accepts arguments that
allow the output to be formatted.

The date command is usually used with no options or arguments, and that is how we present
it here.

The manual page—see date(1)—also shows a first argument that can be used to set the date.
Only the system administrator is authorized to modify the system time and date.

51434S G.02 2-48 (2-22)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-13. SLIDE: The date Command Instructor Notes

Teaching Tips

You may point out that the super-user can change the date with this command. You may also
want to point out the options available to format the output of date, such as

date +%m/%d/%y

2-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-14. SLIDE: The passwd Command

Student Notes

On many systems, the system administrator controls the users’ passwords. Under the UNIX
system however, the system administrator can allow users to retain direct control of their own
password. The passwd command can be used to change your password. The syntax is

passwd

You will be asked for your current password (old password). This is to prevent someone from
changing your password if you leave your terminal unattended while you are logged in. Then
you will be asked for your new password, and you will be asked to confirm it by retyping the
new password. This is to prevent you from changing your password to one which has a
typographical error in it. Your new and old passwords must differ by at least three characters.

The characters of the old and new passwords will not be displayed to the screen as you type
them in.

51434S G.02 2-50 (2-23)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Password Restrictions

Your password must have at least six characters. At least two of the first six characters must
be alphabetic and at least one of the first six characters must be non-alphabetic.

The system administrator is not held to these conditions, so if the system administrator
assigns a password to your account, it may not follow these rules.

2-51 (2-24) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-52
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-14. SLIDE: The passwd Command Instructor Notes

Teaching Tips

Show the students the passwd command. Point out that no user of the system can find out
another user’s password because all passwords are stored in encrypted format. The system
administrator (super-user) can reset a password without knowing what the user’s password is.
Since the password is stored in encrypted format in the /etc/passwd file, even the system
administrator cannot determine the actual password.

NOTE: For users whose login name is greater than eight characters, the
password can only be changed with:

passwd username

Otherwise passwd receives a truncated version of the user’s login name
from /etc/utmp. See logname(1), getlogin(3c), and utmp(4) for
additional information.

NOTE: For HP-UX 11.0, passwd will not change passwords for user login names
longer than eight characters.

2-53 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-15. SLIDE: The echo Command

Student Notes

The echo command gives you the ability to display command-line arguments, that is, a
command such as

echo hello

produces the output:

hello

This command may seem rather trivial, but it is commonly used in shell programs to display
messages to users or see the value of a shell variable. For shell programming we will use the
echo command extensively.

51434S G.02 2-54 (2-25)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-15. SLIDE: The echo Command Instructor Notes

Teaching Tips

Point out that right now the echo command may not seem very useful, but it will be used
extensively during shell programming to display messages to the user and display the values
of shell variables. These are covered in more detail in other modules.

Key Points

• The echo command displays the arguments to the screen, separated by a blank space. The
shell uses one or more blanks to delimit arguments. Arguments separated by more than one
blank space will be echoed with only one space as a delimiter. In the quoting module,
students see how spaces can be displayed.

• The echo command does not distinguish between text and numbers. Everything initially is
interpreted by the shell as text. If the context of the command requires a numerical
computation, the shell will convert the text to a numerical representation to complete the
command.

2-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-16. SLIDE: The banner Command

Student Notes

The banner command was originally developed, and is still used, for labeling the output from
line printers. The banner command displays the command line arguments in large capital
letters, one argument per line.

51434S G.02 2-56 (2-26)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-16. SLIDE: The banner Command Instructor Notes

Teaching Tips

Point out that the main purpose of the banner command is to label output from the line printer.

2-57 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-17. SLIDE: The clear Command

Student Notes

The clear command clears the terminal screen if it is possible to do so. This command only
clears the current screen, so it is possible for the user to scroll up to retrieve previous screens.
To erase all screens, position the cursor home, by pressing the HOME key, and then type the
clear command.

51434S G.02 2-58 (2-27)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-17. SLIDE: The clear Command Instructor Notes

Purpose

To introduce a way to clear the screen.

The clear command reads the TERM environment variable for the terminal type, then reads
the appropriate terminfo database to determine how to clear the screen.

2-59 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-18. SLIDE: The write Command

Student Notes

The write command can be used to send a message to another user’s terminal who is
currently logged in to the same UNIX computer system. When invoked, the write command
gives you the opportunity to input your message. Every time you press Return , that line is
transmitted to the recipient’s terminal. The recipient can write back to you, and you can
hold an interactive conversation through your terminals. When you are done typing your
message, press CTRL + d . This will conclude your end of the conversation.

NOTE: Unless you disable the capability, messages can be sent to your terminal
at any time. Therefore, if you are in a utility such as man, mail, or an
editor, and someone writes a message to you, it will be displayed on your
terminal, and can be disruptive.

If the person to whom you wish to write is not logged on, you will get the message:
user is not logged on, in which user is the user name of the person you tried to reach.

51434S G.02 2-60 (2-28)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-18. SLIDE: The write Command Instructor Notes

Teaching Tips

Point out the uses of write. Note that the super-user can write to anyone at any time. You
may also want to mention that users can use write interactively by waiting for a response to
the message they sent before ending with CTRL + d .

2-61 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-19. SLIDE: The mesg Command

Student Notes

You can use the mesg command to disable other users from sending messages to your
terminal. If you write to someone who has disabled messaging to their terminal you will get a
Permission Denied error.

mesg n Denies "writes" to your terminal. This is the default value in HP-UX 10.0
and HP-UX 11.00.

mesg y Allows "writes" to your terminal.
mesg Reports whether "writes" are allowed (y) or disallowed (n).

Even when you disable messaging, the system administrator can still send messages to your
terminal.

51434S G.02 2-62 (2-29)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-19. SLIDE: The mesg Command Instructor Notes

Teaching Tips

Remind the class that denying "writes" does not affect the super-user. We will understand
what the mesg command is doing (for example, taking away write permission from the user’s
terminal for group and other) if we know file permissions and access.

2-63 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-20. SLIDE: The news Command

Student Notes

Messages that are of interest to all users on the system can be broadcast through the news
facility. This is commonly used by the system administrator to inform the user community of
system-specific items such as system shutdown times, backup times, or new hardware that
will be available.

You can read the news by issuing the news command. When issued with no options, only the
items that you have not yet read will be displayed.

The options to news are:

-a Reads all the news there is regardless of whether it has been read

-n Displays only the headlines of unread news items

Each user who accesses the news utility will have a .news_time file in their HOME directory.
Every file in the UNIX system has a time stamp that records the last time the file was
modified. The time stamp on the .news_time file is updated to match the time stamp of the

51434S G.02 2-64 (2-30)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

last news message that you read. If a new message is added to the news facility, news knows
that it has not been read because the time stamp on your .news_time file is earlier than the
new news message.

2-65 (2-31) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

51434S G.02 2-66
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-20. SLIDE: The news Command Instructor Notes

Key Points

• news messages are displayed only once, by default.

• You can use news -a to see all news messages.

• news maintains the messages that have or have not been read by comparing the time stamp
on the news file with each user’s .news_time file.

Teaching Tips

You might want to mention that each news message is stored as a file under the directory
/var/news.

2-67 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-21. LAB: General Orientation

Directions

Complete the following exercises and answer the associated questions. You may need to use
the HP-UX Reference Manual in order to complete some of the exercises.

1. Log in to the system using the user name and password that the instructor assigned to
you. Did you have any trouble?

2. Now log out of the system using CTRL + d or exit. What did you notice, if anything? Log
back into the system.

3. Which of the following commands are syntactically correct? Try typing them in to see what
the output or resulting error message would be.

$ echo
$ echo hello
$ echohello
$ echo HELLO WORLD
$ banner
$ banner hello
$ BANNER hello

4. Assign a password to your account, or change the password, if one is already defined.
Remember the requirements for user passwords.

5. Using variations of the who command or the whoami command, determine each of the
following with separate command lines. What commands did you use?

51434S G.02 2-68 (2-32)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Who is on the system?

What terminal device are you logged in on?

Who does the system think you are?

6. Can another user send messages to your terminal? What command did you use to find out?

7. Determine if your partner is logged in, and then write a message to your partner’s
terminal. Establish a two-way conversation. Have fun.

What happens if you try to write to your partner and he or she is not logged in? What happens
if your partner has disabled messaging to his or her terminal?

8. Read the system’s news. What command did you use? Can you display the news after you
have read a message?

9. Execute the date command with the proper arguments so that its output is in a mm-dd-yy
format. Hint: look at the examples provided in the reference manual entry for date(1).

10. Using the UNIX Reference Manual, find the cp command. What is its function? What is
the minimum number of arguments that it requires?

2-69 (2-33) 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

11. Using the HP-UX Reference Manual, find the ls command. What is its function? What is
the minimum number of arguments that it requires?

12. Issue the command ll /usr/bin. You will see several screens worth of data scroll by. Use
the up arrow key to move the cursor up to the top of the screen. Issue the clear command. Is
there any data remaining on the screen? Using the Shift key together with the down arrow
screen, scroll down. Do you see a partial listing of the ll command?

13. Log out of your terminal session. Log back in with the CAPS lock on. How can this
situation be corrected without logging off and then back in again. (Hint: Look at the manual
page for the stty command.)

51434S G.02 2-70 (2-34)
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

2-21. LAB: General Orientation Instructor Notes
Time: 45 minutes

Purpose

To practice with the shell command interpreter by entering simple commands. You will enter
the messaging and user communication commands.

Notes to the Instructor

Assigpartners for each student so that they can use the write command.

Introductory Exercises 1–4 Logging in, logging out, and entering simple echo
commands

Intermediate Exercises 5–9 Communications, who, and write

Advanced Exercises 10–13 Using manual pages to find other options

All students should at least get through the intermediate exercises.

Solutions

1. Log in to the system using the user name and password that the instructor assigned to
you. Did you have any trouble?

Answer:

You may have had a problem if you made a mistake while typing in your user name or
password and tried correcting it with the Backspace key. Remember, the # key is used to
erase while logging in.

2. Now log out of the system using CTRL + d or exit. What did you notice, if anything? Log
back into the system.

Answer:

3. Which of the following commands are syntactically correct? Try typing them in to see what
the output or resulting error message would be.

$ echo
$ echo hello
$ echohello
$ echo HELLO WORLD
$ banner

2-71 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

$ banner hello
$ BANNER hello

Answer:

$ echo correct
$ echo hello correct
$ echohello incorrect
$ echo HELLO WORLD correct

The echo command will work with zero or more arguments. As the arguments are just
seen as strings of characters, and echoed back to the screen, it does not matter whether
they are uppercase or lowercase.

The shell needs white space (spaces or tabs) to separate commands from arguments. The
third command line doesn’t work because the shell is trying to execute a command called
echohello instead of executing the echo command and passing the argument hello to it.

$ banner incorrect
$ banner HELLO correct
$ BANNER hello incorrect

The banner command requires at least one argument, unlike the echo command.
Therefore, the second entry is legal, because banner does not care if the string(s) to be
echoed are uppercase or lowercase. In the third instance the shell will look for a command
called BANNER, which is not a legal shell command. Remember, the shell is case sensitive,
and therefore banner banner is not the same as BANNER.

4. Assign a password to your account, or change the password, if one is already defined.
Remember the requirements for user passwords.

Answer:

$ passwd
Changing password for user3
Old password:
New password:
Re-enter new password:
$

5. Using variations of the who command or the whoami command, determine each of the
following with separate command lines. What commands did you use?

Who is on the system?

What terminal device are you logged in on?

Who does the system think you are?

51434S G.02 2-72
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Answer:

$ who
$ who am i
$ whoami

6. Can another user send messages to your terminal? What command did you use to find out?

Answer:

$ mesg

7. Determine if your partner is logged in, and then write a message to your partner’s
terminal. Establish a two-way conversation. Have fun.

What happens if you try to write to your partner and he or she is not logged in? What happens
if your partner has disabled messaging to his or her terminal?

Answer:

$ who Confirm that your partner is logged in.
$ write partner

message contents

message contents

Ctrl + d Conclude conversation.

If your partner is not logged on, you will get the message:

partner is not logged on.

If your partner has disabled messaging on his or her terminal, you will get the message :

Permission denied.

8. Read the system’s news. What command did you use? Can you display the news after you
have read a message?

Answer:

$ news
this is a news message
$ news
no new news
$ news -a
this is a news message

9. Execute the date command with the proper arguments so that its output is in a mm-dd-yy
format. Hint: look at the examples provided in the reference manual entry for date(1).

2-73 51434S G.02
© 1999 Hewlett-Packard Company

Module 2

Logging In and General Orientation

Answer:

$ date +%m-%d-%y

10. Using the UNIX Reference Manual, find the cp command. What is its function? What is
the minimum number of arguments that it requires?

Answer:

The cp command is used to copy one or more files. It requires at least two arguments: a
source file name and a destination file name.

11. Using the HP-UX Reference Manual, find the ls command. What is its function? What is
the minimum number of arguments that it requires?

Answer:

The ls command is used to display file names. It requires no arguments. Notice it has
many options available. Each option will extend the capability of the ls command, and
each option is identified as a single letter.

12. Issue the command ll /usr/bin. You will see several screens worth of data scroll by. Use
the up arrow key to move the cursor up to the top of the screen. Issue the clear command. Is
there any data remaining on the screen? Using the Shift key together with the down arrow
screen, scroll down. Do you see a partial listing of the ll command?

Answer:

ll /usr/bin should generate several screens worth of output. Issuing the clear
command after moving the cursor to the top of the current screen will clear only the last
screen of output. Scrolling down will display the previous screens.

13. Log out of your terminal session. Log back in with the CAPS lock on. How can this
situation be corrected without logging off and then back in again. (Hint: Look at the manual
page for the stty command.)

Answer:

Notice that if you hit the Caps Lock key, it has no effect. You must use the stty command
to disable the Caps lock:

$ STTY -LCASE

then hit the Caps Lock key on your keyboard. You will now be able to enter uppercase and
lowercase letters. This interface is provided for terminals that support only uppercase
input, so that they can interpret the commands properly that are normally defined as all
lowercase.

51434S G.02 2-74
© 1999 Hewlett-Packard Company

Module 3 — Using CDE

Objectives

Upon completion of this module you will be able to:

• Describe the Front Panel Elements.

• Understand how the Front Panel Pop-Up Menus work.

• Describe the Workspace Switch.

• Describe the Subpanel Controls.

• Understand how to use the Help System.

• Describe the File Manager.

• Understand how to use the File Manager Menu.

• Locate files using the File Manager.

• Delete files.

• Print files using the Front Panel, the File Manager, and the Print Manager.

• Display Print Spooler Information.

• Understand Printer Management.

• Use the Text Editor.

• Run Applications using the Application Manager.

• Use the Mailer and the Mailer Options, as well as how to create Mailboxes.

• Use the Calendar Manager to Schedule Appointments and To Do Items.

• Describe how to Browse Other Calendars on the Network.

• Describe how to Grant or Prevent Access to Your Calendar.

3-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-2
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Overview of Module 3

Audience

general user General system user

Product Family Type

gui Graphical user interface

Time

Lab 45 minutes

Lecture 60 minutes

Language

usenglish U.S. English

Platform

hpux HP-UX computer systems

3-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-1. SLIDE: Front Panel Elements

Student Notes

The Front Panel

The Front Panel is a special window at the bottom of the display of each workspace which
contains a collection of frequently used controls, indicators, and subpanels from which users
can manage all aspects of a session (except initial login).

Many controls in the Front Panel, like the Mail Utility, start applications when you click on
them. Others, like the clock, are merely indicators and do not respond when you try to activate
them by clicking. Depending upon the actions that the applications perform, they may or may
not be used as a drop zone. For instance, the Mailer, Print Manager, and Trash Can can all be
used to drop files from the File Manager.

Arrow buttons over the Front Panel controls identify subpanels - click the arrow and a
subpanel menu appears.

Main components of the Front Panel include:

51434S G.02 3-4 (3-2)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Clock Displays the current time of day based on the system time.

Calendar Displays the current date. This icon activates the Calendar
application which allows users to manage, schedule, and view
appointments. This utility also provides the ability to view
other calendars across the network and schedule appointments
across the network, if access is permitted.

File Manager Displays the files, folders, and applications on the system as
icons. Users can work with files without having to learn
complex commands. Activities such as copying, moving,
deleting, printing, and changing permissions on a file, to name
just a few, can easily be done with the File Manager menu bar.

Text Editor Starts a simple text editor with common functionality
including clipboard interaction with other applications. This
application can also be used as a drop zone from the File
Manager. The default Front Panel displays the Text Editor
icon. It also has a Personal Application subpanel that can
activate a terminal or the icon editor.

Mailer Activates a GUI interface to the electronic mail facility. This
tool can be used as a drop zone for files or calendars to be
mailed to others on the network.

Lock Button Allows users to lock the screen if unattended. This can be
configured to be automatic after a certain time period has
elapsed. The user password is needed to regain access to the
Desktop.

Workspaces By default allows four separate screens of windows, however
the number of workspaces is configurable. Applications can be
organized into a specific, custom named workspace. In
addition, windows present in one workspace can be copied to
another workspace.

Exit Allows users to log out of the Desktop. All work not saved will
be lost. By default, users will be prompted to confirm logout.

Print Manager A simple GUI print job manager that allows the scheduling
and management of print jobs on any available printer.

Style Manager Allows users to easily customize the desktop resources such as
colors, backdrops, font size, and system behavior.

Application Manager Provides access to applications in icon form. Users can click on
a specific application icon to execute the application.
Application Manager is comprised of Application Groups,
which is a way of organizing applications according to specific
functions. Users have the ability to create their own
Application Group and to put their own applications in new or
existing Application Groups.

3-5 (3-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Help Manager Online help is available for each of the standard applications
in CDE. The pop-up sub-menu provides access to: Help
Manager, which is a special help volume that lists all the
online help registered on the system; Desktop Introduction,
which helps users understand how to navigate around the
Desktop; Front Panel Help, which provides help on the
contents of the front panel; and On Item Help, which is
interactive, allowing users to move the pointer to a specific
item and click the item to display the corresponding help. In
addition, other applications installed on the desktop may take
advantage of using the Desktop’s Help System.

Trash Can Collects the files and folders that users delete. They are not
actually removed from the system until the trash is emptied.
Until that time users can restore files that have been deleted.
This control can used as a drop zone.

CDE Reference Manuals

• B1171-90101 CDE 1.0 User’s Guide

51434S G.02 3-6 (3-4)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-1. SLIDE: Front Panel Elements Instructor Notes

Purpose

To present a brief overview of CDE features and benefits. Most will be covered in more detail,
so there isn’t need to get into too much detail here.

Teaching Tip

You may want to be sure students understand how to access subpanel menus before
continuing on. The only controls that have subpanel menus are the ones with up arrows above
the control. Once the subpanel is displayed, the arrow turns to a down arrow. Click on the
down arrow to close the subpanel.

3-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-2. SLIDE: Front Panel Pop-Up Menus

Student Notes

A pop-up menu is one that "pops up" when you click on mouse button 3 in an application
window or on a workspace object. Each control in the Front Panel has a pop-up menu, which is
different for each control. To display a Front Panel pop-up menu, point to the control and press
down mouse button 3.

Depending upon the control, pop-up menu contents will vary. For example, if the control is an
application, the first entry in the menu is the command to start that application. Figure 4-1
shows the pop-up menu for Application Manager. If the object is not an application, a different
set of choices will be available depending upon the purpose of the object.

In addition to the Main Panel, subpanel elements also have pop-up menus. For example, if you
click on the arrow above the Text Editor control, the Personal Applications subpanel will be
displayed. Position the cursor next to the Terminal, and press mouse button 3. You will get a
pop-up menu which will allow you to copy the control to the Main Panel, delete the control
altogether, or get help.

51434S G.02 3-8 (3-5)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Pop-up menus are also available within applications. For example within File Manager, action
can be taken upon the displayed objects (files or directories, for example) by pointing the
cursor to the object, and pressing mouse button 3.

3-9 (3-6) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-10
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-2. SLIDE: Front Panel Pop-Up Menus Instructor Notes

Purpose

To give an idea of the functionality of pop-up menus.

Key Points

• Pop-up menus are available for the entire desktop, including each application and control in
the Main Panel, subpanels, and within the applications.

• This begins to touch upon customization (for example putting the Terminal on the Main
Panel). You can touch upon the subject lightly, but this module is not intended to cover
customization in detail.

3-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-3. SLIDE: Workspace Switch

Student Notes

By default there are four workspaces. Each workspace covers the entire display. The
workspace switch contains the buttons used to change from one workspace to another. The
button that represents the current workspace will appear to be pressed in. To switch to
another workspace, simply click on the button that refers to the new workspace. Work done in
one workspace is preserved when switching to another workspace.

A pop-up menu is available for the workspace switch by clicking on a portion of the workspace
switch that is not occupied by other controls or workspace buttons.

In addition, each workspace button has a pop-up menu that can be used add another
workspace, or rename or delete the workspace being pointed to.

51434S G.02 3-12 (3-7)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-3. SLIDE: Workspace Switch Instructor Notes

Purpose

To understand the purpose of the workspace switch, and how to make the switch from one
workspace to another.

Teaching Tip

Don’t get too bogged down in the details of workspace manager. There are some configuration
files that manage the workspace manager including $HOME/.dt/dtwmrc. Students may ask if
they can increase the number of workspaces or name them. The easiest way to do so is
through the pop-up menus, although they can be done with the configuration files as well.

3-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-4. SLIDE: Getting Help

Student Notes

Online help is available for each standard application within CDE. The menubar of each
application has a Help menu selection on the far right side, or users can press F1 in most
applications to get context-sensitive help. In addition, on the Front Panel, there is a Help
Manager control which is a special volume that lists all the online help registered on the
system. By choosing any underlined titles you can view an additional layer of help for that
subject.

The Help System subpanel also gives access to help on the Desktop and the Front Panel, as
well as On Item help which enables you to move the pointer to a specific item and click to
display a corresponding help page.

Help Windows

The Help System that is built into each of the CDE applications provides two types of help
windows, general help and quick help. Quick help has just a topic display area which displays
the help of a requested subject. General help windows have two areas: topic tree and topic
display area. The topic tree is basically an outline of a help volume’s major topics. Subtopics

51434S G.02 3-14 (3-8)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

are displayed beneath main topics. You can choose a topic by clicking on the topic within the
topic tree.

To open the general help window, activate a CDE application (for example File Manager). In
the upper right corner of the menu bar, you will see the Help menu selection. Click on Help,
followed by Overview to open a general help window. Above the Help text, and below the
menu bar, you will see the topic tree for the File Manager Help System.

Another way to jump between help subjects is by using hyperlinks. When a topic display has a
word underlined, for example, the help facility will "jump" to that related topic when a user
clicks on the underlined word.

Searching for Topics Using the Help Index

Once users have opened a general help window, they can search based on key words or pattern
searches by using the Help Index as follows:

1. To open the index within an application, click on the Index button. The index allows you to
browse all the entries for the current help volume, all help volumes, or just selected help
volumes.

2. Select the Entries with field, type the word or phrase you are looking for and press
Return .

3. Select the index entry you want to view. If the entry has a + prefix, the list will expand to
show additional choices. Select a help topic to view.

Pattern Searches

The help facility recognizes the following pattern search characters when searching for topics:

* (asterisk) Matches any string of characters (including no
characters)

? (question mark) Matches any single character

. (period) Matches any character

| (vertical bar Specifies two search patterns and matches either
pattern (logical OR)

() (parentheses) Encloses a pattern expression

Displaying a Man Page

Displaying a man page is done from the Application Manager, rather than the Help System.

1. Click the Application Manager control in the Front Panel.

2. Double-click the Desktop_Apps icon.

3. Click the Man Page Viewer icon.

3-15 (3-9) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

4. Type the name of the man page you want to see and press Return.

5. Click close to dismiss the man page.

Printing a Help Topic

Once you have displayed the topic page you want help on, you can print it by clicking on File
on the menu bar, and then choosing Print.

51434S G.02 3-16 (3-10)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-4. SLIDE: Getting Help Instructor Notes

Purpose

To give an overview of how to get help on the desktop applications.

Teaching Tip

Give students a chance to play around with the help facility, perhaps trying what is discussed
in the student notes. You may get questions on how to integrate their own application’s help
within Help Manager. That is beyond the scope of this slide. If this comes up refer them to the
CDE 1.0 Advanced User’s and System Administrator’s Guide,P/N B1171-90102.

3-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-5. SLIDE: File Manager

Student Notes

The File Manager allows you to manipulate files (i.e. moving, copying printing, etc) on your
system without having to learn complex commands. Files, folders (directories), and
applications are displayed as icons. The File Manager is activated by clicking on the File
Manager control in the Front Panel.

When you first get into File Manager, you are placed in your Home directory. Directories are
referred to as folders. Whatever folder you happen to be in at any given time is known as the
current folder, and the object viewing area will show the objects (files and folders) in the
current folder.

Highlighting an Object

By simply double clicking on a file, you will open the Text Editor (if the file is ascii) with the
file opened for editing. By double clicking on a folder, the File Manager will bring you into that
folder. Other tasks involve using the File Manager menubar. To access a file or folder, you
must first select it by clicking on it and highlighting it. In order to highlight multiple files or
folders, simply press mouse button 1 in a blank area of the object viewing area, drag the

51434S G.02 3-18 (3-11)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

mouse to draw a box around the icons you want to select, then release the mouse button. Once
you have selected your object(s), you may then take action by using the File Manager Menu. If
you do not select at least one object, some of the menu actions will be unavailable. For
example, on the File Manager Selected menu many of the actions are not highlighted
because there is no selected object to take action upon.

Figure 3-1.

Once at least one object is selected, all actions are available to choose from other tasks become
highlighted and are available for the highlighted object.

Figure 3-2.

3-19 (3-12) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Drag-and-Drop

Objects can be dragged to other areas, either within the File Manager (to another folder for
example) or to another area of the Desktop, such as the printer, trash can, or workspace. This
is done by

1. Positioning the pointer over the file(s) or folder(s) you wish to drag.

2. Press and hold mouse button 1.

3. Drag the icon to where you want to drop it. (i.e. printer, trash can, another folder, etc)

4. Release the mouse button.

Using Pop-up Menus

Pop-up menus can be used in lieu of the menu bar. Position the mouse pointer over the icon
you wish to access, press mouse button 3 and choose the menu item .

Figure 3-3.

51434S G.02 3-20 (3-13)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-5. SLIDE: File Manager Instructor Notes

Purpose

To introduce the File Manager Window and Desktop and learn basic file management skills.

Actual File Manager tasks are covered on the next slide.

3-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-6. SLIDE: File Manager Menu Tasks

Student Notes

File related tasks that can be done at the command line, can be accomplished using the File
Manager Menu Bar. In order to take action specific files or folders, they must first be selected
(once they are selected, the name of the file or folder will be highlighted). If you fail to do this,
many of the tasks will be unavailable. After highlighting the specific files or folders, choose
Selected to display the list of tasks available. The View menu allows you to manipulate how
the File Manager information is displayed.

Moving or Copying a File or Folder

1. Go into the parent folder of the file or folder you want to copy or move.

2. Select the file or folder to copy or move.

3. Choose either Copy To or Move to from the Selected menu. A pop-up dialogue box
will appear prompting you for the destination folder. In the case of a copy it will also ask
you for the name of the file. The default name will remain the same as the original.

51434S G.02 3-22 (3-14)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

4. Fill in the destination name.

5. Press OK .

Copy as Link

Copying a file as a link (this will be a symbolic link) does not actually copy the data, rather it
makes a copy of the original file’s icon. Any changes you make after opening the link icon will
also appear when you access the file or folder using the original icon. This applies not only to
the contents of the file, but also to the properties of the file as well. Therefore if you change
the permissions or ownership on the original file, you also change the permissions and
ownership on the linked file. To link the file:

1. Go into the folder containing the file you want linked.

2. Select the file or folder.

3. Choose Copy as Link from the Selected menu. A pop-up dialogue box will appear
prompting you for the destination folder and file name.

4. Fill in the destination name.

5. Press OK .

Change Permissions

You must be the owner or system administrator to change the permissions or ownership on a
file or folder.

1. Go to the folder of the file or folder whose properties you want to change.

2. Highlight the desired file or folder.

3. Choose Change Permissions ... from the Selected menu.

4. A pop-up dialogue menu will appear with the current ownership and permission
information, including the size and last modified information.

5. Fill in the information as needed.

6. Press OK .

Rename File or Folder

1. Go to the folder of the file or folder to be renamed.

2. Select the file or folder.

3. Choose Rename ... from the Selected menu. The cursor will be positioned at the end
of the current name of the file or folder.

4. Backspace as far back in the name as necessary, and type in new name.

3-23 (3-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

5. Press Return .

Other Tasks From Selected Menu

Depending upon the type of object the icon represents, not all of these choices will be available.

Put on Workspace
Places the icon of the file or folder on the backdrop of the workspace for easy
access. To remove, position the mouse cursor on the icon, press mouse button
3, and choose Remove From Workspace.

Put In Trash
Removes the icon from the current folder to the Trash Can.

Select All
Selects all icons in the current folder for action to be taken upon.

Deselect All
Deselects all icons in the current folder.

Open
The action taken depends upon the type of object selected. Opening a folder
will display the contents of the folder. Opening a text file will display the
contents of the file in the text editor.

Print
If the file is a text file, the contents will be printed to the printer chosen in
the dialogue box. If it is a folder, a long list of files and directories will be
printed to the printer of choice.

Run
Applies to executable files. This action causes the file to be executed as a
command.

Imageview
Deposits the bitmap image into the icon editor.

51434S G.02 3-24 (3-16)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-6. SLIDE: File Manager Menu Tasks Instructor Notes

Purpose

To give students the understanding of what types of file related activities can be done using
File Manager.

Key Points

• A file or folder cannot have action taken upon it with out first being selected. If users do not
select the file, they will not have the option of specific tasks.

• The Copy As Link selection does a symbolic link, however it acts like a hard link. This is
to accommodate the fact that links may be done across filesystems (thus necessitating a
symbolic link). This may cause some confusion.

• Once you select to put a file or folder in the workspace, you can remove it from the
workspace by positioning the mouse pointer directly on the icon, and pressing mouse button
3. One of the selections of the pop-down menu is to Remove from Workspace.

• When renaming a file or folder icon, users must press Return or the new name will be lost.

3-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-7. SLIDE: Using File Manager to Locate Files

Student Notes

File Manager gives you the ability to search for a file or folder by name or by contents of the
file.

1. Click on File menu and choose Find

2. Type the name of the file or folder you want to find in the File or Folder Name: field.
Wildcards are allowed in the name:

* asterisk Matches zero or more of a given character. For example, if you wanted
to find all the files that began with the string prog, you would enter
prog*. This would find the file prog, progA, prog1, prog.data, etc.

? question mark Matches any single character. Using the same example, if you entered
prog?, only the file progA, and prog1 would be found.

• Type the text string you want to search for in the File Contents field. (Case is ignored)

51434S G.02 3-26 (3-17)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

NOTE: Both File Name and File Contents both do not need to be filled in. By
filling both in, however it speeds up the search because the search
criteria has been narrowed.

• Type the name of the folder where you want to begin the search. Find will search this folder
and any subfolders beneath it.

• Click Start

When a match is found, the name of the file is placed in the Files Found window. Once the
files are located, you can highlight the file name and either press Open Folder or
Put in Workspace, which will place the appropriate icon on the backdrop of the workspace.

3-27 (3-18) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-28
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-7. SLIDE: Using File Manager to Locate
Files

Instructor Notes

Purpose

To understand how to find files and folders, without necessarily knowing where in the
directory structure they lay, or even what their name is.

Key Points

• When specifying the File or Folder name, be sure not to include the parent directory name.
Only the file or folder you are searching for is specified. Otherwise the search will be
unsuccessful. The parent directory information is specified in the Search Folder: field.

• Specifying both name and contents filter will speed up the search

3-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-8. SLIDE: Deleting Objects

Student Notes

Objects can be deleted in two ways: with the File Manager Selected menu, or by dragging an
object down to the Trash Can and dropping it in. The files are not actually deleted from the
system, but are held in the Trash Can until it is explicitly emptied. (The Trash Can control
indicates if there is trash to be emptied by a piece of paper hanging out of the Trash Can lid).
Until the Trash Can is emptied, the objects can be restored to the File Manager.

To Place an Object in the Trash Can

• Go to the folder which contains the object to be deleted to the Trash Can.

• Highlight the object to be deleted.

• Either choose the Put in Trash menu item from the Selected menu OR

• Click and hold mouse button 1 while dragging the icon down to the Trash Can. Release the
mouse button. You will see the Trash Can open and close indicating that the trash was
deposited.

51434S G.02 3-30 (3-19)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

To Retrieve an Object from the Trash Can

• Double click on the Trash Can icon in the Front Panel to open the Trash Can window. You
will see a list of objects which have previously been deleted displayed.

• Select the object you want to restore.

• Click on File to open the menu bar, then select Put Back. The file will return to its
original location.

To Delete Objects Permanently

This procedure actually deletes the file or folder from the system. Therefore it can never be
retrieved, unless it has been backed up on external media, or copied elsewhere on the system.

1. Open the Trash Can window by clicking on the Trash Can icon on the Front Panel.

2. Highlight the object you wish to delete. If you wish to delete all objects, open the File
menu and Select All.

3. From the File menu, choose Shred to destroy the objects. You will be prompted with a
confirmation dialogue box. If you are sure you want to proceed, press OK . Remember these
objects are now irretrievable!

3-31 (3-20) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-32
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-8. SLIDE: Deleting Objects Instructor Notes

Purpose

To understand how to delete files and folders from the system or File Manager

3-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-9. SLIDE: Using the Text Editor

Student Notes

By default, the Text Editor control will be available on the Front Panel. If this has been
changed, for example to a Terminal icon, open the Personal Applications subpanel and choose
Text Editor. This control activates a program called /usr/dt/bin/dtpad, which can be run
from the command line by typing dtpad filename &.

Once the Text Editor window is opened, you can either create a new document by clicking on
File on the menu bar, and then selecting New. To open an existing document, click on File
on the menu bar and select Open. A dialogue box will prompt you for the name of the file.

51434S G.02 3-34 (3-21)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Figure 3-4.

Double click on the name of the file, or enter the name of the file and press OK . The title bar
displays the name of the current document. A new document is named (UNTITLED).

You can also include a separate document into the current one by selecting Include from the
File menu. This does not affect the file which was included, but does update the file Opened.

Editing Text

Moving Text (Cut and Paste)

1. Select the text to be moved by positioning the mouse cursor to the beginning of where you
want to move, press and hold mouse button 1 while dragging the cursor across the area to
be moved. Release the button.

2. Choose Cut form the Edit menu. The text is removed from the document and stored on a
clipboard where it can be accessed later.

3. Move the cursor to where you want the text inserted.

4. Choose Paste from the Edit menu.

Copying Text

1. Select the text to be moved by positioning the mouse cursor to the beginning of where you
want to move, press and hold mouse button 1 while dragging the cursor across the area to
be moved. Release the button.

2. Choose Copy from the Edit menu. A copy of the text is stored on a clipboard.

3. Position the cursor where you want to insert the text.

3-35 (3-22) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

4. Choose Paste from the Edit menu. If you are copying to multiple locations in the file, you
only need to do the copy once, followed by multiple pastes.

Delete Text

• Select the text to be moved by positioning the mouse cursor to the beginning of where you
want to move, press and hold mouse button 1 while dragging the cursor across the area to
be moved. Release the button.

• Choose Delete from the Edit menu or press the Delete key.

Clear Text

Clearing text replaces the selected text with spaces or blank lines.

• Select the text to be moved by positioning the mouse cursor to the beginning of where you
want to move, press and hold mouse button 1 while dragging the cursor across the area to
be moved. Release the button.

• Choose Clear from the Edit menu.

Find and Changing Text

• Choose Find/Change... from the Edit menu

• Type the text you want to find in the Find field.

• Type the replacement text in the Change To field. If you want to delete the text altogether,
this field can be left blank.

• Press Return or click Find to begin the search.

• If a match is found, the cursor will be positioned at the the match. To activate the change,
click Change. If you do not want this instance changed, but want to continue searching, click
Find . To make the change globally, click Change All.

• Click Close when done.

To Undo an Edit

• Choose Undo from the Edit Menu. This reverses the last cut, paste, clear, delete, change,
include, or format.

Correct Misspelled Words

• Choose Check Spelling from the Edit menu. The Spell Dialogue Box will be displayed (Fig
4–5).

51434S G.02 3-36 (3-23)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Figure 3-5.

• Type the correct word into the Change To field.

• Click Change to make a single change or Change All to make a global change. If you
simply want to locate the misspelled words and not make the changes, click Find.

• Click Close when you are done.

Formatting The Document

• Choose Settings from the Format menu to display the Format Settings dialog box .

3-37 (3-24) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Figure 3-6.

• Enter margins

• Select left, right, justify (block style), or center alignment

• Determine the scope of the formatting:

— To format a single paragraph, place the cursor in the paragraph, then click Paragraph.

— To format the entire document, click All.

• After closing the dialog box, choose Paragraph or All from the Format menu to apply the
settings.

Other Text Editor Options

Overstrike Insert

Choosing Overstrike Insert from the Options menu will allow you to type over existing
characters, rather than entering new ones. When this is no longer desired, press
Overstrike Insert again to toggle the option off.

Wrap to Fit

Choosing Wrap to Fit from the Options menu controls whether lines are dynamically
wrapped to fit the width of the window. When turned on, lines are broken automatically at the
edge of the window. When the size of the window is changed, the line breaks are adjusted
accordingly.

Status Line

Choosing Status Line from the Options menu creates a status line at the bottom of the
document that displays the current line number and the total number of lines in the
document. It also indicates when Overstrike mode is turned on.

51434S G.02 3-38 (3-25)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

The Status Line can also be used to go to a specific line number easily.

1. Display the Status Line.

2. Click in the Line field of the Status Line.

3. Type the line number you want to go to and press Return .

Printing a Document

1. Choose Print from the File menu. A printer dialog screen will appear where you can
control which printer, the number of copies, banner page title, whether you want page
numbers, and other printer commands.

2. Click Print.

3-39 (3-26) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-40
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-9. SLIDE: Using the Text Editor Instructor Notes

3-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-10. SLIDE: Running Applications Using the Application
Manager

Student Notes

Application Manager is a container for the applications and other tools available on your
system. Most of the applications and tools in Application Manager are built into the Desktop.
Customization can be done at the system level by the system administrator, or on a personal
level by individual users.

To open the Application Manager, click on the Application Manager control on the Front Panel.

The top level of Application Manager contains the folders for the Application Groups available
to the user. Applications are never directly stored in the top level of Application Manager, but
instead in the Application Groups, which is a way of organizing applications according to
specific functions.

To run an application from Application Manager

1. Open Application Manager.

51434S G.02 3-42 (3-27)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

2. Double-click the application group’s icon to display its contents.

3. Double-click the application’s action icon to execute the application.

Built-in Application Groups

The Desktop provides these built-in application groups that are containers for various tools
and utilities available on your system:

Desktop_Apps Desktop applications such as File Manager, Style Manager, and
Calculator

Desktop_Tools Desktop administration and operating system tools such as Reload
Application, vi,and Check Spelling

Information Icons representing frequently used help topics

System_Admin Tools used by system administrators

Digital_Media Tools for audio, screen captures and image viewing.

3-43 (3-28) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-44
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-10. SLIDE: Running Applications Using the
Application Manager

Instructor Notes

Purpose

To give an overview of running applications from the Application Manager.

Teaching Tip

• This is not intended to cover how to add applications or provide any customization to the
Application Manager.

• Give the students a chance to explore some of the folders, particularly the Desktop_Apps
and Desktop_Tools Application Groups to see what is available.

3-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-11. SLIDE: Using Mailer

Student Notes

The CDE Mail utility allows you to send, receive, and manage your electronic mail from the
Desktop. The Mailer icon on the Front Panel will change when there is new mail to be read.
The icon in figure 3–7 indicates that there is no unread mail, while the icon in figure 3–8
indicates that there is mail to be read.

51434S G.02 3-46 (3-29)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Figure 3-7.

Figure 3-8.

The Mailer main window will display the headers of any messages, whether they have been
read or not. New messages are preceded by N. Whichever message is highlighted is the
current message, and its contents are displayed in the Message View area. If the sender
included an attachment, such as a calendar, or graphic, its icon will be shown in the
Attachment list.

Reading Messages

To read a message select the message from the Message Header List. The text of the message
appears in the message view area. To open this into a single window, double-click the message
or choose Open from the Message menu.

Sorting Messages

By default the messages are displayed in the order they arrived (Date/Time). You may
rearrange them differently by selecting from the View menu.

3-47 (3-30) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Finding Messages

You can search for specific messages based on the contents of the To:, From:, Subject:, and CC:
fields by choosing Find from the Message menu .

Figure 3-9.

You can narrow the search by specifying search criteria in multiple fields (for example the
From: and the Subject: fields). Once you have entered the search criteria, click Find.

All messages, regardless of whether they match the search or not will remain in the Message
Header List. The first message that matches the criteria will be highlighted. As you continue
to click Find, subsequent messages matching the search criteria will be highlighted.

Taking Action Upon a Message

Once you have read a message you probably want to do something with it, such as reply, save
the message into a file, delete the message once you have read it, or forward it on to someone
else with your comments.

Replying to a Message

1. Select the message for reply.

2. From the Compose menu choose one of the following:

a. Reply to Sender - will reply to sender only.

b. Reply to All - will reply to sender and all other recipients of the message.

c. Reply to Sender,Include - will reply to sender only, but will include a copy of the
message.

d. Reply to All,Includes - will reply to the sender and all other recipients, and will include
a copy of the message.

51434S G.02 3-48 (3-31)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3. Enter the reply

4. Click Send

Forwarding a Message

1. Select the message to forward.

2. Choose Forward Message from the Compose menu. The entire message, along with
attachments is included. To remove an attachment, highlight it and choose Delete from
the Attachments menu.

3. Enter the mail address for the recipients in the To: and CC: fields.

4. Include your own comments if desired.

5. Click Send.

Saving a Message into a File

1. Select the message to be saved by highlighting it.

2. Choose Save as Text from the Message menu.

3. Type the file name and directory in the dialog box.

4. Click Save.

Deleting/Undeleting a Message

Deleting Messages

1. Select a message for deletion.

2. Choose Delete from the Message menu.

Undeleting Messages

Even if a message has been deleted, it can be retrieved unless you made your deletions
permanent.

• To restore the last deleted message choose Undelete Last from the Message menu.

• To restore a message deleted prior to the last deleted message, choose
Undelete from List from the Message menu. Select one or more messages to be restored.
Click Undelete .

Destroying Deleted Messages When Closing a Mailbox

You can choose to permanently destroy the messages you have deleted when you close your
mailbox. Once mail is permanently destroyed you cannot undelete the messages.

• Choose Message Header List from the Category menu of the Mail Options dialog box.

3-49 (3-32) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

• Select When I close the mailbox under Destroy Deleted Messages.

• Click OK or Apply to make your changes take effect.

51434S G.02 3-50 (3-33)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-11. SLIDE: Using Mailer Instructor Notes

Purpose

To present the basic Mailer usage

Key Points

• Mailer doesn’t care what email tool was used to create the messages sent to the user. For
example, other users may have used elm, mailx, cc:mail, etc to create the message. Mailer
can still read it.

• When Finding a message, it is possible that Mailer may find messages that contain a
superset of the search criteria. For example, if a Find is conducted searching for a message
that contains mary in the From field, if there is a message from maryellen it will match the
Find.

3-51 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-12. SLIDE: Sending Mail

Student Notes

In order to send an email message, you need to have an email address for the recipient. The
format of the email address is username@location . To send a message:

1. Choose New Message from the Compose menu (indicated in the slide).

2. Enter the recipient’s email address in the To field, the subject of the message in the
Subject field, and the email address of anyone you want copied on the message in the
Cc field.

3. Once you have addressed the message, press Return to go to the text area and compose the
message. Editing a message in the Mailer utilizes the same menu bar functions as the
Text Editor.

4. Click the Send button. If you wish to not send the message until a later time, you can save
the message by choosing Save as Text from the Compose menu.

You can easily include an existing text file or template into a message.

51434S G.02 3-52 (3-34)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Creating a Template

You may want to create a template that contains text you frequently use when composing a
message. To create a template:

1. Use the Text Editor to create the template.

2. In the Mailer, click on Mail Options from the Mailbox menubar.

3. Click Category button and choose Templates. The Template dialog box will appear.

4. Type the name of the template in Menu Label field.

5. Type file path name in File/Path: field.

6. Click Add to include the template in list of templates.

Using a Template

1. Choose New Message from the Compose menu.

2. Choose Templates from the Format menu.

3. Select template name to use from list available.

Including a File in a Mail Message

To mail an existing file to someone else:

1. Choose New Message from the Compose menu.

2. Choose Include from the File menu in the Compose window (Figure 4–10).

3-53 (3-35) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Figure 3-10.

3. Traverse through the file system and select desired file to include.

4. Click OK.

5. Add additional text if necessary. Click Send when ready to mail.

To include a non-text file you must include an attachment. To do this:

1. Choose New Message from the Compose menu if not already there.

2. Choose New File from the Attachments menu.

3. Select the desired file to include.

4. Click OK.

5. Send as usual.

Rather than seeing the text of the file in the Message View area, you will see an attachment at
the bottom of the screen with the file name. Double clicking on the attachment icon will open a
Text Editor session with that included file.

51434S G.02 3-54 (3-36)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-12. SLIDE: Sending Mail Instructor Notes

Editing the messages works the same way as editing text files. It is probably best to give
students an overview of what needs to be done, and encourage them to get hands on
experience to feel comfortable.

3-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-13. SLIDE: Customizing Mailer

Student Notes

Mailer can be highly customized from the default settings. The slide depicts the Mail Options
dialog box which can be selected from the Mailbox menu. Customizations include:

Message Header List

• Frequency of new mail checks.

• Whether or not to signal if new mail arrives with a beep and/or a flashing icon.

• The number of headers that can be displayed in the message view.

• Whether or not the message sent displays the recipients name, or the senders name.

• If message numbers are displayed or not.

• Whether to automatically destroy deleted messages, or to confirm deletion upon exiting the
Mailer.

51434S G.02 3-56 (3-37)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Message View

• The number of lines and characters per line in Message View Area.

• Add, Delete, or Change header fields when displaying messages.

Compose Window

• Whether or not to show attachments.

• Customize the indent string for replies.

• Directory to save messages you are composing in the event that the system crashes in the
middle of composing a message. The system automatically saves the messages every 10
minutes.

• Customize available options under Format menu of New Message window to include custom
header fields.

Message Filing

• Determine where messages are stored.

• Specify where to begin looking for messages.

• How many mailboxes to display (according to how recently they were visited).

• Whether to log a copy of sent messages.

Vacation

• Allows users to reply with a message to all other users who send a mail message that the
recipient is out of the office for a specified period of time.

• Vacation mail can be given a lower priority than other mail.

Templates

• Used to create text frequently used in composing messages.

Aliases

• Allows users to create their own private distribution list with shortened names Many users
can be included in one alias name.

Advanced

• Control how frequently the mailbox is updated.

• Whether or not to show confirmation notice when making changes (if they have not been
saved). If this is not chosen, the changes will automatically be incorporated.

3-57 (3-38) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

• Whether or not to use MIME encoding which is necessary if the recipients are running a
fully compliant MIME package. This should generally be not chosen unless you are certain.

• Network aware file locking prevents two instances of Mailer from opening the same mail
message.

• Whether or not to include the sender’s address in the Reply to All field, and if so, whether or
not the host name is included.

51434S G.02 3-58 (3-39)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-13. SLIDE: Customizing Mailer Instructor Notes

Purpose

To show what options are available for customization. For more details, refer to the
B1171-90101 CDE 1.0 User’s Guide

3-59 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-14. SLIDE: Using Calendar

Student Notes

The Calendar application allows users to schedule appointments, To Do lists, and reminders,
as well as browse other calendars across the network, and schedule group appointments, if
access is granted. The calendar icon is generally located on the Front Panel, and can be
accessed by clicking on it.

By default, the current calendar month is displayed, with the current date highlighted. This
view can be altered using the View menu bar or the controls on the right hand side of the
Calendar Tool Bar (just below the menu bar). In addition to the month view, the displays
available include:

• Day view displays a specific day’s appointments on an hourly basis. It also provides a three
month mini-calendar which displays the current, previous, and next month. Any of these
days can be displayed by clicking on the individual days.

• Week view displays a specific week’s appointments on a daily basis. A grid with an hourly
breakdown is displayed indicating scheduled times, with a shaded area, and available times,

51434S G.02 3-60 (3-40)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

with an unshaded area. By default the week displayed is the current week. Users can scroll
to other weeks by clicking the left and right arrows surrounding the Today button.

• Year view displays the year calendar. Because of the amount of time covered, appointments
are not displayed.

3-61 (3-41) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-62
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-14. SLIDE: Using Calendar Instructor Notes

Purpose

To introduce the calendar management utility. In order to effectively use this utility, the
rpc.cmsd daemon had to have been started. This is usually registered in /etc/inetd.conf
when the desktop is installed and should need no other configuration. This daemon is a small
database manager for appointment and resource scheduling.

3-63 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-15. SLIDE: Scheduling Appointments

Student Notes

From the menu bar, you can include appointments on the day that is currently displayed
(therefore, this cannot be done from the yearly view). To schedule an appointment:

• Display the day you want to make the appointment

• Choose Appointment... from the Edit menu to activate the Calendar Appointment Editor.

• Choose Start and End times.

• Specify what the Appointment is (this will be truncated in the calendar square).

• If you want additional options, click More to display choices such as how often this will occur
(is this something that must be done the first of every month for example), whether or not
you want reminders sent via beeps, flashes, or mail messages, and to what extent you want
to keep this private.

51434S G.02 3-64 (3-42)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Changing or Deleting Appointments

• Display the day you want to change an appointment

• Activate the Appointment Editor

• Highlight the appointment you want to delete or change

• If making a change click on the area you want to change (i.e. start/stop time)

• Click either Change (which will be highlighted only if you made a change) or Delete

Finding an Appointment

Suppose you know an appointment is scheduled, but do not know when. Rather than scrolling
through each month’s calendars, you could use the Find selection from the View menu.

Figure 3-11.

• Enter a keyword in the Find field

• If desired, alter the range of search dates. By default it will search the past and next six
month period.

• Click Find.

• Click desired appointment from the resulting list

• Click Show Appointment to display entire appointment

• Click Close

3-65 (3-43) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-66
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-15. SLIDE: Scheduling Appointments Instructor Notes

3-67 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-16. SLIDE: To Do Items

Student Notes

Calendar gives you the capability to schedule To Do items which can then be marked as
complete or pending. They are listed chronologically and show date, time, and description. To
activate the Calendar To Do Editor select To Do ... from the Edit menu, or click on the To
Do icon on the Calendar Tool Bar (with the check mark and pencil).

• By default the due date will be whatever date is highlighted on the calendar, if desired edit
the due date.

• Type a description of the To Do item in the What field.

• Click Insert.

• Click Cancel to close the To Do editor.

Marking an Item Complete

• Select To Do List... from View menu bar

51434S G.02 3-68 (3-44)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

• The dialog box will display all To Do items, Completed To Do items, or Pending To Do items.
Select which you want displayed.

• Click on the box to insert a check, which marks complete the To Do item. To remove, click
again to toggle off.

• Click OK

alternative method

• Select To Do ... from Edit menu to display a given day’s To Do items.

• Click Completed to mark the item complete. (This can be toggled on or off)

• Click Change.

• Click Cancel to close the editor.

3-69 (3-45) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-70
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-16. SLIDE: To Do Items Instructor Notes

Purpose

To explain the To Do item editor, and how to mark complete. Depending upon what type of
view to the calendar the user has (that is, month, week, day) will determine how many To Do
items are listed—a month’s worth, week’s worth, or day’s worth.

3-71 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-17. SLIDE: Browsing Calendars on a Network

Student Notes

The desktop Calendar application provides the capability to browse other calendars across the
network, as long as you know the names of the other calendars (in the form
calendar-name@hostname), and you have been granted access to the calendars. This gives
users the capability to scan a group of calendars to find an open time slot to schedule an
appointment, for example.

Before you can browse a calendar, you must add it to the Browse List. To do this:

1. Choose Menu Editor from the Browse menu.

2. Type the calendar-name@hostname in the User Name field.

3. Click Add Name.

4. Click OK.

Once you have added a calendar name to the list, you can browse the calendar.

51434S G.02 3-72 (3-46)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

• Select Choose Calendars from the Browse menu.

• Select the name of the calendar(s) you want to view.

• Calendars are overlayed one on top of another. Busy times are shaded, available times are
unshaded.

To schedule an appointment on other calendars

Once you are in the Compare Calendar screen, you can schedule appointments, provided you
have been granted access to do so.

• Select one or more entries in the Browse list.

• Click on an unshaded area available to all entries.

• Click Schedule. The Calendar Group Appointment Editor will be displayed, which will
provide a Calendar Access list. A Y in the Access column means that you have insert access
to update their schedule. An N means that you don’t. The owners will have to grant you
access in order for you to schedule appointments in their calendars.

3-73 (3-47) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-74
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-17. SLIDE: Browsing Calendars on a
Network

Instructor Notes

Purpose

To learn how to display calendars across the network and schedule appointments in other
user’s calendars.

Key Points

Before being able to view others’ calendars, as well as schedule appointments in another user’s
calendar, they would have to grant permission for you to do so.

Users also have the ability to mail reminders to the group by clicking on the Mail button. The
appointment is integrated into the mail message as an attachment and is pre-addressed to all
members of the group.

3-75 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-18. SLIDE: Granting Access to your Calendar

Student Notes

By default the calendar is configured giving the world browse permission. Only the calendar
owner can insert and delete appointments. The owner can change these permissions by:

1. Choose Options... from the File menu.

2. From the Category menu, choose Access List to display the Access List and Permissions
dialog box as depicted on the slide.

3. In the User Name field, type calendar-name@hostname for the user to whom you want
to grant access.

4. Select View, Insert, and/or Change permissions.

Public Enables another calendar to display the time and text of your
appointments marked Others See Time and Text.

51434S G.02 3-76 (3-48)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Semiprivate Enables another calendar to display the time and text of your appoints
marked Others See Time Only.

Private Enables another calendar to display the time and text of your
appointments marked Others See Nothing.

5. Click Add to add the calendar to the Access list with the permissions you’ve chosen.

6. Click OK or Apply.

3-77 (3-49) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-78
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-18. SLIDE: Granting Access to your
Calendar

Instructor Notes

Purpose

To explain how to grant access to your calendar to others on the network.

Key Points

• If you do not grant access Insert or Change access, by default others will not be able to
anything other than browse

• To deny access to a user, highlight that entry in the access list and click Delete. To save
changes click OK.

3-79 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-19. LAB: Using CDE

Lab Objective

To become comfortable using the basic elements of the CDE Desktop Environment

Directions

1. Using the File Manager, change to the class folder. Select the file cde_intro and copy
to a file called cde_intro2.

2. Move the cde_intro2 file to the cde_dir folder.

3. Change to the cde_dir folder. Change the permissions on the file cde_intro2 to be
read only.

4. Return to your home folder. Use File Manager to search for all the files that contain the
contents graphical environment. Use the search folder class.

5. Use File Manager to search for all files that begin with data.

6. “Wildcard” searches can be performed using a question mark (?) to find any single
character. Use File Manager to search for all files that begin with data followed by a single
character.

51434S G.02 3-80 (3-50)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

7. Use File Manager to delete the file cde_intro2 from the cde_dir folder.

8. Retrieve the cde_intro2 file from the trash.

9. Use File Manager to permanently delete the file cde_intro2 from the cde_dir folder.

10. Using the text editor open the file $HOME /class/cde_intro for editing. Copy the first
paragraph to be included at the end of the document.

11. Change all except the first and third occurrences of CDE to Common Desktop Environment.

12. Correct all misspelled words in the file.

13. Using the pop-up menu on the workspace switch, add another workspace and call it
CDE Class.

3-81 (3-51) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

14. Using subpanel menus and pop-up menus, change the icon from the Text Editor to the
Terminal for the Personal Applications.

15. From the Application Manager, use the Man Page Viewer to execute the man page for
ls.

16. Choose a partner to send mail to. If you are on separate systems, you must know the
partner’s user name and host name of the system. This information is necessary to formulate
the user’s email address, which is in the format username@hostname.

Send your partner a message, and have them send you a message. (If you are having trouble
finding a mail partner, you can send the message to yourself).

17. Once your partner has sent you a message, reply to the message, and forward the original
message to a third partner.

18. Using the Text Editor, create a template of your status report that will be used to send
your monthly status report to your manager every month. Save the file as status. In the
Mailer, create a template called monthly containing this newly created file. Use this template
to send a status report to your mail partner.

19. Use the Calendar function to create five or six appointments in the current month. You
can have the appointment occur only once, or on a regular basis, such as every month.

51434S G.02 3-82 (3-52)
© 1999 Hewlett-Packard Company

Module 3

Using CDE

20. Set up your calendar configuration so that you can browse your calendar and your mail
partner’s calendar by adding both your calendars to the Browse List.

21. You want to schedule an important meeting with your mail partner, but want to first check
their calendar for their availability. Browse the calendars so you can see both your mail
partner’s and your own calendar at the same time.

22. Grant your mail partner Insert and Change access to your calendar so that they will be
able to schedule appointments with you when necessary.

23. Schedule a meeting with your mail partner, and mail a reminder to your partner.

3-83 (3-53) 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

51434S G.02 3-84
© 1999 Hewlett-Packard Company

Module 3

Using CDE

3-19. LAB: Using CDE Instructor Notes

Solutions

1. Using the File Manager, change to the class folder. Select the file cde_intro and copy
to a file called cde_intro2.

Answer:

1. Position the mouse cursor over the directory class and double click.

2. Position the cursor over the file cde_intro.

3. Choose Copy To from the Selected menu. A pop-up dialog box will appear prompting
you for the file. Type in cde_intro2 .

4. Press OK .

2. Move the cde_intro2 file to the cde_dir folder.

Answer:

1. Position the cursor over the file cde_intro2 .

2. Choose Move To from the Selected menu. A pop-up dialog box will appear prompting
you for the destination folder. Type in cde_dir.

3. Press OK .

3. Change to the cde_dir folder. Change the permissions on the file cde_intro2 to be read
only.

Answer:

1. Position the cursor over the folder cde_dir and double click to change to that directory.

2. Highlight the file cde_intro2.

3. A pop-up dialog menu will appear with the current ownership and permission
information, including the size and last modified information.

4. Click off the write permission.

5. Press OK .

4. Return to your home folder. Use File Manager to search for all the files that contain the
contents graphical environment. Use the search folder class.

Answer:

1. Click on File menu and choose Find....

3-85 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

2. Type graphical environment in the File Contents field.

3. Type class following your home directory in Search Folder: field.

4. Click Start

5. Use File Manager to search for all files that begin with data.

Answer:

1. Click on File menu and choose Find....

2. Type data* in the File or Folder Name: field.

3. Type class following your home directory in Search Folder: field.

4. Click Start

6. “Wildcard” searches can be performed using a question mark (?) to find any single character.
Use File Manager to search for all files that begin with data followed by a single character.

Answer:

1. Click on File menu and choose Find....

2. Type data? in the File or Folder Name: field.

3. Type class following your home directory in Search Folder: field.

4. Click Start

7. Use File Manager to delete the file cde_intro2 from the cde_dir folder.

Answer:

1. Open the cde_dir folder.

2. Highlight the file cde_intro2.

3. Either choose the Put in Trash menu item from the Selected menu OR click and
hold mouse button 1 while dragging the icon down to the Trash Can. Once the file icon
is over the trash can release the mouse button.

8. Retrieve the cde_intro2 file from the trash.

Answer:

1. Double click on the Trash Can icon in the Front Panel to open Trash Can window.

2. Select the file cde_intro2 to restore.

3. Click on File to open the menu bar, then select Put Back. The file will return to its
original location.

51434S G.02 3-86
© 1999 Hewlett-Packard Company

Module 3

Using CDE

9. Use File Manager to permanently delete the file cde_intro2 from the cde_dir folder.

Answer:

1. Open the cde_dir folder.

2. Highlight the file cde_intro2.

3. Either choose the Put in Trash menu item from the Selected menu OR click and
hold mouse button 1 while dragging the icon down to the Trash Can. Once the file icon
is over the trash can release the mouse button.

4. Double click on the Trash Can icon in the Front Panel to open Trash Can window.

5. Select the cde_intro2 file to restore.

6. Click on File to open the menu bar, then select Shred. The file will be permanently
removed.

10. Using the text editor open the file $HOME /class/cde_intro for editing. Copy the first
paragraph to be included at the end of the document.

Answer:

1. Position the mouse cursor to the beginning of the first paragraph. Press and hold mouse
button 1 while dragging the cursor across the area to be copied. Release the button.

2. Choose Copy from the Edit menu. A copy of the tet is stored on a clipboard.

3. Position the cursor to the end of the file.

4. Choose Paste from the Edit menu.

11. Change all except the first and third occurrences of CDE to Common Desktop Environment.

Answer:

1. Choose Find/Change ... from the Edit menu.

2. Type CDE in the Find field.

3. Type Common Desktop Environment in the Change field.

4. Press Return or click Find to begin the search.

5. If a match is found, the cursor will be positioned at the match. To activate the change,
click Change. If you do not want this instance changed, but want to continue searching,
click Find. To make the change globally, click Change All.

6. Click Close when done.

12. Correct all misspelled words in the file.

3-87 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Answer:

1. Choose Check Spelling from the Edit menu. The Spell dialog box will be displayed.

2. Type the correct work into the Change To field.

3. Click Change to make a single change or Change All to make a global change. If you
simply want to locate the misspelled words and not make the changes, click Find.

4. Click Close when you are done.

13. Using the pop-up menu on the workspace switch, add another workspace and call it
CDE Class.

Answer:

1. Position the mouse cursor on a portion of the workspace switch that is not occupied by
other controls or workspace buttons and press mouse button 3. Choose Add Workspace

2. Position the mouse cursor on the new workspace called New and press mouse button
3. Choose Rename.

14. Using subpanel menus and pop-up menus, change the icon from the Text Editor to the
Terminal for the Personal Applications.

Answer:

1. Click on the up arrow above the Text Editor control on the Front Panel.

2. Position the cursor next to the Terminal icon and press mouse button 3.

3. Select Copy to Main Panel.

4. Click on the down arrow above the Terminal control on the Front Panel to close the
Personal Applications subpanel menu.

15. From the Application Manager, use the Man Page Viewer to execute the man page for
ls.

Answer:

1. Open the Application Manager.

2. Double-click the Desktop_Apps group icon to display its contents.

3. Scroll down until you see the Man Page Viewer action icon.

4. Double-click the action icon to execute the application.

5. Type in ls in the dialog window to execute the action.

16. Choose a partner to send mail to. If you are on separate systems, you must know the
partner’s user name and host name of the system. This information is necessary to formulate
the user’s email address, which is in the format username@hostname.

51434S G.02 3-88
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Send your partner a message, and have them send you a message. (If you are having trouble
finding a mail partner, you can send the message to yourself).

Answer:

1. Choose New Message from the Compose Menu

2. Enter your mail partner’s email address in the To field and the subject in the
Subject field.

3. Once your have addressed the message, press Return to go to the text area and compose
the message.

4. Click the Send button.

17. Once your partner has sent you a message, reply to the message, and forward the original
message to a third partner.

Answer:

To send the reply:

1. Select the message for reply.

2. From the Compose menu choose Reply to Sender

3. Enter reply.

4. Click Send.

To forward the message:

1. Select the message to forward.

2. Choose Forward Message from the Compose menu.

3. Enter the mail address for the recipients in the To: field.

4. Include your own comments if desired.

5. Click Send.

18. Using the Text Editor, create a template of your status report that will be used to send
your monthly status report to your manager every month. Save the file as status. In the
Mailer, create a template called monthly containing this newly created file. Use this template
to send a status report to your mail partner.

Answer:

Once you have created the file using Text Editor, do the following to create the template:

1. In the Mailer, click Mail Options from the Mailbox menubar.

3-89 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Using CDE

2. Click the Category button and choose Templates. The template dialog box will
appear.

3. Type the name monthly in Menu Label field.

4. Enter the name of the file status in the File/Path: field.

5. Click Add to include the template in the list of templates.

To use the template:

1. Choose New Message from the Compose menu.

2. Choose Templates from the Format menu.

3. Select template name to use from the list available.

19. Use the Calendar function to create five or six appointments in the current month. You can
have the appointment occur only once, or on a regular basis, such as every month.

Answer:

1. Open the calendar to display the current month. Click on the day you want to make
the appointment.

2. Choose Appointment... from the Edit menu to activate the Calendar Appointment
Editor.

3. Choose Start and End times.

4. Specify what the appointment is.

5. If you want this to occur on a regular basis, click More .

20. Set up your calendar configuration so that you can browse your calendar and your mail
partner’s calendar by adding both your calendars to the Browse List.

Answer:

1. Choose Menu Editor from the Browse Menu.

2. Type calendar-name@hostname in the User Name field.

3. Click Add Name.

4. Click OK.

5. Repeat for your calendar and your mail partner’s.

21. You want to schedule an important meeting with your mail partner, but want to first check
their calendar for their availability. Browse the calendars so you can see both your mail
partner’s and your own calendar at the same time.

51434S G.02 3-90
© 1999 Hewlett-Packard Company

Module 3

Using CDE

Answer:

1. Select Compare Calendars from the Browse menu.

2. Select the name of the calendars you want to view.

Calendars are overlayed on top of one another. Busy times are shaded, available times are
unshaded.

22. Grant your mail partner Insert and Change access to your calendar so that they will be
able to schedule appointments with you when necessary.

Answer:

1. Choose Options... from the File menu.

2. From the Category menu, choose Access List to display the Access List and
Permissions dialog box.

3. In the User Name field, type calendar-name@hostname for the calendar to which
you want to grant access.

4. Select View, Insert, and Change permissions.

5. Click Add to add the calendar to the Access List with the permissions you’ve chosen.

6. Click Apply.

7. Repeat for yourself so that you can overlay your calendar with your mail partner’s.

23. Schedule a meeting with your mail partner, and mail a reminder to your partner.

Answer:

1. Browse your menu together with your mail partner’s menu

2. Click on an unshaded area available to both your calendars

3. Click Schedule. The Calendar Group Appointment Editor will be displayed. A Y in the
Access column means that you have insert access to update their schedule. An N means
that you do not. If you do not have insert access, remind your mail partner to grant
you access.

3-91 51434S G.02
© 1999 Hewlett-Packard Company

Module 3

Navigating the File System

51434S G.02 3-92
© 1999 Hewlett-Packard Company

Module 4 — Navigating the File System

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the layout of a UNIX system’s file system.

• Describe the difference between a file and a directory.

• Successfully navigate a UNIX system’s file system.

• Create and remove directories.

• Describe the difference between absolute and relative path names.

• Use relative path names (when appropriate) to minimize typing.

4-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

51434S G.02 4-2
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

Overview of Module 4

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

To many first-time UNIX system users, the file system is one of the most difficult things to
comprehend. This module is designed to allow the students to successfully navigate and use
the hierarchical structure. The focus here is on directories.

Time

Lab 45 minutes

Lecture 45 minutes

Prerequisites

m45m Logging In/Orientation

In order to successfully complete this module, the student must be able to log in.

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

4-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

total 14
drwxr-xr-x 5 karenk users 1024 May 28 16:12 car.models
-rw-r--r-- 1 karenk users 17 May 28 16:12 cherry
-rw-r--r-- 1 karenk users 17 May 28 16:12 collie
drwxr-xr-x 4 karenk users 1024 May 28 16:12 dog.breeds
-rw-r--r-- 1 karenk users 17 May 28 16:12 poodle
-rw-r--r-- 1 karenk users 17 May 28 16:12 probe
-rw-r--r-- 1 karenk users 17 May 28 16:12 taurus

tree/car.models:
total 6
drwxr-xr-x 2 karenk users 24 May 28 16:12 chrysler
drwxr-xr-x 4 karenk users 1024 May 28 16:12 ford
drwxr-xr-x 2 karenk users 24 May 28 16:12 gm

tree/car.models/chrysler:
total 0tree/car.models/ford:
total 4
drwxr-xr-x 2 karenk users 24 May 28 16:12 sedan
drwxr-xr-x 2 karenk users 1024 May 28 16:12 sports

tree/car.models/ford/sedan:
total 0tree/car.models/ford/sports:
total 2
-rw-r--r-- 1 karenk users 18 May 28 16:12 mustang

tree/car.models/gm:
total 0tree/dog.breeds:
total 4
drwxr-xr-x 2 karenk users 1024 May 28 16:12 retriever
drwxr-xr-x 2 karenk users 24 May 28 16:12 shepherd

tree/dog.breeds/retriever:
total 6
-rw-r--r-- 1 karenk users 27 May 28 16:12 golden
-rw-r--r-- 1 karenk users 29 May 28 16:12 labrador
-rw-r--r-- 1 karenk users 26 May 28 16:12 mixed

51434S G.02 4-4
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

tree/dog.breeds/shepherd:
total 0

4-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-1. SLIDE: What Is a File System?

Student Notes

The UNIX system provides a file system to manage and organize your files and directories. A
file is usually a container for data, while a directory is a container for files and/or other
directories. A directory contained within another directory is often referred to as a
subdirectory.

A UNIX system’s file system is very similar to a file cabinet. The entire file system is analogous
to the file cabinet, as it contains all of the drawers, file folders, and files. A drawer is similar to
a subdirectory in that it can contain reports or file folders. A file folder would also represent a
subdirectory as it contains reports. A report would represent a file, as it holds the actual data.

51434S G.02 4-6 (4-2)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-1. SLIDE: What Is a File System? Instructor Notes

Teaching Tips

• Describe a UNIX system’s file system. The "file cabinet" analogy may help.

• Define the concept of a file and a directory.

4-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-2. SLIDE: The Tree Structure

Student Notes

The directory organization can be represented graphically using a hierarchical tree structure.
Every item in the tree will be either a directory or a file. Directories are represented by ovals,
and files are represented by rectangles so that they may be easily distinguished in the diagram.

The slide illustrates a graphical tree representation of the filing cabinet from the first slide.

51434S G.02 4-8 (4-3)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-2. SLIDE: The Tree Structure Instructor Notes

Key Points

• A directory can store files and other directories (subdirectories).

• Every entity in the tree will be a file or directory.

4-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-3. SLIDE: The File System Hierarchy

Student Notes

Like the filing cabinet, a UNIX system’s file system hierarchy provides an easy, effective
mechanism to organize your files. Since a UNIX system distribution normally contains
hundreds of files and programs, a hierarchy convention has been defined so that every UNIX
system supports a similar directory layout. The top of the hierarchy is referred to as the root
directory (because it is at the top of the inverted tree), and is denoted with a single forward
slash (/).

The UNIX system also provides commands that allow you to create new directories easily as
your organizational needs change, as well as to move or to copy files from one directory to
another. It’s as easy as adding a new file folder to one of the drawers in your file cabinet and
moving a report from an old folder to a new folder.

51434S G.02 4-10 (4-4)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

With the release HP-UX 10.0, the file system has been reorganized into two major parts: static
files and dynamic files.

Static Files (These are shared.) There are three important directories in this part:
/opt, /usr and /sbin.

/opt This directory will contain applications and products. The developers
and the administrators of HP-UX system will use it to install new
products or local applications.

/usr/bin This directory contains the programs for all reference manual section
1 commands that are necessary for basic UNIX system operation and
file manipulation. These are normally accessible by all users. ("bin" is
short for binary).

/usr/sbin This directory contains the programs for all reference manual section
1m commands. They are system administration commands. You must
be super-user to use many of them. These are documented in the
reference manual sections 1m .

/usr/lib This directory contains archive and shared libraries used for
applications.

/usr/share This directory contains vendor independent files (the most important
is the manual).

/usr/share/man This directory contains all files associated with the online manual
pages.

/usr/local/bin This directory usually stores locally developed programs and utilities.

/usr/contrib/bin This directory usually stores public programs and utilities. You might
retrieve these from a bulletin board service or a user group.

/sbin This directory contains the essential commands used for startup and
shutdown.

Dynamic Files (These are private.) There are seven important directories in this part:
/home, /etc, /stand, /tmp, /dev, /mnt and /var.

/home Every user on a UNIX system should have his or her own account.
Along with the login identification and password, the system
administrator will also provide you with your own directory. The /
home directory normally contains one subdirectory for each user
account on the system. You have complete control over the contents of
your own directory. You are responsible for organizing and managing
your work by creating subdirectories and files underneath the
directory associated with your account. When you log in to the
system, initially you will be located in the directory associated with
your account. This directory, therefore, is commonly referred to as the
HOME directory or login directory. From here, you can change your
position to any other directory in the hierarchy to which you have
access. At a minimum, you will be able to access everything
underneath your HOME directory; at a maximum, you will be able to

4-11 (4-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

move to any directory in the UNIX system hierarchy (the default). It
is up to your system administrator to restrict users’ access to specific
directories on the system.

/etc This directory holds many of the system configuration files. These are
documented in the reference manual sections 4.

/stand/vmunix This file stores the program that is the UNIX system kernel. This
program is loaded into memory when your system is turned on, and
controls all of your system operations.

/tmp This directory commonly is used as a scratch space for Operating
System that need to create intermediate or working files. Note: A
UNIX system convention defines that files under any directory called
tmp can be removed at any time.

/dev This directory contains the files that represent hardware devices that
may be connected to your system. Since these files act as a gateway to
the device, data will never be directly stored in the device files. They
are often referred to as special files or device files.

/mnt This directory will be used to mount other devices (laserROM for
instance).

/var/mail This directory contains a "mailbox" for each user who has incoming
mail.

/var/news This directory contains all of the files representing the current news
messages. Their contents would all be displayed by entering news -a.

/var/tmp This directory commonly is used as a scratch space for users.

51434S G.02 4-12 (4-6)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-3. SLIDE: The File System Hierarchy Instructor Notes

Key Points

• A UNIX system’s file system is hierarchical, as in the file cabinet example.

• The UNIX system uses a conventional file system hierarchy to store the hundreds of files
and programs that make up a complete UNIX system distribution.

• The top of the directory structure is called root and is denoted with a single forward slash
(/).

• The HP-UX kernel is stored in the file called /stand/vmunix .

• Directories are available to users to organize their files.

• Commands are available to users to easily create new directories as needed and move or
copy files from one directory to another.

• Directories can contain files and other directories (subdirectories). There is no limit to the
number of subdirectories that you can create.

• Each user has a HOME directory. The user has complete control over all items created
under his or her HOME directory.

• Users usually have access to all directories on the system.

4-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-4. SLIDE: Path Names

Student Notes

Absolute: Relative to /home/user3

1
 /home/user3/f1 1
 f1

2
 /home/user3/memo 2
 memo

3
 /home/user3/memo/f1 3
 memo/f1

Relative to /home/user1

4
 /home/user1/f1 4
 f1

Many UNIX system commands operate on files and/or directories. To inform a command of the
location of the requested file or directory you provide a path name as an argument to the
command. A path name represents the route through the hierarchy that is traversed to reach
the desired file or directory.

51434S G.02 4-14 (4-7)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

$ command [options] [pathname pathname ...]

To illustrate the concept of path names, we use the analogy of tracing along the branches of
the UNIX system tree with a pencil to get from one location to another. The path name will be
the list of all directories that the pencil point touches while tracing its way through the
hierarchy, concluding with the desired file or directory.

When designating the path name of a file or directory, a forward slash (/) is used to delimit
the directory and/or file names.

directory/directory/directory

directory/file

At all times while you are logged in to a UNIX system you will be positioned in some directory
in the hierarchy. You are able to change your position to some other directory through UNIX
system commands, but you will still always be in some directory. For example, when you log
in, you will be initially placed in your HOME directory.

File and directory locations can be designated with either an absolute path name or a relative
path name.

Absolute Path Name

• gives the complete designation of the location of a file or directory
• always starts at the top of the hierarchy (the root)
• always starts with a /
• not dependent on your current location in the hierarchy
• always is unique across the entire hierarchy

Absolute Path Name Examples

The following path names designate the location of all files called f1 in the hierarchy
illustrated on the slide. Note that there are many files called f1, but they each have a unique
absolute path name.

/tmp/f1

/home/user1/f1

/home/user2/f1

/home/user3/f1

/home/user3/memo/f1

Relative Path Name

• always starts at your current location in the hierarchy
• will never start with a /
• is unique relative to your current location only
• is often shorter than the absolute path name

4-15 (4-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

Relative Path Name Examples

The following examples are again referencing the files named f1, but their relative path
designation is dependent on the user’s current position in the hierarchy.

Assume current position is /home:

user1/f1

user2/f1

user3/f1

user3/memo/f1

Assume current position is /home/user3:

f1

memo/f1

Assume current position is /home/user3/memo:

f1

Notice that the relative file name, f1 is not unique, but the UNIX system knows which one to
retrieve because it knows that if you are currently located in the directory /home/user1 to
retrieve /home/user1/f1 or if you are currently located in the directory /home/user3/memo
to retrieve /home/user3/memo/f1. Also notice that the relative path name can be much
shorter than the absolute path designation. For example, if you are in the directory
/home/user3/memo you can print f1 with either of the following commands:

Absolute path name lp /home/user3/memo/f1

Relative path name lp f1

In this case the relative path name can save you a lot of keystrokes.

NOTE: It is important that you know what directory you are currently located
when accessing files with relative path names to ensure that you are
accessing the correct file if files with the same name exist in more than
one directory on the system.

Internally, the UNIX system finds all files or directories by using an absolute path name. This
makes sense because the absolute path name absolutely and uniquely identifies a file or
directory (since there is only one root). The UNIX system allows the use of relative path
names only as a typing convenience for the user.

51434S G.02 4-16 (4-9)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-4. SLIDE: Path Names Instructor Notes

Key Points

• Go through the bulleted items in the student notes that define and differentiate absolute
path names from relative path names.

• Using the hierarchy on the slide, illustrate the differences between the relative and absolute
paths.

• Stress that absolute paths are not dependent on your current location, and that relative
paths are.

• When using relative path names, it is important that you know where you are in the
hierarchy, especially when there are many files on the system with the same name stored
under many directories. You might want to use file removal as a good example. You intend
to remove the file f1 that is under /home/user3/memo, but you are in the directory
/home/user1 and you issue the command: rm f1. You have just removed the wrong file.

• Relative paths are often used to save typing.

Teaching Questions

• If your current directory is /, what would be the relative path designations to all of the files
named f1?

tmp/f1
home/user1/f1
home/user2/f1
home/user3/f1
home/user3/memo/f1

Notice that relative path names do not save you anything here.

4-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-5. SLIDE: Some Special Directories

Student Notes

Absolute Relative to /home/user3

1
 /home 1
 ..
2
 /home/user2 2
 ../user2
3
 /home/user1/f1 3
 ../user1/f1
4
 / 4
 ../..
5
 /tmp/f1 5
 ../../tmp/f1
6
 /usr/bin/vi 6
 ../../usr/bin/vi

When any directory is created, two entries, called dot (.) and dot dot (..), are created
automatically. These are commonly used when designating relative path names. On the
previous slide you may have noticed that the relative path examples could only traverse down
through the hierarchy. With .., you can traverse up through the hierarchy as well.

51434S G.02 4-18 (4-10)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

Login Directory

When a new user is added to the system, he or she will be assigned a login ID and possibly a
password, and a directory will be created that the user will own and control. This directory is
usually created under the /home directory, and has the same name as the user’s login ID. The
user can then create any files and subdirectories under this directory.

When you log into the system, the UNIX system will place you in this directory. This directory
is, therefore, referred to as your login directory or your HOME directory.

Dot (.)

The entry called dot represents your current directory position.

Examples of Dot (.)

If you are currently in the directory /home/user3:

. represents the current directory /home/user3

./f1 represents /home/user3/f1

./memo/f1 represents /home/user3/memo/f1

Dot Dot (..)

The entry called dot dot represents the directory immediately above your current directory
position, often referred to as the parent directory. Every directory can have several files and
subdirectories contained within it, but every directory has only one parent directory. Thus,
there is no confusion when traversing up the hierarchy.

The root directory (/) is like any other directory, and contains entries for both dot and dot dot.
But since the root directory does not have a parent directory, its dot dot entry just refers to
itself.

Examples of Dot Dot (..)

If you are currently in the directory /home:

.. represents /

../.. also represents /

../tmp represents /tmp

../tmp/f1 represents /tmp/f1

If you are currently in the directory /home/user3 :

.. represents /home

../.. represents /

../user2 represents /home/user2

../user1/
f1

represents /home/user1/f1

../../tmp/
f1

represents /tmp/f1

4-19 (4-11) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

Notice that in the last example, the absolute path is shorter than relative path in two cases. If
the relative path takes you through the root directory, you might as well just use the absolute
path instead of the relative path.

51434S G.02 4-20 (4-12)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-5. SLIDE: Some Special Directories Instructor Notes

Key Points

• Discuss the representation of dot and dot dot.

• Use the examples on the hierarchy slide and in the student notes.

• Stress that dot and dot dot are an extension for relative paths, and are therefore dependent
on your current location in the hierarchy.

• Dot dot allows you to move up through the hierarchy.

Other Examples

You might want to review some of the other directories, and point out their .. directories and
../.. directories. /tmp is illustrated as an alternate example.

4-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-6. SLIDE: Basic File System Commands

Student Notes

A directory, like a file folder, is a way to organize your files. The remainder of this module will
introduce basic directory manipulation commands so that you can:

• Display the directory name of your current location in the hierarchy.
• See what files and directories are under the current directory.
• Change your location in the hierarchy to another directory.
• Create a directory.
• Remove a directory.

In this module we will not deal with the files within a directory. We will examine directories
only.

51434S G.02 4-22 (4-13)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-6. SLIDE: Basic File System Commands Instructor Notes

Teaching Tips

Point out that we are examining only directories.

4-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-7. SLIDE: pwd — Present Working Directory

Student Notes

At all times while you are logged in to your UNIX system, you will be positioned in some
directory somewhere in the file system hierarchy. The directory you are located in is often
referred to as your working directory.

The pwd command reports the absolute path name to your current directory location in a
UNIX system’s file system and is a shorthand notation for present working directory.

Since the UNIX system allows you to move very easily through the file system, all users
depend on this command to verify their current location in the hierarchy. New users should
issue this command frequently to display their location as they move through the file system.

51434S G.02 4-24 (4-14)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-7. SLIDE: pwd — Present Working
Directory

Instructor Notes

Teaching Tips

Point out that most UNIX system commands are a mnemonic with an associated meaning.
The students are often able to learn and remember the new commands if they also know the
expanded representation of each command.

As new commands are presented, an expanded translation will also be provided.

Key Points

• pwd represents present working directory.

• pwd always displays the absolute path of your current location in the hierarchy.

• This command is very important for new users so that they know where they are in the file
system.

4-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-8. SLIDE: ls — List Contents of a Directory

Student Notes

The ls command is used to list the names of files and directories.

With no arguments, ls displays the names of the files and directories under the current
directory.

ls will accept arguments designating a relative or absolute path name of a file or directory.
When the path of a file is provided, ls will report information associated with the designated
file. When the path of a directory is provided, ls will display the contents of the requested
directory.

51434S G.02 4-26 (4-15)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

ls supports many options. The options cause ls to provide additional information. Multiple
options may be supplied on a single command line to display more complete file or directory
information. Some of the more frequently used options are listed on the slide. They are:

-a Lists all files, including those whose names start with a dot (.). Normally these dot
files are hidden except when the -a option is specified. These commonly hold
configuration information for your user session or applications.

-d Lists characteristics of the directory, instead of the contents of the directory. Often
used with -l to display status of a directory.

-l Provides a long listing that describes attributes about each file, including type,
mode, number of links, owner, group, size (in bytes), the modification date, and the
name.

-F Appends a slash (/) to each listed file that is a directory and an asterisk (*) to
each listed file that is executable.

-R Recursively lists files in the given directory and in all subdirectories.

Examples

$ pwd

/home/user3
$ ls -F /home Absolute path as an argument
user1/ user2/ user3/
$ ls -F .. Relative path as an argument
user1/ user2/ user3/
$ ls -F ../user1 Relative path as an argument
f1
$ ls -l memo Relative path of a dir as an argument
-rw-rw-rw- 1 user3 class 27 Jan 24 06:11 f1
-rw-rw-rw- 1 user3 class 37 Jan 23 19:03 f2
$ ls -ld memo Display info for directory memo
drwxr-xr-x 2 user3 class 1024 Jan 20 10:23 memo
$ ls -l f1 f2 Multiple arguments, relative paths of files
-rw-rw-rw- 1 user3 class 27 Jan 24 06:11 f1
-rw-rw-rw- 1 user3 class 37 Jan 23 19:03 f2
$ ls -R Recursive listing of subdirectories
memo f1 f2
./memo:
f1 f2
$ ls user2 user2 does not exist under current dir
user2 not found

4-27 (4-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

HP-UX Shorthand Commands

Hewlett-Packard’s implementation of the UNIX system provides some shorthand commands
for common options used with the ls command:

UNIX System Command HP-UX Equivalent

ls -F lsf
ls -l ll
ls -R lsr

51434S G.02 4-28 (4-17)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-8. SLIDE: ls — List Contents of a
Directory

Instructor Notes

Teaching Tips

Point out that there are many options to the ls command; have the class look up the ls
command in the manual to prove it.

Key Points

• The ls command accepts relative or absolute path names as arguments.

• The ls command accepts multiple options on a single command line.

• This is the first opportunity students have had to see the use of relative and absolute paths.

• Distinguish between the output of a directory argument versus a file argument.

• Describe hidden files and how they can be displayed.

• When listing out the contents of another directory, you have not changed your position in
the hierarchy. This requires the cd command, which is presented on the next slide.

4-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-9. SLIDE: cd — Change Directory

Student Notes

Think of the tree diagram as a road map showing the location of all of the directories and files
on your system. You are always positioned in a directory. The cd command allows you to
change directory, and move to some other location in the hierarchy.

The syntax is

cd path_name

in which path_name is the relative or absolute path name of the directory to which you would
like to go. When executed with no arguments, the cd command will return you to your login or
HOME directory. So if you ever get "lost" in the hierarchy you can simply execute cd and you
will be HOME again.

NOTE: When using the cd command to move around the hierarchy, be sure to
issue the pwd command frequently to verify your location in the hierarchy.

51434S G.02 4-30 (4-18)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

POSIX Shell Enhanced cd

The POSIX shell has a memory of your previous directory location. The cd command still
changes directories as you would expect, but it has some additional features that will save
typing.

The cd command has a memory of your previous directory (stored in the environment variable
OLDPWD) and it can be accessed with cd -.

$ pwd

/home/user3/tree
$ cd /tmp

$ pwd

/tmp

$ cd - Takes you to the previous directory

/home/user3/tree

4-31 (4-19) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

51434S G.02 4-32
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-9. SLIDE: cd — Change Directory Instructor Notes

Teaching Tips

When using the cd command it is important to use the pwd command to confirm that you are
located in the directory to which you intended to move.

When presenting the examples on the slide you also might want to provide the corresponding
absolute or relative path.

Ask what directory you would be in after executing each example on the slide.

$ cd memo /home/user3/memo
$ cd ../.. /home
$ cd /tmp /tmp, could also have issued cd ../tmp
$ cd /home/user3

You might also want to present the use of the semicolon (;) to enter multiple commands on a
single line. This would allow you to change directory and display the directory changed to:

$ cd memo; pwd
/home/user3/memo

Many users like to be able to return to a previous directory. The cd - command satisfies this
need.

The cd command also allows string substitution from the previous cd command execution. cd
accepts two arguments: cd old new.

$ cd /home/user3/tree

$ cd user3 lisa Replaces user3 with lisa in previous cd command
$ pwd
/home/lisa/tree

Key Points

• cd accepts relative and absolute path names.

• cd with no arguments takes you HOME .

Teaching Questions

Can you cd to a file?
NO—you get an error message.

4-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-10. SLIDE: The find Command

Student Notes

The find command is the only command that performs an automated search through the file
system. It is very slow and uses a lot of the CPU capacity. It should be used sparingly.

The path_list is a list of path names, typically from one directory. Often dot (.) is specified.
The path names are searched recursively for files that satisfy the criteria specified in an
expression. When find locates a match, it performs the tasks also specified in the
expression. One of the most common tasks is to print the path name to the match.

The expression is made up of keywords and arguments that can specify search criteria and
tasks to perform upon finding a match. One of the things that can make find complicated is
that the keywords used in the expression are all preceded by a hyphen (-), so it looks as if the
arguments precede the options.

51434S G.02 4-34 (4-20)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-10. SLIDE: The find Command Instructor Notes

Teaching Tips

We introduce find here because many students, when they find out that whereis does not
search the whole file system, want to know what command will search the entire file system.
find is often used when backing up files.

It may be a good idea to have the students do a man on find, or look it up. You can then point
out the great power of find by briefly reviewing all or some of the options and suggesting
real-life scenarios in which a particular option might be useful. The size option is a good choice
to explain.

4-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-11. SLIDE: mkdir and rmdir — Create and
Remove Directories

Student Notes

The mkdir command allows you to make a directory. These directories can then be used to
help organize our files. When each directory is created, two subdirectories: dot (.) and dot dot
(..), representing the current and parent directories, are automatically created. Note that
creating directories does not change your location in the hierarchy.

By default, when specifying a relative or absolute path to the directory being created, all
intermediate directories must exist. Alternatively, you can use the following option:

-p This creates intermediate directories if they do not already exist.

-m mode After creating the directory as specified, the file permissions are set to mode.

51434S G.02 4-36 (4-21)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

The following command would make the fruit directory if it does not already exist:

$ mkdir -p fruit/apple fruit/grape fruit/orange

The rmdir command allows you to remove a directory. Directories must be empty (that is,
hold no entries except dot and dot dot) in order to be removed. Also, you cannot remove a
directory that is between your current location and the root directory.

Both commands can take multiple arguments. The arguments to mkdir represent the new
directory names. The arguments to rmdir must be existing directory names. As with any of
the commands that take file or directory names as arguments, absolute or relative path names
can be provided.

4-37 (4-22) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

51434S G.02 4-38
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-11. SLIDE: mkdir and rmdir — Create and
Remove Directories

Instructor Notes

Teaching Tips

Point out that directories must be empty (except for the dot and dot dot subdirectories) to be
removed. Also point out that the directory to be removed cannot be anyone’s current directory.

mode is referred to in the student notes discussion of options. File permissions are covered in
more detail in the File Permissions and Access module.

4-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-12. SLIDE: Review

Student Notes

Work through the examples on the slide to review the use of the cd and pwd commands and
the use of relative and absolute paths.

Using the directory structure on the slide, if you started at the directory user3, where would
you be after typing each of the following cd commands?

$ pwd /home/user3
$ cd ..
$ pwd
$ cd usr
$ pwd
$ cd /usr
$ pwd
$ cd ../tmp
$ pwd
$ cd .
$ pwd

51434S G.02 4-40 (4-23)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-12. SLIDE: Review Instructor Notes

Teaching Tips

Have the class think about the slide for a minute, then ask some selected students for the
answers. The responses should be something like:

For Response

$ pwd /home/user3

$ cd ..
$ pwd

/home

$ cd usr sh: usr: not found

$ pwd /home

$ cd /usr
$ pwd

/usr

$ cd ../
tmp
$ pwd

/tmp

$ cd .
$ pwd

/tmp

4-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-13. SLIDE: The File System — Summary

Student Notes

51434S G.02 4-42 (4-24)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-13. SLIDE: The File System — Summary Instructor Notes

This page can serve as a handy reference for students as they learn the UNIX system
commands.

4-43 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-14. LAB: The File System

Directions

Complete the following exercises and answer the associated questions.

1. What is the name of your HOME directory?

2. From your HOME directory, find out the entire tree structure rooted at the subdirectory
called tree using the ls command. Draw a picture of it, marking directories by circling them.
Use a separate sheet of paper if you need more space.

3. What is the full path name of the file labrador in the tree drawing from the previous
exercise? What is its relative path name from your HOME directory?

4. From your HOME directory, change into the retriever directory. Using a relative path
name, change into the shepherd directory. Again using a relative path name, change into the

51434S G.02 4-44 (4-25)
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

car.models directory. Finally, return to your HOME directory. What commands did you use?
How did you know if you arrived at each of your destinations?

5. Create a directory in your HOME directory called junk . Make that directory your current
working directory. What commands did you use? What is the full path name of this new
directory?

6. From your HOME directory, make the following directories with a single command line:

junk/dirA/dir1
junk/dirA
junk/dirA/dir2
junk/dirA/dir1/dirc

Did you have any problems? If you encounter any problems, remove any directories created as
a result of your effort before trying again. What single command did you use?

7. From your HOME directory, obtain a directory listing of the directory dirA under the
junk directory. Use both relative and absolute path names. What commands did you use?

8. From your HOME directory, using only the rmdir command, remove all of the
subdirectories under the directory junk. How could this be accomplished using a single rmdir
command?

9. Return to your HOME directory. With one command, display a long listing of the files cp
and vi (from the /usr/bin directory). Try to use both absolute and relative path names.

4-45 (4-26) 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

51434S G.02 4-46
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

4-14. LAB: The File System Instructor Notes
Time: 30 minutes

Purpose

To practice maneuvering through the hierarchical file structure. These exercises will require
the use of the pwd, cd, and ls commands.

Solutions

1. What is the name of your HOME directory?

Answer:

Login and then issue the pwd command. It should display something similar to
/home/YOUR_USER_NAME .

2. From your HOME directory, find out the entire tree structure rooted at the subdirectory
called tree using the ls command. Draw a picture of it, marking directories by circling them.
Use a separate sheet of paper if you need more space.

Answer:

The exercise consists of a lot of ls (lsf) commands. Or, as an alternative, you could have
used the -R (recursive) option. The directory map should look like

tree/
|

| | | | | | |

cherry car.models/ collie probe dog.breeds/ poodle taurus
| |

-------------- -------------------
| | | | |

chrysler/ gm/ ford/ retriever/ shepherd/
| |

---------- -----------------------------
| | | | |

sedan/ sports/ golden labrador mixed
|

mustang

3. What is the full path name of the file labrador in the tree drawing from the previous
exercise? What is its relative path name from your HOME directory?

4-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

Answer:

Full path name /home/ YOUR_USER_NAME /tree/dog.breeds/retriever/
labrador

Relative path name tree/dog.breeds/retriever/labrador

4. From your HOME directory, change into the retriever directory. Using a relative path
name, change into the shepherd directory. Again using a relative path name, change into the
car.models directory. Finally, return to your HOME directory. What commands did you use?
How did you know if you arrived at each of your destinations?

Answer:

$ cd
$ cd tree/dog.breeds/retriever
$ cd ../shepherd
$ cd ../../car.models
$ cd

To verify each destination

$ pwd

5. Create a directory in your HOME directory called junk . Make that directory your current
working directory. What commands did you use? What is the full path name of this new
directory?

Answer:

$ cd
$ mkdir junk
$ cd junk
$ pwd
/home/YOUR_USER_NAME
/junk

6. From your HOME directory, make the following directories with a single command line:

junk/dirA/dir1
junk/dirA
junk/dirA/dir2
junk/dirA/dir1/dirc

Did you have any problems? If you encounter any problems, remove any directories created as
a result of your effort before trying again. What single command did you use?

Answer:

$ mkdir junk/dirA junk/dirA/dir1 junk/dirA/dir2 junk/dirA/dir1/dirc

or

51434S G.02 4-48
© 1999 Hewlett-Packard Company

Module 4

Navigating the File System

$ mkdir -p junk/dirA/dir1/dirc junk/dirA/dir2

If you entered the directory names in the order in which they are presented in the exercise,
it will fail, because the command executes the arguments from left to right.

7. From your HOME directory, obtain a directory listing of the directory dirA under the junk
directory. Use both relative and absolute path names. What commands did you use?

Answer:

$ ls junk/dirA
$ ls /home/YOUR_USER_NAME/junk/dirA

8. From your HOME directory, using only the rmdir command, remove all of the
subdirectories under the directory junk. How could this be accomplished using a single rmdir
command?

Answer:

$ rmdir junk/dirA/dir1/dirc
$ rmdir junk/dirA/dir1
$ rmdir junk/dirA/dir2
$ rmdir junk/dirA

$ rmdir junk/dirA/dir1/dirc junk/dirA/dir1 junk/dirA/dir2 junk/dirA

9. Return to your HOME directory. With one command, display a long listing of the files cp
and vi (from the /usr/bin directory). Try to use both absolute and relative path names.

Answer:

$ cd

$ pwd

/home/YOUR_USER_NAME

$ ls -l /usr/bin/cp /usr/bin/vi Absolute path names
$ ls -l ../../usr/bin/cp ../../usr/bin/vi

Relative path names

4-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 4

Managing Files

51434S G.02 4-50
© 1999 Hewlett-Packard Company

Module 5 — Managing Files

Objectives

Upon completion of this module, you will be able to do the following:

• Use the common UNIX system file manipulation commands.

• Explain the purpose of the line printer spooler system.

• Identify and use the line printer spooler commands used to interact with the system.

• Monitor the status of the line printer spooler system.

5-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-2
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Overview of Module 5

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module is designed to teach students the uses of basic file manipulation commands such
as cp, mv, ln, cat, more, and rm. The students must know how to log in/out and know some
basic UNIX commands to navigate through the file system (pwd, cd, ls etc.).

Also the module will discuss the line printer spooler system that is available with most UNIX
systems. During the course of this module, we will look at the terminology of the line printer
system and commands that users can run to interact with the lp system. The management of
the line printer spooler system is exclusively an administrative task; users need to know the
lp spooler commands that will allow them to interact with the lp system.

Time

Lab 30 minutes

Lecture 45 minutes

Prerequisites

m46m Navigating the File System

In order to successfully complete this module, the student must be able to log in and navigate
the file system.

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

5-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... user n, where n is the number
of students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

total 124
-rw-r--r-- 1 karenk users 17 May 28 16:12 apple
-rw-r--r-- 1 karenk users 17 May 28 16:12 banana
-rw-r----- 1 karenk users 3081 May 28 16:12 funfile
-rw-r--r-- 1 karenk users 16 May 28 16:12 grape
-rw-r--r-- 1 karenk users 16 May 28 16:12 lemon
-rw-r--r-- 1 karenk users 15 May 28 16:12 lime
-rw-r--r-- 1 karenk users 61 May 28 16:12 names
-rw-r--r-- 1 karenk users 18 May 28 16:12 orange
-rw-r--r-- 1 karenk users 16 May 28 16:12 peach
-rw-r--r-- 1 karenk users 61 May 28 16:12 scaveng.README
drwxr-xr-x 6 karenk users 1024 May 28 16:12 scavenger
drwxr-xr-x 4 karenk users 1024 May 28 16:12 tree

./scavenger:
total 8
drwxr-xr-x 5 karenk users 1024 May 28 16:12 east
drwxr-xr-x 5 karenk users 1024 May 28 16:12 north
drwxr-xr-x 5 karenk users 1024 May 28 16:12 south
drwxr-xr-x 5 karenk users 1024 May 28 16:12 west

./scavenger/east:
total 6
drwxr-xr-x 2 karenk users 24 May 28 16:12 1_mile

51434S G.02 5-4
© 1999 Hewlett-Packard Company

Module 5

Managing Files

drwxr-xr-x 2 karenk users 1024 May 28 16:12 2_mile
drwxr-xr-x 2 karenk users 24 May 28 16:12 3_mile

./scavenger/east/1_mile:
total 0

./scavenger/east/2_mile:
total 2
-rw-r--r-- 1 karenk users 50 May 28 16:12 README

./scavenger/east/3_mile:
total 0

./scavenger/north:
total 6
drwxr-xr-x 2 karenk users 1024 May 28 16:12 1_mile
drwxr-xr-x 2 karenk users 24 May 28 16:12 2_mile
drwxr-xr-x 2 karenk users 24 May 28 16:12 3_mile

./scavenger/north/1_mile:
total 2
-rw-r--r-- 1 karenk users 16 May 28 16:12 README

./scavenger/north/2_mile:
total 0

./scavenger/north/3_mile:
total 0

./scavenger/south:
total 6
drwxr-xr-x 2 karenk users 24 May 28 16:12 1_mile
drwxr-xr-x 2 karenk users 1024 May 28 16:12 2_mile
drwxr-xr-x 2 karenk users 1024 May 28 16:12 3_mile

./scavenger/south/1_mile:
total 0

./scavenger/south/2_mile:
total 2
-rw-r--r-- 1 karenk users 46 May 28 16:12 README

./scavenger/south/3_mile:
total 2
-rw-r--r-- 1 karenk users 45 May 28 16:12 README

./scavenger/west:
total 6
drwxr-xr-x 2 karenk users 1024 May 28 16:12 1_mile
drwxr-xr-x 2 karenk users 24 May 28 16:12 2_mile
drwxr-xr-x 2 karenk users 24 May 28 16:12 3_mile

./scavenger/west/1_mile:
total 2

5-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

-rw-r--r-- 1 karenk users 604 May 28 16:12 README

./scavenger/west/2_mile:
total 0

./scavenger/west/3_mile:
total 0

./tree:
total 14
drwxr-xr-x 5 karenk users 1024 May 28 16:12 car.models
-rw-r--r-- 1 karenk users 17 May 28 16:12 cherry
-rw-r--r-- 1 karenk users 17 May 28 16:12 collie
drwxr-xr-x 4 karenk users 1024 May 28 16:12 dog.breeds
-rw-r--r-- 1 karenk users 17 May 28 16:12 poodle
-rw-r--r-- 1 karenk users 17 May 28 16:12 probe
-rw-r--r-- 1 karenk users 17 May 28 16:12 taurus

./tree/car.models:
total 6
drwxr-xr-x 2 karenk users 24 May 28 16:12 chrysler
drwxr-xr-x 4 karenk users 1024 May 28 16:12 ford
drwxr-xr-x 2 karenk users 24 May 28 16:12 gm

./tree/car.models/chrysler:
total 0./tree/car

.models/ford:
total 4
drwxr-xr-x 2 karenk users 24 May 28 16:12 sedan
drwxr-xr-x 2 karenk users 1024 May 28 16:12 sports

./tree/car.models/ford/sedan:
total 0./tree/car

.models/ford/sports:
total 2
-rw-r--r-- 1 karenk users 18 May 28 16:12 mustang

./tree/car.models/gm:
total 0./tree/dog

.breeds:
total 4
drwxr-xr-x 2 karenk users 1024 May 28 16:12 retriever
drwxr-xr-x 2 karenk users 24 May 28 16:12 shepherd

./tree/dog.breeds/retriever:
total 6
-rw-r--r-- 1 karenk users 27 May 28 16:12 golden
-rw-r--r-- 1 karenk users 29 May 28 16:12 labrador
-rw-r--r-- 1 karenk users 26 May 28 16:12 mixed

./tree/dog.breeds/shepherd:

51434S G.02 5-6
© 1999 Hewlett-Packard Company

Module 5

Managing Files

total 0

5-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-1. SLIDE: What Is a File?

Student Notes

Everything in the UNIX system is a file, which includes:

Regular files Text, mail messages, data, drawings, program source code

Programs Executable programs such as ksh, who, date, man, and ls

Directories Special files that contains the name and file system identifier for the files
and directories they contain

Devices Special files providing the interface to hardware devices such as disks,
terminals, printers, and memory

A file is simply a name and the associated data stored on a mass storage device, usually a disk.
As far as the UNIX system is concerned, a file is nothing more than a stream of data bytes.
There are no predefined records, fields, end-of-record marks, or end-of-file marks. This provides
a lot of flexibility for application developers to define their own internal file characteristics.

51434S G.02 5-8 (5-2)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

A regular file normally contains ASCII text characters, and is typically created using a text
editor at a terminal.

A program file is a regular file that contains executable instructions. It can include compiled
code that cannot be displayed on your terminal (mail, who , date) or it can contain
UNIX-system shell commands, commonly referred to as a shell script which can be displayed
to your terminal (.profile, .logout).

A directory is a special file containing the names of the files and directories that it holds. It
also stores an inode number for every entry, which identifies where file information and data
storage addresses can be found in the file system. (Note: This is not a regular text file.)

A device file is a special file that provides the interface between the kernel and the actual
hardware device. Since these files are for interface purposes, they will never hold any actual
data. These files are commonly stored under the /dev directory, and there will be a file for
each hardware device with which your computer needs to communicate.

5-9 (5-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-10
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-1. SLIDE: What Is a File? Instructor Notes

Key Points

• Everything in the UNIX system is a file.

• A file is only a stream of bytes. The UNIX system imposes no format on the file structure.

• Distinguish between regular and special files.

• A directory is a special file that holds the file and subdirectory names and their associated
inode numbers.

• Every device has an associated special file that provides the interface between the kernel
and the hardware device.

Teaching Tips

If you have an advanced class, you might want to show them the ls -i filename and
od -sc dirname commands to display the inode number for a file and the contents of a
directory file. When examining the output of the od command, you should be able to find the
inode number and file names for each entry in the directory.

Students should understand the basic concept of an inode in order to understand hard links,
which will be presented later in this module.

5-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-2. SLIDE: What Can We Do with Files?

Student Notes

Given that most activity on a UNIX system focuses around files and directories, there are
many commands available to manipulate files and directories.

You know some introductory directory manipulation commands. In this module we will present
additional commands that may be used on files and directories.

You will also need to create files and manipulate their contents. This is commonly done
through the use of an editor such as vi.

51434S G.02 5-12 (5-4)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-2. SLIDE: What Can We Do with Files? Instructor Notes

Teaching Tips

Many students will ask about creating files and manipulating the contents of files. Point out
that creating files is described in the module on vi. You may want to introduce the touch
command that allows students to create empty files quickly.

5-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-3. SLIDE: File Characteristics

Student Notes

A file has several characteristics associated with it. They can be displayed using the ls -l
command.

Type Regular file or special file

Permissions or Mode Access definition for the file

Links Number of file names associated with a single collection of data

Owner User identification of file owner

Group Group identification for file access

Size Number of bytes file contains

Timestamp Date file last modified

51434S G.02 5-14 (5-5)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Name Maximum of 14 characters (255 characters if long file names are
supported)

File Name Specifications

• maximum of 14 characters

• maximum of 255 characters if long file names are supported

• normally contain alpha characters (a–zA–Z), numeric (0–9), dot (.), dash (-), and
underscore(_)

Many of the other characters have a "special" meaning to the shell, such as a blank space or
the forward slash, so you normally cannot include these characters as part of a file name.
Other special characters include, *, <, >, \, $, and |. If you try to include these characters in a
file name, you often will get unexpected results.

File names that represent two words are often connected with an underscore:

$ cd a dir Illegal syntax—
cd sees two arguments

$ cd a_dir Legal syntax—
cd sees one argument

In the UNIX system the dot (.) is just a regular character, and, therefore, can appear
anywhere (and multiple times) in a file name, making file names a.bcdefg, a.b.c.d and
a...b legal. Dot is only somewhat special when it appears as the first character of a file
name, in which case it designates a hidden file. You can display file names containing a
leading dot by issuing ls -a.

File Types

There are many types of files supported in the UNIX system, and the file type is displayed
through the first character of the ls -l output. The common types include:

- A regular file

d A directory

l A symbolically linked file

n A network special file

c A character device file (terminals, printers)

b A block device file (disks)

p A named pipe (an interprocess communication channel)

5-15 (5-6) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-16
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-3. SLIDE: File Characteristics Instructor Notes

Key Points

• ls -l displays a file’s characteristics.

• Briefly describe each field of the ls -l output.

• Discuss file name specifications.

• Point out that dot (.) is just a regular character, and can appear anywhere in the file name,
and multiple times.

• Point out the use of the underscore (_) for file names representing two words.

• File name extension conventions may be defined by an application:

.c source code for C programs

.f source code for FORTRAN programs

.p source code for Pascal programs

a.out default compiled program name

.dat data files

• When presenting the file types, you might want to give examples of character device files
(terminals, printers) and block device files (disks).

• Mention the file types p, c, b, and n, but inform the class that we will not be discussing
them in this class. You may mention that types b and c are covered in the system
administration class, type p is covered in the system calls class, and type n is covered in the
ARPA/Berkeley class.

5-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-4. SLIDE: cat — Display the Contents of a File

Student Notes

The cat command is used to concatenate and display text files seamlessly. It adds no format
to the output of the files, including no delimiter between the end of one file and the beginning
of the next. The syntax is

cat [file ...]

A typical use of the cat command is to look at the contents of a single file. For example,

cat funfile

writes the contents of the file funfile to the screen. However, if the file is too big for the
terminal’s screen, the text will go by too quickly to read. Therefore, we need a more intelligent
way to display files to the screen.

When the cat command is issued with no arguments, it will wait for input from the keyboard.
This works similarly to the mail and write commands. A Return , Ctrl + d must be issued to
conclude the input. Once input is concluded your input text will be displayed to the screen.

51434S G.02 5-18 (5-7)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

CAUTION: If the file contains control characters, such as a compiled program, and
you cat it to your terminal, your terminal may become disabled. Reset
your terminal by either of the following methods:

Method 1:

1. Try to log out—press Return and then issue the exit command.

2. Power cycle your terminal—turn it off, and then turn it on.

3. Log back in—you should be able to log in and continue normally.

Method 2:

1. Press the Break key.

2. Simultaneously press Shift + Ctrl + Reset .

3. Press Return .

4. Issue the command: tset -e -k.

5. Issue the command: tabs.

Otherwise, your system administrator (or instructor) may have to
terminate your terminal session.

5-19 (5-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-20
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-4. SLIDE: cat — Display the Contents of a
File

Instructor Notes

Teaching Tips

• Have the students cat funfile.

• Point out that if cat has no files given, then it reads from the terminal and writes to the
terminal. We will discuss cat as a filter later.

• You might want to mention cat -v filename to display the contents of a file that contains
control characters. As an example: cat -v .exrc.

The file Command

You might want to present the file command to determine if a file is a text file or an
executable file that could disrupt a user’s terminal.

Example

$ file /usr/bin/ls

executable Do not display contents with
cat

$ file /etc/passwd

text Can display contents with
cat

5-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-5. SLIDE: more — Display the Contents of a File

Student Notes

The more command prints out the contents of the named files. It will only print one screen of
text at a time. To see the next screen of text, press the Space key. To see the next line, press
the Return key. To quit from the more command, use the q key.

The more command supports many other features. Refer to the manual page for an
explanation of other available capabilities.

51434S G.02 5-22 (5-9)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-5. SLIDE: more — Display the Contents of
a File

Instructor Notes

Teaching Tips

• Have the students more funfile so that they can see the difference between more and cat.

• You might want to remind students of the Prev , Scroll + " and Scroll + # to scroll back and
forth through their output.

• You might want to tell the students how to search for a text pattern while in more by using
/text_string .

• You might want to mention the pg command.

Key Points

When using more, the students will have control over the output of their files to the screen.
Also, more will provide headers when multiple files are being displayed with one more
command, unlike cat.

Activity

You may wish to have the students use the following commands to illustrate the differences
between the cat and more commands.

1. Use cat to see the contents of funfile.

2. Use more to see the contents of funfile.

3. With one command cat the contents of the files remind and note.

4. With one command more the contents of the files remind and note.

5-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-6. SLIDE: tail — Display the End of a File

Student Notes

The tail command is useful for displaying the last n lines of a file. (Note: n defaults to 10 if it
is not supplied.) This is especially useful for long log files that are periodically being appended
to. With the tail command, you can go immediately to the last messages logged instead of
scrolling through the entire file with cat or more .

51434S G.02 5-24 (5-10)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-6. SLIDE: tail — Display the End of a File Instructor Notes

Teaching Tips

There is a companion command to tail known as head, which will display the first n lines of
a file. If the count is omitted, it also defaults to 10 lines.

5-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-7. SLIDE: The Line Printer Spooler System

Student Notes

The UNIX operating system provides a utility called the line printer spooler (or lp spooler)
that is used to configure and control printing on your system. The lp spooler is a mechanism
that accepts print requests from all of the users on the system and then appropriately
configures the printer and prints the requests one at time. Think of the problems we would
have if we did not have a spooler. Every time a user wanted to print a file, he or she would
have to make sure that no one else was currently printing a file. Two users cannot print to the
same printer at the same time.

The lp spooler system has many features that allow for smooth running with minimum
administrator intervention. You submit your print requests to the lp spooler system, where
they will wait in a queue to be printed. You can check which files are queued and the status of
the system. You can also cancel a queued printing request if you decide it should not be printed.

51434S G.02 5-26 (5-11)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-7. SLIDE: The Line Printer Spooler
System

Instructor Notes

Purpose

We start our discussion of the lp spooler system by presenting an overview of some of the
things that the spooling system does.

Key Points

If we did not have a spooler to control print jobs, it would be up to the users to coordinate who
uses the printers and when.

Users can submit requests, obtain information about the spooler, and cancel print requests.

Teaching Question

What are some of the things we would want to do through an lp spooling system?

A user can cancel any print request, even if it belongs to another user. Why would you want a
user to be able to cancel another user’s print requests?

5-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-8. SLIDE: The lp Command

Student Notes

The lp command allows the user to queue files for printing. A unique job identification
number (called a request ID) is given to each request submitted using lp.

lp will queue a file to be printed or it will read standard input.

The simplest use of lp is to give it a file name as an argument and it will queue the file to be
printed on the default printer.

The lp command has a number of options available that allow you to customize the routing
and printing of your jobs.

51434S G.02 5-28 (5-12)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

The syntax of the lp command is

lp [-ddest] [-nnumber] [-ooption] [-t title] [-w][file...]

Some options to lp are:

-nnumber Print number copies of the request (default is 1).

-ddest dest is the name of the printer on which the request will be printed.

-ttitle Print title on the banner page of the printout. The banner page is a header
page that identifies the owner of the printout.

-ooption Specify printing options specific to your printer, such as font, pitch, density,
raw (for graphics dumps), and so on.

-w Write a message to the user’s terminal after the files have been printed.

See lp(1) for a complete listing of available options.

The first example on the slide shows the simplest form of lp. We are sending the file report
to the system default printer. lp returns the request ID and the number of files submitted to
the queue. Here, the file report has been sent to printer "dp" and the job is queued with
request ID dp-112 .

In the second example, we are sending memo1 and memo2 to be printed and we want two
copies (-n2).

In the third example, using the -d option, you can specify the printer to which your request
will be sent. The output will be titled "confidential."

5-29 (5-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-30
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-8. SLIDE: The lp Command Instructor Notes

Purpose

The lp command is one of the most frequently executed LP system commands.

Key Points

• The lp command allows the user to queue files for printing. Requests are known by their
request ID. This ID is assigned to the request when it is submitted using lp.

Teaching Question

If there is more than one printer on the system, how can we specify which printer we want lp
to send a job to?

Answer: Use the -dprinter option.

Teaching Tips

• If the students know pipelining, you can use a pipe to send the text to lp. For example,

$ ls -l | lp -dlaser -o12 -t"Directory Listing"
request id is laser-114 (standard input)

In this case, lp reports a request ID of laser-114 because we specified that the output was
to go to the printer named laser (-dlaser). lp also reported that the text has come from
standard input. Notice also that the -o12 argument sets 12 pitch and -t"Directory
Listing" puts the title Directory Listing on the banner page.

• There are many options available to lp. It is not our intent to discuss all of them here.
However, if students have questions about any of the options, an example of some can be
drawn on the chalkboard. The lp(1) manual page clearly explains the available options.

You may also want to cover common -o options such as -onb to suppress printing the
banner page, -o12 to change the print to 12 pitch, -oraw to print graphic dumps, and so on.

5-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-9. SLIDE: The lpstat Command

Student Notes

The lpstat command reports the status of the various parts of the lp spooler system. lpstat,
when it is used with no options, reports the requests that you currently have queued to be
printed.

The -t option prints all of the status information about all of the printers on the system.

51434S G.02 5-32 (5-14)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

The output of the lpstat -t command tells us several things:

$ lpstat
rw-55 john 4025 Jul 6 14:26:33 1994
$
$ lpstat -t
scheduler is running
system default destination: rw
device for rw: /dev/lp2235
rw accepting requests since Jul 1 10:56:20 1994
printer rw now printing rw-55. enabled since Jul 4 14:32:52 1994
rw-55 john 4025 Jul 6 14:26:33 1994 on rw
rw-56 root 966 Jul 6 14:27:58 1994
$

scheduler is running The scheduler is the program that sends your
print requests to the proper printer. Nothing will
print if the scheduler is not running.

system default destination: rw rw is the name of the default system printer. If you
use lp without the -d printer option, your
request will be sent to the printer named rw. Note
that your default system printer will probably have
a different name (such as lp).

device for rw: /dev/lp2235 This tells the spooler where the printer is connected
to the computer.

rw accepting requests This means that the spooler will let you queue files
to rw.

printer rw now printing rw-55 Request ID rw-55 currently is being printed.

enabled Requests can be printed on rw. If a printer is
disabled you can submit requests, but they will

not be printed until the printer is enabled again.

The rest of the lines are the requests to be printed. These fields list the request ID, followed by
the user making the request, the size of the request, and then the date the request was made.

5-33 (5-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-34
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-9. SLIDE: The lpstat Command Instructor Notes

Purpose

The users should have a way of determining the status of any part of the lp spooler system.
The lpstat command will report this information.

Key Points

• If a user submits a job to a printer and it does not print immediately, lpstat can be used to
determine the position of the job on the print queue. If a printer is disabled, it will not print
requests.

• The lpstat command reports the status of the various parts of the lp spooler system. It
can be used to obtain information about the following:

— the scheduler
— the printers on the system
— printer devices
— the default system printer
— spooler queues
— queued requests

Teaching Questions

• Could we use lp to send a request to a printer that is disabled?
Answer: Yes.

• What does lpstat report if you do not give it any options?
Answer: It reports the requests that you have queued to be printed.

Teaching Tips

• Explain the purpose of the command and the types of information it will report on. Inform
the students that the slide lists only one of the many lpstat options. For a complete list of
options, they should refer to lpstat(1) in the HP-UX Reference Manual.

• As each of the options is discussed, draw a sample command line using the option on the
chalkboard.

Transition

We will look at the cancel command next.

5-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-10. SLIDE: The cancel Command

Student Notes

The cancel command is used to remove requests from the print queue. By canceling the
current job on the printer, the next request can be printed. You may want to cancel a request if
it is extremely long or if someone tried to print a binary file by mistake (such as
/usr/bin/cat). Remember, lp normally prints text files. Anything else will just confuse the

printer and waste piles of paper if you do not specify the appropriate options (such as -oraw
for graphics dumps).

To cancel a request, you must tell the spooler which request to cancel by giving the cancel
command an argument. Arguments to the cancel command can be of two types.

• a request ID (as given by lp or lpstat)

• a printer name

By giving cancel a request ID, that specific print request will be canceled. If you give cancel
a printer name, the current job being printed on that printer will stop and the next request in
the queue will start printing.

51434S G.02 5-36 (5-16)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

$ lpstat
rw-113 mike 6275 Jul 6 18:46 1994
rw-114 mike 3349 Jul 6 18:48 1994
rw-115 mike 3258 Jul 6 18:49 1994
$ cancel rw-115
request "rw-115" canceled
$ lpstat
rw-113 mike 6275 Jul 6 18:46 1994
rw-114 mike 3349 Jul 6 18:48 1994
$ cancel rw
request "rw-113" canceled
$ lpstat
rw-114 mike 3349 Jul 6 18:48 1994

This command can be executed by any user to cancel any request. You can even cancel another
user’s request; however, mail will be sent to the person whose job was canceled with the name
of the user who canceled it. The system administrator can restrict users to canceling only their
own requests.

5-37 (5-17) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-38
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-10. SLIDE: The cancel Command Instructor Notes

Purpose

Occasionally it may be necessary to remove a printing job from the queue or from the printer
(if it is the job currently being printed). The cancel command will do this.

Key Points

• The cancel command is used to remove requests from a destination after the request has
been made with lp.

• By canceling the current job on the printer, the next request will be printed.

• This command can be executed by any user on any request.

• Line printers cannot print the contents of object files. Nevertheless, some users will
mistakenly submit an object file to be printed. The cancel command will remove the job
from the queue, or, if it has started printing already (with undoubtedly poor results), it will
stop the printing shortly.

• The cancel command can be used by any user to cancel any other user’s job.

Teaching Questions

• Is there any way a specific job can be removed from a print queue, even if it is the job
currently printing?
Answer: Use the cancel command.

• Why would we ever need to cancel a printing request?
Answer: You would not want to print a binary file.

• Why is it that any user can invoke cancel, even to cancel other users’ jobs?
Answer: Any user should be able to stop a binary file from being printed.

• Can the system administrator keep ordinary users from running cancel?
Answer: Yes.

Where Problems Arise

The use and purpose of the cancel command should not present any difficulty. Some students
may question why a user can cancel another user’s job. Give some examples of why you would
want to cancel someone’s request and it will become clear (for example, it is a nontext file, an
extremely large file, and so on).

5-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Teaching Tips

Explain the purpose of the command. Ask the students to provide examples of situations in
which this command would be useful.

Differentiate between the different arguments that can be passed to cancel.

51434S G.02 5-40
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-11. SLIDE: cp — Copy Files

Student Notes

The cp command is used to make a duplicate copy of one or more files. The following are some
considerations when using the cp command:

• It requires at least two arguments—the source and the destination.
• Relative and/or absolute path names can be provided for any of the arguments.
• When copying a single file, the destination can be a path to a file or a directory. If the

destination is a file, and the file does not exist, it will be created. If the destination file does
exist, its contents will be replaced by the source file. If the destination is a directory, the file
will be copied to the directory and retain its original name.

• The -i (interactive) option will warn you if the destination file exists, and require you to
verify that the file should be copied over.

$ cp f1 f1.copy Creates a file under current directory called
f1.copy

$ cp f1 memo Creates a file under memo called
f1

51434S G.02 5-42 (5-18)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

$ cp f1 memo/f1.copy Creates a file under
memo called f1.copy

• When copying multiple files, the destination must be a directory.

$ cp note remind memo

• A file cannot be copied onto itself.

$ cp f1 f1
cp: f1 and f1 are identical

• A directory can be copied using the -r (recursive) option.

CAUTION: By default, cp will copy over existing files—no questions asked!

$ cp f1 note
$ cat f1
This is a sample file to be copied.
$ cat note
This is a sample file to be copied.

5-43 (5-19) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-44
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-11. SLIDE: cp — Copy Files Instructor Notes

Key Points

• cp requires at least two arguments.

• cp will copy over existing files—no questions asked.

• Relative or absolute path names can be used for any of the arguments.

• When copying a file to an existing file, cp does not change the existing file’s access
permissions, owner, or group designations.

Teaching Tips

Sometimes it is helpful to draw a tree diagram on the board and add the files to the diagram
as the cp commands are executed on the slide.

NOTE: HP-UX 10.0 and POSIX support a -i option, which will inquire if you
want to copy over an existing file. The -i option will be ignored if the -f
option is used.

NOTE: HP documentation prior to HP-UX 7.0 documented cp , mv, and ln under
one man page—found under cp.

5-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-12. SLIDE: mv — Move or Rename Files

Student Notes

The mv command is used to rename a file or move one or more files to another directory. The
following are some considerations when using the mv command:

• It requires at least two arguments—the source and the destination.
• Relative and/or absolute path names can be provided for any of the arguments.
• When renaming a single file, the destination can be a path to a file or a directory. If the

destination is a file under the current directory, the file will simply be renamed. If the
destination is a directory, the source will be moved to the requested directory. The file will
be created if it does not exist.

• If the destination file name already exists, its destination’s contents will be replaced by the
source file. If the destination is a directory, the file will retain its original name and be
moved to that directory.

• The -i (interactive) option will warn you if the destination file or directory exists, and
require you to verify that the file or directory should be overwritten.

$ mv f1 file1 Renames f1 to
file1 under the current directory

51434S G.02 5-46 (5-20)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

$ mv file1 memo Moves file1
to the memo directory

$ mv f2 memo/file2 Moves f2
to the memo dir and renames it
file2

• When moving multiple files, the destination must be a directory.

$ mv note remind memo

• When the source is a directory, it will be renamed to the destination name.

$ mv note letter

CAUTION: By default, mv will move or rename over existing files—no questions
asked!

$ mv file1 note
$ cat file1
cat: cannot open file1
$ cat note
This is a sample file to be copied.

5-47 (5-21) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-48
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-12. SLIDE: mv — Move or Rename Files Instructor Notes

Key Points

• mv requires at least two arguments.

• mv will move or rename over existing files—no questions asked.

• Relative or absolute path names can be used for any of the arguments.

• mv allows a directory as a source and destination.

Teaching Tips

Sometimes it is helpful to draw a tree diagram on the board, and rename and move the files in
the diagram as the mv commands are executed on the slide.

NOTE: HP-UX 10.0 and POSIX support a -i option, which will inquire if you
want to move or rename over an existing file.

5-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-13. SLIDE: ln — Link Files

Student Notes

Links provide a mechanism for multiple file names to reference the same data on the disk.
They are useful when many users want to share a file, but prefer to have the file entry under
their own directory. If user3 modifies f1, user2 will see those changes the next time he or she
accesses f1.link.

CAUTION: The UNIX system does not prohibit more than one user to access and
modify a file at the same time. Each user will have a private image to
which to make modifications, but the last user to save his or her file to
disk will define the version that is stored on the disk. It is up to an
application to notify a user that a file is already open for modification, and
possibly prohibit additional users access to files that are already open.

When many files are linked together, the link count displayed with ls -l will be greater than
1. If any of the links are removed, the only effect is to reduce the link count. The file contents
are maintained until the link count is reduced to zero, at which time the disk space is released.

51434S G.02 5-50 (5-22)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Example

$ ls -l f1
-rw-rw-r-- 1 user3 class 37 Jul 24 11:06 f1
$ ln f1 /home/user2/f1.link
$ ls -l f1
-rw-rw-r-- 2 user3 class 37 Jul 24 11:06 f1
$ ls -l /home/user2
-rw-rw-r-- 2 user3 class 37 Jul 24 11:06 f1.link
$ ls -i f1 /home/user2/f1.link
1789 /home/user2/f1.link 1789 f1

5-51 (5-23) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-52
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-13. SLIDE: ln — Link Files Instructor Notes

Key Points

• Links allow many names (aliases) for the same collection of data.

• The contents of a file are deleted ONLY when the link count reaches zero.

• The last person to save the contents of a file wins.

Teaching Tips

• Present hard links. You might want to add another hard link to the diagram on the slide in
a directory associated with user1. Be sure to present the file sharing capability that links
provide.

• You might want to mention the concept of an inode and that linked files share the same
inode number. The inode stores all of the file characteristics, such as file type, permissions,
number of links, ownership, size, time stamps, and addresses of the data on the disk. Inode
numbers can be displayed with the command: ls -i

• Presenting the topic of symbolic links is optional. Symbolic links are important if you need
to link directories or to link files across disks (or file systems). Figures are provided in case
you wish to make slides to illustrate symbolic links.

NOTE: HP-UX 10.0 and POSIX support a -i option, which will inquire if you
want to link over an existing file.

Figure 5-1. Symbolically Linked Files

5-53 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Figure 5-2. Symbolically Linked Directories

51434S G.02 5-54
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-14. SLIDE: rm — Remove Files

Student Notes

The rm command is used to remove files. The files are irretrievable once they are removed.
The rm command must have at least one argument (a file name) and can accept many. If more
than a single file name is given, all of the specified file names will be removed.

The slide shows the most commonly used options.

-f forces the named files to be removed—no notice will be given to the user,
even if an error occurs.

-r recursively removes the contents of any directories named on the command
line.

-i interrogate or interactive mode, which requires that the user confirm that
the removal be completed. You respond with either y for yes or n for no.
Entering a Return is the same as answering no.

51434S G.02 5-56 (5-24)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

CAUTION: Always use the -r option with extreme care. Used incorrectly, this could
remove ALL of your files. Once a file is removed, it can be restored only
from a tape backup. If you must use the -r option, use it with the -i
option.

For example, rm -ir dirname

5-57 (5-25) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

51434S G.02 5-58
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-14. SLIDE: rm — Remove Files Instructor Notes

Teaching Tips

• Inform the class that once a file is removed, it is gone! Files can be restored only from a tape
backup.

• When removing a directory interactively and recursively (rm -ri dirname), you will be
prompted initially at the top of the directory. If you say yes to the parent directories of a file
you later want to retain, all of the parent directories will be preserved, even though you
may have said yes when initially asked if they should be removed.

• Links are removed just as any other file is removed with the rm command.

Teaching Question

What would be the result of an ls -F command after the final rm -r fruit command is
executed?

Answer: Only the directory memo would remain.

5-59 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-15. SLIDE: File/Directory Manipulation Commands —
Summary

Student Notes

51434S G.02 5-60 (5-26)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-15. SLIDE: File/Directory Manipulation
Commands — Summary

Instructor Notes

5-61 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-16. LAB: File and Directory Manipulation

Directions

Complete the following exercises and answer the associated questions.

File Manipulation

1. In your HOME directory, use the cat command to display the contents of the file funfile
. What do you notice? What alternate command provides scrolling control when displaying the
contents of a file?

2. Use the more command to display the contents of the directory called tree. What do you
notice? What command do you use to see the contents of a directory?

3. Use the more command to display the file /usr/bin/ls . What do you notice? Display the
contents of /usr/bin/ls with the cat command. What happens?

4. Go to your HOME directory. Copy the file called names to a file called names.cp . List the
contents of both files to verify that their contents are the same.

5. If the file names is modified, will this affect the file names.cp? Modify the file names by
copying the file funfile to the file names. What happened to the file names and the file
names.cp?

51434S G.02 5-62 (5-27)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

6. How do you restore the file names ? Issue the command to restore names.

7. Make another copy of the file names called names.new. Change the name of names.new to
names.orig.

8. How do you create two files (called names.2nd and names.3rd) that reference the
contents of the file names?

9. If you modify the contents of names, will the contents of names.2nd and names.3rd be
affected? Copy the file funfile to the file names and do a long listing of all of your names
files. Is names.orig affected? names.2nd? names.3rd?

10. Remove the file names. What happens to names.2nd and names.3rd?

11. Use the interactive option for rm to remove names.2nd and names.3rd.

12. Copy the file names.orig back to names.

5-63 (5-28) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Directory Manipulation

1. Make a directory called fruit under your HOME directory. With one command, move the
following files, which are also under your HOME directory to the fruit directory:

lime
grape
orange

2. Move the following files, also found under your HOME directory, to the fruit directory.
Their destination names will be as specified below:

Source Destination

apple APPLE
peach Peach

3. Look at the tree directory structure in your HOME directory. It requires a little
organization.

Move the files collie and poodle , so that they are under the dog.breeds directory.
Move the file probe under the sports directory.
Move the file taurus under the directory sedan.
Create a new directory under tree called horses.
Copy the mustang file to the horses directory you just created.
Move the file cherry to the fruit directory you created in the previous exercise.

HINT: You could make these changes from any directory, but what directory do you think you
should be in?

4. Move the fruit directory from your HOME directory to the tree directory.

51434S G.02 5-64 (5-29)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5. Make the fruit directory your current working directory. Move the files banana and
lemon to the fruit directory. HINT: Remember dot dot (..) represents the parent directory
and dot (.) represents your current directory.

Scavenger Hunt (Optional)

1. Under your HOME directory, you will find a directory scavenger and a file
scaveng.README providing the first clue for a scavenger hunt. Underneath the scavenger
directory are north, south, east, and west subdirectories. Under these are 1_mile, 2_mile,
3_mile subdirectories. Clues are available under each of these directories to the secret code
word. For example, if the clue is "go east 3 miles", you go to the east/3-mile subdirectory where
you will find a file called README. This file will give you the next clue. You continue through
the clues until you obtain the secret code word. Good luck!

Printing Files

1. List the current status of the printers in the lp spooler system and find the name of the
default printer.

2. Send the file named funfile to the line printer. Make a note of the request ID that is
displayed on your terminal.

3. Verify that your requests are queued to be printed.

5-65 (5-30) 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

4. How can you tell what files other users are printing? Try it.

5. Use the cancel command to remove your requests from the line printer system queue.
Confirm that they were canceled.

51434S G.02 5-66 (5-31)
© 1999 Hewlett-Packard Company

Module 5

Managing Files

5-16. LAB: File and Directory Manipulation Instructor Notes
Time: 30 minutes

Lab Objective

To practice using simple file manipulation commands and practice using commands to interact
with the lp system.

Notes to the Instructor

Be sure to enable the system default printer before students begin the exercises.

Following are the minimum recommended exercises that students should complete:

File Manipulation: 1–7

Directory Manipulation: 1–4

Scavenger Hunt: NONE—Optional

Line Printer: 1–5

Even though the Scavenger Hunt is optional, students will have fun trying to find out what
the code word is. It provides a good review of maneuvering through a branch of the file system.

The code word for the Scavenger Hunt is HERSHEY. You might want to have some Hershey’s
Chocolate Kisses to award the students who successfully discover the code word.

Solutions

1. In your HOME directory, use the cat command to display the contents of the file funfile
. What do you notice? What alternate command provides scrolling control when displaying the
contents of a file?

Answer:

$ cat funfile

The file is too long for one screen. The more command provides screen scrolling control.
For example:

$ more funfile

2. Use the more command to display the contents of the directory called tree. What do you
notice? What command do you use to see the contents of a directory?

5-67 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Answer:

$ more tree
****** tree is a directory ******

more knows that tree is a special directory file, not a normal text file, so its contents
cannot be displayed to the screen in a readable format. You use the ls command to display
the contents of a directory. For example:

$ ls tree

3. Use the more command to display the file /usr/bin/ls . What do you notice? Display the
contents of /usr/bin/ls with the cat command. What happens?

Answer:

$ more /usr/bin/ls
****** /usr/bin/ls: Not a text file ******

more knows that /usr/bin/ls is a compiled program, not a normal text file, so its
contents cannot be displayed to the screen in a readable format.

$ cat /usr/bin/ls

This command produces what appears to be garbage. In fact, this is what happens when
you use the cat command to display a binary (compiled) program. Your terminal settings
may have been changed by this. To reset your HP terminal:

• Hit the Break key.

• Simultaneously press Shift + Ctrl + Reset .

• Press Return to get the shell prompt.

• At the prompt, type the commands:

$ tset -e -k -e: sets erase to ^H, -k: sets kill to ^X
$ tabs

4. Go to your HOME directory. Copy the file called names to a file called names.cp . List the
contents of both files to verify that their contents are the same.

Answer:

$ cp names names.cp
$ cat names names.cp

5. If the file names is modified, will this affect the file names.cp? Modify the file names by
copying the file funfile to the file names. What happened to the file names and the file
names.cp?

51434S G.02 5-68
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Answer:

The files names and names.cp are individual entities. The content of names was
overwritten with the content of the file funfile. The file names.cp is not affected.

$ cp funfile names
$ more names names.cp

names now contains the same contents as funfile, while names.cp still contains the
content that was in names.

6. How do you restore the file names ? Issue the command to restore names.

Answer:

To restore the contents of the file names, copy or move from the file names.cp.

$ cp names.cp names

or

$ mv names.cp names

7. Make another copy of the file names called names.new. Change the name of names.new to
names.orig.

Answer:

$ cp names names.new
$ mv names.new names.orig

8. How do you create two files (called names.2nd and names.3rd) that reference the
contents of the file names?

Answer:

$ ln names names.2nd
$ ln names names.3rd or $ln names.2nd names.3rd

9. If you modify the contents of names, will the contents of names.2nd and names.3rd be
affected? Copy the file funfile to the file names and do a long listing of all of your names
files. Is names.orig affected? names.2nd? names.3rd?

Answer:

The files names, names.2nd, and names.3rd are all referencing the same data on the
disk. If one is modified, all three will be modified. From the long listing, you see that their
link count has gone up to three, since there are now three names referencing the same
data. names.orig is still an individual entity, as seen by its link count still being one.

$ cp funfile names
$ ls -l names.orig names names.2nd names.3rd
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 names.orig
-rw-r--r-- 3 user3 class 125 Jul 24 11:08 names

5-69 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

-rw-r--r-- 3 user3 class 125 Jul 24 11:10 names.2nd
-rw-r--r-- 3 user3 class 125 Jul 24 11:12 names.3rd

If you do an ls -i of the names files, their inode numbers will be displayed. The inode
stores each file’s characteristics, such as permissions, number of links, and ownership.
Files that are linked together share the same inode.

$ ls -i names.orig names names.2nd names.3rd
102 names.orig
322 names
322 names.2nd
322 names.3rd

10. Remove the file names. What happens to names.2nd and names.3rd?

Answer:

$ rm names

The files names.2nd and names.3rd are unaffected except that their link count will be
reduced by one, which can be seen with the ls -l command:

$ ls -l names.orig names names.2nd names.3rd
names not found
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 names.orig
-rw-r--r-- 2 user3 class 125 Jul 24 11:10 names.2nd
-rw-r--r-- 2 user3 class 125 Jul 24 11:12 names.3rd

11. Use the interactive option for rm to remove names.2nd and names.3rd.

Answer:

$ rm -i names.2nd names.3rd
names.2nd? y
names.3rd? y
$

12. Copy the file names.orig back to names.

Answer:

$ cp names.orig names

Solutions

1. Make a directory called fruit under your HOME directory. With one command, move the
following files, which are also under your HOME directory to the fruit directory:

lime
grape
orange

51434S G.02 5-70
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Answer:

$ cd
$ mkdir fruit
$ mv lime grape orange fruit

2. Move the following files, also found under your HOME directory, to the fruit directory.
Their destination names will be as specified below:

Source Destination

apple APPLE
peach Peach

Answer:

$ cd
$ mv apple fruit/APPLE
$ mv peach fruit/Peach
$

3. Look at the tree directory structure in your HOME directory. It requires a little
organization.

Move the files collie and poodle , so that they are under the dog.breeds directory.
Move the file probe under the sports directory.
Move the file taurus under the directory sedan.
Create a new directory under tree called horses.
Copy the mustang file to the horses directory you just created.
Move the file cherry to the fruit directory you created in the previous exercise.

HINT: You could make these changes from any directory, but what directory do you think you
should be in?

Answer:

$ cd
$ cd tree
$ pwd
/home/YOUR_USER_NAME/tree
$ mv collie poodle dog.breeds
$ mv probe car.models/ford/sports
$ mv taurus car.models/ford/sedan
$ mkdir horses
$ cp car.models/ford/sports/mustang horses
$ mv cherry ../fruit

4. Move the fruit directory from your HOME directory to the tree directory.

5-71 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Answer:

$ cd
$ mv fruit tree

A directory called fruit is created under tree.

5. Make the fruit directory your current working directory. Move the files banana and
lemon to the fruit directory. HINT: Remember dot dot (..) represents the parent directory
and dot (.) represents your current directory.

Answer:

$ cd
$ cd tree/fruit
$ mv ../../banana ../../lemon .

Solutions

1. Under your HOME directory, you will find a directory scavenger and a file
scaveng.README providing the first clue for a scavenger hunt. Underneath the scavenger

directory are north, south, east, and west subdirectories. Under these are 1_mile, 2_mile,
3_mile subdirectories. Clues are available under each of these directories to the secret code
word. For example, if the clue is "go east 3 miles", you go to the east/3-mile subdirectory where
you will find a file called README. This file will give you the next clue. You continue through
the clues until you obtain the secret code word. Good luck!

Answer:

$ cd
$ cd scavenger
$ more scaveng.README
north, 1 mile
$ cd north/1_mile
$ more README
east, 2 miles
$ cd ../../east/2_mile
$ more README
You are on the right track!
south, 3 miles
$ cd ../../south/3_mile
$ more README
You have to keep going
south, 2 miles
$ cd ../2_mile
$ more README
You are almost there
west 1 mile
$ cd ../../west/1_mile
$ more README
CONGRATS
You have found the end of the trail.
The code word is ________

51434S G.02 5-72
© 1999 Hewlett-Packard Company

Module 5

Managing Files

Solutions

1. List the current status of the printers in the lp spooler system and find the name of the
default printer.

Answer:

$ lpstat -t
scheduler is running
system default destination: rw
device for rw: /dev/rw
rw accepting requests since Jul 1 10:56:20 1994
printer rw is idle. enabled since Jul 4 14:32:52 1994
fence priority : 0

2. Send the file named funfile to the line printer. Make a note of the request ID that is
displayed on your terminal.

Answer:

$ lp funfile
request id is rw-58 (1 file)

3. Verify that your requests are queued to be printed.

Answer:

$ lpstat
rw-58 ralph 3967 Jul 4 16:57:25 1994
rw-59 ralph 1331 Jul 6 13:01:19 1994

4. How can you tell what files other users are printing? Try it.

Answer:

You can tell by using lpstat -t.

5. Use the cancel command to remove your requests from the line printer system queue.
Confirm that they were canceled.

Answer:

$ cancel rw-58 rw-59
request "rw-58" canceled
request "rw-59" canceled
$ lpstat
$

5-73 51434S G.02
© 1999 Hewlett-Packard Company

Module 5

File Permissions and Access

51434S G.02 5-74
© 1999 Hewlett-Packard Company

Module 6 — File Permissions and Access

Objectives

Upon completion of this module, you will be able to do the following:

• Describe and change the owner and group attributes of a file.

• Describe and change the permissions on a file.

• Describe and establish default permissions for new files.

• Describe how to change user and group identity.

6-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-2
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Overview of Module 6

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

This module is designed to teach the students about permissions on files and directories. We
will also discuss the ownership and group access attributes. The associated
commands—chmod, chown , and chgrp—are also discussed.

Time

Lab 30 minutes

Lecture 45 minutes

Prerequisites

m47m Managing Files

In order to successfully complete this module, the student must be able to log in and navigate
the file system.

Instructor Profile

UX General UX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

6-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r--r-- 1 karenk users 20 May 28 16:12 logname
-rw-r--r-- 1 karenk users 20 May 28 16:12 mod5.1
-rw-r--r-- 1 root other 77 May 28 16:12 root_file

51434S G.02 6-4
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-1. SLIDE: File Permissions and Access

Student Notes

Every file is owned by a user on the system. The owner of a file has the ultimate control over
who has access to it. The owner has the power to allow or deny other users access to files that
he or she owns.

51434S G.02 6-6 (6-2)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-1. SLIDE: File Permissions and Access Instructor Notes

Teaching Tips

It is important that the students understand that the owner of a file has complete control over
who has what access to the file. This module will show how to determine what type of access
you have to various files and directories in the system.

In addition, the owner of the file can give up ownership or allow a different group access to the
file.

Access Control Lists (ACLs) are included as a topic that you may or may not want to present.
Many students find the standard UNIX system permission structure not specific enough, and
ACLs may satisfy some of their access issues.

6-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-2. SLIDE: Who Has Access to a File?

Student Notes

The UNIX system provides a three-tier access structure for a file:

user represents the owner of the file

group represents the group that may have access to the file

other represents all other users on the system

Every file will be owned by some user on the system. The owner has complete control over who
has what access to the file. The owner can allow or deny access to his or her files to other
users on the system. The owner decides what group will have access to his or her files. The
owner can also decide to give the file to some other user on the system. But once ownership is
transferred the original owner will no longer have control over the file.

Since files are owned by users and associated with groups, you can use the id command to
display your identification status and determine what access you have to files that are stored
on your system.

51434S G.02 6-8 (6-3)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

The files on the slide are owned by the user user3, and members of the group class may have
access to these files. In addition, user3 may allow all other users on the system access to these
files.

6-9 (6-4) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-10
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-2. SLIDE: Who Has Access to a File? Instructor Notes

Teaching Tips

Owners and groups are introduced here as a precursor to permissions. Make sure that your
students understand the three tiers: user, group, and other.

Key Points

• Every file will be owned by a user on the system.

• On the slide, the files are owned by user3.

• Every file will be associated with a specific group on the system.

• On the slide, the files are associated with the group class .

• The owner of a file may allow access to other users on the system.

6-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-3. SLIDE: Types of Access

Student Notes

There are three types of access available for each file and directory:

• read
• write
• execute

Different UNIX system commands will require certain permissions in order to access a
program or file. For example, to cat a file it requires read permission because the cat
command must be able to read the contents of the file to display it to the screen. Likewise a
directory requires read permission to list out its contents with the ls command.

Notice that access is dependent on whether you are accessing a file or a directory. For
example, write access on a file implies that the contents of the file can be changed. Denying
write access prohibits users from changing the contents of the file. It does not protect the file
from being deleted. write access on a directory controls whether the contents of a directory can
be modified. If a directory does not have write access, its contents can not be changed, and
therefore files could not be deleted, added or renamed.

51434S G.02 6-12 (6-5)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

NOTE: In order to run a file as a program, both read and execute permissions are
required.

6-13 (6-6) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-14
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-3. SLIDE: Types of Access Instructor Notes

Key Points

• There are three types of access: read, write, execute.

• Different commands require different access of target files or directories.

• Review the table on the slide and which commands require which accesses.

• File deletion is controlled at the directory level, not the file level.

• To protect a file from deletion, remove the write permission on the directory holding the file.

• Programs require both read and execute access.

6-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-4. SLIDE: Permissions

Student Notes

Your access to a file is defined by your user identification, your group identification and the
permissions associated with the file. The permissions to a file are designated in the mode. The
mode of a file is a nine character field that defines the permissions for the owner of the file,
the group to which the file belongs, and all other users on the system.

51434S G.02 6-16 (6-7)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Examples

Referring to the files listed on the slide, access would be as follows:

Filename Association Access
Attributes Authorized Activities

f1 user3 (owner) read, write examine and modify the contents

members of
group class

read examine the contents

all others read examine the contents

f2 user3 (owner) read, write,
execute

examine and modify the contents,
run as a program

members of
group class

read, execute examine the contents, run as a
program

all others read, execute examine the contents, run as a
program

memo user3 (owner) read, write,
execute

examine and modify contents of
directory memo, change to the
directory memo

members of
group class

read, execute examine the contents of directory
memo, change to the directory memo

all others read, execute examine the contents of directory
memo, change to the directory memo

6-17 (6-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-18
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-4. SLIDE: Permissions Instructor Notes

Key Points

• Review the examples in the table in the student notes.

6-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-5. SLIDE: chmod — Change Permissions of a File

Student Notes

The chmod command is used to change the permissions of a file or directory. Permissions can
only be changed by the file’s owner (or root—the system administrator). Therefore, in the
UNIX system, access to a file is generally the responsibility of the owner of the file, as opposed
to the system manager.

To protect a file from removal or corruption, the directory the file resides in and the file must
not have write permission. The write permission to a file would allow a user to change (or
write over) the contents of the file, while write permission to a directory would allow a user to
remove the file. The chmod command supports an alpha method of defining the permissions
for a file.

51434S G.02 6-20 (6-9)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

You can specify the permission that you wish to modify:

r read permission
w write permission
x execute permission

and how you would like to modify that permission:

+ add permission
− subtract permission
= set permission equal

You can also specify which grouping of permissions you wish to modify:

u user (owner of the file)
g group (group the file is associated with)
o other (all others on the system)
a all (every user on the system)
none assigns permission to all fields

NOTE: To disable all of the permissions on a file, issue the following command:

chmod = filename

Examples

$ ls -l f1
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 f1
$ chmod g=rw,o= f1
$ ls -l f1
-rw-rw---- 1 user3 class 37 Jul 24 11:06 f1
$ ls -l f2
-rw-rw-rw- 1 user3 class 37 Jul 24 11:08 f2
$ chmod u+x,g=rx,o-rw f2
$ ls -l f2
-rwxr-x--- 1 user3 class 37 Jul 24 11:08 f2

You can use the mesg n command to disable other users from sending messages to your
terminal. Every terminal has a device file, which is responsible for the communication
between user and computer. In the example /dev/tty0p1 should be that device file.

$ ls -l /dev/tty0p1
crw--w--w- 1 bin bin 58 0x000003 Feb 15 11:34 /dev/tty0p3
$mesg n
$ ls -l /dev/tty0p1
crw------- 1 bin bin 58 0x000003 Feb 15 11:34 /dev/tty0p3

Even when you disable messaging, the system administrator can still send messages to your
terminal.

6-21 (6-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

The chmod command also supports a numeric (octal) representation for assigning file
permissions. This representation is obsolete, but it’s a commonly used form.

1. To change file permissions you have to convert each group of permissions into the
appropriate numeric representation. There will be access defined for the owner, the group,
and all others . Remember that each type of access granted carries the following values:

— read = 4
— write = 2
— execute = 1

2. Just add together the values associated with the access to be allowed.

3. Gather the three values together. This number will be your argument for the chmod
command.

For example, if the desired permissions are rw- for owner, r-- for group, and --- for other:

user group others
rw- r-- ---

convert to numeric values

4+2+0 4+0+0 0+0+0
6 4 0

Thus the chmod command would be:

chmod 640 filename

NOTE: To disable all permissions on a file, issue the following command:
chmod 000 file

51434S G.02 6-22 (6-11)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-5. SLIDE: chmod — Change Permissions of
a File

Instructor Notes

Key Points

• File permissions are generally the user’s responsibility, not the system manager’s.

• The octal form of the mode option is now listed as obsolete. It is still supported, but
symbolic modes should be used instead of octal modes.

Teaching Tips

• Review the example on the slide and the examples in the student notes.

• Make sure students understand how to derive the symbolic and octal representation.

Teaching Question

• What access do you have to a file when all of its permissions have been disabled?

Answer
You cannot read the contents of the file, you cannot change the contents of the file, you could
not execute it if it was a program. You CAN delete the file. You can change the permissions
to allocate yourself access.

6-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-6. SLIDE: umask — Permission Mask

Student Notes

The option [-S] prints the current file mode creation mask value using a symbolic format.
The [-S] option and the symbolic format are not available in the Bourne and C shells.

The option a-rwx is the short form of u-rwx,g-rwx,o-rwx. The usual default permissions on
a newly created file are rw-rw-rw-, which means that any user on the system can modify the
contents of the file. The default permissions on a newly created directory are rwxrwxrwx,
which means that any user can change to this directory and delete anything from this
directory.

To protect the files that you will create during your session, you should use the umask
command. This will disable designated default permissions on any new file or directory that
you create. Write access to the group and all others are probably the most important
permissions to disable. The mask that you designate is active until you log out. umask will
have no affect on existing files.

51434S G.02 6-24 (6-12)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-6. SLIDE: umask — Permission Mask Instructor Notes

Key Points

• All files and directories are created with some default permission.

• Normally the default permissions give everyone access to your files and directories.

• The umask command can be used to disable some of these default permissions.

• umask 000 will return the permission assignment to the system defined defaults.

• Students can set umask as part of their login process in .profile.

Teaching Tips

Review the examples that are presented in the student notes.

6-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-7. SLIDE: touch — Update Timestamp on File

Student Notes

The touch command allows you to create a new, empty file. If the designated file already
exists, touch will just update the time stamp on the file. It will have no effect on the contents
of the file.

The touch command has the following options:

-a time Change the access time to time.

-m time Change the modify time to time.

-t time Use time instead of the current time.

-c If the file does not already exist, do not create it.

51434S G.02 6-26 (6-13)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Examples

$ touch test_file1
$ ls -l test_file1
-rw-rw-rw- 1 user3 class 0 Jul 24 11:08 test_file1
$ umask a-rwx,u=rw,g=r (or umask 137)
$ umask -S (or umask)
u=rw,g=r,o= (or 137)
$ touch test_file2
$ ls -l test_file2
-rw-r----- 1 user3 class 0 Jul 24 11:10 test_file1

6-27 (6-14) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-28
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-7. SLIDE: touch — Update Timestamp on
File

Instructor Notes

Key Points

• The touch command will create new files or update the time stamp on existing files.

Teaching Tips

• Have the students create an empty file using touch.

• Have students change the modify time on funfile.

6-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-8. SLIDE: chown — Change File Ownership

Student Notes

Only the owner of a file has control over the attributes and access to a file. If you would like to
give ownership of a file to some other user on the system, you use the chown command. For
example, user3 might make a copy of his file f1 for user2. user2 should have complete control
of his personal copy, so user3 transfers ownership of /tmp/user2/f1 to user2. Optionally
chown changes the group ID of one or more files to group . The owner (group) can be either a
decimal user ID (group ID) or a login name found in the passwd (group)file.

NOTE: Once the ownership of a file has been changed, only the new owner or
root can modify the ownership and mode.

The owner is a user identifier recognized by your system. The file /etc/passwd contains the
user IDs for all of your system’s users.

51434S G.02 6-30 (6-15)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Example

Looking at the example on the slide, after user3 has transferred ownership of /tmp/user2/f1
to user2 , he will still have read access, since the file allows read access to all users who are a
member of class.

6-31 (6-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-32
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-8. SLIDE: chown — Change File Ownership Instructor Notes

Teaching Tips

• Discuss what access user3 has to the file /tmp/user2/f1 before and after the chown
command.

• Discuss the fact that the user can change owner and group simultaneously.

Key Points

• Only the owner of a file can run chmod, chown, and chgrp.

• One user can own a directory, and another can own a file within the directory.

6-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-9. SLIDE: The chgrp Command

Student Notes

The group field in the long listing identifies what user group has access to this file. This can be
modified with the chgrp command.

The new_group is a group identifier recognized by your system. The file /etc/group contains
the group IDs for all of your system’s users.

The chgrp command will not work if the new group specified does not exist. Group existence
and membership is controlled by the system administrator.

NOTE: Only the owner of a file (or root) can change the group identifier
associated with a file.

51434S G.02 6-34 (6-17)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Example

Looking at the example on the slide, after user3 has transferred group access of the file f1 to
the group class2, her access has not been affected since she still owns the file. After user3
gives the ownership of the file to user2, she will not be able to access it at all, since user3 is
currently associated with the group class.

6-35 (6-18) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-36
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-9. SLIDE: The chgrp Command Instructor Notes

Key Points

• Only the owner of the file can designate which group has access to a file.

• The owner (usually) does not control the membership in that group.

• You do not have to be a member of the group that you designate in the chgrp command.

Teaching Tips

Review the example illustrated on the slide. Present what access user3 will have on file f3
after the first chgrp, and then again after the second chgrp.

This example shows how a user can change the group and ownership of a file, such that she
cannot access a file at all.

There is the ability to be a member of more than one group at time. The /etc/logingroup is
a file that the system administrator must create. This file has the same form as /etc/group.

6-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-10. SLIDE: su — Switch User Id

Student Notes

The su command allows you to interactively change your user ID and group ID. su is an
abbreviation for switch user or set user ID. This allows you to start a subsession as the new
user ID and grants you access to all of the files that the designated user ID owns. Therefore,
for security purposes, you will be required to enter the account’s password to actually switch
your user status.

With no arguments, su switches you to the user root (the system administrator). The root
account is sometimes known as the super-user, since this login has access to anything and
everything on the system. For this reason, many people think that the command su is an
abbreviation for super-user. Of course, you must supply the root password.

NOTE: To get back to the user you were, do not use the su command again.
Instead, use the exit command to exit the new session started for you by
the su command.

51434S G.02 6-38 (6-19)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Example

Look at the example on the slide. user3 does not have access to the program
/usr/local/bin/class_setup , since she is not a member of the group teacher. She can
access this program, though, if she enters the command su class_admin. As class_admin,
she can also modify the contents of the program class_setup. When she has finished
running the program, she resumes her original user status by logging out of the su session.

su - username

There are certain configuration files that set up your session for you. When you issue the
command su username, your session characteristics will remain the same as your original
login identification. If you would like your session to take on the characteristics associated
with the switched user ID, use the dash (-) option with the su command: su - username .

6-39 (6-20) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-40
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-10. SLIDE: su — Switch User Id Instructor Notes

Key Points

• Most commonly used by the system administrator to su to root.

• Must provide the user ID’s password.

• Best reason to have a password assigned to your account.

• To return to your previous user ID, a CTRL + d Return or an exit command will kill the
child shell.

Teaching Question

• What would be the user’s uid and group ID after she executed the commands on the slide?
Answer: UID=303 (user3), gid=300 (class)

6-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-11. SLIDE: The newgrp Command

Student Notes

The newgrp command is similar to the su command. The newgrp command allows you to
change your group ID number.

The system administrator will define what groups you have access to change to. By looking at
the file /etc/group, you can determine which groups you have access to change to. If you are
not allowed to become a member of the specified group, you will get the message: Sorry .

Since the newgrp command does not start a new subsession, you just use the newgrp
command to return to your original group status.

Example

Look at the example on the slide. user3 still does not have access to the program
/usr/local/bin/class_setup because he is initially a member of the group class . user3
can newgrp teacher to the teacher group because he has been granted access to this group
by the system administrator. Now he can run the program, since the program has execute
access allowed for anyone in the teacher group, but he cannot modify the contents of the

51434S G.02 6-42 (6-21)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

program. Only the user class_admin can write to the class_setup program. When he has
finished, user3 will newgrp to resume his original group status.

Sample /etc/group file

teacher::33:class_admin,user3

class::300:user1,user2,user3,user4,user5,user6,class_admin

6-43 (6-22) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-44
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-11. SLIDE: The newgrp Command Instructor Notes

Teaching Tips

Point out that newgrp must be used again to become a member of the user’s original group.

6-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-12. SLIDE: Access Control Lists

Student Notes

Access control lists (ACLs) are an enforcement mechanism of discretionary access control
(DAC), that allow more selective access specification to files than the traditional UNIX system
mechanisms provide. An ACL consists of a user ID and group ID combination with the
associated access permissions allowed for this user/group combination (user.group,mode).

Levels of Access Control

There are basically four levels of specificity that can define access to a file:

(u.g, rwx) Specific user, specific group
(u.%, rwx) Specific user, any group
(%.g, rwx) Any user, specific group
(%.%, rwx) Any user, any group

Each file can have up to 13 different sets of permissions provided. If there are multiple,
similar entries specifying file access, the more specific access will take precedence over less
specific designations.

51434S G.02 6-46 (6-23)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Example

$ lsacl funfile
(user3.%,rw-)(user2.class,rw-)(user2.%,r--)(%.class,r--)(%.%,---) funfile

Users will have the following access to the file funfile

Table 6-1.

User Id Group Id Access to File

user3 any read, write

user2 class read, write

user2 any group other than class read

any user other than
user2 and user3

class read

any user other than
user2 and user3

any group other than class none

Changing the Access Control List

The chacl command can be used to modify or delete an existing access control list. The -d
option allows you to delete an existing ACL designation.

Examples

$ lsacl funfile
(user3.%,rw-)(%.class,r--)(%.%,r--) funfile

The following will add an ACL for user2 of group class, providing read and write access,
plus deleting read permission from the open field for all users, all groups (%.%):

$ chacl "user2.class=rw,%.% -r" funfile
$ lsacl funfile
(user2.class,rw-)(user3.%,rw-)(%.class,r--)(%.%,---) funfile

The above could have also been implemented with

$ chacl "(user2.class,rw)(%.%,-r)" funfile

6-47 (6-24) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

The following will delete the ACL for user2 of group class :

$ chacl -d "user2.class" funfile
$ lsacl funfile
(user3.%,rw-)(%.class,r--)(%.%,---) funfile

NOTE: Changing the permissions with chmod will remove all of the ACLs for
that file.

NOTE: ACLs are only supported on hfs file systems, which are not the default
at HP-UX 11.00.

51434S G.02 6-48 (6-25)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-12. SLIDE: Access Control Lists Instructor Notes

Teaching Tips

Present the access to the file funfile. Present what access different users would have to the
file funfile before and after the chacl command. Remember the more specific ACL will take
precedence.

Before the chacl on the slide:

Table 6-2.

User Id Group Id Access to File

user3 any read, write

any user other than user3 class read

any user other than user3 any group other than class read

After the first chacl on the slide:

Table 6-3.

User Id Group Id Access to File

user3 any read, write

user2 class read, write

user2 any group other than class read

any user other than user2
and user3

class read

any user other than user2
and user3

any group other than class none

Other Notes

For customers requiring B1 level of security, Hewlett-Packard will be supporting additional
security modules from Secure Ware. Be aware that the ACL implementation from Secure Ware
is not compatible with the ACL implementation under HP-UX.

6-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-13. SLIDE: File Permissions and Access — Summary

Student Notes

Things to remember about file permissions:

• All directories in the full pathname of a file must have execute permission in order for the
file to be accessible.

• To protect a file, take away write permission on that file and on the directory in which the
file resides.

• Only the owner of a file (or root) can change the mode (chmod), the ownership (chown), or
the group (chgrp) of a file.

51434S G.02 6-50 (6-26)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-13. SLIDE: File Permissions and Access —
Summary

Instructor Notes

6-51 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-14. LAB: File Permissions and Access

Directions

There are four sections of exercises to complete. Run the commands necessary to solve the
exercises and answer the associated questions. Time may not allow you to complete all of the
exercises.

File Permissions

1. Look under your HOME directory for a file called mod5.1. Who has what access to this
file? Can you display the contents of mod5.1?

2. Modify the permissions on mod5.1 so that they are: -w-------. Can you display the
contents of mod5.1?

3. Modify the permissions on mod5.1 so that they are: rw-------. Can you display the
contents of mod5.1? Can your partner display the contents of your mod5.1?

4. How can you modify the permissions on mod5.1 so that your partner can read the file?

5. Make a copy of mod5.1 and call it mod5.2. Remove the write permissions from mod5.2.
Can you delete this file? How do you protect this file from being deleted?

51434S G.02 6-52 (6-27)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6. Who is the owner of the file root_file in your HOME directory? To what group does it
belong? Who is allowed to change the ownership or group? What access do you have to this file?

7. If you wanted to make changes to the file root_file, how would you go about it?

8. Run the command mesg y. Now, type tty and note the device file associated with your
terminal. What are the permissions on this file? Who owns this file? Run the command mesg
n . What are the permissions now? What is the mesg command effectively doing?

Directory Permissions

1. Under your HOME directory, create a directory called mod5.dir. Copy the file mod5.1 to
mod5.dir. List the contents of the new directory. What are the permissions on the mod5.dir?
(Hint: ls -ld mod5.dir)

2. Modify the permissions on mod5.dir to be rw-------. Can you change directory to
mod5.dir? Can you display the contents of mod5.dir ? Can you access the contents of the
file mod5.1 under the mod5.dir?

3. Modify the permissions on mod5.dir to be -wx------. Can you display the contents of
mod5.dir? Can you display the contents of the file mod5.1 under the mod5.dir? Can you
change directory to mod5.dir?

6-53 (6-28) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

4. Can other users copy files into your HOME directory? How do you display the permissions
for your HOME directory?

5. From your HOME directory, copy the file mod5.1 to the directory /usr/bin. Did you have
any problems? What are the permissions of /usr/bin ?

6. Can you copy the file /usr/bin/date to your HOME directory?

Changing Ownership and Group

1. Look under your HOME directory, you should find a file that has the same name as your
login name. What access do you have to this file? What group does your partner belong to?
What access does your partner have to this file?

2. Still working with the file YOUR_LOGNAME, change the ownership of this file to your
partner. Can you access the file now? Try to make a copy of the file. Can you get ownership
back?

3. Make a copy of mod5.1 and call it mod5.3. Remove all of the permissions from the file
mod5.3. Can you change the ownership of this file to your partner?

51434S G.02 6-54 (6-29)
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

4. Make a copy of mod5.1 and call it mod5.4. Modify the permissions so that they are
rw-r-----. Change the group of the file to class2. Change the owner of the file to root. Can
you display the contents of mod5.4?

5. Change your group status to class2. Can you display the contents of mod5.4? Return
your group status to your original group id. (Hint: use the id command to see your user and
group identifications.)

Permissions for New Files

1. What are the permissions when you create a new file? Hint: Create a new file by using the
editor, and copy or touch an existing file. Examine the permissions on the new files. How
about a new directory? What is your current file creation mask?

2. How would you modify the default creation permissions to deny write access to others in
your group, and others on the system? Test this by creating another new file and another new
directory.

6-55 (6-30) 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

51434S G.02 6-56
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

6-14. LAB: File Permissions and Access Instructor Notes
Time: 30 minutes

Purpose

To practice determining and modifying file ownership and permissions.

Notes to the Instructor

As part of the installation procedure, each of the users’ HOME directory should have the
permissions: rwxr-xr-x . There is also a file called root_file that is owned by root and
group other. Students will only have read access to this file. All other files should be owned by
the student, and have group class.

It is recommended that students complete the Basic Exercises and complete the Advanced
Exercises only if they have time. Most students should complete the Basic Exercises.

Following is a breakdown of the exercises.

File Permissions: Basic:1-6, Advanced:7-8

Directory Permissions: Basic:1-4, Advanced:5-6

Ownership and Group: Basic:1-3, Advanced:4-5

New Files: Basic:1-2

Solutions

1. Look under your HOME directory for a file called mod5.1. Who has what access to this
file? Can you display the contents of mod5.1?

Answer:

$ ls -l
-rw-r--r-- 1 YOUR_LOGNAME class 20 Jan 24 13:13 mod5.1

YOUR_LOGNAME has read and write access.
Members of group class have read access.
All other users have read.

$ cat mod5.1

This is successful since you have read permission.

2. Modify the permissions on mod5.1 so that they are: -w-------. Can you display the
contents of mod5.1?

6-57 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Answer:

$ chmod a-rwx,u=w mod5.1
$ cat mod5.1

You no longer have read access to the file mod5.1, so the cat will fail.

3. Modify the permissions on mod5.1 so that they are: rw-------. Can you display the
contents of mod5.1? Can your partner display the contents of your mod5.1?

Answer:

$ chmod u=rw mod5.1

You can display the contents of mod5.1.
Your partner cannot display the contents of mod5.1.

4. How can you modify the permissions on mod5.1 so that your partner can read the file?

Answer:

$ chmod g+r mod5.1

The file allows read access to all members of the group class, and your partner is also a
member of the group class. Therefore, you provide the group read access to the file.

5. Make a copy of mod5.1 and call it mod5.2. Remove the write permissions from mod5.2.
Can you delete this file? How do you protect this file from being deleted?

Answer:

$ cp mod5.1 mod5.2
$ chmod -w mod5.2
$ rm mod5.2
mod5.2: 444 mode ? (y/n)

mod5.2 is removed!
You would have to remove the write permissions from your HOME directory as well.
If you remove write permissions from your HOME directory and then try to remove the

file, you will get a message "permission denied".

6. Who is the owner of the file root_file in your HOME directory? To what group does it
belong? Who is allowed to change the ownership or group? What access do you have to this file?

Answer:

The owner is root. The group is other. Only the super-user can change the ownership or
group. You have read access only.

7. If you wanted to make changes to the file root_file, how would you go about it?

51434S G.02 6-58
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Answer:

Since you have read permission, you can make a copy of root_file . You will own the
copy, and can therefore, modify the copy’s contents.

$ cp root_file my_root_file
$ ls -l my_root_file
-rw-r--r-- 1 user3 class 3967 Jan 24 13:13 my_root_file

8. Run the command mesg y. Now, type tty and note the device file associated with your
terminal. What are the permissions on this file? Who owns this file? Run the command mesg
n . What are the permissions now? What is the mesg command effectively doing?

Answer:

$ who am i
user3 tty03 Jul 9 11:10
$ mesg y
$ ll /dev/tty03
crw--w--w- 1 user3 class 0 Jan 24 13:13 /dev/tty03
$ mesg n
crw------- 1 user3 class 0 Jan 24 13:13 /dev/tty03

You own the device file associated with your terminal connection. The mesg command is
essentially running a chmod on your terminal device file to grant or deny write access of
others to your terminal.

Solutions

1. Under your HOME directory, create a directory called mod5.dir. Copy the file mod5.1 to
mod5.dir. List the contents of the new directory. What are the permissions on the mod5.dir?
(Hint: ls -ld mod5.dir)

Answer:

$ cd
$ mkdir mod5.dir
$ cp mod5.1 mod5.dir
$ ls mod5.dir
mod5.1
$ ls -ld mod5.dir
drwxrwxrwx 3 YOUR_LOGNAME class 1024 Jul 24 13:13 mod5.dir
$

2. Modify the permissions on mod5.dir to be rw-------. Can you change directory to
mod5.dir? Can you display the contents of mod5.dir ? Can you access the contents of the
file mod5.1 under the mod5.dir?

Answer:

$ chmod a-rwx,u+rw mod5.dir
$ cd mod5.dir
sh: mod5.dir: Permission denied.
$ ls mod5.dir

6-59 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

mod5.1
$ ls -l mod5.dir/
mod5.dir/mod5.1 not found
total 0
$ cat mod5.dir/mod5.1
cat: cannot open mod5.dir/mod5.1: Permission denied
$

3. Modify the permissions on mod5.dir to be -wx------. Can you display the contents of
mod5.dir? Can you display the contents of the file mod5.1 under the mod5.dir? Can you
change directory to mod5.dir?

Answer:

$ chmod u+wx mod5.dir

$ ls mod5.dir

mod5.dir unreadable
$ cat mod5.dir/mod5.1

This is the contents of mod5.1
$ cd mod5.dir cd is successful
$ pwd
/home/user3/mod5.dir
$ ls
. unreadable

4. Can other users copy files into your HOME directory? How do you display the permissions
for your HOME directory?

Answer:

$ cd
$ ls -ld .
drwxr-xr-x 3 YOUR_USER_NAME class 1024 Jul 24 13:13 .

Other users can display the contents of your HOME directory, and change to your HOME
directory, but they cannot modify the contents of your HOME directory. Therefore, other
users cannot copy files to your HOME directory.

5. From your HOME directory, copy the file mod5.1 to the directory /usr/bin. Did you have
any problems? What are the permissions of /usr/bin ?

Answer:

$ ls -ld /usr/bin
dr-xr-xr-x 3 bin other 1024 Jul 24 13:13 /usr/bin

Write access for others is not set on /usr/bin, so your copy should fail.

6. Can you copy the file /usr/bin/date to your HOME directory?

51434S G.02 6-60
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Answer:

$ cd
$ ls -l /usr/bin/date
-r-xr-xr-x 1 bin bin 16384 Nov 15 13:13 /usr/bin/date
$ cp /usr/bin/date .

Since /usr/bin/date has read permission for others, you are able to make a copy of the
file.

Solutions

1. Look under your HOME directory, you should find a file that has the same name as your
login name. What access do you have to this file? What group does your partner belong to?
What access does your partner have to this file?

Answer:

$ ls -l YOUR_LOGNAME
-rw------- 1 YOUR_LOGNAME class 3967 Jan 24 13:13 YOUR_LOGNAME

You have read and write access.
Your partner is also in the group class.
Your partner has no access to this file.

2. Still working with the file YOUR_LOGNAME, change the ownership of this file to your
partner. Can you access the file now? Try to make a copy of the file. Can you get ownership
back?

Answer:

$ ls -l YOUR_LOGNAME
-rw------- 1 YOUR_LOGNAME class 3967 Jan 24 13:13 YOUR_LOGNAME
You initially have read and write access.
$ chown partner_login_name YOUR_LOGNAME
$ ls -l YOUR_LOGNAME
-rw------- 1 partner class 3967 Jan 24 13:13 YOUR_LOGNAME

• You no longer have access to this file.

• You need a minimum of read access to copy a file, so you cannot make a copy with the
current permissions.

• You are a member of the group class, but the group permissions are disabled.

The only way you can get ownership back, is to have your partner chown the file back to
you. (Have you been nice to your partner?) You could also su to your partner’s account (if
he or she will share his or her password) and chown the file yourself.

3. Make a copy of mod5.1 and call it mod5.3. Remove all of the permissions from the file
mod5.3. Can you change the ownership of this file to your partner?

6-61 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

Answer:

$ cp mod5.1 mod5.3
$ chmod a-rwx mod5.3
$ chown partner mod5.3

You can change the ownership because the permissions are associated with your access to
the contents of the file, not the ownership and group identifiers assigned to the file.

4. Make a copy of mod5.1 and call it mod5.4. Modify the permissions so that they are
rw-r-----. Change the group of the file to class2. Change the owner of the file to root. Can

you display the contents of mod5.4?

Answer:

$ cp mod5.1 mod5.4
$ chmod a-rwx,u+w,ug+r mod5.4
$ chgrp class2 mod5.4
$ chown root mod5.4
$ cat mod5.4cat: cannot open mod5.4: Permission denied

Since you are not currently a member of the group class2, you cannot access the file
mod5.4.

5. Change your group status to class2. Can you display the contents of mod5.4? Return
your group status to your original group id. (Hint: use the id command to see your user and
group identifications.)

Answer:

$ newgrp class2
$ cat mod5.4
This is the contents of mod5.1
$ newgrp

Once you change your effective group to class2, you can then access the file mod5.4.

Solutions

1. What are the permissions when you create a new file? Hint: Create a new file by using the
editor, and copy or touch an existing file. Examine the permissions on the new files. How
about a new directory? What is your current file creation mask?

Answer:

$ touch new_file
$ ls -l new_file
-rw-rw-rw- 1 YOUR_USER_NAME class 0 Jul 24 13:13 new_file
$ mkdir new_dir
$ ls -ld new_dir
drw-r---r-- 3 YOUR_USER_NAME class 1024 Jul 24 13:13 new_dir

51434S G.02 6-62
© 1999 Hewlett-Packard Company

Module 6

File Permissions and Access

$ umask
000

2. How would you modify the default creation permissions to deny write access to others in
your group, and others on the system? Test this by creating another new file and another new
directory.

Answer:

$ umask a-rwx,u=rw,g=r,o=r
$ touch new_file2
$ ls -l new_file2
-rw-r--r-- 1 YOUR_USER_NAME class 0 Jul 24 13:13 new_file2
$ mkdir new_dir2
$ ls -ld new_dir2
drw-r--r-- 3 YOUR_USER_NAME class 1024 Jul 24 13:13 new_dir2

6-63 51434S G.02
© 1999 Hewlett-Packard Company

Module 6

Shell Basics

51434S G.02 6-64
© 1999 Hewlett-Packard Company

Module 7 — Shell Basics

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the job of the shell.

• Describe what happens when someone logs in.

• Describe user environment variables and their functions.

• Set and modify shell variables.

• Understand and change specific environment variables such as PATH and TERM.

• Customize the user environment to fit a particular application.

7-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-2
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

Overview of Module 7

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

This module is designed to introduce the student to the basic interactive capabilities of the
POSIX shell. It describes the basic characteristics of the UNIX user environment. It does not
cover all aspects of the environment in detail; however, it does explain it well enough to set
some specific environment variables and to intelligently set variables needed by applications.

The details of shell variables are not covered here. This is meant to be an introduction to
setting basic environment variables so the user’s application will run correctly.

Time

Lab 30 minutes

Lecture 45 minutes

Prerequisites

In order to successfully complete this module, the student must be able to navigate the file
system.

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

7-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

Software Requirements

UX11 HP-UX release 11.0

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

P/N B2355-
90046(T)

HP-UX Shells: User’s Guide , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

profile Make sure that the students’ .profile contains the lines:
EDITOR=/usr/bin/vi; export EDITOR
FCEDIT=/usr/bin/vi; export FCEDIT

Lab Files

-rw-r--r-- 1 karenk users 1482 May 28 16:12 frankenstein
total 14
drwxr-xr-x 5 karenk users 1024 May 28 16:12 car.models
-rw-r--r-- 1 karenk users 17 May 28 16:12 cherry
-rw-r--r-- 1 karenk users 17 May 28 16:12 collie
drwxr-xr-x 4 karenk users 1024 May 28 16:12 dog.breeds
-rw-r--r-- 1 karenk users 17 May 28 16:12 poodle
-rw-r--r-- 1 karenk users 17 May 28 16:12 probe
-rw-r--r-- 1 karenk users 17 May 28 16:12 taurus

tree/car.models:
total 6
drwxr-xr-x 2 karenk users 24 May 28 16:12 chrysler
drwxr-xr-x 4 karenk users 1024 May 28 16:12 ford
drwxr-xr-x 2 karenk users 24 May 28 16:12 gm

tree/car.models/chrysler:
total 0

tree/car.models/ford:
total 4
drwxr-xr-x 2 karenk users 24 May 28 16:12 sedan
drwxr-xr-x 2 karenk users 1024 May 28 16:12 sports

51434S G.02 7-4
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

tree/car.models/ford/sedan:
total 0

tree/car.models/ford/sports:
total 2
-rw-r--r-- 1 karenk users 18 May 28 16:12 mustang

tree/car.models/gm:
total 0

tree/dog.breeds:
total 4
drwxr-xr-x 2 karenk users 1024 May 28 16:12 retriever
drwxr-xr-x 2 karenk users 24 May 28 16:12 shepherd

tree/dog.breeds/retriever:
total 6
-rw-r--r-- 1 karenk users 27 May 28 16:12 golden
-rw-r--r-- 1 karenk users 29 May 28 16:12 labrador
-rw-r--r-- 1 karenk users 26 May 28 16:12 mixed

tree/dog.breeds/shepherd:
total 0

7-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-1. SLIDE: What Is the Shell?

Student Notes

A shell is an interactive program that serves as a command line interpreter. It is separate
from the operating system. This design provides users with the flexibility of selecting the
interface that is most appropriate for their needs. A shell’s job is to allow you to type in your
command, perform several functions, and pass the interpreted command to the operating
system (kernel) for execution.

This module presents interactive features that are provided by the POSIX shell. Interactively,
the POSIX shell completes other functions in addition to executing your command. Many of
these functions are completed before the command is executed.

51434S G.02 7-6 (7-2)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

The following summarizes the shell functionality:

• It searches for a command and executes the associated program.

• It substitutes shell variable values for dereferenced variables.

• It performs command substitution.

• It completes file names from file name generation characters.

• It handles I/O redirection and pipelines.

• It provides an interpreted programming interface, including tests, branches and loops.

As you log in to a UNIX system, the shell will define certain characteristics for your terminal
session, and then issue your prompt. This prompt defaults to a $ symbol in the case of the
POSIX, Bourne and K shells. The default prompt for the C shell is the percent sign (%).

7-7 (7-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-8
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-1. SLIDE: What Is the Shell? Instructor Notes

Key Points

• The shell is a command interpreter.

• The shell is a program separate from the operating system, allowing you to easily access
your favorite command interpreter.

• It performs functions in addition to executing commands.

• Many of these functions are performed before the command is executed.

• The shell provides an interpreted programming language.

• The diagram on the slide reviews the shell’s position in the UNIX operating environment.
The shell has sometimes been compared to an egg shell.

7-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-2. SLIDE: Commonly Used Shells

Student Notes

The POSIX shell is a POSIX-compliant command programming language and commands
interpreter residing in /usr/bin/sh. It can execute commands read from a terminal or a file.
This shell conforms to the current POSIX standards in effect at the time the HP-UX system
release was introduced, and is similar to the Korn shell in many ways. It contains a history
mechanism, supports job control, and provides various other useful features.

The Korn shell is a command programming language and commands interpreter residing in
/usr/bin/ksh. It can execute commands read from a terminal or a file. Like the POSIX shell,
it contains a history mechanism, supports job control, and provides various other useful
features. The Korn shell was developed by David Korn of AT&T Bell Labs.

The Bourne shell is a command programming language and commands interpreter residing in
/usr/old/bin/sh. It can execute commands read from a terminal or a file. This shell lacks
many features contained in the POSIX and Korn shells. The Bourne shell was developed by
Stephen R. Bourne and was the original shell available on the AT&T releases of UNIX.

51434S G.02 7-10 (7-4)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

The C shell is a command language interpreter that incorporates a command history buffer,
C-language-like syntax, and job control facilities. It was developed by William Joy of the
University of California at Berkeley.

The rsh and rksh are restricted versions of the Bourne shell and Korn shells, respectively. A
restricted shell sets up a login name and execution environment whose capabilities are more
controlled (restricted) than normal user shells. A restricted shell acts very much like standard
shell with several exceptions. A user using a restricted shell cannot:

• change directory
• reset value of PATH environment variable
• use the / character in a path name
• redirect output.

The keyshell is an extension of the standard Korn shell. It uses hierarchical softkey menus
and context-sensitive help to aid users in building command lines. keysh was developed by
HP and AT&T.

Table 7-1. Comparison of Shell Features

Features Description POSIX Bourne Korn C

Command
history

A feature allowing commands
to be stored in a buffer, then
modified and reused.

Yes No Yes Yes

Line editing The ability to modify the
current or previous command
lines with a text editor.

Yes No Yes No

File name
completion

The ability to automatically
finish typing file names in
command lines.

Yes No Yes Yes

Alias command A feature allowing users to
rename commands,
automatically include
command options, or
abbreviate long command
lines.

Yes No Yes Yes

Restricted
shells

A security feature providing a
controlled environment with
limited capabilities.

Yes Yes Yes No

Job control Tools for tracking and
accessing processes that run
in the background.

Yes No Yes Yes

7-11 (7-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-12
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-2. SLIDE: Commonly Used Shells Instructor Notes

Purpose

To introduce the basic features of the POSIX shell.

Key Points

• The main advantage of HP POSIX Shell is that it has most of the POSIX related features
and is compatible with the HP Korn Shell.

Background

The POSIX shell and the Bourne shell have the same name, sh. This was the requirement by
the POSIX Committee. However, there are certain areas where these two shells are not
compatible. HP has decided to currently have both the shells in the user default path.

Because of name similarities another directory was created and named as /usr/old/bin/.
This directory contains an executable sh (Bourne Shell).

The /usr/bin directory is at the beginning of the default PATH variable. If you execute sh,
and you are using the value of $PATH that is set in /etc/profile, you will be executing a
POSIX shell, and not a Bourne shell; therefore, the login default shell is /usr/bin/sh. That
is, if there is no login shell specified in the /etc/passwd file, then login assumes that you
want the POSIX Shell as the login shell.

7-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-3. SLIDE: POSIX Shell Features

Student Notes

One of the shells provided with UNIX is the POSIX shell. This shell has many features that
the Korn shell has but that the Bourne shell does not have. Even if you do not use all of the
advanced features, you will probably find the POSIX shell a very convenient user interface.
Here are just a few of the features of the POSIX shell:

• Command history mechanism
• Command line recall and editing
• Job control
• File name completion
• Command aliasing
• Enhanced cd capabilities
• Advanced programming capabilities

51434S G.02 7-14 (7-6)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-3. SLIDE: POSIX Shell Features Instructor Notes

Purpose

To introduce the POSIX shell as a user interface.

Transition

Let’s take a closer look at these features of the POSIX shell.

7-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-4. SLIDE: Aliasing

Student Notes

An alias is a new name for a command. Aliasing is a method by which you can abbreviate long
command lines, create new commands, or cause standard commands to perform differently by
replacing the original command with a new command called an alias. The alias can be a letter
or short word. For example, many people use the ps -ef command quite often. Wouldn’t it be
much easier if you could type psf instead? You create aliases using the alias command.

$ alias name=string

where name is the name you are using for the alias, and string is the command or character
string that name is aliased to. If the string contains spaces, you enclose the whole string in
quotes. The alias is convenient to save typing, interpret common typing errors, or generate
new commands.

An alias looks just like any other command when it is entered. It is transparent to the user if
he or she is executing a real UNIX system command or an alias that references a UNIX
system command.

51434S G.02 7-16 (7-7)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

The shell will expand the alias prior to command execution, and then execute the resulting
command line. When entered interactively, the alias is available until you log out.

Some users find this feature so flexible that they make their UNIX system interface recognize
commands they usually enter through another operating environment (alias dir=ls or
alias copy=’cp -i’ for example).

Aliases are also often used as a shorthand for full path names.

With no arguments, the alias command reports all aliases currently defined.

To list the value of a particular alias, use alias name .

Aliases can be turned off with the unalias command. The syntax is

unalias name

Examples

Several aliases can also be entered on a single command line as shown below:

$ alias go=’cd ’
$ alias there=/home/user3/tree/ford/sports
$ go there
$ pwd
/home/user3/tree/ford/sports

In order to reference more than one alias on a line, you must leave a space as the last character
in the alias definition; otherwise, the shell will not recognize the next word as an alias.

7-17 (7-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-18
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-4. SLIDE: Aliasing Instructor Notes

Key Points

• Aliases can be used as typing aids and to define new commands.

• Many aliases can be combined on a single command line.

• The alias command without arguments will return the values of all aliases that are set in
the shell.

• In order to reference more than one alias on a line, you must leave a space as the last
character in the alias definition; otherwise, the shell will not recognize the next word as an
alias.

• If spaces are included in the alias value, the value string must be enclosed in quotes.
Quoting is covered in detail in another module.

Teaching Tips

You may want to point out how to combine multiple commands for a single alias, for example,

$ alias go=’cd /tmp;ls’

or

$ alias go=cd
$ alias there=/home/user3/tree/ford/sports
$ go there
$ pwd
$ /home/user3/tree/ford/sports

7-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-5. SLIDE: File Name Completion

Student Notes

File name completion is convenient when you want to access a file that has a long file name.
You provide enough characters that uniquely identify the file name, then press ESC ESC and
the POSIX shell will fill in the remainder of the file name. If the string is not unique, the
POSIX shell cannot resolve the file name and you will have to provide some assistance. Your
terminal will beep when it runs into a file name conflict.

The shell will complete the file name as far as it can without a conflict. You can then list the
possible choices at this time by typing ESC =. After the POSIX shell has displayed the
available options, you can use editor commands to add subsequent characters that will
uniquely identify the desired file, and then enter ESC ESC to conclude the file name.

51434S G.02 7-20 (7-9)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

File name completion can be used anywhere in the path of a file name. For example,

$ cd tr ESC ESC do ESC ESC r ESC ESC

will cause the following command line to be displayed:

$ cd tree/dog.breeds/retriever

7-21 (7-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-22
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-5. SLIDE: File Name Completion Instructor Notes

Key Points

• Convenient typing aid.

• Used anywhere in a path name.

Teaching Tips

Note that after a list of possible file names has been generated, the command line must be
changed with the command-line editor, or you can press another ESC and continue typing.

7-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-6. SLIDE: Command History

Student Notes

The POSIX shell keeps a history file that stores the commands you enter, and allows you to
re-enter them. The history file is maintained across login sessions.

The history command will display the last 16 commands you have entered and each line is
preceded with a command number. You can refer to that command number when re-entering
the command.

You can display more or less than the last 16 commands you entered by typing

history -n

where n is the number of commands to display.

51434S G.02 7-24 (7-11)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

You can display a range of command numbers by typing

history a z

where a z is a command number or range of commands.

The HISTSIZE variable defines how many previous commands you will be able to access (the
default HISTSIZE is 128 lines). The HISTFILE variable specifies a text file that is created
that will store commands that you have entered (the default HISTFILE is .sh_history).

Once command history has been displayed you can recall, edit, or re-enter any of the
commands.

7-25 (7-12) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-26
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-6. SLIDE: Command History Instructor Notes

Purpose

To introduce the concept of the command history stack, and the fact that commands can be
recalled, edited, and re-entered.

Key Points

• The history command displays the last 16 commands.

• The command stack feature requires that certain environment variables be set.

• Using editor commands, you can modify your command line before re-entering the command.

• Using command numbers from the history stack you can re-enter the same command.

Teaching Tips

You should inform your students that the history file will grow, without bound, from session to
session. A sample .logout is provided, which will rename .sh_history to .sh_hist.old
when the user logs out, so that he or she does not have to worry about periodically cleaning
this file out.

Transition

Now that you have located a command you wish to run again, you can either run it as is, or you
can edit it before you run it again. First we’ll look at how to run it using the command number.

7-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-7. SLIDE: Re-entering Commands

Student Notes

You can run any command from the command history by simply typing

r c

where c is the command number. You can also enter the first letter of a command, and execute
the most recent command that begins with that letter. For example,

$ history
1 date
2 cat file1
3 ls -l
$ r d
Mon Jul 4 10:03:13 1994

51434S G.02 7-28 (7-13)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-7. SLIDE: Re-entering Commands Instructor Notes

Transition

Now let’s look at how to recall and re-enter commands using a specific editor.

7-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-8. SLIDE: Recalling Commands

Student Notes

The most widely-used editor embedded in the UNIX shell is vi, and basic functions of this
editor will be used to illustrate command line editing. Detailed use of vi will be covered in a
later module or in a later course.

The shell history feature allows you to recall your previous commands so that you can
re-execute them without retyping the line. This mechanism also allows you to edit previous
command lines using vi. These features can save you a great deal of typing. If you are not a
great typist, they will also save you a lot of time and aggravation.

In order to use vi commands to access the POSIX shell history mechanism, you need the
EDITOR variable set in your environment. If you execute the env command, you should see
this in the listing:

$ env
.
.
EDITOR=/usr/bin/vi

51434S G.02 7-30 (7-14)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

.

.

If this parameter is not set, execute these commands to set it:

$ EDITOR=/usr/bin/vi
$ export EDITOR

This tells the POSIX shell that you want to use the vi editor to recall and edit your previous
commands. Put these commands in your .profile if you want to make sure EDITOR is set
every time you log in. If you do not set the EDITOR variable, it defaults to /usr/bin/ed.

To recall a previous command, simply press Esc . You will not see anything happen on your
screen yet. Pressing Esc puts you in POSIX shell’s vi mode. At this point you have many of
the normal vi commands available to you. For example, pressing k moves you back one
command in your command stack. If you continue to press k , you will see your previous
commands appear on your command line one at a time. Similarly, if you press the j key, you
will scroll through your commands in the opposite direction. When you see the command you
want to execute again on your command line, just press Return .

You can also use the history command to see your last 16 commands. This will list the
number of the command with the command line. If you want to execute a particular command,
type Esc n G, where n is the command line number from the history listing. The G command
in vi moves you to a specific line.

7-31 (7-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-32
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-8. SLIDE: Recalling Commands Instructor Notes

Purpose

To introduce the POSIX shell command recall facility.

Key Points

• The EDITOR variable must be set in order to use the recall and editing features of
/usr/bin/sh . This is normally done in the user’s .profile .

• You must enter ESC to toggle into command mode .

• Just use vi commands to scroll through the command stack.

NOTE: The information on vi has been moved to a later module, so the
instructor will have to teach basic vi skills here to be successful.

• To execute the displayed command, just enter Return .

• The history command displays the last 16 commands.

• Point out that the environment variable EDITOR defaults to /usr/bin/ed , which should
be changed in the user’s .profile . Also note that the arrow keys cannot be used to edit
the command line, even in UNIX.

Activity

1. Enter the following commands:

$ env Note the value of the EDITOR variable
$ ls
$ cd
$ cd /tmp
$ pwd
$ history

2. Use the recall feature to re-execute the command cd. Confirm that you have changed to
that directory by recalling the pwd command.

Transition

What if we need to change a previous command before we can re-execute it?

7-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-9. SLIDE: Command Line Editing

Student Notes

There are times you would like to recall a command and reuse it, but it needs some minor
changes first. By pressing ESC and then k, you will recall the last command. If you know the
command number, you can type command number, then G, to bring up the desired command.
For example, assume the history command reported the following input:

120 env
121 ls
122 cd
123 cd /tmp
124 pwd
125 history

If you typed ESC k and then 122G, the following line would be recalled:

51434S G.02 7-34 (7-16)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

cd

An alternate way of locating commands in the command stack is to press ESC k, as before,
and then type / pattern. For example, after entering the command stack with ESC k, type /
cd to locate the last cd command. If you type another / you would recall the next to last cd
command, and so on. Once you have searched for a pattern, typing n will also search for the
next occurrence.

At this point, you could press Return to execute the command or use the editing commands
discussed on the next slide. If you decided not to execute the command, typing CTRL c cancels
the command.

7-35 (7-17) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-36
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-9. SLIDE: Command Line Editing Instructor Notes

7-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-10. SLIDE: Command Line Editing (continued)

Student Notes

How many times have you been typing a long command line when you found out that you
made a mistake at the very beginning of the line? It happens all the time, and all you can do
is backspace and retype everything after the mistake.

The POSIX shell lets you correct your mistakes and change parts of a command line before
you execute it. Once again, this is done with the vi editing commands.

To change a command line, you must press Esc to enter the vi editing mode. This works on
command lines that you are typing and on the lines that you recalled using Esc and k .

Once you are in editing mode, the vi commands work. For example, x deletes a character, h
and l move you left and right across the line, cw changes a word, dw deletes a word, and so on.

The command stack and line edit features are accessed using vi commands. The advantage
this design provides is that once you are familiar with the vi commands you have the tools
necessary to utilize the command stack; you do not have to learn another interface and set of
commands! Use the following vi commands to edit the command line:

51434S G.02 7-38 (7-18)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

h, Backspace , l, Space , w, b, $ move the cursor
x, dw, p delete and paste text
r, R, cw change text
a, i enter input mode to add new text

To have access to the command stack through vi commands, you need to set the variable
EDITOR=/usr/bin/vi . (Other editor options include gmacs and emacs.)

Consider each command line as a mini-vi session. You are in input mode at the beginning of
each command line. To access previously entered commands, issue the vi command that
scrolls the cursor up. Before you can issue a vi command, though, you must toggle to the
command mode by pressing the ESC key. Now you can enter the vi command to scroll up— k .
As you continue to enter k ’s, you will step back through your previous commands. When the
command is displayed that you wish to run, just press the Return key, and your command will
be executed. This command is then appended to your command stack.

A major benefit of the POSIX shell is that it allows you to enter the current command line, as
well as previous commands. It is not necessary to backspace to the point where a change is
needed or to start over.

This feature is especially useful when entering long command lines that contain simple typing
mistakes, or modifying arguments. Before this feature, you would have had to re-enter the
complete line, or Backspace and retype the line.

With the POSIX shell line editing feature, you can display a previously entered line, and make
changes to the line using vi commands before executing it. The changes can be as simple as a
single character or as extensive as the entire argument list of the command line.

Example

$ cp /usr/lib/X11/app-defaults
Usage: cp f1 f2

cp [-r] f1 ... fn d1

The above was supposed to be cd, not cp. POSIX shell lets you fix the line without retyping it.
Just press Esc and then k and the command line will come back. Type l to move to the p in cp
and use the r command to replace the p with a d. Your command line will now look like this:

$ cd /usr/lib/X11/app-defaults

Now just press Return and the cd command will execute.

If you had problems editing the line and want to try again, just press Break to cancel editing,
and you will get your regular shell prompt back so you can try again.

Do not use the arrow keys when you are editing command lines in the POSIX shell. In
addition to the h and l keys, you can use Backspace and the Space bar.

Transposing characters is another common typing error. Suppose you entered the following
line, with the r and o transposed in ford:

7-39 (7-19) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

$ cd $HOME/tree/car.models/frod/sports
cd: directory not found

Use the following steps to make the repair, and re-execute the line:

ESC

k Re-enter as many times as necessary to display the line.

w Re-enter until the cursor is under the f in frod.

l Cursor should be under the r in frod.

x p Delete the r and paste after the o.

Return Execute the line.

51434S G.02 7-40 (7-20)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-10. SLIDE: Command Line Editing
(continued)

Instructor Notes

Key Points

• Whether you are typing a command line or you have just recalled a command line, you can
edit it using the vi editing commands.

• Pressing Break cancels the editing and puts you back to normal POSIX shell mode.

• The cursor can be anywhere in the command line when the Return is pressed.

• In addition to editing previously entered commands, you can use the vi commands to
modify the current line prior to entering it.

• The plus (+) and minus (-) can be used instead of j and k .

Evaluation Question

Will vi commands such as G, D, p, and s work? Sure! The results may be a little strange,
however, because you can only see one line at a time.

Teaching Tips

If you have students running under windows, and they press the v command to edit a previous
line, and close the window without properly concluding the vi session (they do not enter :wq
or ZZ), newly opened terminal emulator windows can hang in infinite ex command sessions.

If you do a ps -ef | grep vi, you will probably find a vi session still running in the
background. You will have to kill this process in order to open any new terminal emulator
windows.

The fc Command

The POSIX shell supports an alternative command line recall mechanism known as fc, which
stands for fix command. It can be used to list the contents of the history stack, or re-execute
previously entered commands. Command lines can be referenced either through their
command line number or mnemonically through the command name. Enough text needs to be
provided to uniquely identify the command string you want to re-execute.

The history command is an alias that is compiled into the shell. It executes fc -l, but you
can reassign the value of the history alias.

fc is not used as often as the vi feature.

7-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

Syntax:

fc -l List commands
fc -e - X Fix commands

Examples:

$ fc -l displays history stack
6 more funfile
7 man ls
8 ls -F tree
$ fc -e - 8 execute command line number 8

car.models/ ...
$ fc -e - m execute last command that starts with m

man ls
$ fc -e - mo execute last command that starts with mo

more funfile

51434S G.02 7-42
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-43 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-11. SLIDE: The User Environment

Student Notes

Your environment describes many things about your session to the programs that you run. It
describes your session to the system. Your environment contains information concerning the
following:

• The path name to your home directory

• Where to send your electronic mail

• The time zone you are working in

• Who you logged in as

• Where your shell will search for commands

• Your terminal type and size

• Other things your applications may need

51434S G.02 7-44 (7-21)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

For example, the commands vi and more need to know what kind of terminal you are using
so they can format the output correctly.

An analogy to your user environment is your office environment. In the office, characteristics
such as lighting, noise, and temperature are the same for all workers. The factors in your office
that are unique to you make up your specific environment. These factors include what tasks
you are performing, the physical layout of your desk, and how you relate to other people in the
office. Your work environment is unique to you just like your user environment is unique.

Many applications require you to customize your environment in some way. This is done by
modifying your .profile file.

When you log in, you can check your environment by running the env command. It will
display every characteristic that is set in your environment.

In the env listing, the words to the left of the = are the names of the different environment
variables that you have set. Everything to the right of the = is the value associated with each
variable. See env(1) for more details.

Each one of these environment variables is set for a reason. Here are a few common
environment variables and their meanings:

TERM, COLUMNS, and
LINES

Describe the terminal you are using

HOME Path name to your home directory

PATH List of places to find commands

LOGNAME User name you used to log in

ENV and HISTFILE Special POSIX shell variables

DISPLAY Special X Window variable

Some of these variables are set for you by the system, while others are set in /etc/profile
or .profile .

7-45 (7-22) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-46
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-11. SLIDE: The User Environment Instructor Notes

Purpose

To show a sample user environment using env and describe the purpose of some of the more
important variables.

Key Points

• env displays all environment variables set by the system and the two login files.

Presentation Suggestions

If you have an advanced group, you might go into some detail about the other environment
variables that students may see in an env listing and describe their purpose. For example, the
Korn and POSIX shells use the variables ENV, HISTFILE, and HISTSIZE, X11 uses
DISPLAY, WMDIR, and WINDOWID, and so on.

Teaching Question

Ask what the other environment variables that are listed might do.

Transition

There are three especially important items in your environment that may have to be
customized:

• The PATH variable (where to find commands).

• The TERM variable (your terminal type).

• The special environment variables for applications.

7-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-12. SLIDE: Setting Shell Variables

Student Notes

A shell variable is similar to a variable in algebra. It is a name that represents a value.
Variable assignment allows a value to be associated with a variable name. The value can then
be accessed through the variable name. If the value is modified, the new value can still be
accessed through the same variable name. The syntax for assigning a value to a shell variable
is

name=value

This can be typed in at the terminal after a shell prompt or as a line in a shell program.
Notice that there is no white space either before or after the equal sign (=). This ensures that
the shell will not try to interpret the assignment as a command invocation.

It is important to distinguish between the name of a shell variable and the value of a shell
variable. When the variable value is set by performing an assignment statement, such as

51434S G.02 7-48 (7-23)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

TERM=70092

This tells the shell to remember the name TERM, and that when the value of the variable
TERM is requested, respond with 70092.

Variable Naming Restrictions

Variable names must start with an alpha character (a–z and A–Z) and can contain alpha,
numeric, or underscore characters. There is no restriction on the number of characters that a
variable name can contain.

7-49 (7-24) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-50
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-12. SLIDE: Setting Shell Variables Instructor Notes

Purpose

To present the basics of setting shell variables as they relate to the user environment. The
details of setting, exporting, and dereferencing shell variables are presented in the module
"Shell Advanced Features."

Key Points

• A value is assigned to a variable using: name=value

• No spaces around the equal sign

Teaching Tips

The purpose of this topic is to just introduce the concept of setting environment variables. The
details of the shell environment are discussed in another chapter.

The shell does not support variable data types in the sense that a programming language does.
All variable values are stored as strings of characters. However, the POSIX (and Korn) shell
built-in command typeset -i may be used to tell the shell that the variable is an integer;
this will make arithmetic faster. See sh-posix(1) for more information.

You may want to have the students execute the assignment statements presented on the slide.

Teaching Question

Ask students what the outcome of the following command would be:

$ my_cp=cp f1 f2 f3 /tmp

The shell would see the blank spaces, and generate a syntax error message. The blank is the
delimiter between arguments, and the assignment expression does not accept any arguments.

7-51 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-13. SLIDE: Two Important Variables

Student Notes

PATH

The PATH variable is a list of directories that the shell will search through to find commands.
It gives us the ability to type just a command name instead of the full path name to that
command (for example, vi instead of /usr/bin/vi). This is an example of the default PATH
variable:

PATH=/usr/bin:/usr/contrib/bin:/usr/local/bin

This means that when you type a command, the shell will search for that command in
/usr/bin, then /usr/contrib/bin, and so on until it either finds the command or it runs
out of directories to look in. If the command you are trying to run cannot be found in any of
the PATH directories, you will get the command: not found error message on your screen.

51434S G.02 7-52 (7-25)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

TERM

TERM is the environment variable that describes the type of terminal you have. For many
commands to run correctly, they need to know what kind of terminal you are using. For
example, the ls command needs to know how many columns there are on the screen, more
needs to know how many lines there are, and vi needs to know both how many columns and
how many lines there are plus much more information about your terminal type in order to
work properly. The terminal type is set using the terminal’s model number (such as 2392,
70092, and so on).

The default method of setting up the terminal variable is by prompting the user for the proper
terminal type in the following fashion:

TERM=(hp)

At this prompt, you can either press Return to set the terminal type to hp or you can type the
name of the terminal you are using. Terminal type hp is a standard 80 column by 24 line
Hewlett-Packard terminal.

Your administrator may have set up your system so it never asks you about your terminal
type. In this case you should check the TERM variable using the env command. If you are
using a workstation with only one display, the TERM variable is probably set correctly and
should not have to be changed.

If your terminal is acting strangely when you are using commands such as more and vi, check
the TERM variable. If it is set correctly, execute the tset command. This will reset the
terminal characteristics using the terminal type found in the TERM variable.

7-53 (7-26) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-54
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-13. SLIDE: Two Important Variables Instructor Notes

Purpose

To describe the importance of the PATH and TERM variables and how they can be changed.
The TERM is quite often incorrect unless the system administrator has set it up already.
Users need to know what the correct terminal types are for their systems.

Key Points

• The command: not found error normally occurs because an improper command name was
entered or the PATH was not set correctly.

• If you are on a workstation or PC and the TERM variable is correct, you will probably never
have to change it.

• The command eval ‘tset -s type ‘ will set the terminal type in one step.

Teaching Tips

If you feel it is appropriate, you might wish to have the students echo $TERM to see the value
of the TERM variable. Variable substitution is discussed in the module "Shell Advanced
Features."

7-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-14. TEXT PAGE: Common Variable Assignments

Common Variable Assignments

Variable names in BOLD denote variables you would customize.

EDITOR=/usr/bin/vi use vi commands for line editing

ENV=$HOME/.shrc execute $HOME/.shrc at shell startup

FCEDIT=/usr/bin/vi start vi edit session on previous command lines

HOME=/home/user3 designates your login directory

~ (tilde) POSIX shell equivalent for your HOME directory

HISTFILE=$HOME/
.sh_history

defines file that stores all interactive commands entered

LOGNAME=user3 designates your login identifier or user name

MAIL=/var/mail/user3 designates your system mailbox

OLDPWD=/tmp designates previous directory location

PATH=/usr/bin:$HOME/bin designates directories to search for commands

PS1= designates your primary prompt

PS1= ’[!] $ ’ displays command line number with
prompt

PS1=’$PWD $ ’ displays present working directory
with prompt (NOTE: must be
enclosed in single quotes(’), not
double quotes ("))

PS1=’[!]$PWD
$ ’

displays command line number and
present working directory with
prompt

PWD=/home/user3/tree designates your present working directory

SHELL=/usr/bin/sh designates your command interpreter program

TERM=2392a designates the terminal type of your terminal
use the command:
eval ‘tset -s -Q -h‘
During startup, this will read the file /etc/ttytype to
map your terminal port with the appropriate terminal

51434S G.02 7-56 (7-27)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

type. This is useful if you have different models of
terminals attached to your system.

TMOUT=300 If no command or Return is entered in this number of
seconds, the shell will terminate or time out.

TZ=EST5EDT Defines the time zone the system should use to display
appropriate time

The TERM Variable

The TERM variable must be properly defined so that the UNIX system knows the
characteristics of your terminal. Many commands need to know what kind of terminal you are
on so that they can properly display their output. For example, more and vi must know how
many lines and columns are on your display for proper screen control.

The TERM variable can be explicitly defined with a variable assignment, or assigned through
the tset command which depends on the terminal device you are connected to and the
corresponding value in the file /etc/ttytype.

The following table summarizes some of the different terminal models and their associated
TERM value. If your terminal model is not below, you can refer to the subdirectories under
/usr/lib/terminfo.

Terminal Model TERM value

HP 2392a 2392a

HP 70092 70092

HP 70094 70094

vt 100 vt100

Wyse 50 wy50

Medium resolution graphics display
(512 x 600 pixels)

300l or hp300l

High resolution graphics display
(1024 x 768 pixels)

300h or hp300h

HP 98550 display station
(1280 x 1024 pixels)

98550, hp98550, 98550a, or hp98550a

HP 98720 or HP 98721 SRX
(1280 x 1024 pixels)

98720, hp98720, 98720a, hp98720a, 98721,
hp98721, 98721a, or hp98721a

HP 98730 or HP 98731 Turbo SRX
(1280 x 1024 pixels)

98730, hp98730, 98730a, hp98730a, 98731,
hp98731, 98731a, or hp98731a

7-57 (7-28) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-58
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-14. TEXT PAGE: Common Variable
Assignments

Instructor Notes

Teaching Tips

Depending on the level of the students, you might want to point out some other variables such
as:

• ~ (tilde)—not really a variable that can be assigned but is equivalent for $HOME and useful
when you need to designate an absolute path name to a directory or file

• TMOUT—allows users to set a timeout (in seconds) on their terminals

• PS1—can be used to display command number and current directory in your prompt. Not
usually an environment variable.

You might want to present a brief discussion on the TERM variable, since this is crucial to the
proper operation of commands such as more and vi.

7-59 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-15. SLIDE: What Happens at Login?

Student Notes

When you sit down to do work on the system, you see the login: prompt on the screen. When
you type your user name, the system reads your name and prompts you for a password. After
you enter your password, the system checks your user name and password in the system
password file (/etc/passwd). If the user name and password you entered are valid, the system
will place you in your home directory and start the shell for you. We have seen this happen
each time we logged in. Our question is—What really happens when the shell is started?

1. getty

a. Displays the contents of /etc/issue
b. Issues the login prompt
c. Runs login

2. login

a. Validates user name and password
b. Places user in home directory

51434S G.02 7-60 (7-29)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

c. Runs the user’s shell

3. shell

a. Executes /etc/profile (POSIX, Bourne, and Korn shells) or /etc/csh.login (C
shell)

b. Executes .profile or .login in the user’s home directory
c. Executes .kshrc in the user’s home directory (POSIX and Korn shells) if the user has

created this file and if he has declared the ENV variable set to .kshrc in the .profile file
d. Issues the shell prompt

Once the shell starts running, it will read commands from a system command file called
/etc/profile. Whenever someone logs in and starts a shell, this file will be read. There is
also a file called .profile in your home directory. After /etc/profile is read, the shell
reads your own .profile . These two shell programs are used to customize a user’s
environment.

/etc/profile sets up the basic environment used by everyone on the system and .profile
further tailors that environment to your specific needs. Since everyone uses /etc/profile,
the system administrator will take care of it. It is your responsibility, however, to maintain
you own .profile to set up your user environment.

When these two programs are finished, the shell issues the first shell prompt.

A Note About CDE

If you are logging in with CDE, login profile scripts /etc/profile, $HOME/.profile, and
$HOME/.login are normally not used by CDE. You may, however, force $HOME/.profile (for
sh or ksh users) or $HOME/.login (for csh users) to be run by setting the following
environment variable in .dtprofile:

DTSOURCEPROFILE=true

Otherwise, only .dtprofile will be executed at login. .dtprofile contains commented lines
of setup variables you need to set the CDE environment.

7-61 (7-30) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-62
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-15. SLIDE: What Happens at Login? Instructor Notes

Purpose

To introduce how the system sets up the initial user environment.

Key Points

• Everyone who logs in reads /etc/profile when his or her shell is first started.

• Each user has a .profile to further customize his or her environment beyond what
/etc/profile does.

• .dtprofile is read before any other user’s profile files. For more information on
.dtprofile , refer to dtlogin(1).

Evaluation Questions

Which users use /etc/profile?

Answer: Those who log in at the POSIX, Bourne, or Korn Shell.

When is .profile read?

Answer: When a user enters a POSIX, Bourne, or Korn Shell.

Transition

Let’s take a more detailed look at the user environment.

7-63 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-16. SLIDE: The Shell Startup Files

Student Notes

Some environment variables are required to configure your session (for example: PATH,
EDITOR). As you may have seen, when these variables are defined interactively, they must be
redefined every time you log in. To assist you in customizing your session, the files .profile
and .kshrc are available. These are simple shell scripts that will define environment
variables, define aliases, and execute programs upon login. Remember that the POSIX shell
originated from the Korn shell, which originated from the Bourne shell. Therefore, it supports
the same configuration files in addition to the .kshrc file.

.profile

Any user who wishes to customize the default environment provided by his or her system
administrator will create or modify .profile . This file commonly will define or customize
environment variables, set up the user’s terminal, and execute programs such as date during
session log in. A user’s application can also be initiated from .profile by
exec applicationname . In this way the user will never have access to a shell prompt, and

when the application is exited, the user will be logged out.

51434S G.02 7-64 (7-31)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

/etc/profile

The file /etc/profile is a system-wide startup file that is executed by all users who are
running under the Bourne, Korn, or POSIX shell. The system administrator may customize
this to provide all users with a consistent user environment necessary to run their
applications. Regular users generally do not have write access to this file, so they are not
allowed to modify its contents. Users will customize their environment through their personal
copies of .profile or .kshrc.

.kshrc

The POSIX and K shells have an optional configuration file called .kshrc. It is used much
like .profile to configure your user environment. Unlike .profile , however, .kshrc is
read every time you start a new shell, not just when you log in. This allows you to set up your
aliases or even your prompt every time you start a shell. In an environment like X11
Windows, you may have several shells running at once. You can use the .kshrc file so that
every one of those shells looks the same.

The file name .kshrc is not a required file name. When you invoke the shell, it looks for the
file referenced by the ENV variable. This file is often named .kshrc, but it may be named
anything you wish.

To use your .kshrc file, you must put a new environment variable in your .profile (and
.vueprofile if you are using HP VUE). This is the ENV variable. Add these lines to your
.profile:

ENV=~/.kshrc

export ENV

This tells the K shell that you want to use the .kshrc file in your home directory (~/.kshrc).
Now just add all of your alias commands to .kshrc.

If you are in an environment where you are using the Bourne and the POSIX shells, you
might want to store POSIX shell specific variable assignments in this file, since it is never
read by the Bourne shell.

.cshrc and .login

When you log in to the system with the C shell as your login shell, the shell searches your
home directory for a file named .login . If found, the commands in the file are executed
before you get your first shell prompt. This is exactly the same as the .profile file for the
POSIX, Bourne, and the Korn shells. If found, the commands in the file .cshrc are also
executed before you get your first C shell prompt.

7-65 (7-32) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-66
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-16. SLIDE: The Shell Startup Files Instructor Notes

Key Points

• Variables defined in /etc/profile are overridden by definitions in .profile .

• The file name for .kshrc is defined as an environment variable, ENV.

Teaching Tips

You might want to mention the . (dot) command, that allows you to execute your configuration
files such that your current environment is updated, instead of being run in a subshell, which
cannot update your environment. Here is an example:

• Edit the .kshrc file and uncomment one of the PS1 designations.
• Execute

$. .kshrc (or . ./.kshrc, depending on your PATH)

• You will see your prompt updated.

The only other alternative is to log out and log back in to have your modified configuration
files take effect.

If there is interest in the C shell, you might want to mention the .logout file. The C shell
also provides you with a file that is executed when you logout. The file is called .logout and
is found in your home directory.

The .logout file is often used to place clean up commands to be executed when signing off
the system. Typical functions are to record the logout time, remove temporary files, and clear
the screen. In combination with the shell’s history mechanism, the .logout file can be used
to keep a current log of all your session activities.

7-67 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-17. SLIDE: Shell Intrinsics versus UNIX Commands

Student Notes

Some commands that you type at the keyboard are files in directories such as /usr/bin.
These commands are UNIX commands. But many commands, such as cd, pwd, and echo, are
actually built into the shell itself. These commands do not exist as files in the UNIX file system
but are like subroutines of the shell program. These commands are intrinsic shell commands.

Since UNIX commands can exist in several directories, the shell must know where to search
for them. The PATH variable in your shell defines the directories to search and the order in
which they are searched.

UNIX commands can have the same name as shell intrinsics; however, to access these
commands, the user must use the command’s absolute PATH name to inform the shell to use it
rather than the intrinsic of the same name.

51434S G.02 7-68 (7-33)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-17. SLIDE: Shell Intrinsics versus UNIX
Commands

Instructor Notes

Teaching Tips

Have the students look up sh-posix(1) in the manual. Have them read several of the
intrinsic commands to you.

7-69 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-18. SLIDE: Looking for Commands — whereis

Student Notes

UNIX stores its commands in four main directories: /sbin , /usr/bin, /usr/local/bin,
and
/usr/contrib/bin. The whereis command searches these as well as other directories to
determine where a particular command lives. Many users also have a personal bin directory
under their login directory. whereis will not search this directory. Sometimes you lose track
of a command and its manual page. UNIX, through the whereis command, provides a way to
locate commands and their manual pages.

The whereis command accepts a single argument that is the name of a command. It returns
the location of the executable code and the manual page for the command.

51434S G.02 7-70 (7-34)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

The whereis command searches the following directories:

/usr/src/* /usr/sbin /sbin

/usr/bin /usr/lbin /usr/ccs/bin

/usr/share/man/* /usr/local/man/* /usr/local/bin

/usr/local/games /usr/local/include /usr/local/lib

/usr/contrib/man/* /usr/contrib/bin /usr/contrib/games

/usr/contrib/include /usr/contrib/lib /usr/share/man/$LANG/*

/usr/local/man/$LANG/* /usr/contrib/man/$LANG/*

If you want to change the directories that the whereis command searches, use the flags -b,
-m, or -s to limit the search to binary, manual pages, or source code, respectively.

7-71 (7-35) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

51434S G.02 7-72
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-18. SLIDE: Looking for Commands —
whereis

Instructor Notes

Teaching Tips

Point out that the whereis command searches only a small part of the entire file system.

7-73 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-19. TEXT PAGE: Sample .profile

Sample .profile

Set up the command search paths:
PATH=.:/bin:/usr/bin ; export PATH

Define the prompt:
PS1="$ " ; export PS1

Set up the terminal:
The -h option in the following tset command tells the shell to
find the appropriate terminal type to assign to TERM from the
file /etc/ttytype
eval ‘tset -s -Q -h‘

You could also hardcode your terminal type with:
#TERM=2392a

Map control characters
The intr "^C" maps Ctrl-c instead of DEL for program interrupt
stty erase "^H" kill "^U" intr "^C" eof "^D" susp "^S"
stty brkint hupcl ixon ixoff

Uncomment the following line if you want to change default permissions
#umask 022

Set up POSIX shell variables

Inform the POSIX shell to reference the $HOME/.kshrc file
Aliases are usually defined here
ENV=$HOME/.kshrc
export ENV

The following variables are used to set up the command stack
and the history feature
EDITOR=/usr/bin/vi; export EDITOR
HISTSIZE=50; export HISTSIZE
HISTFILE=$HOME/.sh_history; export HISTFILE
FCEDIT=/usr/bin/vi; export FCEDIT

Run the script .logout to clean out the history file
created by the POSIX shell command stack
trap "$HOME/.logout" 0

The following lines can be updated for your application and uncommented
if you want your application to start automatically when logging in
#exec /usr/bin/myapplicationname

51434S G.02 7-74 (7-36)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-19. TEXT PAGE: Sample .profile Instructor Notes

7-75 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-20. TEXT PAGE: Sample .kshrc and .logout

Sample .kshrc

Customize the prompt:
The ! will display the command number in the prompt
#PS1=’[!] $ ’

The $PWD will display the present working directory in the prompt
#PS1=’[!] $PWD $ ’

The hostname will display the system name in the prompt
#PS1="[‘hostname‘] $ "

Define some aliases
alias ls="ls -aCF"
alias history="fc -l"
alias h="fc -l"
alias r="fc -e - "
alias mroe=more

Set up the shell environment
set -o markdirs # All directory names resulting from filename

generation will have a trailing / appended
set -o monitor # Jobs will send messages to screen when complete
set -u # Treat unset parameters as an error when substituting

Sample .logout

As you execute commands, they are appended to your designated history file ($HISTFILE).
The POSIX shell does not provide an automatic mechanism to clean this file out. Therefore,
you might want to execute the following when you log out. This moves the current history file
to an old history file. The next time you log in a new history file will be generated. Therefore,
this file does not grow unreasonably large. Note that in order to use this file with the POSIX
shell, you must also have the appropriate trap set in the .profile file.

Change to login directory
cd

Save the current history file
mv $HOME/.sh_history $HOME/.sh_hist.old

Send messages to the user
clear
echo ‘whoami‘ logged out at ‘date‘
echo

51434S G.02 7-76 (7-37)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-20. TEXT PAGE: Sample .kshrc and
.logout

Instructor Notes

7-77 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-21. LAB: Exercises

Directions

Complete the following exercises and answer the associated questions.

1. Create an alias called h that executes the history command.

2. Check the commands in the .shrc file in your home directory. Add your h alias to the list.

3. On the command line, set up an alias called go to change your working directory to tree
and do an ls -F. Now type in the string go on the command line. What happens? Type pwd
and see where you are. Now change back to your home directory. (Hint: Multiple commands
can be entered on one line when separated with a semicolon.)

4. Log out and then log back in to test your aliases. Why did you have to log out?

5. Make sure you are in your home directory. What happens when you type more f Esc
Esc ? Using this command line, how can you make it display funfile?

6. From your HOME directory copy the file frankenstein to the directory
tree/car.models/ford/sports . Use file name completion to enter frankenstein and
any other directory or file name in the directory path.

51434S G.02 7-78 (7-38)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7. Type this incorrect command without pressing Return :

cd /user/spol/ko/interface

Using command line editing, correct the line to read:

cd /usr/spool/lp/interface

(Do not retype the command).

8. Execute the command ls -F.

Recall this command line and change the ls -F to ls -l using whatever vi editing
commands are necessary. Re-execute the command.

9. Using the command stack, recall the previous copy command, and change frankenstein
to funfile.

10. Recall the previous copy command, and modify it so that you display the contents of the
sports directory.

11. Recall the previous list command, and modify it so that you change directory to the sedan
directory (HINT: the path will be tree/car.models/ford/sedan). Use the pwd command to
confirm your directory change.

7-79 (7-39) 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

12. Change back to your HOME directory, and then use the history command or your h alias
to recall your command stack, then use the r command to re-execute the command to return
you to the sedan directory. Also use the r command to display your present working directory.

51434S G.02 7-80 (7-40)
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

7-21. LAB: Exercises Instructor Notes
Time: 30 minutes

Purpose

To practice some of the features of the POSIX shell. These exercises allow your students to
experiment with some of the basic features of the shell as a command interpreter. They will
set up aliases, practice with the command stack, and practice file name completion.

Solutions

1. Create an alias called h that executes the history command.

Answer:

$ alias h=history

2. Check the commands in the .shrc file in your home directory. Add your h alias to the list.

Answer:

vi .kshrc

add the line

alias h=history

3. On the command line, set up an alias called go to change your working directory to tree
and do an ls -F. Now type in the string go on the command line. What happens? Type pwd
and see where you are. Now change back to your home directory. (Hint: Multiple commands
can be entered on one line when separated with a semicolon.)

Answer:

$ alias go="cd /home/user3/tree; ls -F"
$ go
car.models/ dog.breeds/ fruit/ horses/
$ pwd
/home/user5/tree
$ cd

4. Log out and then log back in to test your aliases. Why did you have to log out?

Answer:

You had to reread the .profile and .kshrc files. The easiest way is to log out and then
log back in.

5. Make sure you are in your home directory. What happens when you type more f Esc
Esc ? Using this command line, how can you make it display funfile?

7-81 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

Answer:

Typing the command line given puts more f on the command line, and the shell beeps
because there is more than one file starting with f. If you type an u and then Esc Esc
again, the file name funfile will be completed for you.

6. From your HOME directory copy the file frankenstein to the directory
tree/car.models/ford/sports . Use file name completion to enter frankenstein and

any other directory or file name in the directory path.

Answer:

$ cp frESC ESC tree/ca ESC ESC ford/sports
$ cp frankenstein tree/car.models/ford/sports

7. Type this incorrect command without pressing Return :

cd /user/spol/ko/interface

Using command line editing, correct the line to read:

cd /usr/spool/lp/interface

(Do not retype the command).

Answer:

$ cd /user/spol/ko/interfaceEsc

Using Backspace and the space bar to position the cursor, use vi commands x, a, cw to make
the appropriate changes. Remember to use Esc whenever you need to leave input mode.

8. Execute the command ls -F.

Recall this command line and change the ls -F to ls -l using whatever vi editing
commands are necessary. Re-execute the command.

Answer:

$ ls -F
$ Esc k

Now use the r command to change ls -F to ls -l and press Return .

9. Using the command stack, recall the previous copy command, and change frankenstein
to funfile.

Answer:

ESC k

$ cp frankenstein tree/car.models/ford/sports
l l l or w

51434S G.02 7-82
© 1999 Hewlett-Packard Company

Module 7

Shell Basics

c w funfile Return

$ cp funfile tree/car.models/ford/sports/

10. Recall the previous copy command, and modify it so that you display the contents of the
sports directory.

Answer:

ESC k

$ cp funfile tree/car.models/ford/sports

c w ls ESC change word cp to ls
w

d w to delete funfile
Return

$ ls tree/car.models/ford/sports

11. Recall the previous list command, and modify it so that you change directory to the sedan
directory (HINT: the path will be tree/car.models/ford/sedan). Use the pwd command to
confirm your directory change.

Answer:

ESC k

$ ls tree/car.models/ford/sports

c w cd ESC change word ls to cd
w w repeat until cursor is under sports
c w sedan ESC change word ls to cd
Return

$ cd tree/car.models/ford/sedan
$ pwd
tree/car.models/ford/sedan

12. Change back to your HOME directory, and then use the history command or your h alias
to recall your command stack, then use the r command to re-execute the command to return
you to the sedan directory. Also use the r command to display your present working directory.

Answer:

$ cd
$ history
$ r ’cd t’ or r cmd_number
$ r p

7-83 51434S G.02
© 1999 Hewlett-Packard Company

Module 7

Shell Advanced Features

51434S G.02 7-84
© 1999 Hewlett-Packard Company

Module 8 — Shell Advanced Features

Objectives

Upon completion of this module, you will be able to do the following:

• Use shell substitution capabilities, including variable, command, and tilde substitution.

• Set and modify shell variables.

• Transfer local variables to the environment.

• Make variables available to subprocesses.

• Explain how a process is created.

8-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-2
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

Overview of Module 8

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

To teach students to work effectively in the POSIX shell environment, using and setting shell
variables, manipulating the environment, and interacting with child processes

Time

Lab 45 minutes

Lecture 90 minutes

Prerequisites

m50m Shell Basics

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

8-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

51434S G.02 8-4
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-1. SLIDE: Shell Substitution Capabilities

Student Notes

There are three types of substitution in the shell:

• Variable substitution

• Command substitution

• Tilde substitution

Substitution methods are used to speed up command-line typing and execution.

51434S G.02 8-6 (8-2)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-1. SLIDE: Shell Substitution Capabilities Instructor Notes

Teaching Tips

This is just an introductory slide.

8-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-2. SLIDE: Shell Variable Storage

Student Notes

Built into the shell are two areas of memory for use with shell variables: the local data area
and the environment. Memory will be allocated from the local data area when a new variable
is defined. The variables in this area are private to the current shell, and are often referred to
as local variables. Any subsequent subprocesses will not have access to these local variables.
However, variables that are moved into the environment can be accessed by subprocesses.

There are several special shell variables that are defined for you through your login process.
Many of these variables are stored in the environment; some, such as PS1 and PS2, are
usually stored in the local data area. The values of these variables can be changed to
customize characteristics of your terminal session.

51434S G.02 8-8 (8-3)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

The env command can be used to display all of the variables that are currently held in the
environment, for example,

$ env
MANPATH=/usr/share/man:/usr/contrib/man:/usr/local/man
PATH=/usr/bin:/usr/ccs/bin:/usr/contrib/bin:/usr/local/bin
LOGNAME=user3
ERASE=^H
SHELL=/usr/bin/sh
HOME=/home/user3
TERM=hpterm
PWD=/home/user3
TZ=PST8PDT
EDITOR=/usr/bin/vi

8-9 (8-4) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-10
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-2. SLIDE: Shell Variable Storage Instructor Notes

Key Points

• Two areas of memory available to hold shell variables.

• Local variables:

— Private variables accessible only by current shell (process)

— Can be moved (exported) to the environment

— Naming convention — lowercase characters

• Environment variables:

— Accessible by subprocesses

— Naming convention — uppercase characters

— Many are defined during your login process that set up session characteristics

• Because PS1 is defined through a variable, it can be customized to any character string that
you wish.

— Note that the prompt variables PS1 and PS2 are usually stored locally, not in the
environment. This makes it easier to differentiate between a parent and child shell
process. If a parent shell prompt is customized and a child shell is spawned, the child
shell will not inherit the prompt since PS1 is not in the environment but will use the
default prompt instead.

Teaching Tips

Be sure to review the environment variables that are presented in the student notes. These
variables are important in defining different characteristics of a terminal session.

8-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-3. SLIDE: Setting Shell Variables

Student Notes

When a user creates a new variable, such as color, it will be stored in the local data area.
When assigning a new value to an existing environment variable, such as PATH, the new
value will replace the old value in the environment.

51434S G.02 8-12 (8-5)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-3. SLIDE: Setting Shell Variables Instructor Notes

8-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-4. SLIDE: Variable Substitution

Student Notes

Each variable that is defined will have an associated value. When a variable name is
immediately preceded by a dollar sign ($), the shell will replace the parameter with the value
of the variable. This procedure is known as variable substitution and is one of the tasks the
shell performs before executing the command entered on the command line. After the shell has
made all of the variable substitutions on the command line, it will execute the command.
Therefore, variables can also represent commands, command arguments, or a complete
command line. This provides a convenient mechanism to rename frequently issued long path
names or long command strings.

Examples

This slide demonstrates some uses of shell variables. Notice that variable substitution can
appear anywhere in the command line, and multiple variables can be referenced in one
command line. As seen on the slide, an existing value of a variable can even be used to update
the current value of the variable.

$ echo $PATH

51434S G.02 8-14 (8-6)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

/usr/bin:/usr/contrib/bin:/usr/local/bin
$ PATH=$PATH:$HOME:.

$ echo $PATH

/usr/bin:/usr/contrib/bin:/usr/local/bin:/home/user3:.
$ echo $HOME

/home/user3
$ file_name=$HOME/file1 file_name=/home/user3/file1
$ more $file_name more /home/user3/file1
<contents of /home/user3/file1>

NOTE: The echo $name command provides an effective method to display the
current value of a variable.

The Use of {}

Assume you have a variable called file and a variable called file1. They can be assigned with
the following statements:

$ file=this

$ file1=that

$ echo $fileand$file1 looks for variables fileand, file1
sh: fileand: parameter not set
$ echo ${file}and$file1

looks for variables file, file1

thisandthat

The curly braces can be used to delimit the variable name from the surrounding text.

8-15 (8-7) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-16
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-4. SLIDE: Variable Substitution Instructor Notes

Key Points

• Variable substitution is done by the shell, not by the command.

• Variable substitution occurs prior to the execution of the command.

• All dereferenced variables are passed onto the command.

• Variables can be used to assign values to other variables.

• A variable’s value can be used to define itself.

• echo $name is an effective method of displaying a variable value.

• Point out that the PATH variable uses a : delimiter.

Teaching Tips

Review the examples on the slides.

Teaching Questions

What happens when the following are entered?

$ HOME

The shell tries to execute a command HOME. The shell will always try to execute the first
parameter on the command line as a program. You will get an error.

$ $HOME

The shell tries to execute a command /home/user3, since $HOME is assigned to the value
/home/user3 . You will get an error.

8-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-4. SLIDE: Variable Substitution (Continued)

Student Notes

The use of an absolute path name for the value of a variable that references a file or directory
allows you to be anywhere in the file hierarchy and still access the desired file or directory.

51434S G.02 8-18 (8-8)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

Consider the examples on the slide:

$ dir_name=tree/car.models/ford

$ echo $dir_name echo tree/car.models/ford
tree/car.models/ford
$ ls -F $dir_name ls -F tree/car.models/ford
sedan/ sports/

$ my_ls="ls -aFC" use quotes so shell ignores space
$ $my_ls ls -aFC
./ file.1 tree/
../ file.2
$my_ls $dir_name ls -aFC tree/car.models/ford
./ ../ sedan/ sports/
$ cd /tmp
$ dir_name=/home/user2/tree/dog.breeds/retriever

$ $my_ls $dir_name ls -aFC /home/user2/tree/dog.breeds/retriever
./ ../ golden labrador mixed

8-19 (8-9) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-20
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-4. SLIDE: Variable Substitution
(Continued)

Instructor Notes

Teaching Tips

Discuss the advantage of the second assignment of dir_name to an absolute path over the first
assignment of dir_name to a relative path.

The -C option with ls will cause the ls output to be displayed in multicolumn format.

8-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-5. SLIDE: Command Substitution

Student Notes

Command substitution is used to replace a command with its output within the same command
line. The standard syntax for command substitution, and the one encouraged by POSIX, is
$(command).

Command substitution allows you to capture the output of a command and use it as an
argument to another command or assign it to a variable. As in variable substitution, the
command substitution is performed before the leading command on the command line. When
the command output contains carriage return/line feeds, they will be replaced with blank
spaces.

Command substitution is invoked by enclosing the command in parentheses preceded by a
dollar sign, similar to variable substitution.

Any valid shell script may be put in command substitution. The shell scans the line and
executes any command it sees after the opening parenthesis until a matching, closing
parenthesis is found.

51434S G.02 8-22 (8-10)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

An alternate form of command substitution uses grave quotes surrounding the command, as in

‘command‘

It is equivalent to $(command), and is the only form recognized by the Bourne Shell. The
‘command‘ form should be used in scripts that may be run by POSIX, Korn, and Bourne Shell.

Examples

Command substitution is very commonly used to assign the output of a command to a variable
for later reference or manipulation. Normally the pwd command sends its output to your
screen. When you execute the assignment

$ curdir=$(pwd) OR $ curdir=‘pwd‘

the output of the pwd command is assigned to the variable curdir.

Consider this example:

$ echo date
date
$ banner date
######
#
######
#
######
$ echo $(date) executes: echo Thu Jul 11 16:40:32 EDT 1994
Thu Jul 11 16:40:32 EDT 1994
$ banner $(date) executes: banner Thu Jul 11 16:40:32 EDT 1994

####### # # # # # # # # ## ##
#
#
#
###

Normally the date command sends its output to your screen. When the command banner
date is executed, the string date is bannered. In the second example when date is used with
command substitution, the shell will first execute the date command, and replace the date
argument with the output of the date command. Therefore, it will display the ten first
characters of banner Thu Jul 11 16:40:32 EDT 1994.

8-23 (8-11) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-24
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-5. SLIDE: Command Substitution Instructor Notes

Key Points

• Command substitution is executed before the leading command on the command line.

• It is useful to assign the output of a command to a variable.

Teaching Tips

Encourage the students to type in the commands on the slide and in the student notes.

For POSIX and Korn Shell, there is another special command substitution for the cat
command. Normally, you type

$ echo "$(cat file)"

and the contents of file are displayed. This quicker and shorter form produces the same results:

$ echo "$(< file)"

OR

$ echo "‘< file‘"

NOTE: The double quotes are not a necessary part of the syntax of the above
commands, but they are necessary to quote the newline characters
generated by the cat command. If the double quotes are omitted, the
shell will interpret the newlines as white space and cat the contents of
the file without breaks between lines.

8-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-6. SLIDE: Tilde Substitution

Student Notes

If a word begins with a tilde (~), tilde expansion is performed on that word. Note that tilde
expansion is provided only for tildes at the beginning of a word, that is, /~home/user3 has no
tilde expansion performed on it. Tilde expansion is performed according to the following rules:

• A tilde by itself or in front of a / is replaced by the path name set in the HOME variable.

• A tilde followed by a + is replaced with the value of the PWD variable. PWD is set by cd to
the new, current, working directory.

• A tilde followed by a - is replaced with the value of the OLDPWD variable. OLDPWD is set
by cd to the previous working directory.

• If a tilde is followed by several characters and then a /, the shell checks to see if the
characters match a user’s name on the system. If they do, then the ~characters sequence
is replaced by that user’s login path.

Tildes can be put in aliases:

51434S G.02 8-26 (8-12)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

$ pwd
/home/user3
$ alias cdn=’cd ~/bin’
$ cdn
$ pwd
/home/user3/bin

8-27 (8-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-28
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-6. SLIDE: Tilde Substitution Instructor Notes

Key Points

• Probably the most common use of the tilde is to substitute for a user’s home directory.

8-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-7. SLIDE: Displaying Variable Values

Student Notes

Variable substitution, $variable, can be used to display the value of an individual variable,
regardless of whether it is in the local data area or the environment.

The env command can be used to display all of the variables that are currently held in the
environment.

The set command will display all of the currently defined variables, local and environment,
and their values.

The unset command can be used to remove the current value of the specified variable. The
value is effectively assigned to NULL.

Both set and unset are shell built-in commands. env is the UNIX command /usr/bin/env.

51434S G.02 8-30 (8-14)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-7. SLIDE: Displaying Variable Values Instructor Notes

Key Points

• Variable substitution is the easiest way to display the value of a single variable — local or
environment.

• The env command displays all of the currently defined variables in the environment only.

• The set command displays all of the currently defined variables (local and environment).

• The unset command deletes the specified variable.

Note that env may be invoked with arguments. The syntax for the command is

env [-] [-i] [name=value] ... [command [arguments ...]]

env obtains the current environment, modifies it according to its arguments, then executes the
command with the modified environment. Arguments of the form name=value are merged into
the inherited environment before the command is executed. The -i option causes the inherited
environment to be ignored completely so that the command is executed with exactly the
environment specified by the arguments. The - option is obsolete and has the same effect as
the -i option. See env(1) for more information.

The command

set -u

can be issued to cause an error to be generated when an undefined variable is encountered, as
in

$ echo $fff
sh: fff: parameter not set
$

To just ignore variables that are not set, issue

set +u

Undefined variables will just be assigned to NULL:

$ echo $fff
$

8-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-8. SLIDE: Transferring Local Variables to the Environment

Student Notes

The diagram on the slide illustrates transferring the variables color and count into the
environment by executing the following commands:

$ color=lavender
$ export color
$ export count=3
$ export
export PATH=/usr/bin:/usr/ccs/bin:/usr/contrib/bin:/usr/local/bin
export color=lavender
export count=3

51434S G.02 8-32 (8-15)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

In order for a variable to be available to other processes, it must exist in the environment.
When a variable is defined, it is stored in the local data space and must be exported to the
environment.

The export variable command will transfer the specified variable from the local data space to
the environment data space. export variable=value will assign (possibly update) the value of
a variable, and place it in the environment. With no arguments, the export command is
similar to the env command in that it will display the names and values of all exported
variables. Note that
export is a shell built-in command.

8-33 (8-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-34
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-8. SLIDE: Transferring Local Variables to
the Environment

Instructor Notes

Key Points

• Variables must be in the environment to be made available to child processes.

• The export variable command transfers a local variable to the environment.

8-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-9. SLIDE: Passing Variables to an Application

Student Notes

Every application or command on the system will have an associated program file stored on
the disk. Many of the standard UNIX system commands are found under the directory
/usr/bin. When a command is requested to run, the associated program file must be located,

the code loaded into memory and then executed. The running program is known as a UNIX
system process.

When you log in to your UNIX system, the shell program will be loaded, and a shell process
executed. When you enter the name of an application (or command) to run at the shell prompt,
a child process is created and executed through:

1. A fork which duplicates your shell process, including the program code, the environment
data space, and the local data space.

2. An exec which replaces the code and local data space of the child process with the code
and local data space of the requested application.

3. The exec will conclude by executing the requested application process.

51434S G.02 8-36 (8-17)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

While the child process is executing, the shell (the parent) will sleep, waiting for the child to
finish. Once the child finishes execution, it terminates, releases the memory associated with
its process, and wakes up the parent who is now ready to accept another command request.
You know the child process has concluded when the shell prompt returns.

Local versus Environment Variables

Anytime a new variable is defined, it will be stored in the local data area associated with the
process. If a child process requires access to this variable, the variable must be transferred
into the environment using export. Once a variable is in the environment, it will be made
available to all subsequent child processes because the environment is propagated to each
child process.

On the slide, before the vi command is issued, the color variable is in the shell’s local data
area, and the TERM variable is in the environment. When the vi command is issued, the shell
performs a fork and exec; the local data area of the child process is overwritten by the child’s
program code, but the environment is passed, intact, to the child process. Therefore the child
process vi does not have access to the color variable, but it does have access to the TERM
variable. The vi editor needs to know the type of terminal the user is using to properly format
its editing screen. It gets this information by reading the value in the TERM variable which is
available in its environment.

Therefore we see that one way of passing data to (child) processes is through the environment.

8-37 (8-18) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-38
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-9. SLIDE: Passing Variables to an
Application

Instructor Notes

Key Points

• Discuss the fork and exec commands.

• This slide illustrates why environment variables are propagated to child processes, whereas
local variables are not.

8-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-10. SLIDE: Monitoring Processes

Student Notes

Every process that is initiated on the system is assigned a unique identification number,
known as a process ID (PID). The ps command displays information about processes currently
running (or sleeping) on your system, including the PID of each process and the PID of each
process’ parent (PPID). Through the PID and PPID numbers, you can trace the lineage of any
process that is running on your system. The ps command will also report who owns each
process, which terminal each process is executing through, and additional useful information.

51434S G.02 8-40 (8-19)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

The ps command is commonly invoked with no options, which gives a short report about
processes associated only with your terminal session, as follows:

$ ps
PID TTY TIME COMMAND
4702 ttyp4 0:00 sh
4894 ttyp4 0:00 ps

As you can see above, the command reveals that only the shell, sh, and the ps command are
running. Observe the PID numbers of the two processes. When invoked with the -f option, as
seen on the slide, the ps command produces a full listing, which includes the PPID numbers,
plus additional information. We can see that the ps -f command runs as a child of the shell
sh because its PPID number is the same as the PID number of the shell.

Remember that a shell is a program just like any other UNIX command. If we issue the ksh
command at our current POSIX shell prompt, a fork and exec will take place, and a Korn
shell child process will be created and will start executing. When we then execute another
ps -f, we see that, as expected, ksh runs as a child of the original shell, sh, and the new ps

command runs as a child of the Korn shell.

The exec command is available as a shell built-in command. If instead of running ps -f in
the usual way, we instead exec ps -f, the program code for ps will overwrite the program
code for the current process (ksh). This is evident because the PID of the ps -f is the same
number as ksh used to be. When ps -f terminates, we will find ourselves back at our original
POSIX shell prompt.

8-41 (8-20) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-42
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-10. SLIDE: Monitoring Processes Instructor Notes

Key Points

• ps output

• PID

• PPID

• Point out the parentage of the sh and ksh and ps commands.

NOTE: If the fair share scheduler has been installed on your system, the
following options are also available for the ps command:

-F Print the fair share group process association.

-G fglist Restrict listing to data about processes whose fair share
group ID numbers or fair share group names are given
in fglist.

Additionally, the following column is added to the standard output:

FSID (f,l) The fair share group ID of the process; the fair share
group ID under the -l option, and the fair share group
name under the -f option. If neither the -l option nor
the -f option are specified when the -F option is
specified, the fair share group name is printed.

8-43 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

Teaching Tips

You may want to diagram the slide similarly:

---- $ps -f $ksh $
(sh)------ -- ---
---- | | | |

PID=4702 | | | $exec |
| ------- | | ------- $ps -f ps ------- |
-(ps -f)- -(ksh)------ ---(ps -f)-
------- ------- | | -------
PID=4895 PID=4896 | | PID=4896

| ------- |
-(ps -f)-

PID=4898

Details of the ps command are presented in the module "Process Control."

51434S G.02 8-44
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-11. SLIDE: Child Processes and the Environment

Student Notes

The slide illustrates that child processes cannot alter their parent process’ environment.

$ ps -f
UID FSID PID PPID C STIME TTY TIME COMMAND

user3 default_system 4702 1 0 08:46:40 ttyp4 0:00 -sh
user3 default_system 4895 4702 1 09:58:20 ttyp4 0:00 ps -f

If an initial ps -f command were executed, it would reveal that only our login shell, sh (and
ps, of course) is running. As seen on the slide, we will assign the value of lavender to the
variable color and export it into the environment. Next we will execute a child process. The
ksh command is invoked, creating a child Korn shell process. The ps -f command which
follows confirms this. Of course the parent shell’s environment has been passed to the child
Korn shell, and we observe that the variable color has the value lavender. We will then change
the value of the variable color by assigning a value of red. The echo command confirms that
the value of the variable color has changed in the child shell’s environment. When we exit the

51434S G.02 8-46 (8-21)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

child shell and return to the parent shell, we see that the parent’s environment has not been
altered by the child process, and the variable color has retained the value lavender.

8-47 (8-22) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-48
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-11. SLIDE: Child Processes and the
Environment

Instructor Notes

Teaching Questions

Have the students execute the commands presented on the slide to prove that a child process
cannot alter the environment of its parent.

8-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-12. LAB: The Shell Environment

Directions

Complete the following exercises and answer the associated questions.

1. Using command substitution, assign today’s date to the variable today.

2. What is an easy way to list the contents of another user’s home directory?

3. Set a shell variable named MYNAME equal to your first name. How do you see the
contents of that variable?

4. Now start a child shell by typing sh. Look at the contents of MYNAME now. What
happened? Exit the child shell (use Ctrl + d or exit). Does the parent still know about the
variable MYNAME?

5. Enter the command in the parent shell to enable the child to see the contents of
MYNAME. How can you see all variables that the child shell will inherit?

6. Start another child shell. Look at the variable MYNAME. Now set the variable MYNAME
equal to your partner’s name. Is MYNAME now a local or environment variable? List the
environment variables. What is MYNAME set to?

51434S G.02 8-50 (8-23)
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

7. Now remove the variable MYNAME from the child shell. Does MYNAME exist either
locally or within the environment of the child shell? Why or why not?

8. Kill the child shell and return to your LOGIN shell. Does MYNAME still exist? Why or
why not? What commands did you use to verify this?

9. Modify your shell prompt so that it displays: good_day$. What happens to your prompt
when you log out and log back in?

10. Modify your shell prompt so that it displays your user identification name. For example if
you are logged in as user3 the prompt will display: user3$. (Hint: Is there an environment
variable that stores your login identifier?)

11. Set a variable dir equal to /usr/bin/ls. How can you use the value of this variable to
execute the ls command? Will the variable dir accept directory or file name arguments?

8-51 (8-24) 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

51434S G.02 8-52
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

8-12. LAB: The Shell Environment Instructor Notes
Time: 45 minutes

Purpose

To become familiar with the shell as an interpreter of commands. This is achieved by studying
shell variables and simple commands.

Notes to the Instructor

Introductory Exercises 1–8

Intermediate Exercises 9–11

The "Introductory" exercises are for students who need additional practice with the basic
concepts of the module, such as substitution, assigning variable values, and the effect of the
local versus the environment variables.

The "Intermediate" exercises also provide the student with practice assigning and referencing
variables, but they are a little more complex. This section will request the student to modify
his or her prompt, and PATH variables.

Solutions

1. Using command substitution, assign today’s date to the variable today.

Answer:

$ date
Fri Apr 2 11:57:21 EST 1993
$ today=$(date)
echo $today
Fri Apr 2 11:57:21 EST 1993

2. What is an easy way to list the contents of another user’s home directory?

Answer:

If the other user’s name was mike, you could get a listing of his home directory using:

$ ls ~mike

3. Set a shell variable named MYNAME equal to your first name. How do you see the
contents of that variable?

8-53 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

Answer:

$ MYNAME=user3
$ echo $MYNAME
user3

4. Now start a child shell by typing sh. Look at the contents of MYNAME now. What
happened? Exit the child shell (use Ctrl + d or exit). Does the parent still know about the
variable MYNAME?

Answer:

The MYNAME variable was set in the parent shell’s local data area. When the child shell
was spawned, it inherited only the parent’s environment variables.

When the child shell is dead, the parent wakes up and remembers all that it knew. You can
test this by typing

$ echo $MYNAME

5. Enter the command in the parent shell to enable the child to see the contents of
MYNAME. How can you see all variables that the child shell will inherit?

Answer:

$ export MYNAME

$ env

6. Start another child shell. Look at the variable MYNAME. Now set the variable MYNAME
equal to your partner’s name. Is MYNAME now a local or environment variable? List the
environment variables. What is MYNAME set to?

Answer:

$ MYNAME=user2

$ env

MYNAME is still an environment variable in the child shell.

7. Now remove the variable MYNAME from the child shell. Does MYNAME exist either
locally or within the environment of the child shell? Why or why not?

Answer:

$ unset MYNAME

MYNAME will no longer exist in the child shell because the unset command removes it.

8. Kill the child shell and return to your LOGIN shell. Does MYNAME still exist? Why or
why not? What commands did you use to verify this?

51434S G.02 8-54
© 1999 Hewlett-Packard Company

Module 8

Shell Advanced Features

Answer:

$ Ctrl + c

Return

The removal of the variable in the child shell does not have an effect on the variable in the
parent shell. Therefore, MYNAME still exists in the environment of the parent shell. To
verify this, you can display the environment variables in the parent shell.

$ env

9. Modify your shell prompt so that it displays: good_day$. What happens to your prompt
when you log out and log back in?

Answer:

$ PS1=good_day$
good_day$

When you log out and log back in the prompt reverts to the default.

10. Modify your shell prompt so that it displays your user identification name. For example if
you are logged in as user3 the prompt will display: user3$. (Hint: Is there an environment
variable that stores your login identifier?)

Answer:

$ PS1=$LOGNAME or $ PS1=$(whoami)
user3 user3

11. Set a variable dir equal to /usr/bin/ls. How can you use the value of this variable to
execute the ls command? Will the variable dir accept directory or file name arguments?

Answer:

$ dir=/usr/bin/ls
$ $dir

$dir will be substituted with /usr/bin/ls , and then execute the command
/usr/bin/ls . Yes this will accept command line arguments. Try by executing:

$ $dir $HOME /tmp /var

8-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 8

File Name Generation

51434S G.02 8-56
© 1999 Hewlett-Packard Company

Module 9 — File Name Generation

Objectives

Upon completion of this module, you will be able to do the following:

• Use file name generation characters to generate file names on the command line.

• Save typing by using file name generating characters.

• Name files so that file name generating characters will be more useful.

9-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

51434S G.02 9-2
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

Overview of Module 9

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module is designed to introduce the student to file name generating characters. The
student will learn to save typing by using file name expansion instead of complete file names
on the command line.

Time

Lab 30 minutes

Lecture 30 minutes

Prerequisites

m51m Shell Advanced Features

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

9-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r--r-- 1 karenk users 20 May 28 16:12 file.1
-rw-r--r-- 1 karenk users 15 May 28 16:12 file.2
-rw-r----- 1 karenk users 3081 May 28 16:12 funfile
-rw-r--r-- 1 karenk users 61 May 28 16:12 herfile
-rw-r--r-- 1 karenk users 216 May 28 16:12 libtest.c
-rw-r--r-- 1 karenk users 182 May 28 16:12 math.c
-rw-r--r-- 1 karenk users 168 May 28 16:12 math.f
-rw-r--r-- 1 karenk users 189 May 28 16:12 math.p
-rw-r--r-- 1 karenk users 39 May 28 16:12 mod1.c
-rw-r--r-- 1 karenk users 39 May 28 16:12 mod2.c
-rw-r--r-- 1 karenk users 39 May 28 16:12 mod3.c
-rw-r--r-- 1 karenk users 37 May 28 16:12 myfile
-rw-r--r-- 1 karenk users 86 May 28 16:12 myprog.c
-rw-r--r-- 1 karenk users 97 May 28 16:12 myprog.f
-rw-r--r-- 1 karenk users 110 May 28 16:12 myprog.p
-rw-r--r-- 1 karenk users 128 May 28 16:12 part1.c
-rw-r--r-- 1 karenk users 63 May 28 16:12 part2.c
-rw-r--r-- 1 karenk users 23 May 28 16:12 ourfile
-rw-r--r-- 1 root other 77 May 28 16:12 root_file
-rw-r--r-- 1 karenk users 163 May 28 16:12 xdbtest.c
-rw-r--r-- 1 karenk users 29 May 28 16:12 yourfile

filegen:
total 0
-rw-r--r-- 1 karenk users 0 May 28 16:12 Abc
-rw-r--r-- 1 karenk users 0 May 28 16:12 Abcd
-rw-r--r-- 1 karenk users 0 May 28 16:12 abc
-rw-r--r-- 1 karenk users 0 May 28 16:12 abcdemf
-rw-r--r-- 1 karenk users 0 May 28 16:12 e35f
-rw-r--r-- 1 karenk users 0 May 28 16:12 efg
-rw-r--r-- 1 karenk users 0 May 28 16:12 fe3f
-rw-r--r-- 1 karenk users 0 May 28 16:12 fe3fg

51434S G.02 9-4
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-1. SLIDE: Introduction to File Name Generation

Student Notes

The shell provides a time-saving feature for typing file names. The feature is called file name
generation, or file name expansion. You can find file names that match a pattern, for
example, all file names that end in .c or all file names that begin with draw. You enter special
characters that can stand for one or more characters in a file name. The shell will expand the
requested file name pattern into the corresponding file names before the command is executed.
Therefore, the file name generating characters can save you a lot of typing.

The file name generating feature is useful because most applications will define naming
conventions for their files. Once you know what the naming conventions are, you can use file
name expansion to access just the files whose names contain the desired pattern. For example,
source code for C programs conventionally ends in .c, and word processors may use .doc as
an extension for document files.

51434S G.02 9-6 (9-2)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-1. SLIDE: Introduction to File Name
Generation

Instructor Notes

Key Points

• File name generating characters are interpreted by the shell.

• File names are generated before the command is executed.

• File name generating characters are not wildcards!

• Wildcards are interpreted by the command. This is useful when looking for files that follow
a naming convention.

9-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-2. SLIDE: File Name Generating Characters

Student Notes

The special characters that are interpreted by the shell for file name generation are:

? Matches any single character (except a leading dot).

[] Defines a class of characters from which one will be matched (unless it is a
leading dot). Within this class, a hyphen (-) can be used between two ASCII
characters to mean all characters in that range, inclusive, and an exclamation
point (!) can be used as the first character to negate the defined class.

* Matches zero or more characters (except a leading dot).

We will see each of these characters in detail.

51434S G.02 9-8 (9-3)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-2. SLIDE: File Name Generating
Characters

Instructor Notes

Teaching Tip

• Introduce the special characters used. We will define each of them in detail over the next
several slides.

9-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-3. SLIDE: File Name Generation and Dot Files

Student Notes

Dot files are files whose names begin with the dot (.) character, such as .profile, .kshrc
and .exrc. These files are normally hidden; you must use the ls -a command to display
these file names.

The dot files are hidden from the file name generating characters as well. Therefore, the file
name generating characters will never generate a file name that begins with a leading dot. If
you would like to display the file names that begin with a dot, you will need to explicitly
provide the leading dot as part of the file name pattern that you are trying to match.

51434S G.02 9-10 (9-4)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-3. SLIDE: File Name Generation and Dot
Files

Instructor Notes

Teaching Tips

• Point out that the shell will not generate a leading dot. It must be matched explicitly. We
will see some examples of this.

9-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-4. SLIDE: File Name Generation — ?

Student Notes

A question mark matches any single character, but it will not match a leading dot.

File name generation is accomplished by the shell before commands are invoked. Thus, in the
example, the shell generates file names that match the patterns specified. All resulting file
names are passed as arguments to the echo command. If there is no match, then the pattern
itself is passed as the argument.

NOTE: The file name generating feature is more commonly used with file
manipulation commands such as ls, more, and cp. The echo command
is useful for confirming how the shell will expand the requested pattern,
especially when using destructive commands such as rm. Remember: once
a file is removed, it is gone.

51434S G.02 9-12 (9-5)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-4. SLIDE: File Name Generation — ? Instructor Notes

Key Points

• File name generation is performed before the command is executed.

• ? matches any single character; it represents one character position.

• Even though examples use the echo command, file name generating is more commonly used
with the file manipulation commands.

• Be careful when using file name generation characters with the rm command — when a file
is removed it is GONE!

• Examples on the slide:

$ echo ??? ??? generates file names that contain three characters.

$ echo abc? abc? generates file names that begin with abc and end with any
character.

$ echo ??a?? ??a?? generates file names that contain five characters with an a in
the middle.

$ echo .?? .?? generates file names that begin with a dot (.) followed by two
characters.

$ echo ? ? generates file names that contain 1 character.

Teaching Tip

• Point out that if no match is found, the pattern is not replaced by a list of file names, and
the pattern will be passed as the argument to the command.

9-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-5. SLIDE: File Name Generation — []

Student Notes

Brackets are used to specify a character class. A character class matches any single
character from the enclosed list.

An exclamation point (!) as the first item inside the bracket negates the character class; that
is, the class stands for the class of all characters not listed inside the brackets.

If a hyphen (-) is placed between two characters within brackets, the character class will be
all characters in the ASCII sequence — see ascii(5) — from the first character to the last
one inclusive. Thus the classes [!123456789] and [!1-9] both stand for any character
except the digits 1 through 9.

A leading dot (.) cannot be matched with a character class.

51434S G.02 9-14 (9-6)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-5. SLIDE: File Name Generation — [] Instructor Notes

Key Points

• Even if a dot is defined in the class, it will not be matched as the first character in a file
name.

• There is not a character class range [a-Z]; you must use [a-zA-Z].

• Examples on the slide:

$ echo [abc]?? [abc]?? generates three-character file names that begin with
an a, b, or c.

$ echo [1-9][A-Z] [1-9][A-Z] generates two-character file names that begin
with a digit 1, 2, ... or 9 and end with an uppercase letter.

$ echo [!A-Z]?? [!A-Z]?? generates three-character file names that do not
begin with an uppercase letter.

9-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-6. SLIDE: File Name Generation — *

Student Notes

An asterisk (*) matches any string of zero or more characters.

As usual in file name generation, an asterisk (*) will not match a leading dot.

51434S G.02 9-16 (9-7)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-6. SLIDE: File Name Generation — * Instructor Notes

Key Points

• Examples on the slide:

$ echo * * generates all file names except dot files.

$ echo .* .* generates all dot files.

$ echo *.dat .dat generates all file names ending in .dat except dot files.

$ echo *e *e generates all file names ending in e except dot files.

Teaching Tips

• Again, show that an asterisk (*) will not match a leading dot (.). At this point, you should
mention again that file name generating characters can be used with any UNIX system
command, not just echo, as it is the shell that is expanding them and not the command
itself.

• You might want to discuss the differences and implications of executing the command
ls .* as opposed to echo .*. Because (.) and (..) are generated, ls will not only list the

dot files, but also the complete contents of the current directory and the parent directory.

Teaching Questions

What would be the implication of executing rm .*?

Answer:
All dot files would be removed.

What would be the implication of executing rm -r .*?

Answer:
All files and directories under the current directory would be removed. Your current directory
cannot be removed.

9-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-7. SLIDE: File Name Generation — Review

Student Notes

The slide shows a directory listing. Determine the file name generation designations that will
display the requested file name patterns.

The file names can be found under the filegen directory under your HOME directory.

51434S G.02 9-18 (9-8)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-7. SLIDE: File Name Generation — Review Instructor Notes

Teaching Tips

Get the class to describe the patterns and predict the output of the echo commands. The
correct answers are as follows:

How do you list all file names that:

Contain only five characters? ls ?????

Contain at least five characters? ls ?????* or ls *?????

Begin with an a or an A? ls [aA]*

Have at least four characters and
begin with an a or an A?

ls [aA]???*

End with the sequence e, a single
number, and an f?

ls *e[0-9]f

Begin with a dot? ls .* what happens?

Begin with a dot, except . ? ls .?*

Begin with a dot, except . and ..? ls .[!.]*

NOTE: Discuss the effect of:

$ rm .*

$ rm -r .*

Be sure to discuss the teaching question. This really demonstrates the order of operations; the
shell generates the file names and then executes the command.

Teaching Question

What’s the difference between the following two commands?

$ echo .*

$ ls .*

The first command will execute the following:

$ echotest1 .test2 Echoes out the arguments

9-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

. .. .test1 .test2

The second command will execute

$ lstest1 .test2 Lists contents of directories . and ..

51434S G.02 9-20
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-8. LAB: File Name Generation

Directions

Complete the following exercises and answer the associated questions.

1. Change to your HOME directory, then type the command ls * and explain the output.

2. If the command echo ???XX produces the output ???XX, what does it mean?

3. From your HOME directory, what command would you issue to do the following?

a. Display all file names that end in .c.

b. Display just the .c files associated with mod.

c. Display all file names that contain file.

d. Display all file names that end in .c, .f or .p.

4. Create a directory called c_source. Move all of your .c files to the c_source directory
using the file name generating characters.

5. Create a directory called dir_1 under your HOME directory. What happens when you
issue the command: cd dir* ?

51434S G.02 9-22 (9-9)
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

6. Go back to your HOME directory and create directories called dir_2, dir_3 and dir_4.
Now try cd dir* again and explain what happens.

7. Using the touch command (syntax: touch filename), create files so that the following will
be true:

The pattern ?XX will match exactly ONE file name.
The pattern ?.XX will match exactly TWO file names.
The pattern *XX will match exactly THREE file names.
The pattern XX.?? will match exactly ONE file name.
The pattern XX.* will match exactly TWO file names.

Use the echo command to check your results.

8. Use a single rm command to remove all of the files created in the previous exercise. (Hint:
you might want to use the rm -i command.)

9-23 (9-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

51434S G.02 9-24
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

9-8. LAB: File Name Generation Instructor Notes
Time: 30 minutes

Purpose

To practice using file name generation characters on the command line to save typing.

Notes to the Instructor

Exercise 4 illustrates a common usage of the file name generating characters, to manipulate
all files whose names follow a common pattern.

Your students should complete Exercises 1-6. Exercises 7 and 8 present a puzzle for students
to solve, and can be considered optional.

Solutions

1. Change to your HOME directory, then type the command ls * and explain the output.

Answer:

Remember that the ls command can act two different ways. If given a file name as an
argument, ls displays the file’s name. If given a directory name, ls lists the contents of
that directory. Thus when given a list of file and directory names, such as that generated
by the asterisk (*), ls will list the names of all files under the current directory and list
the contents of all immediate subdirectories.

2. If the command echo ???XX produces the output ???XX, what does it mean?

Answer:

There are no files in the current working directory that match the pattern ???XX.
Therefore the file name generation characters are taken literally, and the echo command
echoes them out.

3. From your HOME directory, what command would you issue to do the following?

a. Display all file names that end in .c.

b. Display just the .c files associated with mod.

c. Display all file names that contain file.

d. Display all file names that end in .c, .f or .p.

9-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

Answer:

a. ls *.c
libtest.c math.c mod1.c mod2.c mod3.c myprog.c part1.c part2.c
xdbtest.c

b. ls mod*.c or ls mod[0-9].c or ls mod?.c
mod1.c mod2.c mod3.c

c. ls *file*
file.1 file.2 herfile myfile my_root_file ourfile root_file
yourfile filegen/: Abc Abcd abc abcdemf e35f efg fe3f fe3fg

d. ls *.[cfp]
libtest.c math.c math.f math.p mod1.c mod2.c mod3.c myprog.c
myprog.f myprog.p xdbtest.c part1.c part2.c

4. Create a directory called c_source. Move all of your .c files to the c_source directory
using the file name generating characters.

Answer:

$ mkdir c_source
$ mv *.c c_source

5. Create a directory called dir_1 under your HOME directory. What happens when you
issue the command: cd dir* ?

Answer:

$ cd dir* Expands to: cd dir_1

You will effectively change to the dir_1 directory.

6. Go back to your HOME directory and create directories called dir_2, dir_3 and dir_4.
Now try cd dir* again and explain what happens.

Answer:

$ cd
$ mkdir dir_2 dir_3 dir_4

$ cd dir*

Expands to: cd dir_1 dir_2 dir_3 dir_4

This is not a legal usage for the cd command and will fail.

7. Using the touch command (syntax: touch filename), create files so that the following will
be true:

The pattern ?XX will match exactly ONE file name.
The pattern ?.XX will match exactly TWO file names.
The pattern *XX will match exactly THREE file names.
The pattern XX.?? will match exactly ONE file name.

51434S G.02 9-26
© 1999 Hewlett-Packard Company

Module 9

File Name Generation

The pattern XX.* will match exactly TWO file names.

Use the echo command to check your results.

Answer:

$ touch AXX
$ touch A.XX
$ touch B.XX
$ touch XX.AB
$ touch XX.A
$ echo ?XX
AXX
$ echo ?.XX
A.XX B.XX
$ echo *XX
A.XX AXX B.XX
$ echo XX.??
XX.AB
$ echo XX.*
XX.A XX.AB

8. Use a single rm command to remove all of the files created in the previous exercise. (Hint:
you might want to use the rm -i command.)

Answer:

$ rm *XX*

9-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 9

Quoting

51434S G.02 9-28
© 1999 Hewlett-Packard Company

Module 10 — Quoting

Objectives

Upon completion of this module, you will be able to do the following:

• Use the quoting mechanisms to override the meaning of special characters on the command
line.

10-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

51434S G.02 10-2
© 1999 Hewlett-Packard Company

Module 10

Quoting

Overview of Module 10

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

The purpose of this module is to teach the student how to escape the special meaning of many
of the characters on the command line.

Time

Lab 45 minutes

Lecture 60 minutes

Prerequisites

m51m Shell Advanced Features

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

10-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

51434S G.02 10-4
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-1. SLIDE: Introduction to Quoting

Student Notes

There are many characters in the UNIX system that have special meaning for the shell. For
example, white space is the delimiter between commands and arguments. The carriage return
signals the shell to execute the entered line, the $ character is used to display the value
associated with a variable name.

There are situations in which you do not want the shell to interpret the special meaning
associated with these characters. You require just the literal character. Therefore, the UNIX
system must provide a mechanism to escape or remove the special meaning of a designated
character. This mechanism is known as quoting.

51434S G.02 10-6 (10-2)
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-1. SLIDE: Introduction to Quoting Instructor Notes

Teaching Tips

Point out that there are several special characters in the shell. Ask the students for some
examples that they have seen. Stress that because there are times when one would like the
special characters to stand for themselves, we need a mechanism for doing this.

10-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-2. SLIDE: Quoting Characters

Student Notes

The backslash (\) removes the special meaning of the special character immediately following
the backslash.

Single quotes (’) will also disable the special meaning of special characters. All special
characters enclosed by the single quotes are escaped. The single quote cannot be escaped
because it is required to close the quoted string.

NOTE: Single quotes (’) are not the same as the grave quote (grave accent) (‘).

Double quotes (") are less comprehensive. Most special characters enclosed by double quotes
are escaped. The exceptions are the $ symbol (when used for variable and command
substitution), the backslash (\) and the double quote (") which is required to close the quoted
string. You can use the backslash inside double quotes to escape the meaning of $ or ".

51434S G.02 10-8 (10-3)
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-2. SLIDE: Quoting Characters Instructor Notes

Teaching Tips

The definition of the quoting mechanisms are given here in order to be complete. Examples are
on the next three slides.

10-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-3. SLIDE: Quoting — \

Student Notes

The backslash always removes the special meaning of the next character. There are no
exceptions.

51434S G.02 10-10 (10-4)
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-3. SLIDE: Quoting — \ Instructor Notes

Key Points

• The backslash removes the special meaning of the very next character. There are no
exceptions.

• The last example on the slide is escaping the Return . Since the Return is escaped, the shell
does not see the command terminator. Therefore, it will display the secondary prompt,
signifying that the user must enter more information to complete the command. This is
helpful when entering extremely long command lines.

Another Example

$ echo 3 \> 2

3 > 2

10-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-4. SLIDE: Quoting — ’

Student Notes

Single quotes will remove the special meaning of all of the special characters enclosed by the
single quotes.

51434S G.02 10-12 (10-5)
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-4. SLIDE: Quoting — ’ Instructor Notes

Key Points

• Single quotes will remove the special meaning of all of the special characters enclosed by
the single quotes.

• The single quote is required to close the quoted string.

• You do not have to describe what the * does at this point. You should just let the students
know that it is a special character to the shell, and if it is not escaped, unexpected results
will probably occur.

Teaching Tips

Note that the single quote (’) is not the same as the grave quote (‘). The grave quote is the
old (Bourne shell) method used for command substitution, as in

$ pwd
/home/user3
$ curdir=‘pwd‘
$ echo $curdir
/home/user3

The above syntax is valid in the POSIX/Korn shell as well; however, the new POSIX/Korn
shell method uses $(cmd), as in

$ pwd
/home/user3
$ curdir=$(pwd)
$ echo $curdir
/home/user3

This concept is discussed in the module Shell Advanced Features .

Teaching Question

• How do you get this doesn’t work to print out?

echo this doesn\’t work
OR

echo "this doesn’t work"

10-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-5. SLIDE: Quoting — "

Student Notes

Double quotes are not as comprehensive as the single quotes. Most of the special characters
are escaped. The exceptions allow you to perform variable substitution, $variable, and
command substitution, $(cmd).

NOTE: Note the Bourne shell uses grave quotes to perform command
substitution, as in pwd, which produces the same result as the POSIX
shell $(pwd) (the grave quote form is valid in the POSIX shell also). The
grave quotes retain their special meaning inside the double quotes.

There may be situations where you want to escape the special meaning of these characters
when they appear within the double quotes. Therefore, the backslash (\) also maintains its
special meaning, to escape the special meaning of the $ or ‘ when they do appear with the
double quotes.

51434S G.02 10-14 (10-6)
© 1999 Hewlett-Packard Company

Module 10

Quoting

NOTE: All quoting mechanisms can be used in a single command line.

10-15 (10-7) 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

51434S G.02 10-16
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-5. SLIDE: Quoting — " Instructor Notes

Key Points

• This is often confusing for students, but present the motivation for maintaining the special
meaning of $ and ‘, and that should help in your presentation. The examples on the slide
should assist you in this presentation.

10-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-6. SLIDE: Quoting — Summary

Student Notes

The slide shows a summary of the quoting characters and their actions.

51434S G.02 10-18 (10-8)
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-6. SLIDE: Quoting — Summary Instructor Notes

Teaching Tips

Point out the summary and review it.

10-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-7. LAB: Quoting

Directions

Complete the following exercises and answer the associated questions.

1. Type an echo command that will produce the following output:

$1 million dollars ... and that’s a bargain !

2. Assign the following string to a variable called long_string:

$1 million dollars ... and that’s a bargain !

Display the value of long_string to confirm the successful assignment.

3. When you execute the following command, what happens?

$ banner good day
$ banner ’good day’

How many arguments are on each of the above command lines?

4. Assign to your prompt the string: Way to go YOUR_USER_NAME $

5. How would you display the following message?

51434S G.02 10-20 (10-9)
© 1999 Hewlett-Packard Company

Module 10

Quoting

Exercises #1, #2, and #3 are now complete.

6. Assuming that the variable abc is not defined, what happens when you enter the following?

echo ’$abc’

What happens when you enter the following?

echo "$abc"

7. Use the touch command to create a file called: White Space
Use the touch command to create a file called: (4 blanks)
Use the touch command to create a file called: (3 blanks)
How do these files appear when you do a file listing? Can you do a file listing such that you can
determine how many blanks are in the file name with 4 blanks or the file name with 3 blanks?

10-21 (10-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

51434S G.02 10-22
© 1999 Hewlett-Packard Company

Module 10

Quoting

10-7. LAB: Quoting Instructor Notes
Time: 45 minutes

Purpose

To practice using the quoting mechanisms to escape the meaning of special characters.

Solutions

1. Type an echo command that will produce the following output:

$1 million dollars ... and that’s a bargain !

Answer:

$ echo "\$1 million dollars ... and that’s a bargain !"
$ echo ’$1 million dollars ... and that’\’s a bargain !

There are several options to echo this string out, since the echo command uses blank
spaces as delimiters between the strings. You really only need to escape the $ and the ’.

2. Assign the following string to a variable called long_string:

$1 million dollars ... and that’s a bargain !

Display the value of long_string to confirm the successful assignment.

Answer:

$ long_string="\$1 million dollars ... and that’s a bargain !"
$ echo "$long_string"

This has fewer options because you must quote all of the blank spaces for the variable
assignment to succeed. Note what happens when you don’t quote $long_string.

3. When you execute the following command, what happens?

$ banner good day
$ banner ’good day’

How many arguments are on each of the above command lines?

Answer:

$ banner good day 2 command line arguments
GOOD
DAY
$ banner "good day" 1 command line argument

10-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Quoting

GOOD DAY

The quotation marks escape the space as an argument delimiter, so the second command
will see only one command line argument.

4. Assign to your prompt the string: Way to go YOUR_USER_NAME $

Answer:

$ PS1="Way to go $LOGNAME $ "
Way to go user3 $

5. How would you display the following message?

Exercises #1, #2, and #3 are now complete.

Answer:

echo Exercises \#1, \#2, and \#3 are now complete.

The # symbol precedes comments, and must therefore be escaped.

6. Assuming that the variable abc is not defined, what happens when you enter the following?

echo ’$abc’

What happens when you enter the following?

echo "$abc"

Answer:

$ echo ’$abc’
$abc

The single quotes (’) do not allow variable substitution to occur, so the literal string $abc
will be echoed back to your terminal.

$ echo "$abc"

sh: abc: parameter not set.

When the $ appears within the double quotes ("), the shell will try to de-reference the
variable. Since the variable does not hold a value, the shell will generate an error message
when it tries to evaluate the variable value.

Note: The POSIX/Korn Shell will generate error messages when referencing a variable that
has not been defined and the set -u option is set. You can enter set -o to view the
options configured for your shell. If -u is not set, no error will be generated, and the
variable value will be substituted with NULL. You can disable this option with: set +u.
See the man page sh-posix(1) for more details.

7. Use the touch command to create a file called: White Space
Use the touch command to create a file called: (4 blanks)

51434S G.02 10-24
© 1999 Hewlett-Packard Company

Module 10

Quoting

Use the touch command to create a file called: (3 blanks)
How do these files appear when you do a file listing? Can you do a file listing such that you can

determine how many blanks are in the file name with 4 blanks or the file name with 3 blanks?

Answer:

$ touch "White Space"
$ touch " "
$ touch " "

When you do an ls command, the file names with the leading blanks will appear at the
beginning of your directory listing. One way to determine how many blanks are in the file
names is to make the files executable and then execute an ls -F and observe how many
blanks occur before the asterisk, you can also try an ls -b command.

Notice that with the quoting mechanism you can create a file name that contains any
special character. You will always have to use the escape characters though whenever you
want to reference the file name on your command line.

10-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 10

Input and Output Redirection

51434S G.02 10-26
© 1999 Hewlett-Packard Company

Module 11 — Input and Output Redirection

Objectives

Upon completion of this module, you will be able to do the following:

• Change the destination for the output of UNIX system commands.

• Change the destination for the error messages generated by UNIX system commands.

• Change the source of the input to UNIX system commands.

• Define a filter.

• Use some elementary filters such as sort, grep, and wc.

11-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-2
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

Overview of Module 11

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

Input and output redirection is an important feature of the UNIX system. This module shows
how to change the default assignments of stdin, stdout, and stderr, thus taking the input from
a file other than the keyboard, and producing output (and error messages) somewhere other
than the terminal.

Time

Lab 30 minutes

Lecture 30 minutes

Prerequisites

m1305m Shell Basics

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

11-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r--r-- 1 karenk users 61 May 28 16:12 names

51434S G.02 11-4
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-1. SLIDE: Input and Output Redirection — Introduction

Student Notes

Another feature that the shell provides is the capability to redirect the input or output of a
command. Most commands send their output to your terminal; examples include date,
banner, ls, who, etc. Other commands get input from your keyboard; examples include
mail, write, cat.

In the UNIX system everything is a file, including your terminal and keyboard.
Output redirection allows you to send the output of a command to some file other than
your terminal. Likewise, input redirection allows you to get the input for a command from
some file other than the keyboard.

Output redirection is useful for capturing the output of a command for logging purposes or
even for further processing. Input redirection allows you to use an editor to create a file, and
then send that file into the command, instead of entering it interactively with no edit
capabilities (for example the mail command).

51434S G.02 11-6 (11-2)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

This chapter will present input and output redirection, and introduce you to some UNIX
system filters. Filters are special utilities that can be used to further process the contents of a
file.

11-7 (11-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-8
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-1. SLIDE: Input and Output Redirection
— Introduction

Instructor Notes

Key Points

• Everything in the UNIX system is a file.

• Commands generate output to the terminal file.

• Commands accept input from the keyboard file.

• Input and output redirection allow you to replace these default devices with text files.

• Output redirection is useful for logging command output, or saving output for future
processing (filters).

• Input redirection is useful because you can create a file using an editor and send that file
into the command instead of typing it interactively.

Teaching Tips

This slide is just meant as an introduction to the chapter but should also provide some
motivation on why input and output redirection are very powerful capabilities.

11-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-2. SLIDE: stdin, stdout, and stderr

Student Notes

Every time a shell is started, three files are automatically opened for your use. These files are
called stdin, stdout, and stderr.

The stdin file is the file from which your shell reads its input. It is usually called standard
input . This file is opened with the C language file descriptor, 0, and is usually attached to
your keyboard. Therefore, when the shell needs input, it must be typed in at the keyboard.

Commands that get their input from standard input include mail, write, and cat. They are
characterized by entering the command and arguments and a Return , and then the command
waits for you to provide input that it will process. The input is concluded by entering Return
Ctrl + d .

The stdout file is the file to which your shell writes its normal output. It is usually called
standard output. This file is opened with the C language file descriptor, 1, and is usually
attached to your terminal. Therefore, when the shell produces output, it is displayed to your
screen.

51434S G.02 11-10 (11-4)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

Most UNIX system commands generate standard output. Examples include date, banner,
ls, cat and who .

The stderr file is the file to which your shell writes its error messages. It is usually called
standard error. This file is opened with the C language file descriptor, 2. Like the stdout
file, the stderr file is usually attached to the monitor part of your terminal. The stderr file
can be redirected independently of the stdout file.

Most UNIX system commands will generate an error message when the command has been
improperly invoked. To see an example of an error message enter: cp Return . The cp usage
message will be displayed to your screen but actually was transmitted through the standard
error stream.

The purpose of this module is to show you how to change the default assignments of stdin,
stdout, and stderr, thus taking the input from a file other than the keyboard, and
producing output (and error messages) somewhere other than the terminal.

11-11 (11-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-12
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-2. SLIDE: stdin, stdout, and stderr Instructor Notes

Teaching Tips

Don’t go into details about how to use stdin, stdout, and stderr here. The file descriptor
numbers are useful to know about especially when we want to redirect standard error
messages with 2>.

Student Exercises

You might want to have the students enter the date command and explain that the date is
transmitted to standard output.

You might also want to have the students enter cp Return and note that the usage message is
transmitted to standard error.

11-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-3. SLIDE: Input Redirection — <

Student Notes

For commands that take their input from standard input, we can redirect the input so that it
comes from a file instead of from the keyboard. The mail command is often used with input
redirection. We can use an editor to create a file containing some text that we want to mail,
and then we can redirect the input of mail so that it uses the text in the file. This is useful if
you have a very long mail message, or want to save the mail message for future reference.

Commands that receive input from standard input are characterized by entering the command
and then the Return , and the command will wait for the user to provide input from the
keyboard. The input is concluded with Return Ctrl + d .

Many commands that accept standard input also accept file names as arguments. The files
specified as arguments will be processed by the command. The cat command is a good
example. The cat command can display text that is entered directly from the keyboard,
display the contents of files provided as arguments, or the contents of files redirected through
standard input.

51434S G.02 11-14 (11-6)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

Input from stdin: Operate on cmd line
arg(s): Redirect input:

$ cat Return $ cat file $ cat < file

input text here display file contents display file contents

Ctrl + d to conclude.

Contents of input text

displayed here

NOTE: Input redirection causes no change to the contents of the input file.

11-15 (11-7) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-16
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-3. SLIDE: Input Redirection — < Instructor Notes

Key Points

• You can identify commands that accept standard input by entering the command and a
Return . If the prompt disappears and the system seems to be waiting, it is waiting for you to
provide input from the keyboard. Other commands that accept standard input are presented
in this and other modules.

• Distinguish input provided through command line arguments and from input provided
through standard input (stdin).

• Using a file as input is non-destructive to the input file.

Teaching Tips

Think of the < as an arrow. The input of the command is coming from the file specified on the
line: command <—- filename

Teaching Question

Do the commands ls, banner, or echo accept input from stdin?

No, they do not. Typing ls Return executes the ls command. Typing banner Return generates
a banner error (usage) message. Typing echo Return echoes a blank line to your screen.

11-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-4. SLIDE: Output Redirection — > and >>

Student Notes

Many commands generate output messages to your screen. Output redirection allows you to
capture the output and save it to a text file.

If a command line contains the output redirection symbol (>) followed by a file name, the
standard output from the command will go to the specified file instead of to the terminal. If
the file didn’t exist before the command was invoked, then the file is automatically created. If
the file did exist before the command was invoked, then the file will be overwritten; the
command’s output will completely replace the previous contents of the file.

If you want to append to a file instead of overwriting, you can use the output redirection
append symbol (>>). This will also create the file if it didn’t already exist. There must be no
white space between the two > characters.

51434S G.02 11-18 (11-8)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

CAUTION: The shell cannot open a file for input redirection and output redirection
at the same time. So the only restriction is that the input file and the
output file must be different. You will lose the original contents of the file,
and the output redirection will also fail.
Example: cat f1 f2 > f1 will cause the contents of file f1 to be lost.

11-19 (11-9) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-20
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-4. SLIDE: Output Redirection — > and >> Instructor Notes

Key Points

• Output redirection captures messages going to standard output (the screen) and sends them
to the specified file instead.

• You will see no command output displayed on your terminal, unless an error message is
generated.

• The tee command is presented in the module Pipes, to show how to send output to the
screen and to a file.

• You can append to a file with >>.

Teaching Tips

Think of the > as an arrow. The output of the command is going to the file specified on the
line: command —-> filename

Redirecting Standard Output to Standard Error

You might want to mention redirecting standard output to standard error. This is especially
useful when developing error messages in your scripts. Remember the only way to generate a
message is through the echo command, but the echo command only sends its output to
standard output. You would like the echo command to send its output to standard error
instead:

echo error message >&2

This captures the standard output (>) and redirects it to the file associated with the standard
error stream (&2). Remember that standard error is associated with file descriptor 2.

Redirecting Input and Output on the Same Command Line

Since input and output are distinct streams, you can redirect both on the same command line.
The command, of course, must accept standard input AND generate standard output.

We can use the cat command as an example:

cat < f1 > f2

This effectively copies the contents of f1 to f2.

The only restriction is that the input file and the output file must be different. The shell
cannot open a file for input redirection and output redirection at the same time. If you do, the
contents of the file will be lost.

11-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-5. SLIDE: Error Redirection — 2> and 2>>

Student Notes

If a command is typed incorrectly such that the shell cannot properly interpret it, an error
message will often be generated. Even though the error messages are displayed on your
screen, they actually are transmitted through a different file from the ordinary output
messages. The error messages are transmitted through the error stream, known as stderr.
stderr is associated with file descriptor 2.

Therefore, when specifying error output redirection, you must designate that you want to
capture the messages being transferred out of stream 2. To redirect stderr use (2>). There
must be no white space between the 2 and the > characters. Similar to output redirection, this
will create a file if necessary, or overwrite the file if it exists. You can append to an existing file
using the (2>>) symbol.

This mechanism is very useful from an administrative viewpoint. Quite often, you are only
interested in the situations when commands fail or experience problems. Since the error
messages are separated from the regular output messages, you can easily capture the error
messages, and maintain a log file which records the problems your program encountered.

51434S G.02 11-22 (11-10)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-5. SLIDE: Error Redirection — 2> and 2>> Instructor Notes

Key Points

• 2> provides for error logging.

• No space between the 2 and the >.

Teaching Tips

Point out that the error messages are separated from the standard output in most UNIX
system commands. You might also point out that 2>&1 will send error messages to the same
place as the standard output. Other ways to use standard error redirection follow.

You redirect the standard output messages from the echo command to standard error:

echo "message" >&2

This allows you to create error messages for your shell scripts.

These messages can then be saved to an error file, like any other message transmitted to
stderr:

my_prog 2> my_prog.err

When you want to disregard the error messages, you can send them to the bit bucket
— /dev/null:

$ command 2> /dev/null

When looking at the above examples, students often are confused between redirecting to
standard error (>&2) and capturing the messages that are coming out of standard error (2>).
Considering the source and destination will often help to reduce the confusion.

11-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-6. SLIDE: What Is a Filter?

Student Notes

You have seen on the previous pages how to redirect the input or output of a command. Some
commands accept input from standard input and generate output to standard output. These
commands are known as filters. Filters never modify the contents of the file that is being
processed. Filtered results are usually transmitted to the terminal.

Filters are very useful for processing the contents of a file, such as counting the number of
lines (wc), performing an alphabetical sort (sort), or searching for lines that contain a pattern
(grep).

In addition, filters can be used to further process the output of any command. Since filters can
operate on files and the output of commands can be redirected to a file, the two operations can
be combined to perform powerful and flexible processing of the output of any command. Since
most filters send their results to standard output, the filtered results can be further processed
by capturing the filtered output to a file and executing another filter on the filtered file.

51434S G.02 11-24 (11-11)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-6. SLIDE: What Is a Filter? Instructor Notes

Key Points

• Filters accept input and generate output.

• Filters generally can operate on files.

• Filtered output generally goes to the screen.

• Filtered output can be saved to a file.

• Filters can be used to process the output of any command when the command’s output is
saved to a file.

Teaching Tips

Don’t explain these filters here; they are explained over the next several pages.

This is where the real power of the UNIX system is first exhibited. Output redirection and
filters provide a very powerful and flexible mechanism to perform additional processing on the
output of many commands.

Transition

The remainder of this module will introduce you to three useful filters: wc, sort and grep .

11-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-7. SLIDE: wc — Word Count

Student Notes

The wc command counts the number of lines, words, and characters submitted on standard
input or in a file. The command has options -l, -w, and -c. The -l option will display the
number of lines, the -w option will display the number of words, and the -c option will display
the number of characters. Regardless of the order of the options, the order of the output will
always be lines, words, and characters.

Since wc accepts input from standard input and writes its output to standard output, wc is a
filter . Executing wc on a file does not affect the contents of the file because all of the results
are sent to the screen.

51434S G.02 11-26 (11-12)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

Other Examples

$ wc Return count input provided through standard input
ab cde
fghijkl

mno pqr stuvwxyz

Ctrl + d

3 6 32
$ wc < funfile standard input replaced by file funfile
105 718 3967 no file name shown
$ wc -w funfile

718 funfile

wc will accept input from standard input as illustrated in the first example above. Since the wc
command accepts input from standard input, you can redirect a file into the wc command that
replaces the standard input stream. The syntax of the wc command also supports file names
as arguments, as shown on the slide, with the name of the file written out on the result.

11-27 (11-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-28
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-7. SLIDE: wc — Word Count Instructor Notes

Key Points

• wc is a filter. It will accept input from the keyboard or operate on the contents of a file
provided as a command line argument.

• Therefore, you can also redirect a file into the wc command.

• The contents of the file are unaffected.

• The output of commands can be captured, and the wc command executed on the resultant
file.

Teaching Tips

Have the students type in the examples that are shown on the slide and discuss their results.

The last example on the slide illustrates how the output of a command can be further
processed through output redirection.

To reinforce that wc actually accepts standard input, you should discuss the first example
shown in the student notes. It is especially important that students have a strong
understanding of commands that accept standard input, if you are going to be presenting the
module Pipes .

You might also want to discuss the different options that wc provides.

Teaching Question

Can you save the output from the wc command to a file?

ANSWER:
Yes! wc funfile > fun.count

11-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-8. SLIDE: sort — Alphabetical or Numerical Sort

Student Notes

The sort command is powerful and flexible. It can be used to sort the lines of a file(s) in
numerical or alphabetical order. A specific field on a line can also be selected upon which to
base the sort. sort is also a filter, so it will accept input from standard input, but it will also
sort the contents of files which are specified as command line arguments.

There are several options available to designate what kind of sort to be performed:

Sort Option Sort Type

none lexicographical (ASCII)

-d dictionary (disregards all characters that are not letters, numbers, or blanks)

-n numerical

-u unique (suppress all duplicate lines)

51434S G.02 11-30 (11-14)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

The default delimiter between fields is a blank character — either a space or a tab. You can
also specify a delimiter with the -t X option, where X represents the delimiter character.
Since the colon (:) holds no special meaning to the shell, it is a common selection as a
delimiter between fields in a file.

After you have determined what the delimiter between fields will be, you can inform the sort
command which field you would like to base your sort on by using the -k n option, where n
represents the field number the sort should sort upon. The sort command assumes that the
field numbering starts with one.

The sort command supports several options to perform more complex sort operations. Please
refer to sort(1) in the HP-UX Reference Manual for a full discussion of its capabilities.

Other Examples

$ sort Return sort input provided through standard input

mmmmm
xxxx
aaaa
Ctrl + d

aaaa
mmmmm
xxxx
$ sort < funfile standard input replaced by file funfile

sort will accept input from standard input, as illustrated in the first example above.
Therefore, you can also get the input from a file using input redirection.

NOTE: The shell cannot open a file for input redirection and output redirection
at the same time. However the sort option -o output_file can be
used to produce the output inside the argument given instead of the
standard output. Then this file may be the same name as the input file.

Example: sort -o whoson -d whoson will perform a dictionary sort
inside the file whoson.

11-31 (11-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-32
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-8. SLIDE: sort — Alphabetical or
Numerical Sort

Instructor Notes

Key Points

• sort is a filter.

• sort can read from standard input or use a filename specified as an argument on the
command line.

• The output of other commands can be sorted by using output redirection to save their
output to a file.

Teaching Tips

Have the students type in the examples that are shown on the slide and discuss the results.
Point out that most filters can read from stdin or take the file argument from the command
line.

The field numbers are provided on the slide to assist you in explaining how the sort command
identifies the fields in each line of /etc/passwd with a the colon designated as the delimiter.

Your students will probably notice when they sort funfile that the blank lines are displayed
first. You might want to tell the students to enter:

sort funfile | more

so that they can see the output one screen at a time. Pipelines are presented in a separate
module

Advanced Sorting Capabilities

If you have some advanced students you might want to show them how to select a specific field
(the examples on the slide assume that the rest of the line will be used), and also test for
uniqueness. Duplications within the field will be disregarded.

$ sort -t: -k 1

jupiter:bbbbb

jupiter:aaaaa

mars:ccccc
mars:dddd
earth:zzzz

earth:zzzz
jupiter:aaaaa

jupiter:bbbbb

mars:ccccc

11-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

mars:dddd
$ sort -t: -k 1,1 -u sort only on the first field, disregard duplications

jupiter:bbbbb
jupiter:aaaaa
mars:ccccc
mars:dddd
earth:zzzz

earth:zzzzz
jupiter:aaaaa
mars:dddd

Note that you can also go to the character level within a field, using notation such as
-k 1.1,1.5 to sort based on characters 1 through 5 in the first field. See the man pages for

details.

51434S G.02 11-34
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-9. SLIDE: grep — Pattern Matching

Student Notes

The grep command is very useful. It takes a (usually quoted) pattern as its first argument, and
it takes any number of file names as its remaining arguments. It is possible to make the grep
command searching for several patterns once by using the -e option before each pattern or the
-f option followed by a patterns list file. It searches the named files for lines which contain
the specified pattern. The grep command then displays the lines which contain the pattern.

There are four popular options to grep: -n, -v, -i and -c.

-c only a count of matching lines is printed

-i tells grep to ignore the case of the letters in the pattern

-n prepends line numbers to each line displayed

-v displays the lines which do not contain the pattern

51434S G.02 11-36 (11-16)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

As with all filters, if no file is specified, grep reads from standard input and sends its output
to standard output.

The grep command is capable of more complex searches. You can give a pattern of the text
you want to search for. Such a pattern is called a regular expression. Here is a list of some
special characters for the regular expressions (for further details see regexp(5)).

^ match beginning of the line

$ match end of the line

. match any single character

* the preceding pattern is to be repeated zero or more times

[] character class, specify a set of characters

[-] the hyphen characters (-) specifies a range of characters

[^] inverts the selection process

To avoid problems with the interpretation of the special characters through the shell, it is best
to enclose the regular expression in quotes.

11-37 (11-17) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

51434S G.02 11-38
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-9. SLIDE: grep — Pattern Matching Instructor Notes

Key Points

• grep will search for lines that contain the specified pattern and will echo those lines back
out to your terminal.

• The pattern is technically a regular expression.

• The -v option allows you to search for lines that do not contain the pattern.

Teaching Tips

You should have the students enter the commands that are listed on the slide so that they can
observe how grep works. Have them try the last example initially without the vi edit, and
ask why it fails.

You may wish to tell the class that grep got its name from the ed command g/RE/p (global,
regular expression, print). This globally (g) searches for a regular expression (/RE/), and
prints (p) any line that contains the pattern.

You might want to have the students enter the following interactive example to illustrate how
grep will echo out lines that contain a pattern. The following example is looking for the
pattern red from standard input:

$ grep red Return

red white and blue

red white and blue

black and white

red and green

red and green Ctrl + d

• The line red white and blue will be immediately echoed back, since it contains red.

• The line black and white will not be echoed back because it does not contain red.

• The line red and green will be immediately echoed back, since it contains red.

11-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-10. SLIDE: Input and Output Redirection — Summary

Student Notes

51434S G.02 11-40 (11-18)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-10. SLIDE: Input and Output Redirection
— Summary

Instructor Notes

11-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-11. LAB: Input and Output Redirection

Directions

Complete the following exercises and answer the associated questions.

1. Redirect the output of the date command to a file called date.out in your HOME
directory.

2. Append the output of the ls command to the file date.out. Look at the contents of
date.out. What do you notice?

3. Using input redirection, mail the file date.out to your mail partner.

4. Create two very short files called f1 and f2 using cat and output redirection.

5. Use the cat command to view their contents. Use the cat command to create a new file
called f.join that contains the contents of both f1 and f2. Do you see any output on the
screen?

6. Use the cat command to display the contents of the file f1, f2 and f.new.
NOTE: f.new should NOT exist.
What do you see on your screen? Is it obvious which messages went through standard output
and which messages went through standard error?

51434S G.02 11-42 (11-19)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

7. Again, use the cat command to display the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time capture any error messages that are generated and
send them to the file called f.error. What do you see on your screen? Was a new file created?
Check its contents.

8. Again, use the cat command to capture the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time, ON ONE COMMAND LINE, capture the standard
output messages to a file called f.good AND the error messages to a file called f.bad. What
do you see on your screen? Were any new files created? Check their contents.

9. Type the cp command with no arguments. What happens? Now try redirecting the output
from this command to the file cp.error. What happens? What must you do to redirect that
error message to a file? Does the cp command generate any standard output messages?

10. Display the contents of the file /etc/passwd sorted out by user name.

11. Sort the file /etc/passwd on the third field. What happens? Now do a numeric sort on
the third field. Any difference?

12. Display all of the lines in the file /etc/passwd that contain the string user. Save this
output to a file called grepped. Use a filter to determine how many lines in /etc/passwd
contain the string user.

11-43 (11-20) 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

13. Using redirection and filters, how many users are logged in on the system?

14. How many login accounts are set up on the system? What command did you use to find out?
(HINT: There is one line per account in the file /etc/passwd.)

15. Sort your names file and save the output in a file called names.sort. Sort the names file
in reverse order and save that output to names.rev. What commands did you use? Check the
manual entry for the sort command and find the option that allows you to save the sorted
output back to the file names.

16. Send a banner message to your mail partner’s terminal. Hint: What device file is
associated with your mail partner’s terminal? What does it mean if you get a Permission
denied message?

51434S G.02 11-44 (11-21)
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

11-11. LAB: Input and Output Redirection Instructor Notes
Time: 30 minutes

Purpose

To practice input and output redirection and filters.

Notes to the Instructor

The labs need the pattern user in /etc/passwd . This is normally not a problem, unless your
user accounts are NOT under the /home directory. Also needed is the file names in the user’s
HOME directory.

Students who need to practice the basic concepts of input and output redirection should start
with Exercise 1. Students who are comfortable with the basic concepts should start with
Exercise 10.

Most students have fun with Advanced Exercise 16, sending output to another user’s terminal.
Remember, that the other user’s terminal must have messaging enabled for the exercise to
succeed.

Solutions

1. Redirect the output of the date command to a file called date.out in your HOME
directory.

Answer:

$ cd
$ date > date.out

2. Append the output of the ls command to the file date.out. Look at the contents of
date.out. What do you notice?

Answer:

$ ls >> date.out
$ more date.out

The output of the ls command is a list of files in the current directory. Each file name is
on a separate line. The shell knows to put the output of the ls command in columns only
when the output goes to the terminal. You can override this with the -C option to ls.

3. Using input redirection, mail the file date.out to your mail partner.

11-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

Answer:

$ mail mail_partner_login_name < date.out

4. Create two very short files called f1 and f2 using cat and output redirection.

Answer:

$ cat > f1
This is the file f1
Ctrl + d

$ cat > f2
This is the file f2
Ctrl + d

5. Use the cat command to view their contents. Use the cat command to create a new file
called f.join that contains the contents of both f1 and f2. Do you see any output on the
screen?

Answer:

$ cat f1 f2

This is the file f1
This is the file f2
$ cat f1 f2 > f.join output of both files is sent to f.join

You will not see any output on the screen. All of the standard output has been sent to the
file f.join.

6. Use the cat command to display the contents of the file f1, f2 and f.new.
NOTE: f.new should NOT exist.
What do you see on your screen? Is it obvious which messages went through standard output

and which messages went through standard error?

Answer:

$ cat f1 f2 f.new
This is the file f1
This is the file f2
cat: Cannot open f.new

It is not obvious that two output streams are being used, since all of the messages are sent
to your display.

7. Again, use the cat command to display the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time capture any error messages that are generated

and send them to the file called f.error. What do you see on your screen? Was a new file
created? Check its contents.

Answer:

$ cat f1 f2 f.new 2> f.error
This is the file f1

51434S G.02 11-46
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

This is the file f2
$ cat f.error
cat: Cannot open f.new

8. Again, use the cat command to capture the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time, ON ONE COMMAND LINE, capture the

standard output messages to a file called f.good AND the error messages to a file called
f.bad. What do you see on your screen? Were any new files created? Check their contents.

Answer:

$ cat f1 f2 f.new > f.good 2> f.bad
$ cat f.good
This is the file f1
This is the file f2
$ cat f.bad
cat: Cannot open f.new

The files f.good and the file f.bad are created. You do not see any output to your screen
because all output streams have been redirected to one file or the other.

9. Type the cp command with no arguments. What happens? Now try redirecting the output
from this command to the file cp.error. What happens? What must you do to redirect that
error message to a file? Does the cp command generate any standard output messages?

Answer:

$ cp
Usage: cp f1 f2
cp [-r] f1 ... fn d1
$ cp 2> cp.error

The cp command does not generate any standard output messages. It is normally silent
when it succeeds.

10. Display the contents of the file /etc/passwd sorted out by user name.

Answer:

$ sort -d /etc/passwd

11. Sort the file /etc/passwd on the third field. What happens? Now do a numeric sort on the
third field. Any difference?

Answer:

$ sort -t: -k 3 /etc/passwd lexicographic sort

(Note that the numbers in the third field are not quite sorted. This is because an ASCII
sort is being done on a numeric field.)

$ sort -nt: -k 3 /etc/passwd numeric sort

11-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

(The results of this command are much better since the numbers in the third field are now
arranged numerically.)

12. Display all of the lines in the file /etc/passwd that contain the string user. Save this
output to a file called grepped. Use a filter to determine how many lines in /etc/passwd
contain the string user.

Answer:

$ grep user /etc/passwd > grepped
$ wc -l grepped
16 grepped

(Note that on the system you are using, this number may vary.)

13. Using redirection and filters, how many users are logged in on the system?

Answer:

$ who > whoson
$ wc -l whoson

14. How many login accounts are set up on the system? What command did you use to find out?
(HINT: There is one line per account in the file /etc/passwd.)

Answer:

$ wc -l /etc/passwd

15. Sort your names file and save the output in a file called names.sort. Sort the names file
in reverse order and save that output to names.rev. What commands did you use? Check the
manual entry for the sort command and find the option that allows you to save the sorted
output back to the file names.

Answer:

$ sort names > names.sort
$ sort -r names > names.rev
$ sort names -o names

16. Send a banner message to your mail partner’s terminal. Hint: What device file is associated
with your mail partner’s terminal? What does it mean if you get a Permission denied message?

Answer:

You must first determine the device file associated with your mail partner’s terminal:

$ who > whoson
$ grep mailpartner whoson
mailpartner tty03 Jul 16 8:02

Check out the tty designation. This tells you what device file is associated with your mail
partner’s terminal session.

51434S G.02 11-48
© 1999 Hewlett-Packard Company

Module 11

Input and Output Redirection

$ banner good morning > /dev/tty03

If you get a Permission denied message, your mail partner has disabled the write
permissions on his or her terminal with the command, mesg n.

11-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 11

Pipes

51434S G.02 11-50
© 1999 Hewlett-Packard Company

Module 12 — Pipes

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the use of pipes.

• Construct a pipeline to take the output from one command and make it the input for another.

• Use the tee, cut, tr, more, and pr filters.

12-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-2
© 1999 Hewlett-Packard Company

Module 12

Pipes

Overview of Module 12

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module is designed to show the student how to construct pipelines. Also, four filters are
discussed: tee, cut, tr and pr.

Time

Lab 45 minutes

Lecture 60 minutes

Prerequisites

m1306m Input and Output Redirection

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

12-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r--r-- 1 karenk users 61 May 28 16:12 names

51434S G.02 12-4
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-1. SLIDE: Pipelines — Introduction

Student Notes

A useful feature that the shell provides is the capability to link commands together through
pipelines. The UNIX system operating environment demonstrates its flexibility with the
capability of filtering the contents of files. With pipelines, you will be able to filter the output
of a command.

This chapter will introduce pipelines and then present some filters (cut, tr, tee, and pr) for
further processing of your files or command output.

51434S G.02 12-6 (12-2)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-1. SLIDE: Pipelines — Introduction Instructor Notes

12-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-2. SLIDE: Why Use Pipelines?

Student Notes

You use I/O redirection for extensive filtering of command output by capturing the output of a
command to a temporary file and then filtering the contents of the temporary file. After your
processing is complete, you have to remove the temporary file; it is not necessary for any other
operations. Although this provides extensive capability, it is inconvenient to have to remove
the temporary files.

Pipelines allow you to transfer the output of one command directly as the input of another
command. You do not have to create an intermediate file; therefore, no cleanup is required
when you have completed the processing.

This is where the flexibility and power of the UNIX system are demonstrated. Command after
command can be chained together, allowing extensive processing capabilities in the context of
a single command line.

51434S G.02 12-8 (12-3)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-2. SLIDE: Why Use Pipelines? Instructor Notes

Key Points

• Pipelines allow chaining of commands.

• The output of one command becomes the input for another command.

• There is no temporary file to remove.

Teaching Tip

• Describe why pipelines are needed. Do not explain how to use them, yet.

12-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-3. SLIDE: The | Symbol

Student Notes

The | symbol (read as the pipe symbol) is used for linking two commands together. The
standard output (stdout) of the command to the left of the | symbol will be used as the
standard input (stdin) for the command to the right. A command that appears in the middle
of a pipeline, therefore, must be able to accept standard input and produce output to standard
output.

Filters such as wc, sort, and grep accept standard input and generate standard output, so
they can appear in the middle of a pipe. By chaining commands and filters together, you can
perform very complex processes.

51434S G.02 12-10 (12-4)
© 1999 Hewlett-Packard Company

Module 12

Pipes

The following summarizes the requirements for commands in each position in the pipeline:

• Any command to the left of a | symbol must produce output to stdout.

• Any command to the right of a | symbol must read its input from stdin.

• Any command between two | symbols must accept standard input and produce output to
standard output. (It must be a filter.)

The more Command

The more command is used to display the contents of a file one screen at a time. The more
command is capable of reading standard input as well. Therefore it can appear on the right of
a pipe and be used to control the output of any command that generates output to standard
output. This is very useful when a command generates extensively long output to your screen
that you would like to view one screen at a time.

12-11 (12-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-12
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-3. SLIDE: The | Symbol Instructor Notes

Key Points

• Present the requirements for each command position in the pipeline.

• The output of a command in the middle of a pipeline is not directly viewable by the executor
— see the third example on the slide.

• We will look at the tee command, which allows us to capture the output of commands in
the middle of a pipeline.

• The more command accepts standard input, so it can be used to view the output of any
command that generates output to standard output one screen at a time

Teaching Questions

1. Using a pipeline, how could you count the number of entries under your current directory?
Answer: ls | wc -w

2. Using a pipeline, how could you count the number of subdirectories under your current
directory?
Answer: ls -F | grep / | wc -w

3. Can the cp command appear in the middle of a pipe?
Answer: No, because it does not accept standard input and it does not generate standard
output.

4. Can the mail command appear in the middle of a pipe?
Answer: No, it does accept standard input, but it does not generate standard output.

12-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-4. SLIDE: Pipelines versus Input and Output Redirection

Student Notes

Input and output redirection will always be between a command and a file. Output redirection
will capture the standard output of a command and send it to a file. Output redirection is
commonly used for logging purposes or long-term storage of the output of a command. Input
redirection redirects the input to come from a file instead of from the keyboard. Input
redirection is rarely executed explicitly because most commands that accept standard input
also accept file names as command line arguments (exceptions include mail and write). But
the capability for input redirection is a requirement for a command that can appear on the
right side of a pipe symbol.

Pipelines always will be used to join together two commands. If you intend the output of a
command to be further processed by a command that accepts standard input, you should build
a pipeline. Input and output redirection is used to direct between a process and a file.
Pipelines are used to direct between processes.

51434S G.02 12-14 (12-6)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-4. SLIDE: Pipelines versus Input and
Output Redirection

Instructor Notes

Key Points

• Redirection is always between a command and a file.

• Pipelines are always between two or more commands.

Teaching Questions

Can piping and redirection be combined on a single command line?
Answer: Yes

Can the output of a pipe be redirected to a file?
Answer: Yes

12-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-5. SLIDE: Redirection in a Pipeline

Student Notes

Every command has three available streams: standard in (stdin), standard out (stdout),
and standard error (stderr). Each command in a pipeline will reserve certain streams. The
streams that are not dedicated to the pipeline can be redirected.

Following is a summary of the redirection available in the different components of a pipeline:

• Any command on the left of a pipe symbol can redirect input and errors because its output
is passed on to the next command in the pipeline.

• Any command on the right of a pipe symbol can redirect output and errors because its input
is coming from the previous command in the pipeline.

• Any command between two pipe symbols can redirect errors, because its input is coming
from the previous command and its output is going to the next command in the pipeline.

51434S G.02 12-16 (12-7)
© 1999 Hewlett-Packard Company

Module 12

Pipes

Examples

The most common implementation is to redirect the output of the end of the pipeline to save
the filtered output of the pipeline. When you redirect the output at the end of a pipeline, will
you see any output go to the screen?

$ grep user /etc/passwd | sort > sorted.users
$ grep user < /etc/passwd 2> grep.err | sort > sorted.users 2> sort.err
$ grep user < /etc/passwd | sort 2> sort.err | wc -l > wc.out 2> wc.err

The output in the examples above will be sent to a file; no standard command output will be
seen on the screen.

12-17 (12-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-18
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-5. SLIDE: Redirection in a Pipeline Instructor Notes

Key Points

• This slide serves as a review of the I/O redirection and pipeline concepts. If students
understand what redirection is allowed in a pipeline, they have a solid grasp of redirection
and pipelines.

• The slide illustrates which streams are dedicated to the pipeline (above each pipeline) and
the streams that are not dedicated to the pipeline (below the pipeline). The paths above the
pipelines are illustrating how the stdout on the left of a pipe becomes the stdin for the
command on the right side of the pipe.

• Streams that are not dedicated to the pipeline can be redirected.

Teaching Tip

• The student notes provide some additional examples that use more redirection than the
example on the slide.

12-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-6. SLIDE: Some Filters

Student Notes

Filters like sort or grep provide a flexible mechanism to perform processing on the output of
many commands. The remainder of this chapter will provide you with pipeline practice by
implementing three new filters. As with all filters, these commands accept standard input, so
they can appear on the right side of a pipeline, and they generate standard output, so they can
also appear on the left side of a pipeline (or in the middle of a pipeline).

The cut command allows you to cut out columns or fields of text from standard input or a file,
and send the result to stdout.

The tee command allows you to send the output of a command to a file and to stdout.

The pr command is used to format output. It is usually invoked to prepare to send a file to the
printer.

As with all filters, these commands will not modify the original file. The processed results will
be sent to standard output.

51434S G.02 12-20 (12-9)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-6. SLIDE: Some Filters Instructor Notes

Key Points

• These are filters.

• They accept standard input; they generate standard output.

• The original file is not affected.

12-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-7. SLIDE: The cut Command

Student Notes

The cut command is used to extract certain columns or fields from standard input or a file.
The specified columns or fields will be sent to standard output. The -c option is for cutting
columns, and the -f is for cutting fields. The cut command can accept its input from standard
input or from a file. Since it accepts standard input, it can appear on the right side of a pipe.

A list is a number sequence used to tell cut which fields or columns are desired. The field
specification is similar to the sort command. There are several permissible formats specifying
the list of fields or columns:

A-B Fields or columns A through B inclusive

A- Field or column A through the end of the line

-B Beginning of line through field or column B

A,B Fields or columns A and B

51434S G.02 12-22 (12-10)
© 1999 Hewlett-Packard Company

Module 12

Pipes

Any combination of the above is also permissible. For example:

cut -f1,3,5-7 /etc/passwd

would cut fields one, three, and five through seven from each line of /etc/passwd.

The default delimiter between fields is specified as the Tab character. If you require some
other delimiter, you can use the -d char option where char is the character that separates the
fields in your input. (This is similar to the sort command’s -t X option.) The colon is a
common delimiter, as it has no special meaning for the shell.

Also, the -s option, when cutting fields, will discard any lines that do not have the delimiter.
Usually, these lines are passed through with no changes.

Examples

$ cut -c1-3 Return

12345
123
abcdefgh
abc
Ctrl + d

$ date | cut -c1-3

12-23 (12-11) 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-24
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-7. SLIDE: The cut Command Instructor Notes

Key Points

• Cut the specified columns or fields from stdin or a file and send to stdout.

• Fields start numbering at 1.

• Useful for extracting part(s) of a line of text.

Teaching Tips

Have your students key in the examples on the slide so they can see how the cut command
works. You might also want to have them try an interactive example, as listed in the student
notes, to reinforce that cut accepts standard input.

The second example demonstrates how a filter can be used with command substitution. Since
filters operate only on standard input or a file, the value of the variable must be echoed and
piped to the cut command.

12-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-8. SLIDE: The tr Command

Student Notes

The tr command is useful to translate characters. It accepts standard input as well as file
names; therefore, it can be used in a pipeline.

The tr command can be used to convert many consecutive blank spaces to a single blank
space, as in the first example on the slide. You may have noticed that many UNIX system
commands will insert a variable number of spaces between their fields. Therefore, tr can be a
convenient predecessor to the cut command in a pipeline, when you would like to use a single
space as the delimiter between fields.

The tr command also can be used to substitute literal strings or convert text from lowercase
to uppercase and vice versa, as illustrated in the second example on the slide.

51434S G.02 12-26 (12-12)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-8. SLIDE: The tr Command Instructor Notes

Key Points

• tr is useful for converting multiple blank spaces to a single space. Examples of commands
are who, ps, and date, which embed a variable number of spaces between fields.

• tr allows the use of the field option for cut or sort instead of referencing literal column
numbers.

• tr can be used to convert strings from lowercase to uppercase or from uppercase to
lowercase.

• The s option squeezes all strings of repeated output characters that appear in string2 to
single characters.

12-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-9. SLIDE: The tee Command

Student Notes

Generally, when you are executing a complex pipeline, the output of the intermediate
commands is submitted to the next command in the pipe and you will not be able to view the
intermediate output. The tee command is used to tap a pipeline. Tee reads from standard
input and writes its output to standard output and to the specified file. If the -a option is used,
then tee appends its output to the file instead of overwriting it.

The tee command is used predominantly under two circumstances:

• To collect intermediate output in a pipeline:
When you put a tee into the middle of a pipeline, you can capture the intermediate
processing, yet pass the output to the next command in the pipeline.

51434S G.02 12-28 (12-13)
© 1999 Hewlett-Packard Company

Module 12

Pipes

• To send final output of a command to the screen and to a file:
This is a useful logging mechanism. You may want to run a command interactively and see
its output, but also save that output to a file. Remember when you just redirect the output
of a command to a file, no output is sent to the screen. So this implementation can be used
at the end of a pipeline, or at the end of any command that generates output.

12-29 (12-14) 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-30
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-9. SLIDE: The tee Command Instructor Notes

Key Points

• tee is useful for capturing intermediate output in a pipeline that cannot normally be
viewed (examples 2 and 5 on the slide).

• tee is useful for logging the output of commands to a file and seeing the output on the
screen (example 3 on the slide).

• Differentiate using the tee command at the end of a command versus redirecting. When
output is redirected, you will not see any output to the screen. When the output is tee’d,
the output goes to the screen and to the file.

$ who | tee unsorted | sort > sorted
Output just to file

$ who | tee unsorted | sort | tee sorted
Output to screen and file

Teaching Tips

Have the students type in the commands that are listed on the slide.

12-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-10. SLIDE: The pr Command

Student Notes

The pr command stands for print to stdout; it is used to format the standard input stream or
the contents of specified files. It sends its output to the screen, not to the printer. The pr
command is typically executed, though, to format files in preparation for sending them to the
printer.

The pr command is useful for printing long files because it will insert a header on the top of
each new page that includes the file name (or header specified with the -h option), and a page
number.

The pr command supports many options. The following is a summary of some of the more
common ones:

-k Produces k-column output; prints down the column

-a Produces multicolumn output; used with -k; prints across

-t Removes the trailer and header

51434S G.02 12-32 (12-15)
© 1999 Hewlett-Packard Company

Module 12

Pipes

-d Doublespaces the output

-wN Sets the width of a line to N characters

-lN Sets the length of a page to N lines

-nCK Produces K-digit line numbering, separated from the line by the character C; C
defaults to Tab

-oN Offset the output N columns from the left margin

-p Pauses and waits for Return before each page

-h Uses the following string as the header text

12-33 (12-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-34
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-10. SLIDE: The pr Command Instructor Notes

Key Points

• pr does not send output to the printer; it sends output to stdout.

• pr stands for print to stdout or pretty.

• pr has many handy options.

12-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-11. SLIDE: Printing from a Pipeline

Student Notes

The lp command is used to queue a job for the printer. You submit a job by specifying a file
name as an argument to lp. The lp command also accepts standard input, so you can pipe to
the lp command as well. This allows the output of any command that generates standard
output to be printed.

Generally, the pr command is used to format the output of a command prior to submitting it
to the lp command for printing.

Because most pipelines will send their filtered output to stdout, it is easy to submit the output
of most filter operations to the printer. If you need to save the output of the pipeline and send
it to the printer, insert a tee prior to the lp command in the pipeline.

51434S G.02 12-36 (12-17)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-11. SLIDE: Printing from a Pipeline Instructor Notes

Key Points

• lp accepts stdin as well as file names as arguments.

• Any command that generates stdout can have its output printed.

• Put a tee in your pipeline if you want to save the output to a file and print the file.

• Printing of standard output is done on a command line by command line basis. There is no
switch that you set that directs the output of all subsequent commands to go to the printer.

Teaching Question

How could you send the output to the printer and to your screen?
Answer: Include a tee /dev/ttyXX in the pipeline. You could include more than one tee
command in one command line.

12-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-12. SLIDE: Pipelines — Summary

Student Notes

51434S G.02 12-38 (12-18)
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-12. SLIDE: Pipelines — Summary Instructor Notes

12-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-13. LAB: Pipelines

Directions

Complete the following exercises and answer the associated questions.

1. Construct a pipeline that will count the number of users presently logged on.

2. Construct a pipeline that counts the number of lines in /etc/passwd that contain the
pattern home. Now count the lines that do not contain the pattern.

3. Modify your pipeline from the above exercise so that you save all of the entries from
/etc/passwd that contain the pattern home to a file called all.users before passing the
output to be counted.

4. Construct a pipeline that will sort the contents of the names file found under your HOME
directory, and display the sorted output in three-column format with no header or trailer.

5. Create an alias called whoson that will display an alphabetical listing of the users
currently logged into your system.

6. Construct a pipeline to obtain a listing of just the user names of those users presently
logged into the system.

51434S G.02 12-40 (12-19)
© 1999 Hewlett-Packard Company

Module 12

Pipes

7. Construct a pipeline to obtain a long listing of just file permissions and file names
currently in your working directory.

8. Construct a pipeline that lists only the user name, size, and file name of each file in your
HOME directory into a file called listing.out. At the same time, display on your screen
only the total number of files.

9. Create a pipeline that will only capture the user name, user number, and HOME directory
of every user account on your system. First, output the list in alphabetical order by user name.
Now modify the pipeline so it sorts the list of user accounts by UID number instead of user
name. Hint: the information can be found in /etc/passwd.

12-41 (12-20) 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

51434S G.02 12-42
© 1999 Hewlett-Packard Company

Module 12

Pipes

12-13. LAB: Pipelines Instructor Notes
Time: 45 minutes

Purpose

To practice constructing pipelines and using some additional filters.

Notes to the Instructor

Lab exercises 1–5 are introductory. Exercise 2 requests the students to search for all lines
containing the pattern user in /etc/passwd. If your user accounts are under /home, your
students should be able to complete this exercise successfully.

Lab exercises 6–11 are advanced.

Solutions

1. Construct a pipeline that will count the number of users presently logged on.

Answer:

$ who | wc -l

2. Construct a pipeline that counts the number of lines in /etc/passwd that contain the
pattern home. Now count the lines that do not contain the pattern.

Answer:

$ grep home /etc/passwd | wc -l Number of lines containing
home

$ grep -v home /etc/passwd | wc -l Number of lines not containing
home

3. Modify your pipeline from the above exercise so that you save all of the entries from
/etc/passwd that contain the pattern home to a file called all.users before passing the

output to be counted.

Answer:

$ grep home /etc/passwd | tee all.users | wc -l

4. Construct a pipeline that will sort the contents of the names file found under your HOME
directory, and display the sorted output in three-column format with no header or trailer.

12-43 51434S G.02
© 1999 Hewlett-Packard Company

Module 12

Pipes

Answer:

$ sort names | pr -3 -t

5. Create an alias called whoson that will display an alphabetical listing of the users
currently logged into your system.

Answer:

$ alias whoson="who | sort"

6. Construct a pipeline to obtain a listing of just the user names of those users presently
logged into the system.

Answer:

$ who | cut -c1-8

or

$ who | cut -f1 -d" "

7. Construct a pipeline to obtain a long listing of just file permissions and file names
currently in your working directory.

Answer:

$ ll | cut -c2-10,58-

8. Construct a pipeline that lists only the user name, size, and file name of each file in your
HOME directory into a file called listing.out. At the same time, display on your screen
only the total number of files.

Answer:

$ ll | cut -c16-24,34-44,58- | tee listing.out | wc -l

9. Create a pipeline that will only capture the user name, user number, and HOME directory
of every user account on your system. First, output the list in alphabetical order by user name.
Now modify the pipeline so it sorts the list of user accounts by UID number instead of user
name. Hint: the information can be found in /etc/passwd.

Answer:

$ cut -f1,3,6 -d: /etc/passwd | sort
Alphabetical sort

$ cut -f1,3,6 -d: /etc/passwd | sort -n -t: -k 2 Numerical sort

51434S G.02 12-44
© 1999 Hewlett-Packard Company

Module 13 — Using Network Services

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the different network services in HP-UX.

• Explain the function of a Local Area Network (LAN).

• Find the host name of the local system and other systems in the LAN.

• Use the ARPA/Berkeley Services to perform remote logins, remote file transfers, and remote
command execution.

13-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

51434S G.02 13-2
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

Overview of Module 13

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

It is very common for a user to purchase a computer to use in a networked environment. This
module gives the basic forms of some user LAN services. The students must know the basic
HP-UX commands.

This module does not replace the ARPA/Berkeley Services class! It is just an overview of the
basic LAN services.

Time

Lab 30 minutes

Lecture 30 minutes

Prerequisites

m46m Navigating the File System

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

13-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

LAN LAN software (ARPA, Berkeley Services

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual, one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

lan If you are in a networked classroom, make sure the students can log in to
another system. Make sure the /etc/hosts.equiv file contains the names
of all of your computers on all systems.

51434S G.02 13-4
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-1. SLIDE: What Is a Local Area Network?

Student Notes

A Local Area Network (LAN) is a method of connecting two or more computer systems over
a small area. Most installations that have more than one computer will install a LAN to allow
the users to work on several different computers without physically picking up all of their
work and moving to the computer they want to work on.

The LAN services discussed in this module are the programs that allow us to use the LAN to
perform many tasks between computers. Some of these tasks are the following:

• Copy files from one computer to another. Without a LAN, you would have to make a tape
copy of your files, walk it over to the other computer, and reload the tape.

• Log in to another computer from a terminal on the local computer. Normally you would have
to actually go to the other computer to log in.

• Execute commands on another computer and see the results locally. Again, you would have
to move to the other computer if you did not have a LAN.

51434S G.02 13-6 (13-2)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

• Access files on a remote computer. This means we will use the files on another computer’s
disk without copying the files to the local disk.

13-7 (13-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

51434S G.02 13-8
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-1. SLIDE: What Is a Local Area Network? Instructor Notes

Purpose

To introduce the kinds of things we can do with a LAN.

Key Points

These are the four basic functions that users will perform on a LAN. Other functions are
normally built out of these four.

Presentation Suggestions

If you have a LAN in the training facility, it helps to discuss the setup of the machines.

Ask how many students have LAN installations and pick a few to describe why they wanted a
LAN in their company. This will help establish the need for a LAN.

Transition

There are two sets of services that you can use to perform these functions:

• ARPA Services

• Berkeley Services

13-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-2. SLIDE: LAN Services

Student Notes

In this module we will look at two different groups of services to perform the basic LAN
functions we have discussed. These services are the following:

• ARPA Services

• Berkeley Services

The ARPA Services were first defined by the Defense Advanced Research Projects Agency
(DARPA) in the late 1960s. These services became a standard for communicating to many
different brands of computers across a single LAN. The ARPA Services that we will discuss
are telnet and ftp.

DARPA hired the University of California at Berkeley and Bolt, Baranek and Newman (BBN
of Massachusetts) to develop these services. In the mid 1970s Berkeley started working with
the new UNIX operating system. They eventually developed a more robust set of services to be
used between computers running the UNIX operating system. These are now called the

51434S G.02 13-10 (13-4)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

Berkeley Services. We will introduce the Berkeley services rcp, rlogin, and remsh in this
module.

13-11 (13-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

51434S G.02 13-12
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-2. SLIDE: LAN Services Instructor Notes

Purpose

To show the many commands that you can use to perform remote tasks. Which commands the
students can use will depend on which of these services they have installed on their computers.

Key Points

ARPA Services are used to communicate between many different types of computers with
different operating systems. The Berkeley Services are primarily used between UNIX systems
(although they do work on other systems).

Where Problems Arise

Many students have heard about TCP/IP (Transmission Control Protocol/Internet Protocol).
This is not a service you can run interactively. Instead, it is the underlying protocol that the
network services use to facilitate the communications across the LAN.

Evaluation Questions

When would you use the ARPA Services or the Berkeley Services? Answer: Use ARPA Services
for communicating to computers with different operating systems across a single LAN. Use
Berkeley Services for communicating between computers running the UNIX operating system.

Transition

A computer on a LAN is known by its host name.

13-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-3. SLIDE: The hostname Command

Student Notes

Your computer has a host name. This is the name that identifies your system on the LAN. To
find your system’s host name, use the hostname command.

$ hostname
fred

If you want to communicate with another computer on the LAN, you must know its host
name. You can do this simply by asking the administrator of the other computer what the host
name is. You should also check that you have a user account on the machines that you want to
work with.

NOTE: In order to use any of the LAN services, you must be a valid user on the
remote computer.

You can also find host names in the /etc/hosts file. However, if you are part of a large LAN
installation, this file may contain several hundred entries.

51434S G.02 13-14 (13-6)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-3. SLIDE: The hostname Command Instructor Notes

Purpose

We communicate to other machines using host names.

Key Points

You must be a valid user on the remote computer.

The administrator of the other computer must also allow you access permissions to his or her
computer through the network configuration files.

Transition

Let’s take a look at the two ARPA Services first.

13-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-4. SLIDE: The telnet Command

Student Notes

telnet is the remote login facility of the ARPA Services.

If you type the command

$ telnet hostname

you will see the login prompt for the computer called hostname on your screen. At this point,
you can enter the user name and password that you use on that machine and you will be
logged in.

Once you are logged in, your terminal looks as if it were a terminal on the remote computer.
You can run shell commands or programs and even use the remote computer’s line printer. All
of the work you do is being executed on the remote computer. Your local computer is just
passing the information to and from your terminal through the LAN.

To close a telnet connection, simply log off the remote computer using Ctrl + d or exit.

51434S G.02 13-16 (13-7)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-4. SLIDE: The telnet Command Instructor Notes

Purpose

To log in remotely to another computer running the ARPA Services, you would use telnet.

Key Points

telnet has many more facilities than we will discuss here. telnet hostname is the most
basic form of the command.

Transition

The ARPA Service to perform remote file transfers is called ftp.

13-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-5. SLIDE: The ftp Command

Student Notes

To copy a file to or from a remote computer using the ARPA Services, use the ftp command.
ftp stands for file transfer protocol. As with telnet, you must specify the host name of the
remote machine:

$ ftp hostname

ftp will prompt you for your user name and password on the remote system. It requires that
you have a password set on the remote computer. Once you give it the correct login
information, you will be connected to hostname.

51434S G.02 13-18 (13-8)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

At this point you get the ftp> prompt. At this prompt you can use the numerous ftp
commands to do your work. Here are a few of the common ftp commands for performing
remote file transfers:

get rfile lfile This copies the file rfile on the remote computer to the file lfile on your
local computer. You can also use full path names as file names.

put lfile rfile This will copy the local file lfile to the remote file named rfile.

ls List the files on the remote computer. This works just like the ls command
we have been using.

? List all of the ftp commands.

help command Display a brief (very brief) help message for command.

quit Disconnect from the remote computer and leave ftp.

If, for example, you want to copy your local file called funfile to the /tmp directory on
another computer whose host name is fred, your session would look something like the
following. (The underlined text is what you type.)

$ ftp fred
Connected to fred.
220 fred FTP server (Version 1.7.109.2 Tue Jul 28 23:46:52 GMT 1992)
ready.

Name (fred:gerry): Return

Password (fred:gerry): Enter your password and press
Return

331 Password required for gerry.
230 User gerry logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put funfile /tmp/funfile
200 PORT command successful.
150 Opening BINARY mode data connection for /tmp/funfile.
226 Transfer complete.
3967 bytes sent in 0.19 seconds (20.57 Kbytes/sec)

ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls .
-rw-rw-rw- 1 root sys 347 Jun 14 1993 exercises
-rw-rw-rw- 1 root sys 35 Oct 23 1993 cronfile
-rw-r----- 1 root sys 41 Jul 6 17:19 fio
-rwxrw-rw- 1 root sys 153 Oct 23 1993 initlaserjet
-rw-rw-rw- 1 root sys 37 Nov 21 1994 funfile
226 Transfer complete.
ftp> bye
221 Goodbye.

13-19 (13-9) 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

The first thing you will notice about ftp is that it is very verbose. It has a response for every
command you type. (You can tell that it was not originally a UNIX system facility!)

51434S G.02 13-20 (13-10)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-5. SLIDE: The ftp Command Instructor Notes

Purpose

If you use ARPA Services, you will use ftp to transfer files.

Key Points

ftp requires that the user have a password set on the remote computer.

There are many ftp commands to facilitate remote file transfers. ? will list the commands.

Where Problems Arise

ftp’s output can be very confusing to the first-time user. The example shows a typical ftp
session.

Presentation Suggestions

Go through the example, explaining that the messages are not error messages. They are ftp’s
way of telling you what it is doing.

You may want to explain a get example also.

Transition

The Berkeley Services have commands to perform similar tasks.

13-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-6. SLIDE: The rlogin Command

Student Notes

The rlogin command performs functions similar to the telnet command. If you type

$ rlogin hostname

you will be logged in automatically to the system named hostname. rlogin assumes that you
are logging in to the remote computer with the same name you used to log in to the local
system. As a result, it does not have to prompt you for your user name.

If your system administrator has a file called /etc/hosts.equiv configured, rlogin will not
even prompt you for a password. This makes it very quick and easy to use. A file called
.rhosts can be created in your HOME directory which would also let you log in remotely to
that computer without using a password. See hosts.equiv(4) for more information on the
format of .rhosts.

As with telnet, to disconnect from the remote computer, simply log off.

51434S G.02 13-22 (13-11)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-6. SLIDE: The rlogin Command Instructor Notes

Purpose

rlogin is usually the preferred way to log in remotely to another UNIX system computer
because it is easier to manipulate than telnet.

Key Points

The file /etc/hosts.equiv is a list of host names that have the same users. If your login
name is gerry on one system, it is assumed that you are the same gerry on all hosts listed in
hosts.equiv. This is helpful when rlogin is used, and it must be configured correctly when
using remsh and rcp. You may want to mention $HOME/.rhosts as an alternative to
hosts.equiv.

Evaluation Question

Why would you use rlogin instead of telnet and vice versa? It depends a great deal on
what services you and the remote computer have in common.

Transition

Let’s take a look at how to do remote file transfers using the Berkeley Services.

13-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-7. SLIDE: The rcp Command

Student Notes

rcp stands for remote cp. That is because it works just as the cp command does. It works
between two computers running the Berkeley Services. The general format of the command is

$ rcp host1:source host2:dest

in which the arguments mean copy the file source from host1 to the file called dest on host2.
source and dest could be full path names, of course.

51434S G.02 13-24 (13-12)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

If you are copying to or from a local file, you can leave off the local host name and the colon
(:). Some examples will help make rcp clearer:

• Copy the file funfile on the local machine (called bambam) to /tmp/funfile on the
system called fred:

$ rcp funfile fred:/tmp/funfile

• Copy /tmp/funfile on fred to the /tmp directory on barney:

$ rcp fred:/tmp/funfile barney:/tmp

All of the rules that apply to the cp command also apply to the rcp command.

NOTE: The file /etc/hosts.equiv or .rhosts must be configured correctly for
rcp to work.

13-25 (13-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

51434S G.02 13-26
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-7. SLIDE: The rcp Command Instructor Notes

Purpose

rcp is a simple way to copy files between UNIX systems.

Key Points

Each system (bambam, fred, and barney) should have a hosts.equiv file that contains all
three names.

You can leave off hostname: if the file is on the local machine.

rcp is easier to use than ftp; however, rcp is much slower if you are transferring a large
number of files between two machines.

Presentation Suggestions

You could show the students a few more examples, if necessary.

Transition

The next Berkeley Service that we will look at is the remsh command.

13-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-8. SLIDE: The remsh Command

Student Notes

remsh allows you to run a program on a remote computer and see the results on your
terminal. The general form of the command looks like the following:

$ remsh hostname command

For example, if you wanted to see what is running on the system fred, you could execute

$ remsh fred ps -ef

51434S G.02 13-28 (13-14)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

List the files in fred’s /tmp directory:

$ remsh fred ls /tmp
fredfile
funfile
reconfig.log
update.log

Or, if you wanted to view the /etc/hosts file on fred:

$ remsh fred cat /etc/hosts | more

Notice that cat /etc/hosts is the only command being executed on fred. The output is
coming to our terminal and that output is being piped to more.

You can also use remsh to print files on a printer connected to another computer:

$ cat myfile | remsh fred lp

NOTE: The file /etc/hosts.equiv or .rhosts must be configured correctly for
remsh to work.

13-29 (13-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

51434S G.02 13-30
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-8. SLIDE: The remsh Command Instructor Notes

Purpose

remsh can be used in many ways to facilitate two machines working together across the LAN.
It is an extremely powerful tool when used in shell programs.

Key Points

You may want to quote the command to be executed remotely to prevent the local shell from
interpreting any special characters.

Transition

The Berkeley Services have commands to perform similar tasks.

13-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-9. SLIDE: Berkeley — The rwho Command

Student Notes

The rwho command operates similarly to the who command but will look for users on all of the
systems in your LAN that are running the rwho daemon.

51434S G.02 13-32 (13-16)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-9. SLIDE: Berkeley — The rwho Command Instructor Notes

Key Points

• This is a useful command to see if someone else is currently logged in on your network.

Teaching Tips

The rwho daemon, rwhod, is started at boot time through /etc/rc.config.d/netdaemons.

You can run ps -ef | more to see if the rwhod daemon is running.

13-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-10. SLIDE: Berkeley — The ruptime Command

Student Notes

The ruptime command will display the status of the systems in the LAN, whether they are
up or down, how many users are currently running on each system, and machine loading
information.

Looking at the entry for fred on the slide:

• fred in presently up.
• fred has been up for 1 day, 5 hours and 15 minutes.
• fred has 4 users logged in.
• Over the last 1-minute interval, an average of 1.47 jobs have been in the run queue.
• Over the last 5-minute interval, an average of 1.16 jobs have been in the run queue.
• Over the last 15-minute interval, an average of 0.80 jobs have been in the run queue.

51434S G.02 13-34 (13-17)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-10. SLIDE: Berkeley — The ruptime
Command

Instructor Notes

Transition

Let’s try a few exercises.

13-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-11. LAB: Exercises

Directions

Ask your instructor which exercises you can do in the classroom. Also find out the host names
of the computers with which you can communicate.

1. Use the hostname command to determine the name of your local system. What systems
can you communicate with?

2. Use telnet to log in to another computer. Use the hostname command to verify that you
are connected to the correct computer. Log off the remote computer when you have finished.

3. Transfer one of your files to your HOME directory on a remote computer using ftp, and
then use rcp to copy another file to the remote machine. Notice the differences.

4. Use remsh to list the contents of the remote directory to verify that the copy worked.

51434S G.02 13-36 (13-18)
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

13-11. LAB: Exercises Instructor Notes

Purpose

To practice using the basic LAN services.

Notes to the Instructor

If you are not in a network, the students can still do the exercises on the local system. Just be
careful of which file names get used in the lab.

Solutions

1. Use the hostname command to determine the name of your local system. What systems
can you communicate with?

Answer:

The hostname command reports the local host name. By looking at the /etc/hosts file,
you can see all of the computers your local computer can talk to.

2. Use telnet to log in to another computer. Use the hostname command to verify that you
are connected to the correct computer. Log off the remote computer when you have finished.

Answer:

$ telnet fred
Trying...
Connected to fred
Escape character is ’^]’.

HP-UX fred 10.00 B 9000/715

login: enter your name
Password: enter your password
.
.
.
$ hostname
fred
$ exit

3. Transfer one of your files to your HOME directory on a remote computer using ftp, and
then use rcp to copy another file to the remote machine. Notice the differences.

Answer:

In ftp, you would use the put command, similar to the example given in the student notes.

13-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 13

Using Network Services

4. Use remsh to list the contents of the remote directory to verify that the copy worked.

Answer:

$ remsh system ls

The ls command will list your HOME directory on system.

51434S G.02 13-38
© 1999 Hewlett-Packard Company

Module 14 — Introduction to the vi Editor

Objectives

Upon completion of this module, you will be able to do the following:

• Use vi to effectively edit text files.

14-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-2
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Overview of Module 14

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

This module is designed as an introduction to the vi editor. We present vi because it is a
powerful display-oriented editor that is readily available on almost all UNIX systems. By the
end of the module students will be familiar with the basic capabilities and commands offered
by vi.

The commands are presented on a category by category basis. The slides will generally
illustrate the use of a specific command, and a table is provided in the text that summarizes
the common commands defined for that category.

A final summary slide is presented so that the students can pull it out and use it as a quick
reference guide.

Time

Lab 60 minutes

Lecture 60 minutes

Prerequisites

m47m Managing Files

In order to successfully complete this module, the student must be able to log in and navigate
the file system.

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

14-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual, one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... user n, where n is the number
of students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r----- 1 karenk users 3081 May 28 16:12 funfile
-rw-r--r-- 1 karenk users 85 May 28 16:12 tst
-rw-r--r-- 1 karenk users 959 Aug 24 12:04 vi.tst

51434S G.02 14-4
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-1. SLIDE: What Is vi?

Student Notes

vi (pronounced vee-eye meaning visual) is the standard text editor that is supplied with most
UNIX system distributions. A text editor is an interactive computer program that allows you
to enter or modify text in a file. You can use vi to create new files or alter existing ones.

vi was developed at the University of California at Berkeley by William Joy. It is a
screen-oriented interactive editor. The contents of the file will be displayed to your screen, and
as you make changes to the file, they are immediately displayed on the screen. (The UNIX
system also supports batch-oriented text editors such as ed, sed, and awk where you submit a
batch request to execute file changes.)

The vi editor was designed to be terminal independent, and commands have been mapped to
almost every key of the standard keyboard. It was originally used on teletypes that had no
special function or cursor keys. Therefore, it may or may not take advantage of special keys
that are available on your terminal.

51434S G.02 14-6 (14-2)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

The advantage of these design philosophies is that vi can be used on almost any type of
terminal, and since it is available on most UNIX systems, you do not have to learn a new
editor or a new set of editing keys every time you sit down to a different UNIX system.

The vi interface is easily customizable. Mappings allow any key on the keyboard to be
customized, including the special feature keys.

This module is designed to provide you with basic vi literacy. Using vi proficiently is a skill
that requires some practice. The more you practice, the better you will become. This chapter
will provide you with a good foundation for basic file editing and enable you to to enhance your
skills at your own pace.

14-7 (14-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-8
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-1. SLIDE: What Is vi? Instructor Notes

Key Points

• vi is a command driven editor. It often takes time for students to become familiar with the
vi commands. Most commands are a mnemonic with an associated meaning, so reinforce
the commands by presenting their associated meanings.

• With some practice most students will be able to master the basic editing skills.

• Since vi is available on most UNIX systems, you only have to learn one editor for all UNIX
systems. It is usually provided at no extra cost.

Teaching Tips

Students often take quite a while to warm up to vi. It is important to keep a positive attitude.
Point out some of vi ’s positive attributes, such as

• It is included with most UNIX system software distributions.
• It is terminal independent.
• The keyboard is easily configurable.
• Keyboard macros can be defined for common operations.

14-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-2. SLIDE: Why vi?

Student Notes

No matter which UNIX machine or operating system you find yourself working with, vi will
always be there. The vi editor is screen-like and was designed to operate on any type of ASCII
terminal, regardless of the manufacturer. Screen editors require specific types of terminals,
but vi will operate on any type. It is true that vi is not very friendly, but it will always be
there when you need to edit a file.

Many newer editors are really word processors which can also perform some editing functions.
Word processors are usually very user friendly and are fairly intuitive. For small files, word
processors or windows-type editors are very appropriate.

If a large shell program is to be edited, experienced users of vi find they are more productive
with vi than a windows editor. Although very cryptic, vi is a very efficient and powerful editor,
able to edit multiple files at one time and quickly cut and paste text from one file to another.

If you use the Korn shell or the POSIX shell, you may also have noticed that the commands
used in manipulating the command stack are vi commands. Both the Korn and POSIX shells
use vi as the preferred editor.

51434S G.02 14-10 (14-4)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Many other tools in UNIX will put you into a vi session as a means of modifying configuration.
To be considered an experienced user of UNIX, you must be a proficient user of this tool.

14-11 (14-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-12
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-2. SLIDE: Why vi? Instructor Notes

14-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-3. SLIDE: Starting a vi Session

Student Notes

Invoking the vi command will start an edit session. If the requested file already exists, the
first screen of text will be displayed. Otherwise, if you are editing a new file, you will see a
blank screen with tildes (~)running down the left column. vi brings a copy of your file into a
temporary memory buffer. All of your modifications will be made to this temporary copy in
memory. Only when you issue the command that saves the buffer to your disk will the copy of
the file on the disk be updated. Therefore, if you determine that you have made unnecessary
changes to your file, the temporary buffer can be discarded, and the image on the disk is not
affected.

When editing a file, your screen becomes a window into the file that you are editing. You will
generally make changes to the file at the character, word, or line that contains the cursor.
Therefore, you should focus on the cursor’s location at all times. As you make your
modifications to the file they will be immediately displayed.

51434S G.02 14-14 (14-6)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-3. SLIDE: Starting a vi Session Instructor Notes

Key Points

• Invoking vi brings a copy of your file into memory.

• All modifications are performed on the image in memory.

• Changes can be saved or discarded.

• You will see a window of the file.

• Edits normally take place at the cursor. Focus on the cursor.

• Changes will be seen immediately on the screen.

Teaching Tips

You might want to mention that a temporary file is also maintained, in case of a power outage
during an editing session. The temporary file is automatically updated as you proceed through
your editing session. If you experience a power outage while editing, vi will mail you a
message informing you that it has saved your temporary file. To recover the crash file you
invoke: vi -r filename.

Activity

If you wish to talk students through the next few slides, you may wish to have them begin a
vi session on the file funfile in their home directory.

$ cd
$ vi funfile

Common Problems

Students will often enter vi Return and not provide a file name. If this occurs, you may have to
help them exit vi and reissue the command specifying the file funfile.

14-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-4. SLIDE: vi Modes

Student Notes

vi is a command-driven editor. When you start a vi edit session, you are in command mode.
Therefore, if you type any keys, vi will try to execute the associated commands. Almost every
key on the keyboard is assigned to some vi function. Commands are available to input text,
move the cursor, modify text, delete text, and paste text. Generally, vi commands are silent,
which means that as you enter vi commands they will not be echoed to the screen. You will
only see their effects.

ex is an extended line-oriented editor, whose commands are available from within your vi edit
session. ex commands are entered at the colon prompt, and unlike vi commands, are echoed
to the screen and are submitted by entering a Return . These commands are commonly used for
multi-line modifications and session customization.

There are vi commands available to get into the input mode, where everything you type will
be entered into your file. To return to the command mode just press the ESC key.

51434S G.02 14-16 (14-7)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

NOTE: Some vi commands require multiple keystrokes. If you ever get lost in
the middle of a vi command, just press the ESC key to terminate the
current command.

14-17 (14-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-18
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-4. SLIDE: vi Modes Instructor Notes

Key Points

• vi is a command-driven editor.

• When in command mode, everything is interpreted as a command.

• You are in command mode when you start a vi session.

• When in input mode, everything you type is entered into the file.

• You press the ESC key to return to command mode or terminate a command.

• ex commands are entered at a colon prompt.

• ex commands are echoed to the screen, unlike vi commands.

• ex commands are available for batch line edit operations, and session customization.

Activity

If you are guiding students through the basic commands, have the students press a couple of
keys, like j or several w’s to see that these characters are not entered into their file because
they are in command mode. vi is going to try to execute the j and the w command.

14-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-5. SLIDE: A vi Session

Student Notes

When you start a vi session, the screen will appear similar to the illustration on the slide. On
your screen you will view a window of your file. Be aware of the following components of the
vi display:

text cursor points to a character in the file

text area displays the contents of the file

ex command area echoes ex commands and vi editor messages

mode message area displays mode status

You should always focus on the location of the cursor, since it will generally point to the
character, the word of the line that you want to modify.

51434S G.02 14-20 (14-9)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

You should also be aware of the messages that appear in the mode message area. The editor
can remind you when you are in input mode or replace mode. These visual cues will greatly
assist you during your edit sessions.

The tilde’s (~) that you see on the slide signify space holders for display purposes. The file does
not contain these lines. If you want blank lines at the end of your file, you must physically
insert them.

NOTE: If you go into input mode and do not see a mode message signifying input
mode, enter:
ESC :set showmode Return

14-21 (14-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-22
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-5. SLIDE: A vi Session Instructor Notes

Key Points

• Present the components of the vi display.

• Remind students that they are in command mode when they start a session.

• Point out the tildes, and that they are not part of the file.

• Remind students to observe messages in the mode messages area, so that they can tell when
they are in input or command mode.

• Changes usually take place at the cursor, so this is where students should focus their
attention.

14-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-6. SLIDE: Ending a vi Session

Student Notes

When you have completed making changes to your file, you will need to save the temporary
buffer contents to your disk. There are two commands available to save your file; one is a vi
command, the other is an ex command. You must be in command mode to issue either
command, so remember to press the ESC key to confirm that you are in command mode.

ESC ZZ vi command—not echoed to the screen
put the file to bed

ESC :wq Return ex command—prefixed by a colon
echoed to the lower left corner of your screen
write and quit

There may be times when you do not want to save the changes that are in your buffer. An ex
command is available to discard the buffer:

ESC :q! Return means quit! I really mean it! (I know that I’m throwing my changes away.)

51434S G.02 14-24 (14-11)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-6. SLIDE: Ending a vi Session Instructor Notes

Key Points

• Once you know how to get into vi , you should know how to get out.

• Remember you must be in command mode to issue these commands.

• It is important to present the :q! command, especially early on, so students can discard
their changes, and keep their file intact if they wish.

Activity

Have the students quit the vi session without saving any changes. (Hint: ESC :q!) Notice
that the :q! is echoed to the lower left corner of the screen. Any command prefixed with a
colon will appear here.

14-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-7. SLIDE: Cursor Control Commands

Student Notes

The first category of commands that you will learn will allow you to move the cursor
throughout your text. Remember the cursor points to the position in the file that you want to
modify.

You will notice that simple cursor movement is executed through the h, j, k, and l commands.
Remember that teletypes did not have cursor keys on them, so other keys had to be defined to
move the cursor. Most current vi configurations, though, will support the use of the cursor
keys (# , , ! , ") to move the cursor. If you are a touch typist, you should find the cursor
control commands very convenient.

Most vi commands are an abbreviation for some associated meaning. Learn the abbreviation
and its corresponding meaning and the command will be easier to recall. Where appropriate,
the command meanings will be provided in the command summary tables.

Cursor Control Summary

h or Backspace Move left one character.

51434S G.02 14-26 (14-12)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

j Move down one line.

k Move up one line.

l or Space Move right one character.

w Move forward word by word (W ignores punctuation.)

b Move backwards word by word. (B ignores punctuation.)

e Move to the end of the next word. (E ignores punctuation.)

$ Go to the end of the current line.

^ or 0 Go to the beginning of the current line.

Many vi commands can be prefixed with a number to repeat the command. Therefore, if you
want to move forward by 6 words you would issue the 6w command, or if you want to move 3
words backward you would issue 3b command.

14-27 (14-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-28
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-7. SLIDE: Cursor Control Commands Instructor Notes

Teaching Tips

• Remind students to focus on the cursor position as they edit their files.

• Most students will be inclined to use the cursor keys, and will probably ask if they can be
used. If a vi session has been configured to recognize the cursor keys (often through
.exrc), they can be used. But students should not depend on the cursor keys until they
know if they are available.

• The cursor keys are not recognized when using the vi commands to edit the Korn Shell
command stack. Therefore, you might want to discourage the use of the cursor keys until
the students become more familiar with the cursor control commands.

• A trick to remember the h and l commands is their relative position on the keyboard. The h
key is the leftmost cursor control key, and moves the cursor to the left, the l key is the
rightmost cursor control key, and moves the cursor to the right. Students usually become
more familiar with the k command later, after they use it to move up through the command
stack.

Activity

You may wish to have the students practice using the cursor control commands listed on the
slide in the file funfile.

Possible Problems

• Users getting to the last character on a line, and pressing the right cursor control command.
If there is no text (embedded blank spaces), the cursor will not move to the right.

• Users getting to a blank line, and similar to the above, trying to advance the cursor to the
right. If there is no text (embedded blank spaces), the cursor will not move to the right.

14-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-7. SLIDE: Cursor Control Commands (Continued)

Student Notes

Additional cursor control commands allow you to move to a specific line in the file or scroll
your display.

Cursor Control Summary (Continued)

G Go to the end of the file.

#G Go to the line number #.

: # Go to the line number #.

Ctrl + g Reports the line you have gone to (the current line).

Return Go to first non-blank character on next line.

Ctrl + b Scroll back to previous window of text.

51434S G.02 14-30 (14-14)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Ctrl + f Scroll forward to next window of text.

Ctrl + u Scroll up half a window of text.

Ctrl + d Scroll down half a window of text.

L Go to the last line on the screen.

M Go to the middle line on the screen.

H Go home (first line, first character) on the screen.

Ctrl + l Redraws the screen (helpful if someone writes a message to you in the
middle of an edit session).

NOTE: If you like to see line numbers while you are editing your file you can
enter the command
:set number Return

You can disable line numbers with
:set nonumber Return

14-31 (14-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-32
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-7. SLIDE: Cursor Control Commands
(Continued)

Instructor Notes

Key Points

The commands on these two pages allow the user to efficiently move through the text in his or
her file.

Activity

Have the students use the cursor control commands to move the cursor to

the next line Return

line 10 10G

the last line G

the first line 1G

Possible Problems

• Users moving to the last line of a file, seeing the tildes and pressing the Return trying to
advance to the next line. The tildes do not represent empty lines in the file.

14-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-8. SLIDE: Input Mode: i, a, O, o

Student Notes

In order to input text into your file, you must go into input mode . There are actually several
commands that will toggle you into input mode .

Input Mode Summary

a append new text after the cursor.

i insert new text before the cursor.

O Open a line for text above the current line.

o open a line for text below the current line.

A Append new text at end of the line.

I Insert new text at beginning of the line.

51434S G.02 14-34 (14-16)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

When you are in input mode you should see an input mode message appear in the lower right
corner of your screen.

Once in input mode you can enter text into your file. In input mode a Return will provide a
new, blank line. If you need to split a line, you move the cursor to where you want to split the
line, and then insert a carriage return character into the file (remember that in command
mode Return moves your cursor to the first non-blank character on the next line).

NOTE: To get back to command mode, type the ESC key. Note that when you
toggle from input mode to command mode, the cursor will back up (move
left) one character.

Correcting Typing Mistakes

While you are in input mode, you can use the Backspace key to backup to where the mistake
occurred and reenter your text. Beware, as you backup through your text, the characters are
not erased from your display, but they are erased from the buffer.

You can use Backspace to correct typing mistakes for the current input session. Pressing the
ESC key concludes an input session. To modify text that was entered in a previous input
session you must use vi commands.

14-35 (14-17) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-36
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-8. SLIDE: Input Mode: i, a, O, o Instructor Notes

Key Points

• New text can only be input from input mode.

• Students must be careful when using the Backspace key to correct typing mistakes.

• ESC will return you to command mode. You are constantly toggling between the two modes.

14-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-9. SLIDE: Deleting Text: x, dw, dd, dG

Student Notes

Two commands are available to delete text:

#x x out (delete) the character at the cursor

#dobject Delete the named object

The d (delete) command is an active command that requires an object to act upon. The
specified object will be deleted. Objects are defined with the cursor motion commands.

Delete Summary

#dw delete the current word

#dd delete the current line. (vi convention: when the action is repeated, it affects
the entire line.)

dG delete through the last line of the file.

51434S G.02 14-38 (14-18)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

d$ delete to the end of the line.

d^ delete to the beginning of the line.

The delete command can be prefixed with a number to repeat the command. Therefore, if you
want to delete 6 words you would issue the command 6dw, or if you want to delete 3 lines you
would issue the command 3dd.

NOTE: Focus on your cursor position. Most objects are defined relative to the
current cursor position.

The Undo Command

As a new vi user, you might delete or modify something that was not intended to be deleted or
modified. The u (undo) command will undoubtedly come to your rescue.

u undo the last modification.

U Undo all modifications to current line.

u will undo the previous change that you made to your file. If you immediately issue another
u, this will undo the undo, reverting the text to its previous state before the first undo. If you
have made several changes to a line of text, you can issue the U, which will return the line to
the text it held when your cursor first entered the line. Therefore, for U to work, it has to be
issued before your cursor leaves the line.

14-39 (14-19) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-40
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-9. SLIDE: Deleting Text: x, dw, dd, dG Instructor Notes

Key Points

• x is used to delete single characters.

• d is used to delete objects, which are defined through the motion control commands.

• Focus on the cursor position because objects are commonly defined relative to the current
cursor position.

• u allows users to undo their last change.

• U allows users to recover the current line.

Teaching Tips

The slide shows several examples of the x and d commands, showing two progressive
applications of the commands.

Use a shield to cover the 2nd column and present the first column examples. The first column
is character- and word-oriented.

Use a shield to cover the 1st column and present the second column examples. The second
column is line-oriented.

Activity

You may wish to stop at this point and have students to the first lab, "Adding and Deleting
Text and Moving the Cursor."

14-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-10. LAB: Adding and Deleting Text and Moving the Cursor

Directions

Use vi to start an editing session on the file tst found in your HOME directory. Complete the
following exercises and answer the associated questions.

1. vi the file tst.

2. Insert the word only between the words will be.

3. Add the words many, many on the end of the line It will be used for.

4. Add a new blank line at the end of the file, and enter your name. DON’T PRESS THE
ESC !

5. Using the Backspace , remove your name and enter your partner’s name.

6. Open a new line at the top of your file (Hint: O).

51434S G.02 14-42 (14-20)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

7. Enter 12345.

8. Backspace 2 times. Do any of the numbers disappear from your display?

9. Enter 1234. What happens to the numbers that you backspaced over?

10. Backspace 3 times.

11. Press ESC . What happens to the characters you backspaced over? Where does the cursor
end up?

12. Type in 4 a’s. How many a’s appear? Why?

13. Backspace 5 times. What happens? Why?

14-43 (14-21) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14. Press ESC . What happens?

15. Quit your vi session saving the changes you made to the file tst.

51434S G.02 14-44 (14-22)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-10. LAB: Adding and Deleting Text and
Moving the Cursor

Instructor Notes

Time: 30 minutes

Purpose

To become familiar with vi commands that move the cursor and toggle between command
mode and input mode.

Solutions

1. vi the file tst.

Answer:

$ vi tst

2. Insert the word only between the words will be.

Answer:

Move cursor to the second line, type j or Return or 2G.
Move cursor to the last l in will, type ee or 2e or several ls.
Append text after the l, type a; type only or
Move cursor to the first b in be, type ww or 2w or several ls.
Insert text before the b, type i; type only.

3. Add the words many, many on the end of the line It will be used for.

Answer:

Go back to command mode, type ESC .
Move the cursor to the end of the line, type $.
Add (append) the text, a; enter text many, many.

4. Add a new blank line at the end of the file, and enter your name. DON’T PRESS THE ESC !

Answer:

Go back to command mode, type ESC .
Move cursor to the last line: G.
Open a new line below, o.
Type your name.

5. Using the Backspace , remove your name and enter your partner’s name.

Answer:

Backspace over the first name.

14-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Type in your partner’s name.

6. Open a new line at the top of your file (Hint: O).

Answer:

Go back to command mode, type ESC .
1GO

7. Enter 12345.

Answer:

12345

8. Backspace 2 times. Do any of the numbers disappear from your display?

Answer:

Backspace Backspace
The cursor will be under the 4. No characters disappear.

9. Enter 1234. What happens to the numbers that you backspaced over?

Answer:

The 4 and 5 will be typed over.

10. Backspace 3 times.

Answer:

Backspace Backspace Backspace
The cursor is now under the second 2.

11. Press ESC . What happens to the characters you backspaced over? Where does the cursor
end up?

Answer:

The second 234 will disappear, and the cursor will back up so it is under the 1.

12. Type in 4 a’s. How many a’s appear? Why?

Answer:

Three a’s appear because the first a is taken to be the vi append command.

13. Backspace 5 times. What happens? Why?

Answer:

You can only Backspace three times, because you have only entered 3 letters in this input
session.

51434S G.02 14-46
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14. Press ESC . What happens?

Answer:

All of the a’s you just entered disappear. You are back in command mode.

15. Quit your vi session saving the changes you made to the file tst.

Answer:

Enter :wq or ZZ

14-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-11. SLIDE: Moving Text: p, P

Student Notes

Whenever you delete an object, it is saved in a temporary cut buffer. The contents of the next
delete operation that you perform will replace the contents of this cut buffer. The p (paste)
command allows you to retrieve the text from the cut buffer and paste it back into your file.
Text is pasted relative to the cursor position.

You can easily move text from one position to another by deleting a block of text into the cut
buffer, moving the cursor to the desired destination, and pasting the contents of the cut buffer
at the cursor.

Since the contents of the cut buffer are replaced when you execute the next delete operation,
you must be careful to retrieve the contents before you complete your next delete.

51434S G.02 14-48 (14-23)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-11. SLIDE: Moving Text: p, P Instructor Notes

Key Points

• The unnamed cut buffer is immediately overwritten by the next delete or yank (discussed on
next slide) operation.

• Any object that is deleted can be pasted back. Text can be easily moved by deleting, moving
the cursor, and pasting.

Teaching Tips

The cut and paste examples are presented on two slides. The first slide is character and word
oriented, and the second slide is line oriented.

There is actually one unnamed buffer and nine numbered buffers (1–9) used by the delete and
yank functions by default.

In addition, you can cut or copy text into specified named buffers, identified by a single
character. These are not covered in the course materials, but you may have some advanced
students who are interested.

Both are presented on the vi Quick Reference Card included with the students materials.

Examples

To delete 3 lines to a named buffer b: b3dd
To paste from the named buffer b : bp

14-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-11. SLIDE: Moving Text: p, P (Continued)

Student Notes

Delete and Paste Summary

dobject Delete object into the cut buffer.

p (lowercase) paste contents of the cut buffer back into the text after the cursor.

P (uppercase) Paste contents of the cut buffer back into the text before the cursor.

This delete and paste operation allows you to easily move blocks of text, or transpose
characters. If the cut buffer contains whole lines, the p (lowercase) will open a line below the
current line, and the P (uppercase) will open a line above the current line.

51434S G.02 14-50 (14-24)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-11. SLIDE: Moving Text: p, P (Continued) Instructor Notes

14-51 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-12. SLIDE: Copying Text: yw, yy

Student Notes

The y (yank) command is an active command that also requires an object to act upon. The
specified object will be yanked (copied) into the cut buffer. You can easily copy this text to
another position in the file by moving the cursor, and pasting the contents of the cut buffer.
This is very similar to the move operation.

Yank Summary

#yw yank the current word

#yy yank the current line. (vi convention: when the action is repeated, it affects
the entire line.)

yG yank through the last line of the file.

y$ yank to the end of the line.

y^ yank to the beginning of the line.

51434S G.02 14-52 (14-25)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Copy and Paste Summary

yobject yank object into the cut buffer.

p (lowercase) paste contents of the cut buffer back into the text after the cursor.

P (uppercase) Paste contents of the cut buffer back into the text before the cursor.

The yank and paste operation allows you to easily copy blocks of text. If the cut buffer
contains whole lines, the p (lowercase) will open a line below the current line, and the P
(uppercase) will open a line above the current line.

14-53 (14-26) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-54
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-12. SLIDE: Copying Text: yw, yy Instructor Notes

Key Points

• The unnamed cut buffer is immediately overwritten by the next delete or yank operation.

• Any object that is yanked can be pasted back. Text can be easily copied by yanking, moving
the cursor, and pasting.

Teaching Tips

You might want to mention that the command Y is equivalent to yy. But yy follows the
convention of repeating the command and affecting the entire line.

There is actually one unnamed buffer and nine numbered buffers (1–9) used by the delete and
yank functions by default.

In addition, you can cut or copy text into specified named buffers, identified by a single
character. These are not covered in the course materials, but you may have some advanced
students who are interested.

Both are presented on the vi Quick Reference Card included with the students materials.

Examples

To yank 3 lines to a named buffer b: 3yy
To paste from the named buffer b : bp

14-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-13. SLIDE: Changing Text: r, R, cw, .

Student Notes

Once you know how to input and delete text, you are equipped to make any changes to your
file. This can be somewhat cumbersome though because you have to manually toggle back and
forth between command and input mode. The commands that allow you to change text make
text modification more convenient.

There are three common command primitives that are used to modify text:

rcharacter replaces the character at the current cursor position with the named
character.

R REPLACES all characters (goes into overstrike mode) until ESC is pressed.

cobject Changes the named object. This replaces the identified object (the end of the
object is marked with a $ symbol) with the text that you enter. This must
also be concluded with an ESC .

51434S G.02 14-56 (14-27)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

The c (change) command is also an action command, that acts upon objects. The objects are
defined by the motion control commands.

Change Summary

#cw change the current word

#cc change the current line entirely. (Duplicate the action—remember?)

cG change through the last line of the file.

c$ change to the end of the line.

c^ change to the beginning of the line.

The Dot (.) Command

The dot command is probably one of the handiest commands available in the vi command
collection. This allows you to repeat your last change operation (this includes deletes too).

An Example

Assume that the original text of a file contains:

walk walk walk walk walk walk

and you would like it to read:

run walk run walk run walk

You could delete the entire line, and retype the entire thing in again, but look what the dot
command will do for you:

1. Move your cursor to the first occurrence of the word walk that you want to change.

2. Execute the vi command to change a word: cw
enter: run ESC

3. Advance your cursor to the next word you want to change: ww

4. Now instead of executing another cw command, just issue a dot (.). This will repeat the
last change, which was to do a change word to run. You can repeat this as many times as
you like.

14-57 (14-28) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-58
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-13. SLIDE: Changing Text: r, R, cw, . Instructor Notes

Key Points

• One of the most common typing mistakes is incorrectly entering a single character. The r
command is indispensable for fixing these errors.

• When you need to replace a single word, the cw is extremely effective.

Teaching Tips

Screen the slide, and use progressive display to individually display each line, the command,
and then the resultant outcome.

Point out that the verb c is very much like the verb d.

14-59 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-14. SLIDE: Searching for Text: /, n, N

Student Notes

A common requirement when editing a file is to search for a specific text string. The /
command allows you to locate an occurrence of the requested string. The n command allows
you to find the next occurrence.

Text Search Summary

/text Search for text from the current line towards the end of the file, with wrap
around.

?text Search for text from the current line towards the beginning of the file, with
wrap around.

n Find the next occurrence of the previously searched for text, in the same
direction.

N Find the next occurrence of the previously searched for text, in the reverse
direction.

51434S G.02 14-60 (14-29)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Wrap around means that if the text is not found by the end (or beginning) of the file, the
search will continue at the opposite end of the file.

14-61 (14-30) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-62
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-14. SLIDE: Searching for Text: /, n, N Instructor Notes

Key Points

• Text searching is case sensitive

• Wrap around is supported

Teaching Tips

You can issue the ex command to ignore case:

:set ic

14-63 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-15. SLIDE: Searching for Text Patterns

Student Notes

As mentioned on the previous slide, string searches are case sensitive. The previous examples
would only succeed in matching the string literally specified. The constructs on this slide allow
you to search for string patterns. These pattern specifiers are known as regular expressions
and are recognized by several UNIX system utilities.

Regular Expression Summary

[a-zA-Z0-9]
Define a class of characters to match from. The characters a-z denotes a
range of characters to match from. [] represents only one character position.

^text
Anchor text to the beginning of the line.

text$
Anchor text to the end of the line.

51434S G.02 14-64 (14-31)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

.
Match any single character.

character*
Match zero or more occurrences of character.

Examples

/[Tt]he Searches for the next occurrence of the string The or the .

/[oO][nN][eE] Searches for the string one with any character in any case.

/bo*t Searches for the string b followed by zero or more o’s, followed by t. This
would match bt, bottom, boot, booot, and so on.

/^[abc].* Searches for the next occurrence of a line that begins with an a, b, or c.
This is read as: a line that begins with an a, b, or c followed by zero or
more of any character.

/finally.$ Searches for the next occurrence of a line that ends with the string finally
followed by any character. A line that ends with finally. would match the
pattern, as well as a line that ended with finallyA or finallyZ.

14-65 (14-32) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-66
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-15. SLIDE: Searching for Text Patterns Instructor Notes

Key Points

• The most useful regular expression construct is the capability to search for a string by
designating a character class [], disabling the case sensitivity of a text search.

• There is usually confusion around the * and it’s zero or more interpretation. You should go
through the examples in the student notes.

14-67 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-16. SLIDE: Global Search and Replace — ex Commands

Student Notes

A global search and replace feature in vi is available through the ex commands. ex is a
line-oriented editor, that will accept the addresses of lines to operate upon within a file. The
following global substitute and replace operations show the different components of the ex
command syntax:

:m,ns/old_pattern/new_text/g

m and n defines the lines the command should be executed on
s designates the substitute command
old pattern identifies the text pattern to search for
new pattern designates the replacement text string
g performs the command globally within the line

51434S G.02 14-68 (14-33)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Example

:1,$s/one/two/

Substitute just the first occurrence in each line of the string one with the string two on lines 1
through the end of the file (1,$).

:.,10s/[oO][nN][eE]/two/g

Substitute every occurrence of the string one, including uppercase and lowercase combinations
with the string two from the current line through line 10, globally within each line.

14-69 (14-34) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-70
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-16. SLIDE: Global Search and Replace — ex
Commands

Instructor Notes

Key Points

• Remember ex is a line oriented text editor. So the trailing g denotes global within the
context of a line. The 1,$ provides global operation within the context of all of the lines of
the file.

Teaching Tips

When presenting this command, verbalize it for your students to make it easier to
comprehend. It really is a very cryptic command!

:1,$s/one/two/

On lines 1 through the end of the file (1,$), substitute the first occurrence found on each line
of text string one with text string two.

:.,10s/[oO][nN][eE]/two/g

From the current line through line 10 (.,10), substitute the text pattern defined by
[oO][nN][eE] with the text string two, globally within each line.

There is also a confirmation option that can be specified. The user responds with y or n. The
default is n if you just enter a Return .

:.,10s/[oO][nN][eE]/two/gc

14-71 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-17. SLIDE: Some More ex Commands

Student Notes

There are many options available which can make your editing with vi easier. These options
are set with ex commands. The syntax to turn an option on is

:set option

The syntax to turn an option off is

:set nooption

51434S G.02 14-72 (14-35)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

A list of all current options and their settings can be displayed with

:set all

Many of the common options are presented on the slide. Some additional options include the
following:

:set autoindent while in input mode, the cursor will return to the column
aligned with the indentation of the previous line, override with
Ctrl + d

:set tabstop= n assigns the Tab key to move the cursor n spaces

:set wrapmargin = n automatic word break and newline n characters from end of
line

:set showmatch displays the matching opening brace ({,(,[) when the closing
brace (},),]) is entered

:set redraw vi will redraw the screen after each screen update. If you are
using a slow baud rate (with a modem), you may want this
option turned off. You can force a screen redraw with the vi
command Ctrl + r.

:set showmode turn on mode messages

:map display keyboard mappings used in command mode

:map! display keyboard mappings used in input mode

If you want any of these options be set automatically every time you enter vi, you must create
a file called .exrc in your HOME directory and type the following lines:

set option (note that there is no colon)

14-73 (14-36) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

51434S G.02 14-74
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-17. SLIDE: Some More ex Commands Instructor Notes

Key Points

• Be sure to point out the following. They will be needed to complete the exercises:

— :m,n w file
— :e file
— :se nu

Teaching Tips

You may point out any other options that you desire. Also, you may wish to discuss the
abbreviations that are allowed.

One handy option when merging the output of commands with the contents of a file is to use
the :r command in conjunction with !cmd:

:r !cmd read the output of the cmd into your file

:r !date read the output of the date command into your file

:r !ls read the output of the ls command into your file

You might also want to mention the capability to define keyboard macros. An example that is
handy for users who do a lot of C programming would map the { in input mode to also provide
the closing } and a blank line in between with an indentation. Similarly, you could define the
opening (with the closing)and be left in input mode between the parentheses.

Macros

:map keystroke vi_commands maps keystrokes while in command mode

:map! keystroke
vi_commands

maps keystrokes while in input mode

Examples

Map an entered { to provide a closing } with an indented blank line between. When the user
types in a {, vi will provide the rest.

14-75 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

The mapping will be displayed as follows:

:map { i{^M} ^[ko tab

You generate the mapping with the following keystrokes:

:map { i{ Ctrl + v Return } Space Ctrl + v ESC ko tab

Map an entered (to provide a closing)and put you in input mode between the parentheses.

The mapping will be displayed as follows:

:map (i()^[i

You generate the mapping with the following keystrokes:

:map (i()Ctrl + v ESC i

:map displays keystroke maps defined in command mode

:map! displays keystroke maps defined in input mode

51434S G.02 14-76
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-77 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-18. TEXT PAGE: vi Commands — Summary

Table 14-1.

Cursor Control Input
Mode Delete Text Change Text Write & Quit

h or Backspace a x r :wq

j i dw R ZZ

k o dd cw :q!

l or Space O dG cc :w file

w A d$ c$: m,n w file

b I :e!

e :e file

$

^

G Copy Text Paste Text Miscellaneous

#G yw p (lowercase) u

:# yy P (uppercase) U

Ctrl + g y$.

Return / text

Ctrl + b n

Ctrl + f :!cmd

Ctrl + u

Ctrl + d

L

M

H

Ctrl + l

Student Notes

51434S G.02 14-78 (14-37)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-18. TEXT PAGE: vi Commands — Summary Instructor Notes

14-79 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-19. LAB: Modifying Text

Directions

Use the vi editor to complete the following exercises:

1. Start a vi session on the file vi.tst, and make the modifications as directed in that file.
Following is a copy of the contents of vi.tst.

Enter your name here ->

Change the following to your favorite color -> lavender
Change the following to your favorite flower -> rose
Change the following to your favorite book -> A Tale of Two Cities

Correct the typos in the next two lines:
Corect teh typooos im thiss line.
Ther awe mroe mistakkes in thsi linne.

The above two lines should read:
Correct the typos in this line.
There are more mistakes in this line.

Delete every occurrence of the word "jog" in the next line:
walk jog run walk jog run walk jog run walk jog run

Change every occurrence of the word "walk" to "WALK" in the above line.

line1
line2
line3
line4
line5
line6
line7
line8

Complete the following exercises on line1 through line8 above:

1. Move the lines containing line1 through line5 and paste them after
the line containing line8.

2. Copy the lines containing line2 through line4 and paste them before
the line containing line6, and also after the line containing line3.

51434S G.02 14-80 (14-38)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Quit your edit session on "vi.tst" saving the changes that you have made.

2. Start a new session by editing the file called funfile in your HOME directory and change
all occurrences of bug to FEATURE.

3. Write the first forty lines of the funfile out to another file called new.40.

4. Go to the last line in funfile.

5. Find and execute the command to place your cursor midway down the window.

This file is silly.

6. Without quitting vi, write your new version of the file out to a file called funfile.123.

7. Without leaving vi, load the file new.40 into the buffer, overwriting the previous contents.

8. Turn on line numbering with the ex number option.

14-81 (14-39) 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

9. Search for an occurrence of FEATURE in new.40.

10. Change all occurrences of FEATURE to BUG and save it into new.new.40.

11. Copy funfile to funfile.new. In funfile.new, search for all occurrences of the string
System or system and using /, cw, n, and . change all but one of them to XXXXX.

12. Write your current edit session and quit the editor.

51434S G.02 14-82 (14-40)
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

14-19. LAB: Modifying Text Instructor Notes
Time: 30 minutes

Purpose

To practice the change text, file manipulation, and global search and replace features of vi.

Solutions

1. Start a vi session on the file vi.tst, and make the modifications as directed in that file.
Following is a copy of the contents of vi.tst.

Enter your name here ->

Change the following to your favorite color -> lavender
Change the following to your favorite flower -> rose
Change the following to your favorite book -> A Tale of Two Cities

Correct the typos in the next two lines:
Corect teh typooos im thiss line.
Ther awe mroe mistakkes in thsi linne.

The above two lines should read:
Correct the typos in this line.
There are more mistakes in this line.

Delete every occurrence of the word "jog" in the next line:
walk jog run walk jog run walk jog run walk jog run

Change every occurrence of the word "walk" to "WALK" in the above line.

line1
line2
line3
line4
line5
line6
line7
line8

Complete the following exercises on line1 through line8 above:

1. Move the lines containing line1 through line5 and paste them after
the line containing line8.

2. Copy the lines containing line2 through line4 and paste them before
the line containing line6, and also after the line containing line3.

14-83 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Quit your edit session on "vi.tst" saving the changes that you have made.

2. Start a new session by editing the file called funfile in your HOME directory and change
all occurrences of bug to FEATURE.

Answer:

:1,$s/bug/FEATURE/g

3. Write the first forty lines of the funfile out to another file called new.40.

Answer:

:1,40w new.40

4. Go to the last line in funfile.

Answer:

G

5. Find and execute the command to place your cursor midway down the window.

This file is silly.

Answer:

This file is silly.

ESC

6. Without quitting vi, write your new version of the file out to a file called funfile.123.

Answer:

:w funfile.123

7. Without leaving vi, load the file new.40 into the buffer, overwriting the previous contents.

Answer:

:e new.40

8. Turn on line numbering with the ex number option.

Answer:

:set number

9. Search for an occurrence of FEATURE in new.40.

51434S G.02 14-84
© 1999 Hewlett-Packard Company

Module 14

Introduction to the vi Editor

Answer:

/FEATURE

10. Change all occurrences of FEATURE to BUG and save it into new.new.40.

Answer:

cwBUG ESC

11. Copy funfile to funfile.new. In funfile.new, search for all occurrences of the string
System or system and using /, cw, n, and . change all but one of them to XXXXX.

Answer:

1G
/[Ss]ystem
cwXXXXX ESC

n
.
n
n
.
n
.
n
.

12. Write your current edit session and quit the editor.

Answer:

:wq

or

ZZ

14-85 51434S G.02
© 1999 Hewlett-Packard Company

Module 14

Process Control

51434S G.02 14-86
© 1999 Hewlett-Packard Company

Module 15 — Process Control

Objectives

Upon completion of this module, you will be able to do the following:

• Use the ps command.

• Start a process running in the background.

• Monitor the running processes with the ps command.

• Start a background process which is immune to the hangup (log off) signal.

• Bring a process to the foreground from the background.

• Suspend a process.

• Stop processes from running by sending them signals.

15-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

51434S G.02 15-2
© 1999 Hewlett-Packard Company

Module 15

Process Control

Overview of Module 15

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module is designed to teach about submitting background jobs, and the ps, nohup, and
kill commands.

Time

Lab 30 minutes

Lecture 30 minutes

Prerequisites

m1306m Input and Output Redirection

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

15-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

compile Compile infinite.c and copy the object file infinite to the users’ home
directories.

Lab Files

-rw-r--r-- 1 karenk users 868 May 28 16:12 infinite.c

51434S G.02 15-4
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-1. SLIDE: The ps Command

Student Notes

Every process that is initiated on the system is assigned a unique identification number,
known as a process ID (PID). The ps command displays information about processes
currently running (or sleeping) on your system, including the PID of each process and the PID
of each process’s parent (PPID). Through the PID and PPID numbers, you can trace the
lineage of any process that is running on your system. The ps command will also report who
owns each process and which terminal each process is executing through.

The ps command is commonly invoked with no options, which gives a short report about
processes associated only with your terminal session. The -e option reports about every
process running on the system, not just your own. The -f and -l options report full and long
listings which include additional detail on the processes.

In this slide we show two invocations of ps. The first just reports information about processes
associated with our terminal. As we would expect, the processes associated with our terminal
consist of a shell (our login shell) and the ps command that is currently running.

51434S G.02 15-6 (15-2)
© 1999 Hewlett-Packard Company

Module 15

Process Control

The second example shows a portion of the output of a ps giving a full (-f option) listing of
every
(-e option) process on the system.

NOTE: Be aware that the ps command is CPU intensive, and you may notice a
slower response while it is executing.

15-7 (15-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

51434S G.02 15-8
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-1. SLIDE: The ps Command Instructor Notes

Key Points

• ps output

• PID

• PPID

• Show the parentage of the sh and ps commands with the output of the ps command on the
slide.

NOTE: If the fair share scheduler has been installed on your system, the
following options are also available for the ps command:

-F Print the fair share group process association.

-G fglist Restrict listing to data about processes whose fair share
group ID numbers or fair share group names are given
in fglist.

Additionally, the following column is added to the standard output:

FSID (f,l) The fair share group ID of the process; the fair share
group ID under the -l option and the fair share group
name under the -f option. If neither the -l option nor
the -f option are specified when the -F option is
specified, the fair share group name is printed.

15-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-2. SLIDE: Background Processing

Student Notes

The command line

command line > cmd.out &

• Schedules command line to run as a job in the background.

• Prompt returns as soon as job is initiated.

• Redirect output of scheduled command, so command output does not interfere with
interactive commands.

• Logging out will terminate processes running in the background. The user will get a
warning the first time exit is attempted: "There are running jobs". exit or Ctrl + d must be
typed again to effectively terminate the session.

Some commands take a long time to complete, such as searching for a single file throughout
the entire disk or using one of the text processing utilities to format and print a manual

51434S G.02 15-10 (15-4)
© 1999 Hewlett-Packard Company

Module 15

Process Control

transcript. The UNIX operating system allows you to start a time consuming program and run
it in the background where the UNIX system will take care of continuing the execution of your
program. Unlike other commands you have executed up to this point, the shell does not wait
for the completion of commands requested to run in the background. You will get your prompt
back as soon as the command has been scheduled, allowing you to continue with other
activities.

To request a command to run in the background, terminate the command line with an
ampersand (&). It is common to redirect the output of the background command, so that
output generated by background processes does not interfere with your interactive terminal
session. If the output is not redirected, any output that normally goes to standard output from
the command running in the background will be sent to your terminal.

Since the shell will have control over standard input, commands that are running in the
background are not able to accept input from standard input. Therefore, any commands
running in the background that require standard input must get their input from a file using
input redirection.

When a command is put into the background, the shell reports the job number and process ID
number of the background command, if the monitor option is set (set -o monitor). The
job number identifies the number of the requested job relative to your terminal session, and
the process ID identifies the system-wide unique process identifier that is assigned by the
UNIX system to every process that is executed. The monitor option will also cause a message
to be displayed when the backgrounded process is completed.

[1]+ Done grep user * > grep.out &

Since a command that is running in the background is disconnected from the keyboard, you
cannot stop a background command with the interrupt key, Ctrl + c. Background commands
can be terminated with the kill command or by logging out.

NOTE: A background process should have all of its input and output explicitly
redirected.

NOTE: A background job may consist of multiple commands. Simply put the
commands in parentheses (cmd1,cmd2,cmd3) and the operating system
will treat them as one job.

15-11 (15-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

51434S G.02 15-12
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-2. SLIDE: Background Processing Instructor Notes

Key Points

• Execute commands that take a long time to complete in the background, so that you can
continue other activities.

• If the monitor option is set, the job number and process ID will be displayed when a
background job is submitted. A message will also be displayed when the background
command is complete.

[1]+ Done grep user * > grep.out &

• You should redirect output of background commands.

• You must redirect input of background commands.

• You cannot interrupt background commands through the keyboard, you must use the kill
command.

• If you are using CDE, closing a window will kill all the processes running in this window.
Exiting CDE will kill all processes running in all windows (background or foreground
processes). You can protect process execution by using nohup prefix command.

Teaching Tips

You might want the students to experiment with background commands using the sleep
command, since most commands complete too quickly to observe in the background:

$ sleep 120 &
[1] 1389
$ ps -f

UID FSID PID PPID C STIME TTY TIME COMMAND
user3 default_system 1324 1 2 18:03:21 ttyp2 0:00 -sh
user3 default_system 1390 1324 15 18:30:23 ttyp2 0:00 ps -ef
user3 default_system 1389 1324 3 18:30:23 ttyp2 0:00 sleep 120

Also, you might want to mention that the set -o command displays the current status of all
of the set options.

15-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-3. SLIDE: Putting Jobs in Background/Foreground

Student Notes

In the POSIX shell, processes can be placed in the foreground or the background. If you are
currently running a lengthy process in the foreground, you can issue the susp character, which
is usually set to Ctrl + z. The suspend character is commonly designated at login through
.profile, with the entry, stty susp ^Z. This will temporarily stop your foreground process
and provide a shell prompt. You can then use the bg %num or the bg %string to transfer your
job to the background. num is the job number returned from the jobs command, and string is
the beginning of the command line of the job.

Likewise, if you have a process running in the background that you would like to bring to the
foreground, you can use the fg command. The foreground command will then control your
terminal until it is completed or suspended.

51434S G.02 15-14 (15-6)
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-3. SLIDE: Putting Jobs in Background/
Foreground

Instructor Notes

Key Points

• jobs allows you to see the jobs running under your current session.

• You can get control of your terminal while it is running a command by issuing the susp
character, normally Ctrl + z.

• You must issue stty susp ^Z to map the suspend character. This is normally done in the
.profile file.

• You can use the bg command to send a suspended job to the background.

• You can use the fg command to bring a backgrounded job to the foreground.

15-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-4. SLIDE: The nohup Command

Student Notes

The UNIX operating system provides the nohup command to make commands immune to
hanging up and logging off. The nohup command is one of a group of commands in the UNIX
system known as prefix commands, which precede another command. It is most often used
in conjunction with commands that you want to run in the background. Remember that
logging out usually terminates background jobs. When a background command is nohup’ed,
you can log out and the UNIX system will complete the execution of your process even though
the program’s parent shell is no longer running. Notice that when the parent shell of the
nohup command is terminated, the command will be adopted by process 1 (init). You can
later log in and view the status or results of the nohup command.

When using nohup, the user will normally redirect the output to a file. If the user does not
specify an output file, nohup will automatically redirect the output to a file called nohup.out.
Note that nohup.out will accumulate both stdout and stderr.

51434S G.02 15-16 (15-7)
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-4. SLIDE: The nohup Command Instructor Notes

Key Points

• nohup protects backgrounded commands from being terminated when you log out.

• The output of the command must be redirected. If the user does not designate an output file,
nohup will redirect to the file called nohup.out.

• When the nohup command’s parent shell is terminated, it will be adopted by process 1
(init).

• The nohup command is useful for users who want to start the execution of a command in
the background and be able to log out before the command has completed running.

15-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-5. SLIDE: The nice Command

Student Notes

The UNIX operating system is a time-sharing system, and process priorities are the basis for
determining how often a program will have access to the system’s resources. Jobs with lower
priorities will have less frequent access to the system than jobs with higher priorities. For
example, your terminal session has a relatively high priority to guarantee a prompt,
interactive response.

The nice command is another prefix command that allows you to execute a program at a
lower priority. It is useful when issuing commands whose completion is not required
immediately, such as formatting the entire collection of manual pages.

51434S G.02 15-18 (15-8)
© 1999 Hewlett-Packard Company

Module 15

Process Control

The syntax is

nice [-increment] command line

where increment is an integer value between one and nineteen. The default increment is 10. A
process with a higher nice value will have a lower relative system priority. The nice value is
not an absolute priority modifier.

You can view process priorities with the ps -l command. The priorities are displayed under
the column headed PRI. Jobs that have a higher priority will have a lower priority value. The
nice value is displayed under the column headed NI.

Most systems are started up with a default nice value of 20 for foreground processes, and 24
for background processes. The maximum value is 39, so the maximum increments are 19 and
15. Greater increments will not cause the value to rise above 39. Negative increments can only
be used by the root user.

15-19 (15-9) 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

51434S G.02 15-20
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-5. SLIDE: The nice Command Instructor Notes

Key Points

• The nice command is a prefix command.

• The lower the priority number displayed from the ps command the higher the priority
(more important) of the process.

• A command with a higher nice value has a lower priority (less important).

• The nice command does not literally add that amount to the process priority. It is only one
of several factors that determine the actual process priority.

• The super-user can make a process mean or not nice by designating a negative increment to
the nice command: nice --10 cmd

• nice and nohup can be combined in a single command line.

15-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-6. SLIDE: The kill Command

Student Notes

The kill command can be used to terminate any command including nohup and background
commands. More specifically, kill sends a signal to a process. The default action for a process
is to die when most signals are received. The issuer must be the owner of the target
commands; kill cannot be used to kill another user’s commands unless the kill is issued by
the super-user.

In the UNIX system, it is not possible to actually kill a process. The most the UNIX system will
do is request that a process terminate itself. By default, kill sends the TERM signal (software
termination signal) to the specified processes. This normally kills processes that do not catch or
ignore the signal. Other signals, listed in the table below, can be specified using the -s option.
The closest thing to a sure kill that a UNIX system provides is the KILL signal (kill signal).

To kill a process, you can specify the process ID or the job number. When specifying the job
number, it must be prefixed with the % metacharacter. If the process specified is 0, then kill
terminates all processes associated with the current shell, including the current shell.

51434S G.02 15-22 (15-10)
© 1999 Hewlett-Packard Company

Module 15

Process Control

Signal name Signal meaning
EXIT Null signal
HUP Hang up signal
INT Interrupt
QUIT Quit
ILL Illegal instruction (not reset when caught)
TRAP Trace trap (not reset when caught)
ABRT Process abort signal
EMT EMT instruction
FPE Floating point exception
KILL Kill (cannot be caught or ignored)
BUS Bus error
SEGV Segmentation violation
SYS Bad argument to system call
PIPE Write on a pipe with no one to read it
ALRM Alarm clock
TERM Software termination signal from kill
USR1 User-defined signal 1
USR2 User-defined signal 2
CHLD Child process terminated or stopped
PWR Power state indication
VTALRM Virtual timer alarm
PROF Profiling timer alarm
IO Asynchronous I/O signal
WINCH Window size change signal
STOP Stop signal (cannot be caught or ignored)
TSTP Interactive stop signal
CONT Continue if stopped
TTIN Read from control terminal attempted by a member of a background process

group
TTOU Write to control terminal attempted by a member of a background process

group
URG Urgent condition on I/O channel
LOST Remote lock lost (NFS)

NOTE: The command kill -l will write all values of signal_name supported by
the implementation. No signals are sent with this option. When -l option
is specified, the symbolic name of each signal is written to the standard
output:

$ kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM TERM USR1
USR2 CHLD PWR VTALRM PROF IO WINCH STOP TSTP CONT TTIN TTOU URG LOST

15-23 (15-11) 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

51434S G.02 15-24
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-6. SLIDE: The kill Command Instructor Notes

Key Points

• The kill command is used to terminate processes.

• The kill command is the only way to terminate a background process.

• One user cannot kill another user’s processes.

• kill does not actually kill the process; it sends a signal to which the default action is
usually for the process to die. The KILL signal (signal 9) cannot be ignored by the process.

Teaching Tips

The EXIT signal (signal number 0) does not actually send a signal to a process, but it can be
used to check for a valid process ID number:

$ sleep 2000 &
[1] 13288
$ kill -s EXIT 13288
$ ps

PID TTY TIME COMMAND
13288 ttypa 0:00 sleep
13289 ttypa 0:00 ps
13264 ttypa 0:01 sh
$ kill -s EXIT 99999
kill: 99999: no such process

The signal names can be specified in upper or lower case, as in

kill -s INT 1234
kill -s int 1234

Also, the signal name may be specified with the sig prefix, as in

kill -s SIGINT 1234
kill -s sigint 1234

The kill command can be invoked without the -s option by preceding the signal name or
signal number with a minus sign (note that both of these forms are considered obsolete):

kill -INT 1234
kill -int 1234
kill -9 1234

Note that the shell variable $! stores the process ID number of the last backgrounded
command. Therefore, you could issue the command: $ kill $!

15-25 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-7. LAB: Process Control

Directions

Complete the following exercises and answer the associated questions.

1. Under your HOME directory you will find a program called infinite. Execute this
program in the foreground and notice what it does. Enter a Ctrl + c to terminate the program.

$ infinite
hello
hello
hello
Ctrl + c
$

2. Run infinite in the background and redirect its output to a file called infin.out

$ infinite > infin.out &

Execute the ps -f command. Take note of the PID and PPID of the infinite program. Now
log out, log in again, and execute the ps -ef | grep user_id, where user_id is your login
identifier. Where is the infinite process? Remove infin.out before the next exercise.

3. The nohup command protects a process from terminating upon the death of its parent
process. Re-run the infinite command in the background, but protect it from logging out by
issuing it with nohup.

$ nohup infinite > infin.out &

Now log out and log in again. Execute the ps -ef | grep user_id again. Is infinite still
running? Who is its parent now?

4. Use the kill command to terminate your infinite program.

51434S G.02 15-26 (15-12)
© 1999 Hewlett-Packard Company

Module 15

Process Control

5. Run the infinite program in the foreground and redirect its output to infin.out. Suspend
the program by issuing Ctrl + z. You will see a message on the screen telling you that the
process has been stopped. Send infinite to the background, and note the message.
Terminate the
infinite program with the kill command.

15-27 (15-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

51434S G.02 15-28
© 1999 Hewlett-Packard Company

Module 15

Process Control

15-7. LAB: Process Control Instructor Notes
Time: 30 minutes

Purpose

To practice executing background commands and using the ps, nohup, and kill commands.

Notes to the Instructor

Exercise number 1 assumes that interrupt is mapped to Ctrl + c.

Exercise number 5 assumes that suspend is mapped to Ctrl + z.

Students can issue stty -a to confirm these settings.

Solutions

1. Under your HOME directory you will find a program called infinite. Execute this
program in the foreground and notice what it does. Enter a Ctrl + c to terminate the program.

$ infinite
hello
hello
hello
Ctrl + c
$

2. Run infinite in the background and redirect its output to a file called infin.out

$ infinite > infin.out &

Execute the ps -f command. Take note of the PID and PPID of the infinite program. Now
log out, log in again, and execute the ps -ef | grep user_id, where user_id is your login
identifier. Where is the infinite process? Remove infin.out before the next exercise.

Answer:

The PID (process ID number) of the shell (-sh) will be the PPID (parent process ID
number) of the infinite command. When you log out, terminating the parent process, all
child processes (including infinite) are killed.

3. The nohup command protects a process from terminating upon the death of its parent
process. Re-run the infinite command in the background, but protect it from logging out by
issuing it with nohup.

$ nohup infinite > infin.out &

15-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 15

Process Control

Now log out and log in again. Execute the ps -ef | grep user_id again. Is infinite still
running? Who is its parent now?

Answer:

When the parent process (your shell) dies, the child process (infinite) becomes an
orphan process. Orphan processes are adopted by PID 1 (init). When you log back in,
you will see infinite still running.

4. Use the kill command to terminate your infinite program.

Answer:

$ kill PID PID is returned from the
ps command

5. Run the infinite program in the foreground and redirect its output to infin.out. Suspend
the program by issuing Ctrl + z. You will see a message on the screen telling you that the
process has been stopped. Send infinite to the background, and note the message.
Terminate the
infinite program with the kill command.

Answer:

$ infinite > infin.out
Ctrl + z

[1] + Stopped infinite > infin.out
$ bg %1
[1] infinite > infin.out &
$ kill %1
[1] + Terminated infinite > infin.out

51434S G.02 15-30
© 1999 Hewlett-Packard Company

Module 16 — Introduction to Shell Programming

Objectives

Upon completion of this module, you will be able to do the following:

• Write basic shell programs.

• Pass arguments to shell programs through environment variables.

• Pass arguments to shell programs through the positional parameters.

• Use the special shell variables, *, and #.

• Use the shift and read commands.

16-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-2
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Overview of Module 16

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module will introduce shell programming, passing data to shell programs through the
environment and command line arguments, and requesting input from the user.

Time

Lab 75 minutes

Lecture 60 minutes

Prerequisites

m51m Shell Advanced Features

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

16-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rwxr-xr-x 1 karenk users 89 May 28 16:12 color1
-rwxr-xr-x 1 karenk users 227 May 28 16:12 color2
-rwxr-xr-x 1 karenk users 245 May 28 16:12 color3
-rwxr-xr-x 1 karenk users 101 May 28 16:12 color4
-rwxr-xr-x 1 karenk users 293 May 28 16:12 color5
-rwxr-xr-x 1 karenk users 164 May 28 16:12 color6
-rwxr-xr-x 1 karenk users 40 May 28 16:12 myprog
-rw-r--r-- 1 karenk users 86 May 28 16:12 myprog.c

51434S G.02 16-4
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-1. SLIDE: Shell Programming Overview

Student Notes

The shell is a command interpreter. It interprets the commands that you enter at the shell
prompt. However, you can have a group of shell commands that you wish to enter many times.
The shell provides the capability to store these commands in a file and execute this file just
like any other program provided with your UNIX system. This command file is known as a
shell program or a shell script. When running the program, it will execute just as if the
commands were entered interactively at the shell prompt.

In order for the shell to access your shell program for execution, the shell must be able to read
the program file and execute each line. Therefore, the shell program’s permissions must be set
to read and execute. So that the shell can find your program, you can enter the complete path
of the program, or the program must reside in one of the directories designated in your PATH
variable. Many users will create a bin directory under their HOME directory to store scripts
that they have developed and include $HOME/bin in their PATH variable.

Rather complex shell scripts can be developed because the shell supports variables, command
line arguments, interactive input, tests, branches, and loops.

51434S G.02 16-6 (16-2)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-1. SLIDE: Shell Programming Overview Instructor Notes

Key Points

• The focus of this module will be command line arguments and user input.

• Users will be developing shell programs in this module.

16-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-2. SLIDE: Example Shell Program

Student Notes

To create and run a shell program, consider the following:

$ vi myprog A file containing shell commands
this is the program myprog

date
ls -F
$ chmod +x myprog File mode includes execution
$ myprog Enter file name to execute program
Thu Jul 11 11:10 EDT 1994

f1 f2 memo/ myprog*

First the shell program myprog is created using a text editor. Before the program can be run,
the program file must be given execute permission. Then the program name can be typed at
the shell prompt. As seen on the slide, when myprog is executed, a child shell process is
created. This child shell reads its input from the shell program file myprog instead of from the
command line. Each command in the shell program is executed, in turn, by the child shell.

51434S G.02 16-8 (16-3)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Once all of the commands have been executed, the child shell terminates and returns control
to the original parent shell.

Comments in a Shell Program

It is recommended that you provide comments in your shell program that identify and clarify
the contents of the program. Comments are preceded by a # symbol. The shell will not attempt
to execute anything that follows the #, which can appear anywhere in the command line.

NOTE: You should never call a shell program test because test is a built-in
shell command.

16-9 (16-4) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-10
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-2. SLIDE: Example Shell Program Instructor Notes

Key Points

• A shell program or shell script just holds a collection of shell commands.

• The permissions must be at least read and execute. (This provides a good opportunity to
review the chmod command.)

• Point out the importance of properly commenting your shell scripts.

16-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-3. SLIDE: Passing Data to a Shell Program

Student Notes

One way to pass data to a shell program is through the environment. In the example on the
slide, the local variable color is assigned the value lavender. Then the shell program color1
is created; its permissions are changed to include execute permission; it is then executed.
color1 attempts to echo the value of the variable color. However, since color is a local
variable that is private to the parent shell, the child shell running color1 does not recognize
the variable, and can therefore not print its value. When color is exported into the
environment, it is then accessible to the shell program commands running in the child shell.

51434S G.02 16-12 (16-5)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Also, since a child process cannot change the environment of its parent process, reassigning
the value of an environment variable in a child shell will not affect the value of that variable
in the parent’s environment. Consider the following shell script, color2, which is found in
your HOME directory:

echo The original value of the variable color is $color
echo This program will set the value of color to amber
color=amber
echo The value of color is now $color
echo When your program concludes, display the value of the color variable.

Observe what happens when we set the value of color, export it, and then execute color2:

$ export color=lavender
$ echo $color
lavender
$ color2
The original value of the variable color is lavender
This program will set the value of color to amber
The value of color is now amber
When your program concludes, display the value of the color variable.
$ echo $color
lavender

16-13 (16-6) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-14
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-3. SLIDE: Passing Data to a Shell Program Instructor Notes

16-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-4. SLIDE: Arguments to Shell Programs

Student Notes

Most UNIX system commands accept command-line arguments, which often inform the
command about files or directories upon which the command should operate (cp f1 f2),
specify options that extend the capabilities of the command (ls -l) , or just supply text
strings (banner hi there).

Command-line argument support is also available for shell programs. They are a convenient
mechanism to pass information into your utility. When you develop your program to accept
command-line arguments, you can pass file or directory names that you want your utility to
manipulate, just as you do with the UNIX system commands. You can also define command
line options that will allow command-line access to extend capabilities of your shell program.

The arguments on the command line are referenced within your shell program through special
variables that are defined relative to an argument’s position in the command line. Such
arguments are called positional parameters because the assignment of each special variable
depends on an argument’s position in the command line. The names of these variables
correspond to their numeric position on the command line, thus the special variable names are
the numbers 0,1,2, and so on, up through the last parameter passed. The values of these

51434S G.02 16-16 (16-7)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

variables are accessed in the same way as any other variable’s value is accessed — by
prefixing the name with the $ symbol. Therefore, to access the command line arguments in
your shell program, you would reference $0,$1,$2, and so on. After $9, the curly brace
notation must be used: ${10},${24}, and so on, otherwise the shell would think $10 was $1
with a 0 (zero) appended to it. $0 will always hold the program or command name.

The only disadvantage to developing a program that accepts command-line arguments is that
the users must know the proper syntax and what the command-line arguments represent. For
example, how do you know that the cp command can copy one file to another file or several
files to a directory? What happens when you type the command in and provide three file names
as arguments: cp f1 f2 f3? You have a UNIX system reference manual that provides you
with the proper syntax, and the UNIX system will supply a usage message if you have not
typed the command in properly (try entering cp Return). You will need to supply similar usage
aids to any other users that you will expect to utilize the programs that you develop.

16-17 (16-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-18
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-4. SLIDE: Arguments to Shell Programs Instructor Notes

Key Points

• Command-line arguments allow you to pass information into your shell program.

• Unlike the Bourne shell, the POSIX and Korn shells support positional parameters for all of
the command-line arguments, not just the first ten. The curly brace notation must be used
after $9 , however.

• $0 always references the command name.

• Their relevance to the shell program is entirely dependent on the contents of the shell
program.

• You must provide syntax or usage messages to users so that they know how to invoke the
program properly. Use cp, banner, and ls as examples.

16-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-4. SLIDE: Arguments to Shell Programs (Continued)

Student Notes

This example demonstrates a program that has designated the first command-line argument
to be the name of a file, which will be made executable and then moved to the bin directory
under your current directory.

Remember the UNIX system convention to store programs under a directory called bin. You
may want to create a bin directory under your HOME directory where your shell programs
can be stored. Remember to append your bin directory to the PATH variable so that the shell
can find your programs.

51434S G.02 16-20 (16-9)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-4. SLIDE: Arguments to Shell Programs
(Continued)

Instructor Notes

Teaching Tips

The objective of this slide is to show a more realistic example of a shell script. It will be
embellished as we progress through this module.

16-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-5. SLIDE: Some Special Shell Variables — # and *

Student Notes

The shell programs we’ve seen so far have not been very flexible. color3 expected exactly two
arguments, and my_install expected only one argument. Often when you create a shell
program that accepts command-line arguments, you would like to allow the user to type in a
variable number of arguments. You would like the program to execute successfully if the user
types in 1 argument or 20 arguments.

The special shell variables # and * will provide you with a lot of flexibility when dealing with a
variable argument list. You will always know how many arguments have been entered through
$#, and you can always access the entire argument list through $*, regardless of the number of
arguments. Notice that the command ($0) is never included in the argument list variable $*.

Each command-line argument will still maintain its individual identity as well. So you can
reference them collectively through $* or individually through $1, $2, $3, and so on.

51434S G.02 16-22 (16-10)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-5. SLIDE: Some Special Shell Variables —
and *

Instructor Notes

Key Points

• These special variables are useful when supporting a variable number of command-line
arguments.

• Each command-line argument still maintains its individual identity.

Teaching Tips

Tips for remembering the special variables:

• # usually represents a number symbol, as in #1 (number 1).

• * in the UNIX system usually means everything . In echo * the * will generate all file
names, in echo $*, the * represents all command-line arguments.

There are other special shell variables that you may wish to mention:

$ The process ID of the current process

! The process ID of the last background process

- The options specified for the current shell

16-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-5. SLIDE: Some Special Shell Variables — # and * (Continued)

Student Notes

The installation program is now more flexible. If you have several scripts that need to be
installed, you only have to execute the program once and supply all of the names on the
command line.

It is important to note that if you plan to pass the entire argument string to a command, it
must be able to accept multiple arguments.

51434S G.02 16-24 (16-11)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Consider the following script, in which the user provides a directory name as a command line
argument. The program will change to the designated directory, display its current position,
and then list the contents:

$ cat list_dir
cd $*
echo You are in the $(pwd) directory
echo The contents of this directory are:
ls -F
$ list_dir dir1 dir2 dir3
sh: cd: bad argument count

Since the cd command cannot change to more than one directory, the program will incur an
error.

16-25 (16-12) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-26
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-5. SLIDE: Some Special Shell Variables —
and * (Continued)

Instructor Notes

Key Points

• Some commands do not accept a variable number of arguments.

• The Shell Programming — Branching module shows how to verify that the correct number
of command-line arguments has been entered.

Teaching Question

Ask the students what mechanism they would use to verify the number of arguments. They
should at least be aware that they can compare $# with the number of required arguments,
even though they do not yet know the syntax.

16-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-6. SLIDE: The shift Command

Student Notes

The shift command will reassign the command-line arguments to the positional parameters,
allowing you to increment through the command-line arguments. After a shift n, all
parameters in * are moved to the left n positions and # is decremented by n. The default for n
is 1. The shift command does not affect the positional parameter 0.

Once you have completed a shift, the arguments that have been shifted off of the command
line are lost. If you will need to reference them later in your program, you will need to save
them before you execute the shift.

The shift command is useful for

• accessing positional parameters in groups, such as a series of x and y coordinates

• discarding command options from a command line, assuming that the options precede the
arguments

51434S G.02 16-28 (16-13)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Example

The following shows the output that would be generated if the shell program illustrated in the
slide were executed:

$ color5 red green yellow blue orange black

There are 6 command line arguments
They are red green yellow blue orange black
Shifting two arguments
There are 4 command line arguments
They are yellow blue orange black
Shifting two arguments
Original arguments are: red green yellow blue orange black
Final arguments are: orange black
$

16-29 (16-14) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-30
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-6. SLIDE: The shift Command Instructor Notes

Key Points

• Shifted arguments are lost. They must be saved prior to the shift if you will need them later
in your program.

• Review the program code on the slide and the corresponding output included in the student
notes.

16-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-7. SLIDE: The read Command

Student Notes

Command-line arguments allow a user to pass information into a program when the program
is invoked, and the user must know the correct syntax before the command is executed. There
are situations, though, in which you would rather have the user execute just the program and
then prompt him or her to provide input during the program execution. The read command is
used to gather information typed at the terminal during the program execution.

You will usually want to provide a prompt to the user with the echo command so that he or
she knows that the program is waiting for some input, and inform the user about what type of
input is expected. Therefore, each read statement should be preceded by an echo statement.

The read command will specify a list of variable names, whose values will be assigned to the
words (delimited by white space) that the user supplies at the prompt. If there are more
variables specified by the read command than there are words of input, the leftover variables
are assigned to NULL. If the user provides more words than there are variables, all leftover
data is assigned to the last variable in the list.

Once assigned, you can access these variables just as you can access any other shell variables.

51434S G.02 16-32 (16-15)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

NOTE: Do not confuse positional parameters with variables read. Positional
parameters are specified on the command line when you invoke a
program. The read command assigns variable values through input
provided during program execution in response to a programmed prompt.

echo and Escape Characters

There are several special escape characters that the echo command interprets that provide
line control. Each escape character must be preceded by a backslash (\) and enclosed in quotes
("). These escape characters are interpreted by echo, not by the shell.

Character Prints

\a Alert character (equivalent to Ctrl + g).

\b Backspace.

\c Suppresses the terminating newline.

\f Formfeed.

\n Newline.

\r Carriage return.

\t Tab character.

\\ Backslash.

\ nnn The character whose ASCII value is nnn, where nnn is a one- to
three-digit octal number that starts with a zero.

16-33 (16-16) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-34
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-7. SLIDE: The read Command Instructor Notes

Key Points

• read allows the program to prompt the user for input. It makes the program more
interactive.

• Make sure to distinguish read input from command-line arguments.

• The variables assigned by the read command are separate from the variables assigned by
the positional parameters.

• Leftover input is assigned to the last variable specified on the read command line.

Teaching Tips

• You might want to mention the use of the \c in the prompt echo which suppresses the line
feed so that the input is provided on the same line as the prompt.

• Go over the examples slowly. Make sure the class understands the difference between
command-line arguments and read-in variables. Many students will try to use the read
command and then access the read-in variables using $1, $2, $3, and so on.

Teaching Question

How would you separate the words in the last variable?

Answer: Use the cut command on the variable value, using a blank space as a delimiter
between fields.

Remember cut will only operate on standard input or the contents of a file; it cannot directly
access the value of a variable. How do you cut the value of a variable?

Answer: Send the value of the variable to standard output using the echo command. For
example,

echo $varname | cut -f1 -d " " Displays value to stdout

param1=$(echo $varname | cut -f1 -d " ")
Assigns value to variable param1

16-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-7. SLIDE: The read Command (Continued)

Student Notes

This version of the install routine will prompt the user for the file names to chmod and move
to the $HOME/bin directory. This program gives the user a little more direction regarding
what input is expected compared to install2 in which the user must supply the file names
on the command line. There is no special syntax the user must know to invoke this program.
The program lets the user know exactly what it expects. All entered file names will be
assigned to the variable filenames.

51434S G.02 16-36 (16-17)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-7. SLIDE: The read Command (Continued) Instructor Notes

16-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-8. SLIDE: Additional Techniques

Student Notes

The # character is used to provide comments in your shell program. The shell will ignore
anything that follows the #, up to the Return . Comments inform others (and maybe you too)
who are reading your program file of the purpose of the commands that are contained within
the program.

An alternative way to execute a shell program is to use the following:

sh shell_program arguments

This invokes a subshell and designates that subshell as the command interpreter to use while
executing the program. The program file does not have to be executable. This is useful if you
are running under one shell and wish to execute a shell program written in another shell’s
command language.

You can also specify the command interpreter that should be used during the execution of a
shell program by providing #!/usr/bin/ shell_name as the very first line of your shell

51434S G.02 16-38 (16-18)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

program. Therefore, if you are currently running under the POSIX shell interactively, but have
a C shell script that you would like to execute, the first line of the C shell program should be:
#!/usr/bin/csh.

Although there is no debugger for a shell program, the command

sh -x shell_program arguments

will display each command in the shell program before executing it. This allows you to see how
the shell is performing file name generation, variable substitution, and command substitution.
This option is especially helpful for discovering typing errors.

16-39 (16-19) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

51434S G.02 16-40
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-8. SLIDE: Additional Techniques Instructor Notes

Key Points

• This is a useful debugging tool, especially to view lines of code in which variables are not
properly dereferenced.

• Mention how to specify a command interpreter.

• sh -x can also be invoked with a shell program via set -x and stopped with set +x.

16-41 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-9. LAB: Introduction to Shell Programming

Directions

Complete the following exercises and answer the associated questions.

1. Create a shell program called whoson1 that will

• display a greeting to the user with the banner command
• define a variable MYNAME to your name
• display the value of the MYNAME variable defined above
• display the time and date
• display all of the users who are logged into the system

2. Change to the /tmp directory. Invoke the program color1. Does the shell find the color1
program?

3. Change to $HOME directory. Create a directory named bin under your HOME directory.
Move the color1 program to your bin directory. Append your bin directory to the PATH
variable so that the shell can find your color1 program. Confirm that your PATH variable
works by changing to the /tmp directory and invoking the color1 program. Remember to
define the color variable before invoking the color1 program.

4. Change to $HOME directory. Interactively assign the output of the date command to a
variable date_var. Create a shell program called date_tst that will display the value of this
variable. Install date_tst under your bin directory.

5. Modify date_tst so that the value of the variable date_var is assigned when the program
is executed. Does date_var need to be exported in this exercise? Do you need to change the
permissions on date_tst?

51434S G.02 16-42 (16-20)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

6. Create a shell program called whoson2 that will

• Display a personalized greeting to the user with the banner command, such as welcome
username, so that if user3 was logged in it would banner welcome user3 or if user2 was
logged in it would banner welcome user2. (Hint: this can be accomplished with an
environment variable or command substitution.)

• Display the system time and date.
• Display all of the users who are logged into the system.
• Display a message to the user displaying his or her ID and terminal connection.
• Display a closing message before the program concludes.

Place this program under your bin directory so that you can invoke it no matter where you
are in your hierarchy.

7. If the command line for a shell program is

$ myshellprog abc def -d -4 +900 xyz

what will be printed out from the shell program if it contains the following?

echo $#
echo $3
echo $7
echo $*
echo $0

8. If the shell program invoked by the command line in the previous exercise contained a
shift 2 command as the first line, write the results of the following:

echo $#
echo $3
echo $7
echo $*

16-43 (16-21) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

echo $0

9. What would be the output of the following shell program if, when prompted, the user
typed in the following input?

James A. Smith, Jr.

Shell program:

echo "Please type in your first, middle, and last names"
read first middle last
echo "$last, $first $middle"

10. Write a shell program named search1 that prompts the user for a string to search for in
all of the files in his or her current directory. Print the file names of all of the files that contain
the string.

11. Write a shell program called backwards that will receive up to ten arguments and list the
arguments in reverse order.

12. Write a shell program called myecho that will do the following:

• print the number of arguments passed to it

• print the first three arguments on separate lines

• print the remaining arguments on one line

Execute the program with 12 arguments.

What argument list will produce the following output from this shell program?

I cannot
seem to

51434S G.02 16-44 (16-22)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

find my KEYS.

13. Create a program my_vi that will accept a command-line argument which designates a
file to edit. my_vi should make a backup copy of the specified file and then start a vi session
on the file. Use an extension like .bak when creating the backup file. At this point, only use
file names of ten characters or less.

14. Create a companion program to my_vi called my_recover that will restore a file
designated as a command-line argument from its backup file. Specify the file name without the
.bak extension. For example if you want to restore the file tst1 from tst1.bak you would
execute my_recover tst1.

15. Write a shell program called info that will prompt the user for the following:

• name

• street address

• city, state, and zip code

The program should then store the replies in variables and display what the user entered with
an informative format.

16. Write a shell program called home that prompts for any user’s login_id and displays that
user’s HOME directory. Recall that the HOME directory is the sixth field in the /etc/passwd
file. You should display the login_id’s from the /etc/passwd file in four columns so that the
user knows what the available login IDs are.

16-45 (16-23) 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

17. Write a shell program called alpha that will display the first and last command line
arguments. Hint: use the cut command.

18. Create a shell program called copy that will provide a user interface to the cp command.
Your program should prompt the user for the names of the files that he or she wants copied,
and then prompt the user for the destination of the copy. The destination should be a directory
when copying multiple files, and the destination can be a file when copying only one file. Ring
the bell when the program is completed.

51434S G.02 16-46 (16-24)
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

16-9. LAB: Introduction to Shell
Programming

Instructor Notes

Time: 75 minutes

Lab Objective

To practice developing shell programs that accept command-line arguments and prompt the
user for input.

Notes to the Instructor

Introductory exercises 1–10

Advanced exercises 11–18

Students who need to practice with basic command-line arguments and the read command
should start with the introductory exercises.

Other students should start with introductory exercise number 5. Exercise number 6 requests
that students write a script that will create a backup file when they start a vi editing session,
and many students find it useful, since vi does not save any old version of the file that is
being edited.

These exercises are intended to get students thinking about the types of utilities that they can
develop.

Solutions

1. Create a shell program called whoson1 that will

• display a greeting to the user with the banner command
• define a variable MYNAME to your name
• display the value of the MYNAME variable defined above
• display the time and date
• display all of the users who are logged into the system

Answer:

$ vi whoson1
banner Welcome to whoson1
MYNAME=your_name
echo $MYNAME
date
who

16-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

$ chmod +x whoson1
$ whoson1

2. Change to the /tmp directory. Invoke the program color1. Does the shell find the color1
program?

Answer:

$ cd /tmp
$ color1
sh: color1: not found

The color1 program is not found because it does not reside under one of the directories
specified by the PATH variable.

3. Change to $HOME directory. Create a directory named bin under your HOME directory.
Move the color1 program to your bin directory. Append your bin directory to the PATH
variable so that the shell can find your color1 program. Confirm that your PATH variable
works by changing to the /tmp directory and invoking the color1 program. Remember to
define the color variable before invoking the color1 program.

Answer:

$ cd
$ mkdir bin
$ mv color1 bin
$ PATH=$PATH:$HOME/bin
$ cd /tmp
$ color=lavender
$ export color
$ color1
You are now running program: color1
the value of the variable color is: lavender
$

4. Change to $HOME directory. Interactively assign the output of the date command to a
variable date_var. Create a shell program called date_tst that will display the value of this
variable. Install date_tst under your bin directory.

Answer:

$ date_var=$(date)
$ export date_var
$ cd $HOME/bin
$ vi date_tst
echo the value of date_var is $date_var
$ chmod +x date_tst
$ date_tst

5. Modify date_tst so that the value of the variable date_var is assigned when the program
is executed. Does date_var need to be exported in this exercise? Do you need to change the
permissions on date_tst?

51434S G.02 16-48
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

Answer:

$ vi $HOME/bin/date_tst
date_var=$(date)
echo the value of date_var is $date_var
$ date_tst

In this case date_var does not need to be exported because it is being defined and used
within the same process level. The permissions on date_tst do not need to be changed
because the program was made executable in the previous exercise. Editing a file does not
affect its permissions.

6. Create a shell program called whoson2 that will

• Display a personalized greeting to the user with the banner command, such as welcome
username, so that if user3 was logged in it would banner welcome user3 or if user2 was
logged in it would banner welcome user2. (Hint: this can be accomplished with an
environment variable or command substitution.)

• Display the system time and date.
• Display all of the users who are logged into the system.
• Display a message to the user displaying his or her ID and terminal connection.
• Display a closing message before the program concludes.

Place this program under your bin directory so that you can invoke it no matter where you
are in your hierarchy.

Answer:

$ vi $HOME/bin/whoson2

banner welcome $LOGNAME or banner welcome $(whoami)

date
who
echo your terminal session identification information is
who am i
echo thank you for using whoson2
$ chmod +x $HOME/bin/whoson2
$ whoson2

7. If the command line for a shell program is

$ myshellprog abc def -d -4 +900 xyz

what will be printed out from the shell program if it contains the following?

echo $#
echo $3
echo $7

16-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

echo $*
echo $0

Answer:

6
-d
A blank line.
abc def -d -4 +900 xyz
myshellprog

8. If the shell program invoked by the command line in the previous exercise contained a
shift 2 command as the first line, write the results of the following:

echo $#
echo $3
echo $7
echo $*
echo $0

Answer:

4
+900
A blank line.
-d -4 +900 xyz
myshellprog

9. What would be the output of the following shell program if, when prompted, the user typed
in the following input?

James A. Smith, Jr.

Shell program:

echo "Please type in your first, middle, and last names"
read first middle last
echo "$last, $first $middle"

Answer:

Please type in your first, middle, and last names
James A. Smith, Jr.
Smith, Jr., James A.

Note that "Smith, Jr." is read into the last variable.

10. Write a shell program named search1 that prompts the user for a string to search for in
all of the files in his or her current directory. Print the file names of all of the files that contain
the string.

Answer:

This is shell program search1:

51434S G.02 16-50
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

echo "Please enter a string to search for: \c"
read string
echo The following files contain the string $string:
grep -l $string *

11. Write a shell program called backwards that will receive up to ten arguments and list the
arguments in reverse order.

Answer:

#!/usr/bin/sh
backwards: reverses command line arguments
usage: reverse a b c d e f g h i
#
echo ${10} $9 $8 $7 $6 $5 $4 $3 $2 $1

12. Write a shell program called myecho that will do the following:

• print the number of arguments passed to it

• print the first three arguments on separate lines

• print the remaining arguments on one line

Execute the program with 12 arguments.

What argument list will produce the following output from this shell program?

I cannot
seem to
find my KEYS.

Answer:

#!/usr/bin/sh
myecho: Display the number of command line arguments,
print the first three arguments on separate lines
and print the remaining arguments on one line
usage: myecho a b c
#
echo "The number of command line arguments is $#."
#
echo $1;echo $2;echo $3
shift 3
echo $*
$ myecho a b c d e f g h i j k l
The number of command line arguments is 12
a
b
c
d e f g h i j k l
$ myecho "I cannot" "seem to" "find my KEYS."

16-51 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

13. Create a program my_vi that will accept a command-line argument which designates a file
to edit. my_vi should make a backup copy of the specified file and then start a vi session on
the file. Use an extension like .bak when creating the backup file. At this point, only use file
names of ten characters or less.

Answer:

#!/usr/bin/sh
my_vi: Create a backup file prior to starting a vi session
usage: my_vi filename
#
echo Copying $1 to ${1}.bak
cp $1 ${1}.bak
vi $1
echo Edit of $1 is complete
echo You may recover your original file from ${1}.bak

14. Create a companion program to my_vi called my_recover that will restore a file
designated as a command-line argument from its backup file. Specify the file name without the
.bak extension. For example if you want to restore the file tst1 from tst1.bak you would
execute my_recover tst1.

Answer:

#!/usr/bin/sh
my_recover: Recover a file from backup
usage: my_recover filename
echo Restoring $1 from ${1}.bak
cp ${1}.bak $1
echo $1 is recovered

15. Write a shell program called info that will prompt the user for the following:

• name

• street address

• city, state, and zip code

The program should then store the replies in variables and display what the user entered with
an informative format.

Answer:

#!/usr/bin/sh
info: Prompt user for mailing address
#
echo "Input your name: \c"
read name
echo "Input your street address: \c"
read address
echo "Input your City, State, and Zip Code: \c"
read where
echo;echo

51434S G.02 16-52
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

echo "Your name is $name"
echo "You live at $address"
echo " $where"

16. Write a shell program called home that prompts for any user’s login_id and displays that
user’s HOME directory. Recall that the HOME directory is the sixth field in the /etc/passwd
file. You should display the login_id’s from the /etc/passwd file in four columns so that the
user knows what the available login IDs are.

Answer:

#!/usr/bin/sh
home: Return the value of a user"s HOME directory
usage: home
echo Select a user identifier from the following list:
cut -f1 -d: /etc/passwd | pr -4 -t
echo "Input user identifier: \c"
read user
home=$(grep $user /etc/passwd | cut -f6 -d:)
echo;echo "user:$user HOME directory: $home"

17. Write a shell program called alpha that will display the first and last command line
arguments. Hint: use the cut command.

Answer:

#!/usr/bin/sh
alpha: Displays the first and last command line arguments
#
last=$(echo $* | cut -f$# -d" ")
echo "The first command line argument is $1."
echo "The last command line argument is $last."

18. Create a shell program called copy that will provide a user interface to the cp command.
Your program should prompt the user for the names of the files that he or she wants copied,
and then prompt the user for the destination of the copy. The destination should be a directory
when copying multiple files, and the destination can be a file when copying only one file. Ring
the bell when the program is completed.

Answer:

#!/usr/bin/sh
file_copy: User interface for copying files
usage: copy
#
echo Please enter the names of the file(s) you want to copy:
echo "-> \c"
read filenames
echo Please enter the destination.
banner NOTE!
echo If you entered more than one file, the destination must be a
directory.
echo "Enter destination here -> \c"
read dest

16-53 51434S G.02
© 1999 Hewlett-Packard Company

Module 16

Introduction to Shell Programming

echo Copying files now ...
cp $filenames $dest
echo Done copying files "\a"

51434S G.02 16-54
© 1999 Hewlett-Packard Company

Module 17 — Shell Programming — Branches

Objectives

Upon completion of this module, you will be able to do the following:

• Describe the use of return codes for conditional branching.

• Use the test command to analyze the return code of a command.

• Use the if and case constructs for branching in a shell program.

17-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-2
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

Overview of Module 17

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module presents shell return codes and is designed to teach the use of the test
command and the if and case constructs for conditional branching within a shell program.

Time

Lab 45 minutes

Lecture 60 minutes

Prerequisites

m1309m Introduction to Shell Programming

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

17-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual , one per terminal

P/N B2355-
90046(T)

HP-UX Shells: User’s Guide , one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

51434S G.02 17-4
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-1. SLIDE: Return Codes

Student Notes

All UNIX operating system commands will generate a return code upon completion of the
command. This return code is commonly used to determine whether a command completed
normally (returning 0) or encountered some error (returning non-zero). The non-zero return
code often reflects the error that was generated. For example, syntax errors will commonly set
the return code to 1. The command true will always return 0 and the command false will
always return 1.

Most programming decisions will be controlled by analyzing the value of return codes. The
shell defines a special variable ? that will hold the value of the previous return code.

51434S G.02 17-6 (17-2)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

You can always display the return code of the previous command with

echo $?

When executing conditional tests (that is, less than, greater than, equality), the return code
will denote whether the condition was true (return 0) or false (returning non-zero).
Conditional tests will be presented on the next several slides.

17-7 (17-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-8
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-1. SLIDE: Return Codes Instructor Notes

Key Points

• All commands will return some value.

• Success returns 0, Error returns non-zero.

• true returns 0, false returns 1 (non-zero).

• echo $? will display the return value of the previous command.

Teaching Tips

Students must understand the basic concept of return codes before progressing to the test
command and conditional analyses.

Students who have previous programming experience will often find this logic contrary to their
programming paradigms. For example in C, true is defined as non-zero, and false is defined as
0.

Note that a return code of non-zero does not always indicate that an error has occurred—it
can also indicate a special condition, as with the grep command:

Pattern found - $? = 0
$ grep stu01 /etc/passwd
stu01:*:201:20::/home/stu01:/usr/bin/sh
$echo $?
0

Pattern not found - $? = 1
$ grep xxxxx /etc/passwd
$echo $?
1

Syntax error - $? = 2
$ grep -z stu01 /etc/passwd
grep: illegal option --- z
usage:
grep [-E|-F] [-cbilnqsvx] [-e expression [-e expression] ... | -f file]
[expression] [file ...]
$echo $?
2

17-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-2. SLIDE: The test Command

Student Notes

The test command is used to evaluate expressions and generate a return code. It takes
arguments that form logical expressions and evaluates the expressions. The test command
writes nothing to standard output. You must display the value of the return code to determine
the result of the test command. The return code will be set to 0 if the expression evaluates to
true, and the return code will be set to 1 if the expression evaluates to false.

The test command is initially presented alone so that you can display the return codes. But it
is most commonly used with the if and while constructs to provide conditional flow control.

The test command can also be invoked as [expression]. This is intended to assist readability,
especially when implementing numerical or string tests.

NOTE: There must be white space around [and].

51434S G.02 17-10 (17-4)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-2. SLIDE: The test Command Instructor Notes

Key Points

• The test command will evaluate conditional expressions and conditional file tests.

• It will set the return code of the test command, based on whether the expression is true (0)
or false (1) (including Bourne shell).

• This shell intrinsic is the reason you can never call a shell program test

Teaching Tips

Point out that the test command has two syntaxes:

test args

[args]

NOTE: There must be white space around each of the [].

17-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-3. SLIDE: The test Command — Numeric Tests

Student Notes

The test command can be used to evaluate the numerical relationship between two integers.
It is commonly invoked with the [...]syntax. The return code of the test command will
denote whether the condition was true (returning 0) or false (returning 1).

The numeric operators include

-lt Is less than
-le Is less than or equal to
-gt Is greater than
-ge Is greater than or equal to
-eq Is equal to
-ne Is not equal to

When testing the value of a shell variable, you should protect against the possibility that the
variable may contain nothing. For example, look at the following test statement:

51434S G.02 17-12 (17-5)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

$ [$XX -eq 3]
sh: test: argument expected

If XX has not been previously assigned a value, XX will be NULL. When the shell performs
the variable substitution, the command that the shell will attempt to execute will be

[-eq 3]

which is not a complete test statement and is guaranteed to cause a syntax error. A simple
way around this is to quote the variable being tested.

["$XX" -eq 3]

When the shell performs the variable substitution, the command that the shell will attempt to
execute will be

["" -eq 3]

This will ensure that the variable will contain at least a NULL value and will provide a
satisfactory argument for the test command.

NOTE: As a general rule, you should surround all $variable expressions with
double quotation marks to avoid improper variable substitution by the
shell.

17-13 (17-6) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-14
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-3. SLIDE: The test Command — Numeric
Tests

Instructor Notes

Key Points

• The shell is restricted to integer mathematics.

• You must interrogate the return value to determine if the condition is true or false.

• Shell variables that are not defined should be enclosed in quotation marks to guarantee that
you do not receive a shell error message.

$ a=0
$ [$a -eq $b]
sh: test: argument expected

• Since both shell variables are not defined, b will be initialized to NULL, which is why we
receive the syntax error.

• The shell references all variables as a text string unless the context indicates numerical
usage. These test relational options will cause the shell to perform numerical operations on
the operands.

Teaching Tips

Have the students type in the examples from the slide. Remind them to display the value of
the return code with echo $?.

The following represents an equivalent expression:

$ x="03"
$ y="3"
$ ["$x" -eq "$y"]
$ echo $?
0

This example is contrasted with string comparisons in the Student Notes of the next slide.

Teaching Questions

QUESTION: What test would you use to guarantee that a program was invoked with three
command line arguments?

ANSWER: [$# -eq 3]

17-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-4. SLIDE: The test Command — String Tests

Student Notes

The test command can also be used to compare the equality or inequality of two strings.
The [...] syntax is commonly used for string comparisons. You have already seen that
there must be white space surrounding the [], and there must also be white space provided
around the equivalence operator.

The string operators include the following:

string1 = string2 True if string1 and string2 are identical.

string1 != string2 True if string1 and string2 are not identical.

-z string True if the length of string is zero.

-n string True if the length of string is non-zero.

string True if the length of string is non-zero.

51434S G.02 17-16 (17-7)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

Quotation marks will also protect the string evaluation if the value of the variable contains
blanks. For example,

$ X="Yes we will"

$ [$X = yes] causes a syntax error

Interpreted by the shell as: [Yes we will = yes]

$ ["$X" = yes] proper syntax

Interpreted by the shell as: ["Yes we will" = yes]
This will be evaluated correctly since the quotation marks surround the string.

Numerical versus String Comparison

The shell will treat all arguments as numbers when performing numerical tests, and all
arguments as strings when performing string tests. This is best illustrated by the following
example:

$ X=03

$ Y=3

$ ["$X" -eq "$Y"] compares numeral 03 with numeral 3
$ echo $?

0 true—they are equivalent numerically
$ ["$X" = "$Y"] compares the string "03" with the string "3"
$ echo $?

1 false—they are not equivalent strings

17-17 (17-8) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-18
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-4. SLIDE: The test Command — String
Tests

Instructor Notes

Key Points

• = and != perform string comparisons.

• Spaces are required around all arguments.

• Provide quotes around variables that may be NULL or contain blanks.

• Numerical tests are not the same as string tests.

Teaching Questions

QUESTION: What happens if the $ variable is surrounded with apostrophes?

ANSWER: The variable would not be replaced with its value.

QUESTION: How would you determine if the first command line argument is a -m?

ANSWER: ["$1" = "-m"]

17-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-5. SLIDE: The test Command — File Tests

Student Notes

A useful testing feature provided by the shell is the capability to test file characteristics such
as file type and permissions. For example:

test -f filename

will return true (0) if the file exists and is a regular file (not directory or device).

test -s filename

will return true (0) if the file exists and has a size greater than 0.

51434S G.02 17-20 (17-9)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

There are many other file tests available. A partial list includes:

-r file True if the file exists and is readable.

-w file True if the file exists and is writeable.

-x file True if the file exists and is executable.

-d directory True if directory exists and is a directory.

The tests on the slide could also be entered:

$ [-f funfile]

$ [-d funfile]

Refer to your HP-UX Reference Manual for additional options.

17-21 (17-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-22
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-5. SLIDE: The test Command — File Tests Instructor Notes

Key Points

• These options test file characteristics.

• They provide useful options to test for file existence and file access.

Teaching Tips

The POSIX/Korn shell has several intrinsic testing options in addition to the capabilities
provided by the test command. A couple of useful examples include

[-L file] True if file is a symbolic link

[file1 -nt file2] True if file1 is newer than file2

[file1 -ot file2] True if file1 is older than file2

[file1 -ef file2] True if file1 has the same device and inode number as file2, meaning
that both refer to the same physical file.

POSIX Shell Only

[-e file] True if file exists.

The conditional command [[test_expression]]can also be used, where test_expression is a
combination of the above conditional primitives combined with the and operator, &&, the or
operator, ||, and the negation operator, ! (like in C). See test(1) for more information.

17-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-6. SLIDE: The test Command — Other Operators

Student Notes

Multiple conditions can be tested for by using the Boolean operators.

51434S G.02 17-24 (17-11)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

Table 17-1.

Expr 1 Operator Expr 2 Outcome

true -o true true (0)

true -o false true (0)

false -o true true (0)

false -o false false (1)

true -a true true (0)

true -a false false (1)

false -a true false (1)

false -a false false (1)

Examples

$ ["$ANS" = y -o "$ANS" = Y]
$ ["$NUM" -gt 10 -a "$NUM" -lt 20]
$ test -s file -a -r file -a -x file

The NOT operator (!) is used in conjunction with the other operators and is most commonly
used for file testing. There must be a space between the not operator and any other operators
or arguments. For example,

test ! -d file

can be used instead of

test -f file -o -c file -o -b file ...

Parentheses can be used to group operators, but parentheses have another special meaning to
the shell which is interpreted first. Therefore, the parentheses must be escaped to delay their
interpretation.

The following example is verifying that there are 2 command line arguments, AND that the
first command line argument is a -m, AND that the last command line arguments is a
directory OR a file whose size is greater than zero:

[\($# = 2 \) -a \("$1" = "-m" \) -a \(-d "$2" -o -s "$2" \)]

17-25 (17-12) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-26
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-6. SLIDE: The test Command — Other
Operators

Instructor Notes

Key Points

• The Boolean operators allow you to test for multiple conditions.

• The parentheses must be escaped.

Teaching Tips

You should go through the truth table for those students who have not previously done
Boolean evaluations.

Go through the examples in the student notes.

The normal use for parentheses in the shell is for defining shell functions (presented in the
module Introduction to Shell Programming) and command grouping. With respect to command
grouping,

$ cmd1 ; cmd2 & run cmd1 in foreground, then run cmd2 in background

$ (cmd1 ; cmd2) & run both cmd1 and cmd2 in background

The use of parentheses also causes the grouped commands to be run in a subshell.
Backslashing the parentheses allows them to be used for expression evaluation.

17-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-7. SLIDE: The exit Command

Student Notes

The exit command will terminate the execution of a shell program and set the return code. It
is normally set to zero to denote normal termination and to a non-zero value to denote an
error condition. If no argument is provided, the return code is set to the return code of the last
command executed prior to the exit command.

51434S G.02 17-28 (17-13)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-7. SLIDE: The exit Command Instructor Notes

Key Points

• The exit command is used to set the return codes of shell programs and shell functions,
respectively.

• It is commonly used with branching constructs to terminate the program or function upon
recognition of an error condition. The argument will refer to the error encountered.

17-29 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-8. SLIDE: The if Construct

Student Notes

The if construct provides for program flow control based on the return code of a command. If
the return code of a designated command is 0, a specified command list will be executed. If the
return code of the designated command is non-zero, the command list will be disregarded.

The slide shows the general format of the if construct including a flow chart and a simple
example. Each command list is commonly one or more UNIX system shell commands
separated by Return or semicolons. The decision for the if statement will be based on the last
command executed in the list A , prior to the then.

51434S G.02 17-30 (17-14)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

A summary of the execution of the if construct is as follows:

1. Command list A is executed.

2. If the return code of the last command in command list A is a 0 (TRUE), execute command
list B, then continue with the first statement following the fi.

3. If the return code of the last command in command list A is not 0 (FALSE), jump to fi
and continue with the first statement following the fi.

Figure 17-3. The if Construct Flowchart

The test command is commonly used to control the flow of control, but any command can be
used, since all UNIX system commands generate a return code, as demonstrated by the
following example:

if
grep kingkong /etc/passwd > /dev/null

then
echo found kingkong

fi

The if construct also provides for program control when errors are encountered as in the
following example:

if
[$# -ne 3]

then
echo Incorrect syntax
echo Usage: cmd arg1 arg2 arg3
exit 99

fi

17-31 (17-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-32
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-8. SLIDE: The if Construct Instructor Notes

Key Points

• The if construct is used to make decisions on what commands should be executed based on
the outcome of some test.

• The test is based on the return code of a command.

• A list of commands can be provided, but the decision is based on the last command in list A.

• The test command is most commonly used to analyze the condition of variables, strings,
files, etc.

• The if, then and fi keywords are required for any if construct.

• The branching constructs are concluded with the branch keyword in reverse.

Teaching Tips

Go through the example on the slide. Describe what would be printed when the test is true
and when the test is false.

Also go through the examples in the student notes.

Inform the students that the if command can be issued interactively or programmatically. If
entered at the command prompt, the shell will issue secondary prompts until the fi construct
is entered, and then execute the entire if construct. Have the students try the example on the
slide and the grep example from their notes interactively. Note that /dev/null is used to
supress the intermediate display. This provides an opportunity to discuss uses of /dev/null.

Note that the grep command will return 0 if the pattern is found, 1 if the pattern is not
found, and 2 if some other error was encountered.

17-33 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-9. SLIDE: The if-else Construct

Student Notes

The if-else construct allows you to execute one set of commands if the return code of the
controlling command is 0 (true) or another set of commands if the return code of the
controlling command is non-zero (false).

The execution of the if construct in this case would be

1. Command list A is executed.

2. If the return code of the last command in command list A is a 0 (TRUE), execute command
list B, then continue with the first statement following the fi.

3. If the return code of the last command in command list A is not 0 (FALSE), execute
command list C, then continue with the first statement following the fi.

51434S G.02 17-34 (17-16)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

Figure 17-4. The if-else Construct Flowchart

Note that list C can contain any UNIX system command including if. For example, extend
the example on the slide to determine if the value of the variable X is less than 10, greater
than 10 or equal to 10. This decision could be determined with

if
["$X" -lt 10]

then
echo X is less than 10

else
if

["$X" -gt 10]
then

echo X is greater than 10
else

echo X is equal to 10
fi

fi

Notice how the indenting style enhances the readability of the code section. It is readily
apparent which if goes with which fi. Notice also that every if requires fi.

17-35 (17-17) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-36
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-9. SLIDE: The if-else Construct Instructor Notes

Key Points

• The else construct allows for the generation of two-way or more conditional branches,
depending on how many ifs you nest.

• Every if requires an fi.

Teaching Tips

Be sure to present the example found in the student notes, demonstrating how an if
statement can be nested within an if statement.

You might want to mention the if-elif-fi construct. elif is a contraction for else if, as
in

if
list A

then
list B

elif
list C

then
list D

else
list E

fi

This can be used to lead into the need for multi-decision branching and the case statement.

First, the nested if-then-else. Notice that each if must have a fi.

if ["$color" = red]
then

echo apple
else

if ["$color" = yellow]
then

echo banana
else

if ["$color" = orange]
then

echo kumquat
else

echo vegetable!
fi

fi

17-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

fi

Next, the elif contraction is applied. Notice only one fi needed.

if ["$color" = red]
then

echo apple
elif ["$color" = yellow]
then

echo banana
elif ["$color" = orange]
then

echo kumquat
else

echo vegetable!
fi

Now the case:

case "$color" in
red) echo apple

;;
yellow) echo banana

;;
orange) echo kumquat

;;
*) echo vegetable!

;;
esac

51434S G.02 17-38
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-10. SLIDE: The case Construct

Student Notes

The if-else construct can be used to support multidirectional branching, but it becomes
cumbersome when more than two or three branches are required. The case construct provides
a convenient syntax for multi-way branching. The branch selected is based on the sequential
comparison of a word and supplied patterns. These comparisons are strictly string-based.
When a match is found, the corresponding list of commands will be executed. Each list of
commands is terminated by a double semicolon (;;). After finishing the related list of
commands, program control will continue at the esac.

The word typically refers to the value of a shell variable.

The patterns are formed with the same format as generating filenames, even though we are
not matching filenames.

51434S G.02 17-40 (17-18)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

The following special characters are allowed:

* Matches any string of characters including the null string.

? Matches any single character.

[...] Matches any one of the characters enclosed in the brackets. A pair of
characters separated by a minus will match any character between the pair
(lexically).

There is also the addition of the | character which means OR.

Please note that the right parenthesis and the semicolons are mandatory.

The case construct is commonly used to support menu interfaces or interfaces that will make
some decision based on several user input options.

Figure 17-5. The case Construct Flowchart

17-41 (17-19) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

51434S G.02 17-42
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-10. SLIDE: The case Construct Instructor Notes

Key Points

• case is used for multi-way branching.

• case performs a string equivalence test for each pattern against the word.

• The word is commonly the value of a shell variable.

• case is commonly used to support a menu interface, where the user will enter one of many
options.

• As illustrated in the second example, the semicolons can be placed at the end of each case,
rather than on a separate line.

• In the final case only, the semicolons can be omitted.

• The default (*) case can appear anywhere in the list (not just at the end) and will be
evaluated correctly.

The case example follows:

case "$color" in

red) echo apple
;;

yellow) echo banana
;;

orange) echo kumquat
;;

*) echo vegetable!
;;

esac

17-43 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-11. SLIDE: The case Construct — Pattern Examples

Student Notes

This slide shows an example of the case construct, with patterns that are less strict than the
previous slide. Using patterns you can support user responses that are not case sensitive, or
search for a response that contains a certain string pattern or another.

It is common to conclude all case patterns with a *) in order to generate a message to the
user to inform him or her that he or she did not provide an acceptable response.

51434S G.02 17-44 (17-20)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-11. SLIDE: The case Construct — Pattern
Examples

Instructor Notes

Key Points

• Patterns are supported to make the interface more flexible for user input.

• The patterns are generated with the same special characters as file name generation.

• It is common to conclude each case pattern list with *) to catch any response that was not
supported by the available options. An error message should be displayed to the user.

• Note: the patterns do not support mathematical tests, such as less than, greater than, and
so on. You must use if statements for mathematically-oriented decisions.

17-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-12. SLIDE: Shell Programming — Branches — Summary

Student Notes

51434S G.02 17-46 (17-21)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-12. SLIDE: Shell Programming — Branches
— Summary

Instructor Notes

17-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-13. LAB: Shell Programming — Branches

Directions

Complete the following exercises and answer the associated questions.

1. Define a variable called X equal to some string. Use the test command to determine if the
value of X is the string xyz. (Hint: you must display the return value of the test command.)

2. Define a variable called Y and assign it to some number. Use the test command to
determine if the value of Y is greater than 0. (Hint: you must display the return value of the
test command.)

3. In a shell program, create an if statement that will echo yes if the argument passed is
equal to abc and no if it is not.

4. Create a short shell program that will prompt the user to enter a number. Store the user’s
input in a variable called Y. Use an if construct which will echo Y is positive if Y is
greater than zero and Y is not positive if it is not. Also display the value of Y to the user.
(Hint: the read command will retrieve the user’s input.)

5. Write a shell program which checks the number of command line arguments and echoes an
error message if there are not exactly three arguments or echoes the arguments themselves if
there are three. (Hint: The number of command line arguments is available through the special
shell variable $#. What special shell variable stores all of the command line arguments?)

51434S G.02 17-48 (17-22)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

6. Write a shell program that prompts the user for input and takes one of three possible
actions:

• If the input is A, the program should echo "good morning".

• If the input is B or b, the program should echo "good afternoon".

• If the input is C or quit, the program should terminate.

• If any other input is provided, issue an error message and exit the program setting the
return code to 99.

7. Create a shell program that will prompt for a user-ID name. Verify that the user ID
entered corresponds to an account on your system. If a legal user-id is provided, display the
pathname of the user’s home directory. If a user-id is entered that is not recognized, display an
error message.

8. Use the date command to determine if it is morning (before 12:00 noon), afternoon
(between 12:00 and 6:00 p.m.) or evening (after 6:00 p.m.). Depending on the time, create a
shell program called greeting that will echo out the appropriate message: good morning,
good afternoon or good evening. (Hint: The date command uses a 24-hour clock.)

9. Create a shell program that will ask the user if he or she would like to see the contents of
the current directory. Inform the user that you are looking for a yes or no answer. Issue an
error message if the user does not enter yes or no. If the user enters yes display the contents
of the current directory. If the user enters no, ask what directory he or she would like to see
the contents of. Get the user’s input and display the contents of that directory. Remember to
verify that the requested directory exists prior to displaying its contents.

17-49 (17-23) 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

10. Create a program mycp which will copy one file to another. The program will accept two
command line arguments, a source and a destination. Check for the following situations:

• It should make sure that the source and destination do not reference the same file.
• The program should verify that the destination is a file.
• The program should verify that the source file exists.
• The program should check to see if the destination exists. If it does, ask the user if he or she

wants to overwrite it.

11. Write a shell program called options which responds to command line arguments as
follows:

• If the first argument on the command line is -d, the program will run the date command.

• If the first argument on the command line is -w, the program will list all of the users who
are on the system.

• If the first argument on the command line is -l, the program will list the contents of the
directory provided as the second command line argument.

• If no arguments or more than two arguments are on the command line, issue a usage
message, and set the return code to 10.

• If an option is provided that is not recognized, issue a usage message, and set the return
code to 20.

51434S G.02 17-50 (17-24)
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

17-13. LAB: Shell Programming — Branches Instructor Notes
Time: 45 minutes

Purpose

To practice using the test, if, and case commands for branching within shell programs.

Notes to the Instructor

Introductory Exercises 1–6

Intermediate Exercises 7–10

Advanced Exercises 11

The Introductory exercises will be useful for students who need to practice the basic test and
branching constructs. They provide exercises that are similar to the examples presented in the
slides.

The Intermediate exercises are for students who feel reasonably comfortable with the basic
constructs, and allow them to exercise their understanding of variables, pipelines, and
command substitution along with the branching constructs. Most students will probably work
on these four exercises.

The Advanced Exercise allows the students to create a shell program that accepts command
line options.

Solutions

1. Define a variable called X equal to some string. Use the test command to determine if the
value of X is the string xyz. (Hint: you must display the return value of the test command.)

Answer:

$ X=xyz
$ test "$X" = "xyz"
$ echo $?
0

2. Define a variable called Y and assign it to some number. Use the test command to
determine if the value of Y is greater than 0. (Hint: you must display the return value of the
test command.)

Answer:

$ Y=100
$ test "$Y" -gt 0 or ["$Y" -gt 0]
$ echo $?

17-51 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

0

$ Y=-100
$ test "$Y" -gt 0 or ["$Y" -gt 0]
$ echo $?
1

3. In a shell program, create an if statement that will echo yes if the argument passed is
equal to abc and no if it is not.

Answer:

if
["$1" = "abc"]

then
echo yes

else
echo no

fi

4. Create a short shell program that will prompt the user to enter a number. Store the user’s
input in a variable called Y. Use an if construct which will echo Y is positive if Y is
greater than zero and Y is not positive if it is not. Also display the value of Y to the user.
(Hint: the read command will retrieve the user’s input.)

Answer:

echo "please enter a number: \c"
read Y
if

["$Y" -gt 0]
then

echo Y is positive
echo The value of Y is $Y

else
echo Y is not positive
echo The value of Y is $Y

fi

5. Write a shell program which checks the number of command line arguments and echoes an
error message if there are not exactly three arguments or echoes the arguments themselves if
there are three. (Hint: The number of command line arguments is available through the special
shell variable $#. What special shell variable stores all of the command line arguments?)

Answer:

if
["$#" -ne 3]

then
echo "there are not exactly three command line arguments" >&2

else
echo $*

fi

51434S G.02 17-52
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

6. Write a shell program that prompts the user for input and takes one of three possible
actions:

• If the input is A, the program should echo "good morning".

• If the input is B or b, the program should echo "good afternoon".

• If the input is C or quit, the program should terminate.

• If any other input is provided, issue an error message and exit the program setting the
return code to 99.

Answer:

echo "Please input A, B, b, or C: \c"
read input
case $input in

A) echo good morning
;;

[Bb]) echo good afternoon
;;

C|quit) exit
;;

*) echo You entered an illegal option.
exit 99
;;

esac

7. Create a shell program that will prompt for a user-ID name. Verify that the user ID
entered corresponds to an account on your system. If a legal user-id is provided, display the
pathname of the user’s home directory. If a user-id is entered that is not recognized, display an
error message.

Answer:

echo "Input a user login name -> \c"
read user
if

grep $user /etc/passwd > /dev/null
then

home=$(grep $user /etc/passwd | cut -f6 -d:)
echo The HOME directory for $user is $home

else
echo;echo "$user is not here!!!"

fi

8. Use the date command to determine if it is morning (before 12:00 noon), afternoon
(between 12:00 and 6:00 p.m.) or evening (after 6:00 p.m.). Depending on the time, create a
shell program called greeting that will echo out the appropriate message: good morning,
good afternoon or good evening. (Hint: The date command uses a 24-hour clock.)

17-53 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

Answer:

time=$(date | cut -c12-20)
hour=$(echo $time | cut -f1 -d:)

if [$hour -lt 12]
then

echo good morning
else

if [$hour -ge 12 -a $hour -lt 18]
then

echo good afternoon
else

echo good evening
fi

fi

9. Create a shell program that will ask the user if he or she would like to see the contents of
the current directory. Inform the user that you are looking for a yes or no answer. Issue an
error message if the user does not enter yes or no. If the user enters yes display the contents
of the current directory. If the user enters no, ask what directory he or she would like to see
the contents of. Get the user’s input and display the contents of that directory. Remember to
verify that the requested directory exists prior to displaying its contents.

Answer:

echo Would you like to see the contents of your current directory?
echo Please enter yes or no.
echo "----> \c"
read ans1
case $ans1 in

yes) ls
;;

no) echo What directory would you like to see?
read ans2
if test -d $ans2
then

ls $ans2
else

echo directory $ans2 does not exist
fi
;;

*) echo You have not entered a proper response.
echo Please try again.
;;

esac

10. Create a program mycp which will copy one file to another. The program will accept two
command line arguments, a source and a destination. Check for the following situations:

• It should make sure that the source and destination do not reference the same file.
• The program should verify that the destination is a file.
• The program should verify that the source file exists.

51434S G.02 17-54
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

• The program should check to see if the destination exists. If it does, ask the user if he or she
wants to overwrite it.

Answer:

#!/usr/bin/sh
mycp file1 file2
if ["$#" -ne 2]

then
echo "Usage: $0 file1 file2" >&2
exit 1

fi
if ["$1" = "$2"]
then

echo "$1 = $2"
echo "No copy performed" >&2
exit 2

fi

if test -d $2
then

echo "Your target is a directory." >&2
echo "No copy performed!" >&2
exit 4

fi

if test -f $2
then

echo "Your target file already exists."
echo "Do you want to overwrite it? [y/n]: \c"
read ans
if ["$ans" != "y" -o "$ans" != "Y"]
then

echo "No copy performed!" >&2
exit 3

fi
fi

if test -f $1
then

cp $1 $2
echo "Copy complete"

else
echo "Source file does not exist"
echo "No copy performed"
exit 4

fi

11. Write a shell program called options which responds to command line arguments as
follows:

• If the first argument on the command line is -d, the program will run the date command.

17-55 51434S G.02
© 1999 Hewlett-Packard Company

Module 17

Shell Programming — Branches

• If the first argument on the command line is -w, the program will list all of the users who
are on the system.

• If the first argument on the command line is -l, the program will list the contents of the
directory provided as the second command line argument.

• If no arguments or more than two arguments are on the command line, issue a usage
message, and set the return code to 10.

• If an option is provided that is not recognized, issue a usage message, and set the return
code to 20.

Answer:

if
["$#" -lt 1 -o "$# "-gt 2]

then
echo "usage: $0 -d" >&2
echo " $0 -l directory" >&2
echo " $0 -w" >&2
exit 10

fi
case $1 in

-d) date
;;

-w) who
;;

-l) if test -d $2
then

echo the contents of directory $2 are:
ls -F $2

else
echo directory $2 does not exist

fi
;;

*) echo "bad option" >&2
echo "usage: $0 -d" >&2
echo " $0 -l directory" >&2
echo " $0 -w" >&2
exit 20
;;

esac

51434S G.02 17-56
© 1999 Hewlett-Packard Company

Module 18 — Shell Programming — Loops

Objectives

Upon completion of this module, you will be able to do the following:

• Use the while construct to repeat a section of code while some condition remains true.

• Use the until construct to repeat a section of code until some condition is true.

• Use the iterative for construct to walk through a string of white space delimited items.

18-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

51434S G.02 18-2
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

Overview of Module 18

Audience

general user General system user

Product Family Type

open sys Open systems environment

Abstract

This module is designed to teach the student the while, until and for constructs for looping
in a shell program. Also the let command, break and continue are discussed.

Time

Lab 90 minutes

Lecture 60 minutes

Prerequisites

m1310m Shell Programming—Branches

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

Software Requirements

UX11 HP-UX release 11.0

18-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual, one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r----- 1 karenk users 3081 May 28 16:12 funfile

51434S G.02 18-4
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-1. SLIDE: Loops — an Introduction

Student Notes

The looping constructs allow you to repeat a list of commands, and as in the branching
constructs, the decision to continue or cease looping will be based on the return code of a key
command. The test command is frequently used to control the continuance of a loop.

Unlike branches, which start with a keyword and end with the keyword in reverse (if/fi and
case/esac), loops will start with a keyword and some condition, and the body of the loop will
be surrounded by do/done.

51434S G.02 18-6 (18-2)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-1. SLIDE: Loops — an Introduction Instructor Notes

Key Points

• Similar to branching control, loop control is based on the return code of a command,
commonly the test command.

• Point out that loops do not start with a keyword and end with the keyword in reverse. Loops
are initiated with a keyword and a condition, and the body of the loop is surrounded by
do/done.

18-7 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-2. SLIDE: Arithmetic Evaluation Using let

Student Notes

Loops are commonly controlled by incrementing a numerical variable. The let command
enables shell scripts to use arithmetic expressions. This command allows long integer
arithmetic. The syntax is shown on the slide, where expression represents an arithmetic
expression of shell variables and operators to be evaluated by the shell. Using (())around
the expression replaces using the let. The operators recognized by the shell are listed below,
in decreasing order of precedence.

Operator Description

- Unary minus

! Logical negation

* / % Multiplication, division, remainder

+ - Addition, subtraction

51434S G.02 18-8 (18-3)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

<= >= < > Relational comparison

== != Equals, does not equal

= Assignment

Parentheses can be used to change the order of evaluation of an expression, as in

let "x=x/(y+1)"

Note the double quotes are necessary to escape the special meaning of the parentheses. Also, if
you wish to use spaces to separate operands and operators within the expression, double
quotes must be used with let, or the (())syntax must be used:

let "x = x + (y / 2)" OR ((x = x + (y / 2)))

When using the logical and relational operators, (!, <=, >=, <, >, ==, !=), the shell
return code variable, ? will reflect the true or false value of the result (0 for true, 1 for false).
Again, the double quotes must be used to prevent the shell from interpreting the less than and
greater than signs as I/O redirection.

18-9 (18-4) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

51434S G.02 18-10
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-2. SLIDE: Arithmetic Evaluation Using
let

Instructor Notes

Key Points

• The let command is used to perform mathematical operations.

• This is often required to increment a variable that is being tested to determine the
continuance of a loop.

Teaching Tips

Note that the dollar sign can be used with variables with the let command, but it is not
necessary. Either of the following is legal:

let x=x+1 OR let x=$x+1

Note that when special shell variables are referenced, the dollar sign must be used:

if (($# <= 10))

The expr command may be used instead of let for Bourne shell portability:

x=12
$ expr $x + 1
13
$ x=‘expr $x + 1‘
$ echo $x
14

18-11 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-3. SLIDE: The while Construct

Student Notes

The while construct is a looping mechanism provided by the shell that will continue looping
through the body of commands (list B) while a condition is true. The condition will be
determined by the return code of the last command in list A. Often a test or let command is
used to control the continuance of the loop, but any command can be used that generates a
return code.

The example on the slide could have been written using a test command instead of the let
command, as follows:

$ X=1
$ while [$X -le 10]
> do
> echo hello X is $X
> let X=X+1
> done

The execution is as follows:

51434S G.02 18-12 (18-5)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

1. Commands in list A are executed.

2. If the return code of the last command in list A is 0 (true), execute list B.

3. Return to step 1.

4. If the return code of the last command in list A is not 0 (false), skip to the first command
following the done keyword.

Figure 18-6. The while Construct Flowchart

18-13 (18-6) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

WARNING: Be careful of infinite while loops. These are loops whose
controlling command always returns true.

$ cat while_infinite
while

true
do

echo hello
done

$ while_infinite
hello
hello

.

.

.
Ctrl + c

51434S G.02 18-14 (18-7)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-3. SLIDE: The while Construct Instructor Notes

Key Points

• The while loop is controlled on the basis of a return code, just like the branching
mechanisms.

• The body of the loop is encased in the do/done constructs.

• The while loop is commonly controlled by a counter variable that will be incremented with
the let or expr command.

• When a false condition is encountered, the program continues with the first command
beyond the done.

• Other branching and looping constructs can be nested within a while loop.

• Warn the students against infinite while loops.

Teaching Tips

You might want to let the students know about the POSIX/Korn shell’s capability to recall a
previous command and start a full vi session to modify the command entered. This is
especially convenient on the multi-line commands that are entered in the branching and
looping modules.

Recall a previous construct using the ESC and k keys. When the multi-line command is
displayed, you will see many control characters, that represent the new lines for the input.
Simply enter v, and a full vi session will be started on the command. You can now make any
necessary modifications.

Use :wq or ZZ to quit the edit session. When your file has been written the associated
commands will be executed.

NOTE: The editor that will be invoked is identified by the $FCEDIT or $EDITOR
variable. If you are running under X Windows you could set the variable
to ved and invoke a window-based editor to modify previous lines.

18-15 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-4. SLIDE: The while Construct — Examples

Student Notes

The slide shows two additional examples of the while construct. Example A is prompting the
user for input, and determining whether the loop should be continued based on the user’s
response. Example B is looping through each of the arguments on the command line. If an
argument is a directory, the contents of the directory will be displayed. If the argument is not
a directory, it will simply be skipped over. Note the use of the shift command to allow access
to each of the arguments one by one. When combined with the while command, this makes
the loop very flexible. It does not matter if there is one argument or 100 arguments, the loop
will continue until all of the arguments have been accessed.

Note that a while loop may need to be set up if you want to execute the loop at least once.
Example A will execute the body of the loop at least once because ans has been set equal to
yes. In Example B, if the program has been executed with no command line arguments ($#
equals 0), then the loop will not execute at all.

51434S G.02 18-16 (18-8)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-4. SLIDE: The while Construct —
Examples

Instructor Notes

Key Points

• Loops are commonly controlled by user input — Example A.

• A variable number of command line arguments can be handled by looping and shifting
through the command line arguments — Example B.

• Note: once a command line argument is shifted from the command line, it cannot be
retrieved again. If you need to preserve the original command line arguments, you may
want to make the assignment:

args=$*

• The controlling variable in a while loops may need to be properly initialized to guarantee
that the body of the loop will execute at least once, as seen in Example A.

18-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-5. SLIDE: The until Construct

Student Notes

The until construct is another looping mechanism provided by the shell that will continue
looping through the body of commands (list B) until a condition is true. Similar to the while
loop, the condition will be determined by the return code of the last command in list A.

The execution is as follows:

1. Command list A is executed.

2. If the return code of the last command in list A is not 0 (false), execute list B.

3. Return to step 1.

4. If the return code of the last command in list A is 0 (TRUE), skip to the first command
following the done keyword.

51434S G.02 18-18 (18-9)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

Figure 18-7. The until Construct Flowchart

CAUTION: Be careful of infinite until loops. These are loops whose controlling
command always returns false.

$ X=1
$ until
> [$X -eq 0]
> do
> echo hello
> done
hello
hello

.

.

.
Ctrl + c

18-19 (18-10) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

51434S G.02 18-20
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-5. SLIDE: The until Construct Instructor Notes

Key Points

• The until loop is controlled on the basis of a return code as are the while loop and the
branching mechanisms.

• The body of the loop is encased in the do/done constructs.

• The until loop is commonly controlled by a counter variable that will be incremented with
the let command.

• When a true condition is encountered, the program continues with the first command
beyond the done.

• Other branching and looping constructs can be nested within an until loop.

• Warn the students against infinite until loops, as in the following:

$ X=1
$ until
> [$X -eq 0]
> do
> echo hello
> done
hello
hello
hello

.

.

.
Ctrl + c

18-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-6. SLIDE: The until Construct — Examples

Student Notes

The slide shows the same examples that were presented for the while construct, but now they
are implemented with the until construct. Notice that the logic associated with the test
conditions must be reversed to match the logic of the until construct.

Notice also that the sensitivity of the user input has changed slightly. Using the while
construct, the loop will continue only if the user inputs the string yes. It is very strict in its
condition for continuing the loop. Using the until construct the loop will continue as long as
the user enters anything other than no. It is not as strict in its condition for continuing the
loop. You may want to consider these issues when deciding which construct is most applicable
to your interface.

Predefining the ans variable is not necessary either because it would be initialized to NULL.
Since NULL is not equivalent to no the test would return false, and the loop would be
executed. You just want to make sure that $ans is enclosed in quotes in the test expression to
provide a legal test syntax.

51434S G.02 18-22 (18-11)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-6. SLIDE: The until Construct —
Examples

Instructor Notes

Key Points

• The logic for the while test conditions is reversed from the logic of the repeat until test
conditions. The same operation can usually be implemented with either construct.

• Note the change in the sensitivity of input required between Example A of the repeat
until loop and Example A of the while loop.

• The controlling variable of an until loop may need to be initialized to guarantee that the
body of the loop will execute at least once, as in Example A.

18-23 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-7. SLIDE: The for Construct

Student Notes

On the slide, the keywords are for, in, do, and done. var represents the name of a shell
variable that will be assigned through the execution of the for loop. list is a sequence of strings
separated by blanks or tabs that var will be assigned to during each iteration of the loop.

The construct works as follows:

1. The shell variable var is set equal to the first string in list.

2. Command list A is executed.

3. The shell variable var is set equal to the next string in list.

4. Command list A is executed.

5. Continue until all items from list have been processed.

51434S G.02 18-24 (18-12)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

Figure 18-8. The for Construct Flowchart

18-25 (18-13) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

51434S G.02 18-26
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-7. SLIDE: The for Construct Instructor Notes

Key Points

• The for construct is very powerful, since lists can be generated through command
substitution and pipelines. Examples will be presented on the next slide.

• Point out that there is no easy way to count in a for loop. For example,

for i in 1 2 3 4 5 6 ... 200
do
...
done

is not practical. Show the students that the construct

X=1
while ((X <= 200))
do

...
let X=X+1

done

is more efficient.

18-27 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-8. SLIDE: The for Construct — Examples

Student Notes

The for construct is a very flexible looping construct. It is able to loop through any list that
can be generated. Lists can easily be created through command substitution, as seen in the
first example. With the availability of pipes and filters, a list can be generated from almost
anything.

If you require access to the same list many times, you might want to save it in a file. You can
then use the cat command to generate the list for your for loop, as in the following example:

$ cat students
user1
user2
user3
user4

$ cat for_students_file_copy
for NAME in $(cat students)
do

51434S G.02 18-28 (18-14)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

cp test.file /home/$NAME
chown $NAME /home/$NAME/test.file
chmod g-w,o-w /home/$NAME/test.file
echo done $NAME

done
$

Accessing Command Line Arguments

You can generate the list from command line arguments with

for i in $* or for i
do do

cp $i $HOME/backups cp $i $HOME/backups
done done

18-29 (18-15) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

51434S G.02 18-30
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-8. SLIDE: The for Construct — Examples Instructor Notes

Key Points

• Lists can be provided explicitly, as seen on the previous slide or generated through other
shell mechanisms:

— command substitution
— filename generation
— command line arguments

• The construct for x in $* is equivalent to for x.

• Saving a list in a file is a convenient method for repeated access.

Other Examples

$ cat example_C
for i in $(lsf | grep / | cut -d/ -f1)
do

ls $i > $i.ls
done

$ cat example_D
for file in *
do

size=$(wc -c $file | tr -s " " | cut -d " " -fl)
echo $file has $size bytes

done

18-31 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-9. SLIDE: The break, continue and exit Commands

Student Notes

There may be situations where you need to discontinue a loop prior to the loop’s normal
terminating condition. The break and continue provide unconditional flow control. They are
commonly used when an error condition is encountered to terminate the current iteration of
the loop. The exit command is used when a situation cannot be recovered from, and the
entire program must be terminated.

The break command will cause the loop to terminate and control to be passed to the command
immediately following the done keyword. You will completely break out of the designated
loops, and continue with the following commands.

The continue command is slightly different. When encountered, the continue command will
skip the remaining commands in the body of the loop and transfer control to the top of the
loop. Thus the continue command allows you to just terminate one iteration of the loop but
continue execution at the top of the loop just interrupted.

51434S G.02 18-32 (18-16)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

In the while and until loops, the process will continue at the beginning of the initialization
list. In the for loop the process will set the variable to the next item in the list, and then
continue.

The exit command will stop the execution of a shell program and set the return value for the
shell program to the argument, if specified. If no argument is supplied, the return value of the
shell program is set to the return value of the command that executed immediately prior to
the exit. The return command will behave just as the exit within a shell function.

NOTE: The flow of control of a loop should normally be terminated through the
condition at the top of the loop (while, until) or by exhausting the list
(for). These should be used only when an irregular or error condition
occurs in the loop.

Example

while
cmd1

do
cmdA
cmdB
while

cmdC
do

cmdE
break 2
cmdF

done
cmdJ
cmdK

done
cmdX

1. What command will be executed following the break 2?

2. What if the break 2 is replaced simply with a break?

3. What about a continue 2?

4. What about a simple continue?

18-33 (18-17) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

51434S G.02 18-34
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-9. SLIDE: The break, continue and exit
Commands

Instructor Notes

Key Points

• The break will break out of the loop completely. Execution continues with the next
command after the loop.

• The continue will just terminate the current iteration of the loop. Execution of the loop
continues.

• The exit terminates the entire program.

• break and continue with arguments greater than 1 are not recommended. It makes
following the flow of the code difficult. Use the example in the notes to illustrate.

Teaching Tips

Illustrate the differences of the break and continue with the code model provided in the
student notes. An example is provided on the next page.

What command will be executed following the break 2? cmdX

What if it is replaced simply with a break? cmdJ

What about a continue 2? while cmd1

What about a simple continue? while cmdC

18-35 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-10. SLIDE: break and continue — Example

Student Notes

This example shows an effective use of the break and continue commands. The command
executed as the test condition of the while loop is the true command which will always
generate a true result; this means that this loop is an infinite loop which will loop forever
unless some command inside the loop terminates it (which the break command does). If the
file entered is not a regular file, an error message is printed and the continue command
causes the user to be prompted for the file name again. If the file is a regular file, it is
removed, and the break command is used to break out of the infinite loop.

51434S G.02 18-36 (18-18)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-10. SLIDE: break and continue — Example Instructor Notes

Key Points

• The continue will cause the current iteration of the loop to terminate, and the process will
continue at the top of the loop where the user is prompted for a file name.

• The break command will cause the current iteration of the loop to terminate, breaking out
of the loop altogether.

• Caution that the slide example safe remove will allow the user to enter file
name-generating characters (including *) when prompted for "Enter a filename to remove."
You might suggest including a confirmation question such as "Are you sure you want to
remove filename?"

Teaching Tips

Be sure the students are aware of the dangers of using infinite loops.

18-37 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-11. SLIDE: Shell Programming — Loops — Summary

Student Notes

51434S G.02 18-38 (18-19)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-11. SLIDE: Shell Programming — Loops —
Summary

Instructor Notes

18-39 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-12. LAB: Shell Programming — Loops

Directions

Complete the following exercises and answer the associated questions.

1. Create a program called double_it that will prompt the user for a number and then
display two times the number.

2. Create a program called sum_them that will prompt the user to input 10 numbers. The
program will add all of the numbers that the user has entered, and display the final sum.
(Hint: accumulate the sum each time a new number is entered.)
Optional: Modify sum_them so that the number of numbers that the user would like to add
together is provided through a command line argument. For example sum_them 6 would
prompt the user for six numbers and add them together.

3. Create a program called words_in that will continue to prompt the user to input a single
word until the user enters quit. Save each word that is entered. After the user types quit
echo back all of the words that have been entered. Can you complete this exercise with a
while loop? With an until loop? Select the one you prefer. (Optional: display all of the words
entered in alphabetical order.)

4. In a shell program create a for loop that will:

• create the directories Adir, Bdir, Cdir, Ddir, Edir
• copy funfile to each directory
• list the contents of each directory to verify the copy
• echo a message when each iteration of the loop is complete

51434S G.02 18-40 (18-20)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

5. Write a shell program called new_files that will accept a variable number of command
line arguments. The shell program will create a new file associated with each command line
argument (use the touch command), and echo a message that notifies the user as each file is
created.

6. Use vi to create a file called mailtest. At your shell prompt create an interactive for
loop to mail mailtest to everyone who is logged on. (Hint: use who and cut with command
line substitution to generate the list for the for loop.)

7. Create a shell program called my_menu that will display a simple menu that has three
options.

a. The first option will run double_it (Exercise 1).
b. The second option will run sum_them (Exercise 2).
c. Quit.

The menu should be redisplayed after each selection is completed, until the user enters 3.

8. Create a program called msg_me that will display a message to your screen once every 5
seconds, for a minute. (Hint: look up the sleep command.) You might want to store the
message in a separate text file so that it can be easily changed.

9. Write a shell program called ison that will run in the background and check every 60
seconds whether a particular user has logged into the system. The user name should be
passed into ison as a command line argument. When the user logs in, print a message on
your terminal informing you of the login, and report what terminal the user logged into. (Hint:
Use the sleep command.)

18-41 (18-21) 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

If you are on a standalone system in a network, you might want to try the rwho command.

10. Create a directory called .waste in your home directory. Write a shell program called
myrm that will move all of the files you delete into the .waste directory, your wastebasket.
This is a useful tool which will allow restoration of files after they have been removed.
Remember, the UNIX system has no undelete capability.

Have myrm also include the options:

-l List contents of the wastebasket

-d Dump the contents of the wastebasket

51434S G.02 18-42 (18-22)
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

18-12. LAB: Shell Programming — Loops Instructor Notes
Time: 90 minutes

Purpose

To practice the looping constructs available in the shell.

Notes to the Instructor

Introductory Exercises 1–6, Recommend: 1, 2, 3, 4 or 5, 6

Intermediate Exercises 7

Advanced Exercises 8–10 Recommend: 8, 9 or 10

The Introductory exercises will be useful for students who need to practice with the basic let
and looping constructs. They provide exercises that are similar to the examples presented in
the slides.

The Intermediate exercise gives students practice creating menus.

The Advanced exercises Advanced Exercises, number 8 requires the user to send a message to
a terminal. Exercise 9 directs the student to create a background process. Exercise number 10
is useful for students who would like to develop a script that protects them from improperly
deleting files. This shell script provides the capability to recover removed files.

Solutions

1. Create a program called double_it that will prompt the user for a number and then
display two times the number.

Answer:

#!/usr/bin/sh
double_it: Prompt the user for a number and then display 2 times
its value.
#
echo "Input an integer value: \c"
read num
echo "Two times the number you entered is \c"
let num=num*2
echo $num

2. Create a program called sum_them that will prompt the user to input 10 numbers. The
program will add all of the numbers that the user has entered, and display the final sum.
(Hint: accumulate the sum each time a new number is entered.)

18-43 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

Optional: Modify sum_them so that the number of numbers that the user would like to add
together is provided through a command line argument. For example sum_them 6 would
prompt the user for six numbers and add them together.

Answer:

#!/usr/bin/sh
sum_them: Prompt the user for 10 numbers and add them together
#
sum=0
count=1
echo You will be prompted to enter 10 numbers.
echo Their sum will be displayed after all 10 numbers have been entered.
while

[$count -le 10]
do

echo "Please enter a number ($count): \c"
read num
let sum=sum+num
let count=count+1

done
echo The sum of the 10 numbers you entered is: $sum

Optional solution supporting a command line argument identifying the number of numbers
to enter:

#!/usr/bin/sh
sum_them2: The user will provide the number of numbers to
add together as a command line argument
#
if

[$# -ne 1]
then

echo Usage: $0 number >&2
exit 99

fi

count=1
echo You will be prompted to enter $1 numbers.
echo Their sum will be displayed after all $1 numbers have been entered.
while

[$count -le $1]
do

echo "Please enter a number ($count): \c"
read num
let sum=sum+num
let count=count+1

done
echo The sum of the $1 numbers you entered is: $sum

3. Create a program called words_in that will continue to prompt the user to input a single
word until the user enters quit. Save each word that is entered. After the user types quit
echo back all of the words that have been entered. Can you complete this exercise with a

51434S G.02 18-44
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

while loop? With an until loop? Select the one you prefer. (Optional: display all of the words
entered in alphabetical order.)

Answer:

#!/usr/bin/sh
words_in: prompt the user to input words until "quit" is entered
#
until

echo Please enter a word. Enter "quit" when you are done.
read input
["$input" = quit]

do
words="$words\n$input"

done
echo $words
#Print words out in alphabetical order
echo $words | sort

4. In a shell program create a for loop that will:

• create the directories Adir, Bdir, Cdir, Ddir, Edir
• copy funfile to each directory
• list the contents of each directory to verify the copy
• echo a message when each iteration of the loop is complete

Answer:

for name in Adir Bdir Cdir Ddir Edir
do

mkdir $name
cp $HOME/funfile $name
ls $name
echo done with $name

done

an alternative method could be:

for name in A B C D E
do

mkdir ${name}dir
cp $HOME/funfile ${name}dir
ls ${name}dir
echo done with $name

done

5. Write a shell program called new_files that will accept a variable number of command
line arguments. The shell program will create a new file associated with each command line
argument (use the touch command), and echo a message that notifies the user as each file is
created.

18-45 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

Answer:

#!/usr/bin/sh
new_files: create new files as provided by the command line arguments
Usage: new_files f1 f2 f3 f4 ...
#
for i in $*
do

echo creating file $i
touch $i

done

6. Use vi to create a file called mailtest. At your shell prompt create an interactive for
loop to mail mailtest to everyone who is logged on. (Hint: use who and cut with command
line substitution to generate the list for the for loop.)

Answer:

$ for i in $(who | cut -f1 -d" ")
> do
> mail $i < mailtest
> done

7. Create a shell program called my_menu that will display a simple menu that has three
options.

a. The first option will run double_it (Exercise 1).
b. The second option will run sum_them (Exercise 2).
c. Quit.

The menu should be redisplayed after each selection is completed, until the user enters 3.

Answer:

#!/usr/bin/sh
my_menu: A menu interface

Usage: my_menu

#
until

[$ans -eq 3]

clear
echo
echo
echo
echo 1) Double a number.
echo 2) Add together 10 numbers.

echo 3) Quit

echo
echo "Enter your selection number ->\c"

read ans
do

case $ans in

1) double_it

51434S G.02 18-46
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

;;
2) sum_them

;;
3|quit|q|Q) exit

;;

*) echo You have not entered a legal option.

echo Please try again.

;;
esac
sleep 3

screen clears before displaying menu

done

8. Create a program called msg_me that will display a message to your screen once every 5
seconds, for a minute. (Hint: look up the sleep command.) You might want to store the
message in a separate text file so that it can be easily changed.

Answer:

#!/usr/bin/sh
msg_me: display a message to your terminal every 5 seconds
#
term=$(who am i | cut -c12-18)
count=1
while

[$count -lt 12]
do

cat msg.file > /dev/$term
sleep 5
let count=count+1

done

9. Write a shell program called ison that will run in the background and check every 60
seconds whether a particular user has logged into the system. The user name should be
passed into ison as a command line argument. When the user logs in, print a message on
your terminal informing you of the login, and report what terminal the user logged into. (Hint:
Use the sleep command.)

If you are on a standalone system in a network, you might want to try the rwho command.

Answer:

#!/usr/bin/sh
ison: Check for a user to log into the system
Usage: ison username
#
if ["$#" -ne 1]
then

echo "usage: $0 user_id" >&2
exit 99

fi

until who | grep $1 > /dev/null

18-47 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

do
sleep 60

done

When you reach this point, the user has logged in

echo $1 has logged on
who | grep $1

10. Create a directory called .waste in your home directory. Write a shell program called
myrm that will move all of the files you delete into the .waste directory, your wastebasket.
This is a useful tool which will allow restoration of files after they have been removed.
Remember, the UNIX system has no undelete capability.

Have myrm also include the options:

-l List contents of the wastebasket

-d Dump the contents of the wastebasket

Answer:

#!/usr/bin/sh
myrm: WasteBasket
#
if ["$1" = ""]

then
echo "Usage: $0 file [file ...]" >&2
echo " or: $0 [-l] | [-d]" >&2
exit 5

fi
opt=$(echo $1 | cut -c1)
if ["$opt" = "-"]
then

case $1 in
-l) echo;echo "The WasteBasket includes the following files:"

ls $HOME/.waste;;
-d) echo;echo "The WasteBasket is being dumped!"

rm $HOME/.waste/*;;
-*) echo "$0: $1 invalid argument" >&2

exit;;
esac

else
echo "Are you sure you want to remove $*? [y/n]: \c"
read ans
if ["$ans" = "y" -o "$ans" = "Y"]
then

for i in $*
do

if test -f $i
then

mv "$i" $HOME/.waste
else

echo "$i: Does not exist" >&2

51434S G.02 18-48
© 1999 Hewlett-Packard Company

Module 18

Shell Programming — Loops

fi
done

else
exit

fi
fi

18-49 51434S G.02
© 1999 Hewlett-Packard Company

Module 18

Offline File Storage

51434S G.02 18-50
© 1999 Hewlett-Packard Company

Module 19 — Offline File Storage

Objectives

Upon completion of this module, you will be able to do the following:

• Use the tar command for storing files to tape.

• Use the find and cpio commands for storing files to tape.

• Retrieve files that were stored using tar or cpio.

19-1 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

51434S G.02 19-2
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

Overview of Module 19

Audience

general user General system users

Product Family Type

open sys Open systems environment

Abstract

The purpose of this module is to teach the basic skills needed for a general user of HP-UX to
create tape archives of files. This module does not teach system backups, only "backups" for
individual users.

Time

Lab 30 minutes

Lecture 45 minutes

Prerequisites

m46m Navigating the File System

Instructor Profile

UX General UNIX knowledge

The instructor of this module must have general UNIX or HP-UX knowledge.

Hardware Requirements

HP9000 Logon access to an HP-UX system

TAPE Access to tape drive

Software Requirements

UX11 HP-UX release 11.0

19-3 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

Material List

P/N B2355-
90033(T)

HP-UX Reference Manual, one per terminal

Lab Instructions

setup1 Create user logon of user1, user2, ... usern, where n is the number of
students in the class. Set up one user per student.

copyfiles Copy the lab files to the users’ home directories.

Lab Files

-rw-r--r-- 1 karenk users 34 May 28 16:12 abcdefXlmnop
-rw-r--r-- 1 karenk users 34 May 28 16:12 abcdefYlmnop
./tree:
total 14
drwxr-xr-x 5 karenk users 1024 May 28 16:12 car.models
-rw-r--r-- 1 karenk users 17 May 28 16:12 cherry
-rw-r--r-- 1 karenk users 17 May 28 16:12 collie
drwxr-xr-x 4 karenk users 1024 May 28 16:12 dog.breeds
-rw-r--r-- 1 karenk users 17 May 28 16:12 poodle
-rw-r--r-- 1 karenk users 17 May 28 16:12 probe
-rw-r--r-- 1 karenk users 17 May 28 16:12 taurus

./tree/car.models:
total 6
drwxr-xr-x 2 karenk users 24 May 28 16:12 chrysler
drwxr-xr-x 4 karenk users 1024 May 28 16:12 ford
drwxr-xr-x 2 karenk users 24 May 28 16:12 gm

./tree/car.models/chrysler:
total 0

./tree/car.models/ford:
total 4
drwxr-xr-x 2 karenk users 24 May 28 16:12 sedan
drwxr-xr-x 2 karenk users 1024 May 28 16:12 sports

./tree/car.models/ford/sedan:
total 0

./tree/car.models/ford/sports:
total 2
-rw-r--r-- 1 karenk users 18 May 28 16:12 mustang

./tree/car.models/gm:
total 0

51434S G.02 19-4
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

./tree/dog.breeds:
total 4
drwxr-xr-x 2 karenk users 1024 May 28 16:12 retriever
drwxr-xr-x 2 karenk users 24 May 28 16:12 shepherd

./tree/dog.breeds/retriever:
total 6
-rw-r--r-- 1 karenk users 27 May 28 16:12 golden
-rw-r--r-- 1 karenk users 29 May 28 16:12 labrador
-rw-r--r-- 1 karenk users 26 May 28 16:12 mixed

./tree/dog.breeds/shepherd:
total 0

19-5 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-1. SLIDE: Storing Files to Tape

Student Notes

There are many times when the average user of a UNIX system will want to save copies of
files to some removable media. Popular media used for backups include 9-track tape (1/2 inch
reel), or DDS format DAT tape. This module is designed to give you the basics of storing and
retrieving copies of files to and from tape. Keep in mind that your system administrator is
usually responsible for backing up the entire system; you should coordinate all tape backups
through your system administrator.

NOTE: The only way to recover a file that has been deleted is to restore it from a
tape backup.

Regarding DDS Tapes

Since the introduction of HP DAT products in 1990, HP has only supported DDS cartridges as
the storage medium. DAT audio tapes are not supported, and the use of DAT tapes will
invalidate the drive warranty.

51434S G.02 19-6 (19-2)
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

DDS cartridges are built to a much higher standard than ordinary DAT tapes. DDS cartridge
designs and tape formulations are rigorously tested before they are permitted to carry the
DDS logo. Non-DDS tapes can appear to work in a DAT drive but can cause data loss, tape
jams, head clogging, and permanent damage to the drive.

Be sure you are using DDS format DAT tapes. Some tapes that are marked Data Grade are
not necessarily DDS format tapes.

DDS format tapes carry this logo:

Figure 19-9. DDS Format Tape Logo

19-7 (19-3) 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

51434S G.02 19-8
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-1. SLIDE: Storing Files to Tape Instructor Notes

Key Points

• Deleted files can only be recovered through a tape backup.

• There are several backup commands available. We will present tar and cpio.

• You must find out what the designated device file is for your tape drive. You should be able
to get this information from your system administrator.

Media Recognition System for DDS Tape

The DDS Manufacturer’s Group has devised a system to prevent writing to non-DDS qualified
tape. The new tape will have stripes located at the splice between the leader and the tape.
Media Recognition System compatible drives detecting these stripes treat all other DAT tapes
as write protected. All new cartridges factory shipped from HP have these stripes and will
carry the modified DDS logo shown in the student notes.

HP will be ready to implement the Media Recognition System feature in future drives. All
existing HP DDS drives will support the new tape as DDS compatible.

Teaching Tips

The objective for the remainder of this module is to provide an introduction to the backup
commands so that users can complete simple file backups to tape.

19-9 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-2. SLIDE: The tar Command

Student Notes

The tar command archives the tape file. It saves and restores files onto magnetic tape. Its
function is controlled by its first argument called the key argument.

Examples of valid key arguments are

c A new archive is created.

x Files are extracted from the archive.

t A table of contents of the archive is printed.

r Files are added to the end of the archive.

u Files are added to the archive if they are new or modified.

Modifiers can be added to these keys.

51434S G.02 19-10 (19-4)
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

v Echoes filenames to screen as they are archived or restored - verbose.

f file Designates the file where the archive will be written to. Note: The file does
not have to be a device file. You can create an archive file under your
directory on your disk. The default is /dev/rmt/0m.

19-11 (19-5) 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

51434S G.02 19-12
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-2. SLIDE: The tar Command Instructor Notes

Key Points

• The tar command is the oldest of the UNIX backup commands.

• It is also slow relative to other backup commands.

• Other operating environments can read tar formatted tape archives.

• The minus sign is not necessary in front of the key but is presented here for continuity.

• Point out that tcio should be used with cartridge but not with 9-track tape or DDS format
DAT tape. Then you must specify the f - option so that the tar output is sent to standard
output:

$ tar cvf - filename myfile | tcio -o /dev/rct/c4t1d0

Likewise when restoring from a cartridge tape tar archive, you must use tcio and pipe the
output to the tar xvf - command. In this case f - directs tar to read from standard
input:

$ tcio -i /dev/rct/c4t1d0 | tar xvf -

Example:

Create a tar archive on cartridge tape:

$ tar -cvf - filename myfile | tcio -o /dev/rct/c4t1d0

• You might want to warn your students of the different cartridge tape formats, and that they
are not interchangeable:

9144 Tape Drive 16-track tapes

9145 Tape Drive 32-track tapes (can read 16-track tapes)

19-13 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-3. SLIDE: The cpio Command

Student Notes

This command makes archive copies of files and directories in HP-UX. cpio stands for copy
input to output. cpio has two modes:

-o Make a backup. Read standard input and copy each file to standard output.

-i Restore a backup. Read standard input for the backup data and recreate it
on the disk.

When creating backups, the cpio -o command uses standard input as its source of file names
and standard output as the archive output. Since the defaults are standard input for a file list
and standard output for the archive, you have to specify the tape as a device, and you must
provide a list of files to store. This is usually accomplished by piping the output of find into
cpio.

When restoring an archive, the cpio -i command will read the archive from standard input
(the tape special device file) and restore the file contents to your disk. The file names created
will depend on whether the archive was created with relative or absolute pathnames.

51434S G.02 19-14 (19-6)
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

There are several options which we will use with the major options -o and -i.

-o -i Option Function

-c -c Writes header in ASCII format. (If used with -o, it must be used with -i.)

— -d Recreates directory structure as needed.

— -m Retains current modification date. (Important for version control.)

— -t Display table of contents of archive.

— -u Unconditionally restores. (If the file already exists, this option overwrites
the file.)

-v -v Displays a list of files copied.

-x -x Handles special (device) files.

Additional Examples

• Get table of contents:

$ cpio -ict < /dev/rmt/0m

• Restore a single file:

$ cpio -icudm "filename" < /dev/rmt/0m

• Restore all file names matching pattern:

$ cpio -icudm ’*filename*’ < /dev/rmt/0m

Notes on the find Command

The find command is commonly used with the backup commands to generate the list of file
names that will be backed up. Notice that find can generate a list of relative path names
(find .) or a list of absolute path names (find /home/user3). The method used to generate
the list of file names will define how the file names will be saved on the tape.

19-15 (19-7) 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

Syntax:

find path-list [expression]

The expression supports many keywords which can specify search criteria. For details, see the
manual page find(1).

51434S G.02 19-16 (19-8)
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-3. SLIDE: The cpio Command Instructor Notes

Key Points

• cpio -o creates an archive and sends its out to standard output.

• Use find to generate a list of file names for cpio -o.

• The output of cpio -o is commonly redirected to the special file that represents the tape
drive.

• cpio -i reads an archive in from standard input.

• The input is commonly redirected from the special file that represents the tape drive.

• Stress the use of the -d option when using cpio -i to support re-creation of directories.

• The * must be escaped to avoid premature interpretation by the shell.

• If the -m option is not specified, the timestamps will be the date and time the files were
restored from the tape.

• The find command can be used to generate a list of file names to backup.

• The find command can generate a relative list of file names or an absolute list of file names.

• The find command supports many expressions that can specify file characteristics to find.

WARNING: Anyone can restore a file from tape, if he or she has access to the
tape!

Using Cartridge Tapes

Using redirection causes excess wear and tear on a cartridge tape drive because the data
transfer rates between the host computer and the tape drive are not in sync. The tcio
command is a Hewlett-Packard specific utility that was written to buffer the data transfer
between cpio and the cartridge tape drive. Instead of redirecting the output of cpio straight
to the device, the output is piped through tcio to enable this streaming to take place.

The tcio command, like cpio, has two major options:

-o Send out to a device.

-i Read in from a device.

The -o and -i options to tcio correspond to those used with cpio.

19-17 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

Examples

• Create a cpio archive, write out to cartridge tape:

$ find . | cpio -ocv | tcio -o /dev/rct/c4t1d0

• Restore a cpio archive, read in from cartridge tape:

$ tcio -i /dev/rct/c4t1d0 | cpio -idmcv

Teaching Tips

It is helpful if the students type these commands in, but you will see a noticeable degradation
in the system if everyone is on the same system.

• Use find . to list everything under the current directory (.).

• Use find path1 path2 path3 ... to list everything under several directories.

• Use find /path1 /path2 /path3 ... to list the absolute pathnames associated with all files
and directories.

• Use find / to list the entire system.

Show examples of sending an archive to a regular file:

$ find . | cpio -ocv > dir.archive

This is useful when transferring an extensive directory structure through the network. You
create the archive on one end, transfer the archive, and unpack the archive at the other end of
the network.

The -p option of cpio is not discussed here. It can be used to copy a directory structure to
another directory. The cp command supports a recursive copy (-r) from one directory to
another, but cpio -p is generally faster.

$ cd
$ mkdir newtree
$ cd tree
$ find . | cpio -pdv $HOME/newtree

Remind the class how to use the find command. Walk them through the examples. It is
sometimes helpful if they type the commands in. It is also useful to do a man on the find
command at this point to show them all the various search criteria that are available, such as
searching for names, sizes, and so on.

51434S G.02 19-18
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-19 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-4. LAB: Offline File Storage

Directions

Complete the following exercises. Write the commands you would use to perform the following
tasks with a device file name of /dev/rmt/0m, or if there is a tape drive available, your
instructor may have you actually perform some of these commands. You may replace
/dev/rmt/0m in your commands syntax by a file name if you want to try the exercises
without accessing a tape drive.

$ tar cf /tmp/archive_file mydir

1. Using tar, create an archive of all files in your HOME directory that start with abc.

2. Obtain a table of contents listing of this tape archive.

3. Using find and cpio, make a backup of your whole directory structure from your HOME
directory on down.

4. Remove the file backup from your current directory. Then restore the file from tape using
the cpio command.

5. Create the directory $HOME/tree.cp. Look up the pass mode of the cpio command in
cpio(1). Using the cpio command in the pass mode, recreate the directory structure
$HOME/tree under the directory $HOME/tree.cp.

51434S G.02 19-20 (19-9)
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

19-4. LAB: Offline File Storage Instructor Notes
Time: 30 minutes

Lab Objective

To practice using the tar and cpio commands to produce backups of user files.

Notes to the Instructor

It is preferable to have access to a tape drive, but the lab can be performed by writing the
commands that would be appropriate to accomplish the tasks or by backing up to a file.

Provide the students with the device file name of the tape drive available on your system. If
you are using a Series 800, you might take the whole class to the computer room and let them
work on the lab in groups. If adequate tape drives are not available, you should specify which
exercises to just write the answers for, and which they should actually create tapes for.

Solutions

1. Using tar, create an archive of all files in your HOME directory that start with abc.

Answer:

$ tar cf /dev/rmt/0m abc*

2. Obtain a table of contents listing of this tape archive.

Answer:

$ tar tf /dev/rmt/0m

3. Using find and cpio, make a backup of your whole directory structure from your HOME
directory on down.

Answer:

$ cd
$ find . | cpio -ocv > /dev/rmt/0m

4. Remove the file backup from your current directory. Then restore the file from tape using
the cpio command.

Answer:

$ rm backup
$ cpio -iumc "backup" < /dev/rmt/0m
$ ll backup

19-21 51434S G.02
© 1999 Hewlett-Packard Company

Module 19

Offline File Storage

5. Create the directory $HOME/tree.cp. Look up the pass mode of the cpio command in
cpio(1). Using the cpio command in the pass mode, recreate the directory structure
$HOME/tree under the directory $HOME/tree.cp.

Answer:

$ mkdir $HOME/tree.cp
$ cd $HOME/tree
$ find . | cpio -pcduv $HOME/tree.cp

51434S G.02 19-22
© 1999 Hewlett-Packard Company

Appendix A — Commands Quick Reference Guide

Objectives

• To provide a list of frequently used commands along with an explanation of proper use.

A-1 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

51434S G.02 A-2
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

Overview of Appendix A

Abstract

This module provides a list of frequently used commands along with an explanation of proper
use.

A-3 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

A-1. Commands Quick Reference Guide

General Commands

exit terminate terminal session and log out

man cmd display manual page for cmd

laserROM initiate an HP LaserROM documentation reference session

absolute path complete designation of a file’s or directory’s location in the
UNIX hierarchy. ALWAYS starts with /

relative path designation of a file’s or directory’s location from your current
position in the UNIX hierarchy

. current directory

.. parent directory

pwd display current directory location in hierarchy

cd dir change to designated directory

cd change to HOME directory

mkdir dir create directory

rmdir dir remove directory

ls file or dir list the file or contents of directory

ls -a list all of the files, including hidden files

ls -F list files with format flag
/ — denotes directory
* — denotes executable
— denotes regular file
| — denotes FIFO file

ls -l display files in long format including permissions, ownership
and size
rwx rwx rwx
user group others
r — read access (mode value = 4)
w — write access (mode value = 2)
x — execute access (mode value = 1)

ll shorthand for ls -l

51434S G.02 A-4 (A-2)
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

lsf shorthand for ls -F

lsr shorthand for ls -R

lsx shorthand for ls -x

cat [file] display contents of file

more [file] display contents of file one screen at a time
space — next screen
Return — next line
q — quit more

tail - n file display the last n lines of a file

pr file format file for printing

lp file queue file to be printed

pr file | lp format and print file

lpstat -t display status of the printer(s) and print system

cancel jobnumber cancel print job

touch file create empty file or update timestamp on existing file

cp [-i] f1 f2 copy f1 to f2

cp [-i] f1 f2 ... dir copy file(s) to another directory

ln [-i] f1 f2 link f1 to f2
f1 and f2 access same data space on disk

ln -s dir1 dir2 symbolically link dir1 to dir2

mv [-i] f1 f2 rename f1 to f2

mv [-i] f1 f2 ... dir move file(s) to another directory

mv [-i] dir1 dir2 rename dir1 to dir2

rm f1 f2 ... remove files

rm -i f2 f2 ... remove files interactively

rm -r dir remove directory and EVERYTHING below directory

who display users logged in to your system

who am i display your user id and terminal location

whoami display your user id

A-5 (A-3) 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

news display system news (updates file $HOME/.news_time)

write username start interactive communication with username

mesg y allow your terminal to receive messages

mesg n disables receipt of messages by your terminal

mail username send mail message to username

mail read mail messages
? — mail help
d — delete previous message
s file — save message to file
q — quit mail

mailx username send mail message to username

mailx read mail messages

elm HP utility to send and read mail messages

echo string display string

banner string display string in large letters

date display the system time and date

id display current user id and group status

chmod mode file change permissions for file to mode
chmod +x file
chmod 777 file

umask mode remove mode from default permissions

chown username file change ownership of file to username
refer to /etc/passwd

chgrp groupname file change group access of file to groupname
refer to /etc/group

su username switch user id to username

newgrp groupname switch group id to groupname

passwd change the password for your account

vi filename Start a vi edit session on a file

51434S G.02 A-6 (A-4)
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

Filename Generation

* Match zero or more characters

? Match any single character

[amqp] Match specific characters, in this case a, m, q, p

[a-z] Match a range of characters, in this case a through z

[!a-z] Do NOT match a character in the range

File Input/Output Redirection: cmd <—> file

> stdout (1)
/

/
stdin (0) <-------- cmd

\
\
2 >stderr (2)

cmd < file get input for cmd from a file

cmd > file send stdout of cmd to a file

cmd 2> file.err send stderr of cmd to a file

cmd > file 2> file.err send stdout and stderr to files

cmd >&2 send stdout to stderr
Useful when generating error messages with echo
echo error message text >&2

Piping: cmd <—> cmd

cmd | cmd(FILTER) | cmd
\ / \ / \
\ / \ / \
stdout ----> stdin stdout ----> stdin stdout

cmd1 | cmd2 Take output of cmd1 and send it in to cmd2

A-7 (A-5) 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

Shell Variables

name=lisa assign a value to the variable name

export name transport the variable name to the environment

set display all variables defined

env display just the environment variables

echo enter a name prompt for user input

read name read the user input and assign to variable name

echo $name display the value ($) of the variable name

grep $name /etc/
passwd

search for value of name in /etc/passwd

cmd arg1 arg2 arg3 arg4 ... arg9 command line arguments
$0 $1 $2 $3 $4 ... $9 variables for command line args

shift n shift through command line arguments

echo $# display number of command line arguments

echo $* display all command line arguments

exit # terminate program and set return value to #

echo $? display return value of last command

Quoting

\ escapes special meaning of next character

’string’ escapes special meaning of all characters between quotes

"string" escapes special meaning of all characters between quotes
except $, \, and ‘ (grave accent)

Command Substitution

cmd1 ‘cmd2‘ Executes a command within a command line

banner $(date)
dirs=$(ls -F | grep /)
X=$(expr $X + 1)

51434S G.02 A-8 (A-6)
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

for name in $(who | cut -f1 -d" ")

Filters

cut -c list [file] cut and display specified columns

cut -f list -d char [file] cut and display specified fields
-d char — char represents the delimiting character between
fields

Example:
who | cut -c12-18
cut -f1,6 -d: /etc/passwd

grep [-inv] pattern [file] search for pattern in files
-i — ignore case of letters in pattern
-n — display line number where pattern found
-v — display lines that DO NOT contain pattern

Example:
grep user /etc/passwd
who | grep user3

more [file] display file one screen at a time

Example:
ps -ef | more
sort funfile | more

pr [- #] [-o #] [-h "title
info"] [file]

format output to screen
-# — provide # columns of output
-o# — offset output # columns from left margin
-h "text" — replaces default header with text

Example:
pr funfile | lp

sort [-ndt X] [+field] [file] -n — numeric sort
-d — dictionary sort
-t X — use X as the delimiter between fields
+field — field to base sort on (field numbers start with 0)

Example:
sort names
sort -nt: +2 /etc/passwd

tee [-a] file send output to stdout and file
-a — append output to file

Example:
ls | tee ls.out

A-9 (A-7) 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

wc [-cwl] [file] count characters, words or lines in a file
-c — count characters
-w — count words
-l — count lines

Multi-tasking

cmd > cmd.out & Run cmd in background
stdin is disconnected for jobs running in background

nohup cmd > cmd.out & Protect background cmd from log out

nice cmd Run cmd at a lower priority

jobs Display jobs running under current session

ps -ef Display all processes running on the system

echo$$ displays process id number of current shell process

Ctrl + z Suspend a foreground job

bg %# Put job number # in background

fg %# Put job number # in foreground

kill PID Terminate job with process identifier PID

kill -s SIGNAME PID Send signal SIGNAME to PID

trap cmd # Trap signal # and execute cmd, when signal occurs

stty -a Display terminal settings and key mappings

Ctrl + c Send interrupt to foreground process (signal 2)

Ctrl + \ Send quit to foreground process (signal 3)

Branching

if
cmd(s)

if RETURN VALUE of LAST cmd is true do cmds following then
if RETURN VALUE of LAST cmd is false do cmds following else

then
cmdtrue(s)

else
cmdfalse(s)

fi
case $vara in compare value of vara to patterns

pat1) cmdsa
execute commands that follow matching pattern

51434S G.02 A-10 (A-8)
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

;;
pat2) cmdsb

;;
*) cmds default

;;
esac

Looping

while
cmd(s)

while RETURN VALUE of LAST cmd is true do cmds following do

do
cmdtrue(s)

done
until

cmd(s)
until RETURN VALUE of LAST cmd is true do cmds following do

do
cmdfalse(s)

done
for vara in a b c d e assign vara to each item in list, do cmds
do

cmd(s)
done

Common POSIX Shell Environment Variables

The number of arguments supplied to a shell script.

* All of the arguments supplied to a shell script.

? The return code of the last executed command.

$ The PID of the last invoked shell.

COLUMNS Defines the width of the edit window for shell edit modes.

EDITOR Defines the edit mode to be used for command stack.
Associated with set -o vi.

ENV A script executed when a new Korn shell is invoked. Usually
set to .kshrc.

FCEDIT Defines the editor that will be invoked from command stack.

IFS Internal Field Separators, usually a space, tab and newline,
which separate commands and input for read.

HISTFILE The path of the file used to store the command history. The
default is .sh_history.

A-11 (A-9) 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

HISTSIZE The number of saved commands accessible by the shell. The
default is 128.

HOME Your login directory. The default for the cd command.

LINES Defines the column length of the edit window for printing lists.

PATH The directories to search to find executable programs.

PS1 The primary prompt. The default is $.

PS2 The secondary prompt. The default is >.

PWD The present working directory, set by the last cd command.

OLDPWD The previous working directory, set before the last cd
command. Accessed with cd -.

SHELL The path of the program for the current shell.

TERM The model of the terminal being used.

TMOUT If this variable has a value greater than 0, the shell will
terminate if this amount of time elapses before a command or
Return is entered.

TZ Defines the time zone to be used for displaying the time and
date.

VISUAL Defines the edit mode to be used for command stack.
Associated with set -o vi.

51434S G.02 A-12 (A-10)
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

A-1. Commands Quick Reference Guide Instructor Notes

A-13 51434S G.02
© 1999 Hewlett-Packard Company

Appendix A

Commands Quick Reference Guide

51434S G.02 A-14
© 1999 Hewlett-Packard Company

Solutions

2-21. LAB: General Orientation

1. Log in to the system using the user name and password that the instructor assigned to
you. Did you have any trouble?

Answer:

You may have had a problem if you made a mistake while typing in your user name or
password and tried correcting it with the Backspace key. Remember, the # key is used to
erase while logging in.

2. Now log out of the system using CTRL + d or exit. What did you notice, if anything? Log
back into the system.

Answer:

3. Which of the following commands are syntactically correct? Try typing them in to see what
the output or resulting error message would be.

$ echo
$ echo hello
$ echohello
$ echo HELLO WORLD
$ banner
$ banner hello
$ BANNER hello

Answer:

$ echo correct
$ echo hello correct
$ echohello incorrect
$ echo HELLO WORLD correct

The echo command will work with zero or more arguments. As the arguments are just
seen as strings of characters, and echoed back to the screen, it does not matter whether
they are uppercase or lowercase.

The shell needs white space (spaces or tabs) to separate commands from arguments. The
third command line doesn’t work because the shell is trying to execute a command called
echohello instead of executing the echo command and passing the argument hello to it.

$ banner incorrect
$ banner HELLO correct

Solutions-1 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

$ BANNER hello incorrect

The banner command requires at least one argument, unlike the echo command.
Therefore, the second entry is legal, because banner does not care if the string(s) to be
echoed are uppercase or lowercase. In the third instance the shell will look for a command
called BANNER, which is not a legal shell command. Remember, the shell is case sensitive,
and therefore banner banner is not the same as BANNER.

4. Assign a password to your account, or change the password, if one is already defined.
Remember the requirements for user passwords.

Answer:

$ passwd
Changing password for user3
Old password:
New password:
Re-enter new password:
$

5. Using variations of the who command or the whoami command, determine each of the
following with separate command lines. What commands did you use?

Who is on the system?

What terminal device are you logged in on?

Who does the system think you are?

Answer:

$ who
$ who am i
$ whoami

6. Can another user send messages to your terminal? What command did you use to find out?

Answer:

$ mesg

7. Determine if your partner is logged in, and then write a message to your partner’s
terminal. Establish a two-way conversation. Have fun.

What happens if you try to write to your partner and he or she is not logged in? What happens
if your partner has disabled messaging to his or her terminal?

Answer:

$ who Confirm that your partner is logged in.
$ write partner

message contents

message contents

51434S G.02 Solutions-2
© 1999 Hewlett-Packard Company

Solutions

Ctrl + d Conclude conversation.

If your partner is not logged on, you will get the message:

partner is not logged on.

If your partner has disabled messaging on his or her terminal, you will get the message :

Permission denied.

8. Read the system’s news. What command did you use? Can you display the news after you
have read a message?

Answer:

$ news
this is a news message
$ news
no new news
$ news -a
this is a news message

9. Execute the date command with the proper arguments so that its output is in a mm-dd-yy
format. Hint: look at the examples provided in the reference manual entry for date(1).

Answer:

$ date +%m-%d-%y

10. Using the UNIX Reference Manual, find the cp command. What is its function? What is
the minimum number of arguments that it requires?

Answer:

The cp command is used to copy one or more files. It requires at least two arguments: a
source file name and a destination file name.

11. Using the HP-UX Reference Manual, find the ls command. What is its function? What is
the minimum number of arguments that it requires?

Answer:

The ls command is used to display file names. It requires no arguments. Notice it has
many options available. Each option will extend the capability of the ls command, and
each option is identified as a single letter.

12. Issue the command ll /usr/bin. You will see several screens worth of data scroll by. Use
the up arrow key to move the cursor up to the top of the screen. Issue the clear command. Is
there any data remaining on the screen? Using the Shift key together with the down arrow
screen, scroll down. Do you see a partial listing of the ll command?

Solutions-3 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

ll /usr/bin should generate several screens worth of output. Issuing the clear
command after moving the cursor to the top of the current screen will clear only the last
screen of output. Scrolling down will display the previous screens.

13. Log out of your terminal session. Log back in with the CAPS lock on. How can this
situation be corrected without logging off and then back in again. (Hint: Look at the manual
page for the stty command.)

Answer:

Notice that if you hit the Caps Lock key, it has no effect. You must use the stty command
to disable the Caps lock:

$ STTY -LCASE

then hit the Caps Lock key on your keyboard. You will now be able to enter uppercase and
lowercase letters. This interface is provided for terminals that support only uppercase
input, so that they can interpret the commands properly that are normally defined as all
lowercase.

3-19. LAB: Using CDE

1. Using the File Manager, change to the class folder. Select the file cde_intro and copy
to a file called cde_intro2.

Answer:

1. Position the mouse cursor over the directory class and double click.

2. Position the cursor over the file cde_intro.

3. Choose Copy To from the Selected menu. A pop-up dialog box will appear prompting
you for the file. Type in cde_intro2 .

4. Press OK .

2. Move the cde_intro2 file to the cde_dir folder.

Answer:

1. Position the cursor over the file cde_intro2 .

2. Choose Move To from the Selected menu. A pop-up dialog box will appear prompting
you for the destination folder. Type in cde_dir.

3. Press OK .

51434S G.02 Solutions-4
© 1999 Hewlett-Packard Company

Solutions

3. Change to the cde_dir folder. Change the permissions on the file cde_intro2 to be read
only.

Answer:

1. Position the cursor over the folder cde_dir and double click to change to that directory.

2. Highlight the file cde_intro2.

3. A pop-up dialog menu will appear with the current ownership and permission
information, including the size and last modified information.

4. Click off the write permission.

5. Press OK .

4. Return to your home folder. Use File Manager to search for all the files that contain the
contents graphical environment. Use the search folder class.

Answer:

1. Click on File menu and choose Find....

2. Type graphical environment in the File Contents field.

3. Type class following your home directory in Search Folder: field.

4. Click Start

5. Use File Manager to search for all files that begin with data.

Answer:

1. Click on File menu and choose Find....

2. Type data* in the File or Folder Name: field.

3. Type class following your home directory in Search Folder: field.

4. Click Start

6. “Wildcard” searches can be performed using a question mark (?) to find any single character.
Use File Manager to search for all files that begin with data followed by a single character.

Answer:

1. Click on File menu and choose Find....

2. Type data? in the File or Folder Name: field.

3. Type class following your home directory in Search Folder: field.

4. Click Start

Solutions-5 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

7. Use File Manager to delete the file cde_intro2 from the cde_dir folder.

Answer:

1. Open the cde_dir folder.

2. Highlight the file cde_intro2.

3. Either choose the Put in Trash menu item from the Selected menu OR click and
hold mouse button 1 while dragging the icon down to the Trash Can. Once the file icon
is over the trash can release the mouse button.

8. Retrieve the cde_intro2 file from the trash.

Answer:

1. Double click on the Trash Can icon in the Front Panel to open Trash Can window.

2. Select the file cde_intro2 to restore.

3. Click on File to open the menu bar, then select Put Back. The file will return to its
original location.

9. Use File Manager to permanently delete the file cde_intro2 from the cde_dir folder.

Answer:

1. Open the cde_dir folder.

2. Highlight the file cde_intro2.

3. Either choose the Put in Trash menu item from the Selected menu OR click and
hold mouse button 1 while dragging the icon down to the Trash Can. Once the file icon
is over the trash can release the mouse button.

4. Double click on the Trash Can icon in the Front Panel to open Trash Can window.

5. Select the cde_intro2 file to restore.

6. Click on File to open the menu bar, then select Shred. The file will be permanently
removed.

10. Using the text editor open the file $HOME /class/cde_intro for editing. Copy the first
paragraph to be included at the end of the document.

Answer:

1. Position the mouse cursor to the beginning of the first paragraph. Press and hold mouse
button 1 while dragging the cursor across the area to be copied. Release the button.

2. Choose Copy from the Edit menu. A copy of the tet is stored on a clipboard.

3. Position the cursor to the end of the file.

51434S G.02 Solutions-6
© 1999 Hewlett-Packard Company

Solutions

4. Choose Paste from the Edit menu.

11. Change all except the first and third occurrences of CDE to Common Desktop Environment.

Answer:

1. Choose Find/Change ... from the Edit menu.

2. Type CDE in the Find field.

3. Type Common Desktop Environment in the Change field.

4. Press Return or click Find to begin the search.

5. If a match is found, the cursor will be positioned at the match. To activate the change,
click Change. If you do not want this instance changed, but want to continue searching,
click Find. To make the change globally, click Change All.

6. Click Close when done.

12. Correct all misspelled words in the file.

Answer:

1. Choose Check Spelling from the Edit menu. The Spell dialog box will be displayed.

2. Type the correct work into the Change To field.

3. Click Change to make a single change or Change All to make a global change. If you
simply want to locate the misspelled words and not make the changes, click Find.

4. Click Close when you are done.

13. Using the pop-up menu on the workspace switch, add another workspace and call it
CDE Class.

Answer:

1. Position the mouse cursor on a portion of the workspace switch that is not occupied by
other controls or workspace buttons and press mouse button 3. Choose Add Workspace

2. Position the mouse cursor on the new workspace called New and press mouse button
3. Choose Rename.

14. Using subpanel menus and pop-up menus, change the icon from the Text Editor to the
Terminal for the Personal Applications.

Answer:

1. Click on the up arrow above the Text Editor control on the Front Panel.

2. Position the cursor next to the Terminal icon and press mouse button 3.

3. Select Copy to Main Panel.

Solutions-7 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

4. Click on the down arrow above the Terminal control on the Front Panel to close the
Personal Applications subpanel menu.

15. From the Application Manager, use the Man Page Viewer to execute the man page for
ls.

Answer:

1. Open the Application Manager.

2. Double-click the Desktop_Apps group icon to display its contents.

3. Scroll down until you see the Man Page Viewer action icon.

4. Double-click the action icon to execute the application.

5. Type in ls in the dialog window to execute the action.

16. Choose a partner to send mail to. If you are on separate systems, you must know the
partner’s user name and host name of the system. This information is necessary to formulate
the user’s email address, which is in the format username@hostname.

Send your partner a message, and have them send you a message. (If you are having trouble
finding a mail partner, you can send the message to yourself).

Answer:

1. Choose New Message from the Compose Menu

2. Enter your mail partner’s email address in the To field and the subject in the
Subject field.

3. Once your have addressed the message, press Return to go to the text area and compose
the message.

4. Click the Send button.

17. Once your partner has sent you a message, reply to the message, and forward the original
message to a third partner.

Answer:

To send the reply:

1. Select the message for reply.

2. From the Compose menu choose Reply to Sender

3. Enter reply.

4. Click Send.

To forward the message:

51434S G.02 Solutions-8
© 1999 Hewlett-Packard Company

Solutions

1. Select the message to forward.

2. Choose Forward Message from the Compose menu.

3. Enter the mail address for the recipients in the To: field.

4. Include your own comments if desired.

5. Click Send.

18. Using the Text Editor, create a template of your status report that will be used to send
your monthly status report to your manager every month. Save the file as status. In the
Mailer, create a template called monthly containing this newly created file. Use this template
to send a status report to your mail partner.

Answer:

Once you have created the file using Text Editor, do the following to create the template:

1. In the Mailer, click Mail Options from the Mailbox menubar.

2. Click the Category button and choose Templates. The template dialog box will
appear.

3. Type the name monthly in Menu Label field.

4. Enter the name of the file status in the File/Path: field.

5. Click Add to include the template in the list of templates.

To use the template:

1. Choose New Message from the Compose menu.

2. Choose Templates from the Format menu.

3. Select template name to use from the list available.

19. Use the Calendar function to create five or six appointments in the current month. You can
have the appointment occur only once, or on a regular basis, such as every month.

Answer:

1. Open the calendar to display the current month. Click on the day you want to make
the appointment.

2. Choose Appointment... from the Edit menu to activate the Calendar Appointment
Editor.

3. Choose Start and End times.

4. Specify what the appointment is.

5. If you want this to occur on a regular basis, click More .

Solutions-9 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

20. Set up your calendar configuration so that you can browse your calendar and your mail
partner’s calendar by adding both your calendars to the Browse List.

Answer:

1. Choose Menu Editor from the Browse Menu.

2. Type calendar-name@hostname in the User Name field.

3. Click Add Name.

4. Click OK.

5. Repeat for your calendar and your mail partner’s.

21. You want to schedule an important meeting with your mail partner, but want to first check
their calendar for their availability. Browse the calendars so you can see both your mail
partner’s and your own calendar at the same time.

Answer:

1. Select Compare Calendars from the Browse menu.

2. Select the name of the calendars you want to view.

Calendars are overlayed on top of one another. Busy times are shaded, available times are
unshaded.

22. Grant your mail partner Insert and Change access to your calendar so that they will be
able to schedule appointments with you when necessary.

Answer:

1. Choose Options... from the File menu.

2. From the Category menu, choose Access List to display the Access List and
Permissions dialog box.

3. In the User Name field, type calendar-name@hostname for the calendar to which
you want to grant access.

4. Select View, Insert, and Change permissions.

5. Click Add to add the calendar to the Access List with the permissions you’ve chosen.

6. Click Apply.

7. Repeat for yourself so that you can overlay your calendar with your mail partner’s.

23. Schedule a meeting with your mail partner, and mail a reminder to your partner.

Answer:

1. Browse your menu together with your mail partner’s menu

51434S G.02 Solutions-10
© 1999 Hewlett-Packard Company

Solutions

2. Click on an unshaded area available to both your calendars

3. Click Schedule. The Calendar Group Appointment Editor will be displayed. A Y in the
Access column means that you have insert access to update their schedule. An N means
that you do not. If you do not have insert access, remind your mail partner to grant
you access.

4-14. LAB: The File System

1. What is the name of your HOME directory?

Answer:

Login and then issue the pwd command. It should display something similar to
/home/YOUR_USER_NAME .

2. From your HOME directory, find out the entire tree structure rooted at the subdirectory
called tree using the ls command. Draw a picture of it, marking directories by circling them.
Use a separate sheet of paper if you need more space.

Answer:

The exercise consists of a lot of ls (lsf) commands. Or, as an alternative, you could have
used the -R (recursive) option. The directory map should look like

tree/
|

| | | | | | |

cherry car.models/ collie probe dog.breeds/ poodle taurus
| |

-------------- -------------------
| | | | |

chrysler/ gm/ ford/ retriever/ shepherd/
| |

---------- -----------------------------
| | | | |

sedan/ sports/ golden labrador mixed
|

mustang

3. What is the full path name of the file labrador in the tree drawing from the previous
exercise? What is its relative path name from your HOME directory?

Answer:

Full path name /home/ YOUR_USER_NAME /tree/dog.breeds/retriever/
labrador

Solutions-11 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Relative path name tree/dog.breeds/retriever/labrador

4. From your HOME directory, change into the retriever directory. Using a relative path
name, change into the shepherd directory. Again using a relative path name, change into the
car.models directory. Finally, return to your HOME directory. What commands did you use?
How did you know if you arrived at each of your destinations?

Answer:

$ cd
$ cd tree/dog.breeds/retriever
$ cd ../shepherd
$ cd ../../car.models
$ cd

To verify each destination

$ pwd

5. Create a directory in your HOME directory called junk . Make that directory your current
working directory. What commands did you use? What is the full path name of this new
directory?

Answer:

$ cd
$ mkdir junk
$ cd junk
$ pwd
/home/YOUR_USER_NAME
/junk

6. From your HOME directory, make the following directories with a single command line:

junk/dirA/dir1
junk/dirA
junk/dirA/dir2
junk/dirA/dir1/dirc

Did you have any problems? If you encounter any problems, remove any directories created as
a result of your effort before trying again. What single command did you use?

Answer:

$ mkdir junk/dirA junk/dirA/dir1 junk/dirA/dir2 junk/dirA/dir1/dirc

or

$ mkdir -p junk/dirA/dir1/dirc junk/dirA/dir2

If you entered the directory names in the order in which they are presented in the exercise,
it will fail, because the command executes the arguments from left to right.

51434S G.02 Solutions-12
© 1999 Hewlett-Packard Company

Solutions

7. From your HOME directory, obtain a directory listing of the directory dirA under the junk
directory. Use both relative and absolute path names. What commands did you use?

Answer:

$ ls junk/dirA
$ ls /home/YOUR_USER_NAME/junk/dirA

8. From your HOME directory, using only the rmdir command, remove all of the
subdirectories under the directory junk. How could this be accomplished using a single rmdir
command?

Answer:

$ rmdir junk/dirA/dir1/dirc
$ rmdir junk/dirA/dir1
$ rmdir junk/dirA/dir2
$ rmdir junk/dirA

$ rmdir junk/dirA/dir1/dirc junk/dirA/dir1 junk/dirA/dir2 junk/dirA

9. Return to your HOME directory. With one command, display a long listing of the files cp
and vi (from the /usr/bin directory). Try to use both absolute and relative path names.

Answer:

$ cd

$ pwd

/home/YOUR_USER_NAME

$ ls -l /usr/bin/cp /usr/bin/vi Absolute path names
$ ls -l ../../usr/bin/cp ../../usr/bin/vi

Relative path names

5-16. LAB: File and Directory Manipulation

1. In your HOME directory, use the cat command to display the contents of the file funfile
. What do you notice? What alternate command provides scrolling control when displaying the
contents of a file?

Answer:

$ cat funfile

The file is too long for one screen. The more command provides screen scrolling control.
For example:

Solutions-13 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

$ more funfile

2. Use the more command to display the contents of the directory called tree. What do you
notice? What command do you use to see the contents of a directory?

Answer:

$ more tree
****** tree is a directory ******

more knows that tree is a special directory file, not a normal text file, so its contents
cannot be displayed to the screen in a readable format. You use the ls command to display
the contents of a directory. For example:

$ ls tree

3. Use the more command to display the file /usr/bin/ls . What do you notice? Display the
contents of /usr/bin/ls with the cat command. What happens?

Answer:

$ more /usr/bin/ls
****** /usr/bin/ls: Not a text file ******

more knows that /usr/bin/ls is a compiled program, not a normal text file, so its
contents cannot be displayed to the screen in a readable format.

$ cat /usr/bin/ls

This command produces what appears to be garbage. In fact, this is what happens when
you use the cat command to display a binary (compiled) program. Your terminal settings
may have been changed by this. To reset your HP terminal:

• Hit the Break key.

• Simultaneously press Shift + Ctrl + Reset .

• Press Return to get the shell prompt.

• At the prompt, type the commands:

$ tset -e -k -e: sets erase to ^H, -k: sets kill to ^X
$ tabs

4. Go to your HOME directory. Copy the file called names to a file called names.cp . List the
contents of both files to verify that their contents are the same.

51434S G.02 Solutions-14
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ cp names names.cp
$ cat names names.cp

5. If the file names is modified, will this affect the file names.cp? Modify the file names by
copying the file funfile to the file names. What happened to the file names and the file
names.cp?

Answer:

The files names and names.cp are individual entities. The content of names was
overwritten with the content of the file funfile. The file names.cp is not affected.

$ cp funfile names
$ more names names.cp

names now contains the same contents as funfile, while names.cp still contains the
content that was in names.

6. How do you restore the file names ? Issue the command to restore names.

Answer:

To restore the contents of the file names, copy or move from the file names.cp.

$ cp names.cp names

or

$ mv names.cp names

7. Make another copy of the file names called names.new. Change the name of names.new to
names.orig.

Answer:

$ cp names names.new
$ mv names.new names.orig

8. How do you create two files (called names.2nd and names.3rd) that reference the
contents of the file names?

Answer:

$ ln names names.2nd
$ ln names names.3rd or $ln names.2nd names.3rd

9. If you modify the contents of names, will the contents of names.2nd and names.3rd be
affected? Copy the file funfile to the file names and do a long listing of all of your names
files. Is names.orig affected? names.2nd? names.3rd?

Solutions-15 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

The files names, names.2nd, and names.3rd are all referencing the same data on the
disk. If one is modified, all three will be modified. From the long listing, you see that their
link count has gone up to three, since there are now three names referencing the same
data. names.orig is still an individual entity, as seen by its link count still being one.

$ cp funfile names
$ ls -l names.orig names names.2nd names.3rd
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 names.orig
-rw-r--r-- 3 user3 class 125 Jul 24 11:08 names
-rw-r--r-- 3 user3 class 125 Jul 24 11:10 names.2nd
-rw-r--r-- 3 user3 class 125 Jul 24 11:12 names.3rd

If you do an ls -i of the names files, their inode numbers will be displayed. The inode
stores each file’s characteristics, such as permissions, number of links, and ownership.
Files that are linked together share the same inode.

$ ls -i names.orig names names.2nd names.3rd
102 names.orig
322 names
322 names.2nd
322 names.3rd

10. Remove the file names. What happens to names.2nd and names.3rd?

Answer:

$ rm names

The files names.2nd and names.3rd are unaffected except that their link count will be
reduced by one, which can be seen with the ls -l command:

$ ls -l names.orig names names.2nd names.3rd
names not found
-rw-r--r-- 1 user3 class 37 Jul 24 11:06 names.orig
-rw-r--r-- 2 user3 class 125 Jul 24 11:10 names.2nd
-rw-r--r-- 2 user3 class 125 Jul 24 11:12 names.3rd

11. Use the interactive option for rm to remove names.2nd and names.3rd.

Answer:

$ rm -i names.2nd names.3rd
names.2nd? y
names.3rd? y
$

12. Copy the file names.orig back to names.

51434S G.02 Solutions-16
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ cp names.orig names

1. Make a directory called fruit under your HOME directory. With one command, move the
following files, which are also under your HOME directory to the fruit directory:

lime
grape
orange

Answer:

$ cd
$ mkdir fruit
$ mv lime grape orange fruit

2. Move the following files, also found under your HOME directory, to the fruit directory.
Their destination names will be as specified below:

Source Destination

apple APPLE
peach Peach

Answer:

$ cd
$ mv apple fruit/APPLE
$ mv peach fruit/Peach
$

3. Look at the tree directory structure in your HOME directory. It requires a little
organization.

Move the files collie and poodle , so that they are under the dog.breeds directory.
Move the file probe under the sports directory.
Move the file taurus under the directory sedan.
Create a new directory under tree called horses.
Copy the mustang file to the horses directory you just created.
Move the file cherry to the fruit directory you created in the previous exercise.

HINT: You could make these changes from any directory, but what directory do you think you
should be in?

Answer:

$ cd
$ cd tree

Solutions-17 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

$ pwd
/home/YOUR_USER_NAME/tree
$ mv collie poodle dog.breeds
$ mv probe car.models/ford/sports
$ mv taurus car.models/ford/sedan
$ mkdir horses
$ cp car.models/ford/sports/mustang horses
$ mv cherry ../fruit

4. Move the fruit directory from your HOME directory to the tree directory.

Answer:

$ cd
$ mv fruit tree

A directory called fruit is created under tree.

5. Make the fruit directory your current working directory. Move the files banana and
lemon to the fruit directory. HINT: Remember dot dot (..) represents the parent directory
and dot (.) represents your current directory.

Answer:

$ cd
$ cd tree/fruit
$ mv ../../banana ../../lemon .

1. Under your HOME directory, you will find a directory scavenger and a file
scaveng.README providing the first clue for a scavenger hunt. Underneath the scavenger

directory are north, south, east, and west subdirectories. Under these are 1_mile, 2_mile,
3_mile subdirectories. Clues are available under each of these directories to the secret code
word. For example, if the clue is "go east 3 miles", you go to the east/3-mile subdirectory where
you will find a file called README. This file will give you the next clue. You continue through
the clues until you obtain the secret code word. Good luck!

Answer:

$ cd
$ cd scavenger
$ more scaveng.README
north, 1 mile
$ cd north/1_mile
$ more README
east, 2 miles
$ cd ../../east/2_mile
$ more README
You are on the right track!
south, 3 miles
$ cd ../../south/3_mile

51434S G.02 Solutions-18
© 1999 Hewlett-Packard Company

Solutions

$ more README
You have to keep going
south, 2 miles
$ cd ../2_mile
$ more README
You are almost there
west 1 mile
$ cd ../../west/1_mile
$ more README
CONGRATS
You have found the end of the trail.
The code word is ________

1. List the current status of the printers in the lp spooler system and find the name of the
default printer.

Answer:

$ lpstat -t
scheduler is running
system default destination: rw
device for rw: /dev/rw
rw accepting requests since Jul 1 10:56:20 1994
printer rw is idle. enabled since Jul 4 14:32:52 1994
fence priority : 0

2. Send the file named funfile to the line printer. Make a note of the request ID that is
displayed on your terminal.

Answer:

$ lp funfile
request id is rw-58 (1 file)

3. Verify that your requests are queued to be printed.

Answer:

$ lpstat
rw-58 ralph 3967 Jul 4 16:57:25 1994
rw-59 ralph 1331 Jul 6 13:01:19 1994

4. How can you tell what files other users are printing? Try it.

Answer:

You can tell by using lpstat -t.

Solutions-19 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

5. Use the cancel command to remove your requests from the line printer system queue.
Confirm that they were canceled.

Answer:

$ cancel rw-58 rw-59
request "rw-58" canceled
request "rw-59" canceled
$ lpstat
$

6-14. LAB: File Permissions and Access

1. Look under your HOME directory for a file called mod5.1. Who has what access to this
file? Can you display the contents of mod5.1?

Answer:

$ ls -l
-rw-r--r-- 1 YOUR_LOGNAME class 20 Jan 24 13:13 mod5.1

YOUR_LOGNAME has read and write access.
Members of group class have read access.
All other users have read.

$ cat mod5.1

This is successful since you have read permission.

2. Modify the permissions on mod5.1 so that they are: -w-------. Can you display the
contents of mod5.1?

Answer:

$ chmod a-rwx,u=w mod5.1
$ cat mod5.1

You no longer have read access to the file mod5.1, so the cat will fail.

3. Modify the permissions on mod5.1 so that they are: rw-------. Can you display the
contents of mod5.1? Can your partner display the contents of your mod5.1?

Answer:

$ chmod u=rw mod5.1

You can display the contents of mod5.1.
Your partner cannot display the contents of mod5.1.

4. How can you modify the permissions on mod5.1 so that your partner can read the file?

51434S G.02 Solutions-20
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ chmod g+r mod5.1

The file allows read access to all members of the group class, and your partner is also a
member of the group class. Therefore, you provide the group read access to the file.

5. Make a copy of mod5.1 and call it mod5.2. Remove the write permissions from mod5.2.
Can you delete this file? How do you protect this file from being deleted?

Answer:

$ cp mod5.1 mod5.2
$ chmod -w mod5.2
$ rm mod5.2
mod5.2: 444 mode ? (y/n)

mod5.2 is removed!
You would have to remove the write permissions from your HOME directory as well.
If you remove write permissions from your HOME directory and then try to remove the

file, you will get a message "permission denied".

6. Who is the owner of the file root_file in your HOME directory? To what group does it
belong? Who is allowed to change the ownership or group? What access do you have to this file?

Answer:

The owner is root. The group is other. Only the super-user can change the ownership or
group. You have read access only.

7. If you wanted to make changes to the file root_file, how would you go about it?

Answer:

Since you have read permission, you can make a copy of root_file . You will own the
copy, and can therefore, modify the copy’s contents.

$ cp root_file my_root_file
$ ls -l my_root_file
-rw-r--r-- 1 user3 class 3967 Jan 24 13:13 my_root_file

8. Run the command mesg y. Now, type tty and note the device file associated with your
terminal. What are the permissions on this file? Who owns this file? Run the command mesg
n . What are the permissions now? What is the mesg command effectively doing?

Answer:

$ who am i
user3 tty03 Jul 9 11:10
$ mesg y
$ ll /dev/tty03
crw--w--w- 1 user3 class 0 Jan 24 13:13 /dev/tty03

Solutions-21 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

$ mesg n
crw------- 1 user3 class 0 Jan 24 13:13 /dev/tty03

You own the device file associated with your terminal connection. The mesg command is
essentially running a chmod on your terminal device file to grant or deny write access of
others to your terminal.

1. Under your HOME directory, create a directory called mod5.dir. Copy the file mod5.1 to
mod5.dir. List the contents of the new directory. What are the permissions on the mod5.dir?
(Hint: ls -ld mod5.dir)

Answer:

$ cd
$ mkdir mod5.dir
$ cp mod5.1 mod5.dir
$ ls mod5.dir
mod5.1
$ ls -ld mod5.dir
drwxrwxrwx 3 YOUR_LOGNAME class 1024 Jul 24 13:13 mod5.dir
$

2. Modify the permissions on mod5.dir to be rw-------. Can you change directory to
mod5.dir? Can you display the contents of mod5.dir ? Can you access the contents of the
file mod5.1 under the mod5.dir?

Answer:

$ chmod a-rwx,u+rw mod5.dir
$ cd mod5.dir
sh: mod5.dir: Permission denied.
$ ls mod5.dir
mod5.1
$ ls -l mod5.dir/
mod5.dir/mod5.1 not found
total 0
$ cat mod5.dir/mod5.1
cat: cannot open mod5.dir/mod5.1: Permission denied
$

3. Modify the permissions on mod5.dir to be -wx------. Can you display the contents of
mod5.dir? Can you display the contents of the file mod5.1 under the mod5.dir? Can you
change directory to mod5.dir?

Answer:

$ chmod u+wx mod5.dir

$ ls mod5.dir

mod5.dir unreadable

51434S G.02 Solutions-22
© 1999 Hewlett-Packard Company

Solutions

$ cat mod5.dir/mod5.1

This is the contents of mod5.1
$ cd mod5.dir cd is successful
$ pwd
/home/user3/mod5.dir
$ ls
. unreadable

4. Can other users copy files into your HOME directory? How do you display the permissions
for your HOME directory?

Answer:

$ cd
$ ls -ld .
drwxr-xr-x 3 YOUR_USER_NAME class 1024 Jul 24 13:13 .

Other users can display the contents of your HOME directory, and change to your HOME
directory, but they cannot modify the contents of your HOME directory. Therefore, other
users cannot copy files to your HOME directory.

5. From your HOME directory, copy the file mod5.1 to the directory /usr/bin. Did you have
any problems? What are the permissions of /usr/bin ?

Answer:

$ ls -ld /usr/bin
dr-xr-xr-x 3 bin other 1024 Jul 24 13:13 /usr/bin

Write access for others is not set on /usr/bin, so your copy should fail.

6. Can you copy the file /usr/bin/date to your HOME directory?

Answer:

$ cd
$ ls -l /usr/bin/date
-r-xr-xr-x 1 bin bin 16384 Nov 15 13:13 /usr/bin/date
$ cp /usr/bin/date .

Since /usr/bin/date has read permission for others, you are able to make a copy of the
file.

1. Look under your HOME directory, you should find a file that has the same name as your
login name. What access do you have to this file? What group does your partner belong to?
What access does your partner have to this file?

Solutions-23 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ ls -l YOUR_LOGNAME
-rw------- 1 YOUR_LOGNAME class 3967 Jan 24 13:13 YOUR_LOGNAME

You have read and write access.
Your partner is also in the group class.
Your partner has no access to this file.

2. Still working with the file YOUR_LOGNAME, change the ownership of this file to your
partner. Can you access the file now? Try to make a copy of the file. Can you get ownership
back?

Answer:

$ ls -l YOUR_LOGNAME
-rw------- 1 YOUR_LOGNAME class 3967 Jan 24 13:13 YOUR_LOGNAME
You initially have read and write access.
$ chown partner_login_name YOUR_LOGNAME
$ ls -l YOUR_LOGNAME
-rw------- 1 partner class 3967 Jan 24 13:13 YOUR_LOGNAME

• You no longer have access to this file.

• You need a minimum of read access to copy a file, so you cannot make a copy with the
current permissions.

• You are a member of the group class, but the group permissions are disabled.

The only way you can get ownership back, is to have your partner chown the file back to
you. (Have you been nice to your partner?) You could also su to your partner’s account (if
he or she will share his or her password) and chown the file yourself.

3. Make a copy of mod5.1 and call it mod5.3. Remove all of the permissions from the file
mod5.3. Can you change the ownership of this file to your partner?

Answer:

$ cp mod5.1 mod5.3
$ chmod a-rwx mod5.3
$ chown partner mod5.3

You can change the ownership because the permissions are associated with your access to
the contents of the file, not the ownership and group identifiers assigned to the file.

4. Make a copy of mod5.1 and call it mod5.4. Modify the permissions so that they are
rw-r-----. Change the group of the file to class2. Change the owner of the file to root. Can

you display the contents of mod5.4?

Answer:

$ cp mod5.1 mod5.4
$ chmod a-rwx,u+w,ug+r mod5.4

51434S G.02 Solutions-24
© 1999 Hewlett-Packard Company

Solutions

$ chgrp class2 mod5.4
$ chown root mod5.4
$ cat mod5.4cat: cannot open mod5.4: Permission denied

Since you are not currently a member of the group class2, you cannot access the file
mod5.4.

5. Change your group status to class2. Can you display the contents of mod5.4? Return
your group status to your original group id. (Hint: use the id command to see your user and
group identifications.)

Answer:

$ newgrp class2
$ cat mod5.4
This is the contents of mod5.1
$ newgrp

Once you change your effective group to class2, you can then access the file mod5.4.

1. What are the permissions when you create a new file? Hint: Create a new file by using the
editor, and copy or touch an existing file. Examine the permissions on the new files. How
about a new directory? What is your current file creation mask?

Answer:

$ touch new_file
$ ls -l new_file
-rw-rw-rw- 1 YOUR_USER_NAME class 0 Jul 24 13:13 new_file
$ mkdir new_dir
$ ls -ld new_dir
drw-r---r-- 3 YOUR_USER_NAME class 1024 Jul 24 13:13 new_dir
$ umask
000

2. How would you modify the default creation permissions to deny write access to others in
your group, and others on the system? Test this by creating another new file and another new
directory.

Answer:

$ umask a-rwx,u=rw,g=r,o=r
$ touch new_file2
$ ls -l new_file2
-rw-r--r-- 1 YOUR_USER_NAME class 0 Jul 24 13:13 new_file2
$ mkdir new_dir2

Solutions-25 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

$ ls -ld new_dir2
drw-r--r-- 3 YOUR_USER_NAME class 1024 Jul 24 13:13 new_dir2

7-21. LAB: Exercises

1. Create an alias called h that executes the history command.

Answer:

$ alias h=history

2. Check the commands in the .shrc file in your home directory. Add your h alias to the list.

Answer:

vi .kshrc

add the line

alias h=history

3. On the command line, set up an alias called go to change your working directory to tree
and do an ls -F. Now type in the string go on the command line. What happens? Type pwd
and see where you are. Now change back to your home directory. (Hint: Multiple commands
can be entered on one line when separated with a semicolon.)

Answer:

$ alias go="cd /home/user3/tree; ls -F"
$ go
car.models/ dog.breeds/ fruit/ horses/
$ pwd
/home/user5/tree
$ cd

4. Log out and then log back in to test your aliases. Why did you have to log out?

Answer:

You had to reread the .profile and .kshrc files. The easiest way is to log out and then
log back in.

5. Make sure you are in your home directory. What happens when you type more f Esc
Esc ? Using this command line, how can you make it display funfile?

Answer:

Typing the command line given puts more f on the command line, and the shell beeps
because there is more than one file starting with f. If you type an u and then Esc Esc
again, the file name funfile will be completed for you.

51434S G.02 Solutions-26
© 1999 Hewlett-Packard Company

Solutions

6. From your HOME directory copy the file frankenstein to the directory
tree/car.models/ford/sports . Use file name completion to enter frankenstein and

any other directory or file name in the directory path.

Answer:

$ cp frESC ESC tree/ca ESC ESC ford/sports
$ cp frankenstein tree/car.models/ford/sports

7. Type this incorrect command without pressing Return :

cd /user/spol/ko/interface

Using command line editing, correct the line to read:

cd /usr/spool/lp/interface

(Do not retype the command).

Answer:

$ cd /user/spol/ko/interfaceEsc

Using Backspace and the space bar to position the cursor, use vi commands x, a, cw to make
the appropriate changes. Remember to use Esc whenever you need to leave input mode.

8. Execute the command ls -F.

Recall this command line and change the ls -F to ls -l using whatever vi editing
commands are necessary. Re-execute the command.

Answer:

$ ls -F
$ Esc k

Now use the r command to change ls -F to ls -l and press Return .

9. Using the command stack, recall the previous copy command, and change frankenstein
to funfile.

Answer:

ESC k

$ cp frankenstein tree/car.models/ford/sports
l l l or w

c w funfile Return

$ cp funfile tree/car.models/ford/sports/

10. Recall the previous copy command, and modify it so that you display the contents of the
sports directory.

Solutions-27 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

ESC k

$ cp funfile tree/car.models/ford/sports

c w ls ESC change word cp to ls
w

d w to delete funfile
Return

$ ls tree/car.models/ford/sports

11. Recall the previous list command, and modify it so that you change directory to the sedan
directory (HINT: the path will be tree/car.models/ford/sedan). Use the pwd command to
confirm your directory change.

Answer:

ESC k

$ ls tree/car.models/ford/sports

c w cd ESC change word ls to cd
w w repeat until cursor is under sports
c w sedan ESC change word ls to cd
Return

$ cd tree/car.models/ford/sedan
$ pwd
tree/car.models/ford/sedan

12. Change back to your HOME directory, and then use the history command or your h alias
to recall your command stack, then use the r command to re-execute the command to return
you to the sedan directory. Also use the r command to display your present working directory.

Answer:

$ cd
$ history
$ r ’cd t’ or r cmd_number
$ r p

8-12. LAB: The Shell Environment

1. Using command substitution, assign today’s date to the variable today.

Answer:

$ date
Fri Apr 2 11:57:21 EST 1993
$ today=$(date)
echo $today
Fri Apr 2 11:57:21 EST 1993

2. What is an easy way to list the contents of another user’s home directory?

51434S G.02 Solutions-28
© 1999 Hewlett-Packard Company

Solutions

Answer:

If the other user’s name was mike, you could get a listing of his home directory using:

$ ls ~mike

3. Set a shell variable named MYNAME equal to your first name. How do you see the
contents of that variable?

Answer:

$ MYNAME=user3
$ echo $MYNAME
user3

4. Now start a child shell by typing sh. Look at the contents of MYNAME now. What
happened? Exit the child shell (use Ctrl + d or exit). Does the parent still know about the
variable MYNAME?

Answer:

The MYNAME variable was set in the parent shell’s local data area. When the child shell
was spawned, it inherited only the parent’s environment variables.

When the child shell is dead, the parent wakes up and remembers all that it knew. You can
test this by typing

$ echo $MYNAME

5. Enter the command in the parent shell to enable the child to see the contents of
MYNAME. How can you see all variables that the child shell will inherit?

Answer:

$ export MYNAME

$ env

6. Start another child shell. Look at the variable MYNAME. Now set the variable MYNAME
equal to your partner’s name. Is MYNAME now a local or environment variable? List the
environment variables. What is MYNAME set to?

Answer:

$ MYNAME=user2

$ env

MYNAME is still an environment variable in the child shell.

7. Now remove the variable MYNAME from the child shell. Does MYNAME exist either
locally or within the environment of the child shell? Why or why not?

Solutions-29 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ unset MYNAME

MYNAME will no longer exist in the child shell because the unset command removes it.

8. Kill the child shell and return to your LOGIN shell. Does MYNAME still exist? Why or
why not? What commands did you use to verify this?

Answer:

$ Ctrl + c

Return

The removal of the variable in the child shell does not have an effect on the variable in the
parent shell. Therefore, MYNAME still exists in the environment of the parent shell. To
verify this, you can display the environment variables in the parent shell.

$ env

9. Modify your shell prompt so that it displays: good_day$. What happens to your prompt
when you log out and log back in?

Answer:

$ PS1=good_day$
good_day$

When you log out and log back in the prompt reverts to the default.

10. Modify your shell prompt so that it displays your user identification name. For example if
you are logged in as user3 the prompt will display: user3$. (Hint: Is there an environment
variable that stores your login identifier?)

Answer:

$ PS1=$LOGNAME or $ PS1=$(whoami)
user3 user3

11. Set a variable dir equal to /usr/bin/ls. How can you use the value of this variable to
execute the ls command? Will the variable dir accept directory or file name arguments?

Answer:

$ dir=/usr/bin/ls
$ $dir

$dir will be substituted with /usr/bin/ls , and then execute the command
/usr/bin/ls . Yes this will accept command line arguments. Try by executing:

51434S G.02 Solutions-30
© 1999 Hewlett-Packard Company

Solutions

$ $dir $HOME /tmp /var

9-8. LAB: File Name Generation

1. Change to your HOME directory, then type the command ls * and explain the output.

Answer:

Remember that the ls command can act two different ways. If given a file name as an
argument, ls displays the file’s name. If given a directory name, ls lists the contents of
that directory. Thus when given a list of file and directory names, such as that generated
by the asterisk (*), ls will list the names of all files under the current directory and list
the contents of all immediate subdirectories.

2. If the command echo ???XX produces the output ???XX, what does it mean?

Answer:

There are no files in the current working directory that match the pattern ???XX.
Therefore the file name generation characters are taken literally, and the echo command
echoes them out.

3. From your HOME directory, what command would you issue to do the following?

a. Display all file names that end in .c.

b. Display just the .c files associated with mod.

c. Display all file names that contain file.

d. Display all file names that end in .c, .f or .p.

Answer:

a. ls *.c
libtest.c math.c mod1.c mod2.c mod3.c myprog.c part1.c part2.c
xdbtest.c

b. ls mod*.c or ls mod[0-9].c or ls mod?.c
mod1.c mod2.c mod3.c

c. ls *file*
file.1 file.2 herfile myfile my_root_file ourfile root_file
yourfile filegen/: Abc Abcd abc abcdemf e35f efg fe3f fe3fg

d. ls *.[cfp]
libtest.c math.c math.f math.p mod1.c mod2.c mod3.c myprog.c
myprog.f myprog.p xdbtest.c part1.c part2.c

Solutions-31 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

4. Create a directory called c_source. Move all of your .c files to the c_source directory
using the file name generating characters.

Answer:

$ mkdir c_source
$ mv *.c c_source

5. Create a directory called dir_1 under your HOME directory. What happens when you
issue the command: cd dir* ?

Answer:

$ cd dir* Expands to: cd dir_1

You will effectively change to the dir_1 directory.

6. Go back to your HOME directory and create directories called dir_2, dir_3 and dir_4.
Now try cd dir* again and explain what happens.

Answer:

$ cd
$ mkdir dir_2 dir_3 dir_4

$ cd dir*

Expands to: cd dir_1 dir_2 dir_3 dir_4

This is not a legal usage for the cd command and will fail.

7. Using the touch command (syntax: touch filename), create files so that the following will
be true:

The pattern ?XX will match exactly ONE file name.
The pattern ?.XX will match exactly TWO file names.
The pattern *XX will match exactly THREE file names.
The pattern XX.?? will match exactly ONE file name.
The pattern XX.* will match exactly TWO file names.

Use the echo command to check your results.

Answer:

$ touch AXX
$ touch A.XX
$ touch B.XX
$ touch XX.AB
$ touch XX.A
$ echo ?XX
AXX
$ echo ?.XX
A.XX B.XX
$ echo *XX
A.XX AXX B.XX

51434S G.02 Solutions-32
© 1999 Hewlett-Packard Company

Solutions

$ echo XX.??
XX.AB
$ echo XX.*
XX.A XX.AB

8. Use a single rm command to remove all of the files created in the previous exercise. (Hint:
you might want to use the rm -i command.)

Answer:

$ rm *XX*

10-7. LAB: Quoting

1. Type an echo command that will produce the following output:

$1 million dollars ... and that’s a bargain !

Answer:

$ echo "\$1 million dollars ... and that’s a bargain !"
$ echo ’$1 million dollars ... and that’\’s a bargain !

There are several options to echo this string out, since the echo command uses blank
spaces as delimiters between the strings. You really only need to escape the $ and the ’.

2. Assign the following string to a variable called long_string:

$1 million dollars ... and that’s a bargain !

Display the value of long_string to confirm the successful assignment.

Answer:

$ long_string="\$1 million dollars ... and that’s a bargain !"
$ echo "$long_string"

This has fewer options because you must quote all of the blank spaces for the variable
assignment to succeed. Note what happens when you don’t quote $long_string.

3. When you execute the following command, what happens?

$ banner good day
$ banner ’good day’

How many arguments are on each of the above command lines?

Answer:

$ banner good day 2 command line arguments

Solutions-33 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

GOOD
DAY
$ banner "good day" 1 command line argument
GOOD DAY

The quotation marks escape the space as an argument delimiter, so the second command
will see only one command line argument.

4. Assign to your prompt the string: Way to go YOUR_USER_NAME $

Answer:

$ PS1="Way to go $LOGNAME $ "
Way to go user3 $

5. How would you display the following message?

Exercises #1, #2, and #3 are now complete.

Answer:

echo Exercises \#1, \#2, and \#3 are now complete.

The # symbol precedes comments, and must therefore be escaped.

6. Assuming that the variable abc is not defined, what happens when you enter the following?

echo ’$abc’

What happens when you enter the following?

echo "$abc"

Answer:

$ echo ’$abc’
$abc

The single quotes (’) do not allow variable substitution to occur, so the literal string $abc
will be echoed back to your terminal.

$ echo "$abc"

sh: abc: parameter not set.

When the $ appears within the double quotes ("), the shell will try to de-reference the
variable. Since the variable does not hold a value, the shell will generate an error message
when it tries to evaluate the variable value.

Note: The POSIX/Korn Shell will generate error messages when referencing a variable that
has not been defined and the set -u option is set. You can enter set -o to view the
options configured for your shell. If -u is not set, no error will be generated, and the
variable value will be substituted with NULL. You can disable this option with: set +u.
See the man page sh-posix(1) for more details.

51434S G.02 Solutions-34
© 1999 Hewlett-Packard Company

Solutions

7. Use the touch command to create a file called: White Space
Use the touch command to create a file called: (4 blanks)
Use the touch command to create a file called: (3 blanks)
How do these files appear when you do a file listing? Can you do a file listing such that you can

determine how many blanks are in the file name with 4 blanks or the file name with 3 blanks?

Answer:

$ touch "White Space"
$ touch " "
$ touch " "

When you do an ls command, the file names with the leading blanks will appear at the
beginning of your directory listing. One way to determine how many blanks are in the file
names is to make the files executable and then execute an ls -F and observe how many
blanks occur before the asterisk, you can also try an ls -b command.

Notice that with the quoting mechanism you can create a file name that contains any
special character. You will always have to use the escape characters though whenever you
want to reference the file name on your command line.

11-11. LAB: Input and Output Redirection

1. Redirect the output of the date command to a file called date.out in your HOME
directory.

Answer:

$ cd
$ date > date.out

2. Append the output of the ls command to the file date.out. Look at the contents of
date.out. What do you notice?

Answer:

$ ls >> date.out
$ more date.out

The output of the ls command is a list of files in the current directory. Each file name is
on a separate line. The shell knows to put the output of the ls command in columns only
when the output goes to the terminal. You can override this with the -C option to ls.

3. Using input redirection, mail the file date.out to your mail partner.

Answer:

$ mail mail_partner_login_name < date.out

4. Create two very short files called f1 and f2 using cat and output redirection.

Solutions-35 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ cat > f1
This is the file f1
Ctrl + d

$ cat > f2
This is the file f2
Ctrl + d

5. Use the cat command to view their contents. Use the cat command to create a new file
called f.join that contains the contents of both f1 and f2. Do you see any output on the
screen?

Answer:

$ cat f1 f2

This is the file f1
This is the file f2
$ cat f1 f2 > f.join output of both files is sent to f.join

You will not see any output on the screen. All of the standard output has been sent to the
file f.join.

6. Use the cat command to display the contents of the file f1, f2 and f.new.
NOTE: f.new should NOT exist.
What do you see on your screen? Is it obvious which messages went through standard output

and which messages went through standard error?

Answer:

$ cat f1 f2 f.new
This is the file f1
This is the file f2
cat: Cannot open f.new

It is not obvious that two output streams are being used, since all of the messages are sent
to your display.

7. Again, use the cat command to display the contents of the file f1, f2 and f.new .
NOTE: f.new should NOT exist. This time capture any error messages that are generated

and send them to the file called f.error. What do you see on your screen? Was a new file
created? Check its contents.

Answer:

$ cat f1 f2 f.new 2> f.error
This is the file f1
This is the file f2
$ cat f.error
cat: Cannot open f.new

8. Again, use the cat command to capture the contents of the file f1, f2 and f.new .

51434S G.02 Solutions-36
© 1999 Hewlett-Packard Company

Solutions

NOTE: f.new should NOT exist. This time, ON ONE COMMAND LINE, capture the
standard output messages to a file called f.good AND the error messages to a file called
f.bad. What do you see on your screen? Were any new files created? Check their contents.

Answer:

$ cat f1 f2 f.new > f.good 2> f.bad
$ cat f.good
This is the file f1
This is the file f2
$ cat f.bad
cat: Cannot open f.new

The files f.good and the file f.bad are created. You do not see any output to your screen
because all output streams have been redirected to one file or the other.

9. Type the cp command with no arguments. What happens? Now try redirecting the output
from this command to the file cp.error. What happens? What must you do to redirect that
error message to a file? Does the cp command generate any standard output messages?

Answer:

$ cp
Usage: cp f1 f2
cp [-r] f1 ... fn d1
$ cp 2> cp.error

The cp command does not generate any standard output messages. It is normally silent
when it succeeds.

10. Display the contents of the file /etc/passwd sorted out by user name.

Answer:

$ sort -d /etc/passwd

11. Sort the file /etc/passwd on the third field. What happens? Now do a numeric sort on the
third field. Any difference?

Answer:

$ sort -t: -k 3 /etc/passwd lexicographic sort

(Note that the numbers in the third field are not quite sorted. This is because an ASCII
sort is being done on a numeric field.)

$ sort -nt: -k 3 /etc/passwd numeric sort

(The results of this command are much better since the numbers in the third field are now
arranged numerically.)

12. Display all of the lines in the file /etc/passwd that contain the string user. Save this
output to a file called grepped. Use a filter to determine how many lines in /etc/passwd
contain the string user.

Solutions-37 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ grep user /etc/passwd > grepped
$ wc -l grepped
16 grepped

(Note that on the system you are using, this number may vary.)

13. Using redirection and filters, how many users are logged in on the system?

Answer:

$ who > whoson
$ wc -l whoson

14. How many login accounts are set up on the system? What command did you use to find out?
(HINT: There is one line per account in the file /etc/passwd.)

Answer:

$ wc -l /etc/passwd

15. Sort your names file and save the output in a file called names.sort. Sort the names file
in reverse order and save that output to names.rev. What commands did you use? Check the
manual entry for the sort command and find the option that allows you to save the sorted
output back to the file names.

Answer:

$ sort names > names.sort
$ sort -r names > names.rev
$ sort names -o names

16. Send a banner message to your mail partner’s terminal. Hint: What device file is associated
with your mail partner’s terminal? What does it mean if you get a Permission denied message?

Answer:

You must first determine the device file associated with your mail partner’s terminal:

$ who > whoson
$ grep mailpartner whoson
mailpartner tty03 Jul 16 8:02

Check out the tty designation. This tells you what device file is associated with your mail
partner’s terminal session.

$ banner good morning > /dev/tty03

If you get a Permission denied message, your mail partner has disabled the write
permissions on his or her terminal with the command, mesg n.

51434S G.02 Solutions-38
© 1999 Hewlett-Packard Company

Solutions

12-13. LAB: Pipelines

1. Construct a pipeline that will count the number of users presently logged on.

Answer:

$ who | wc -l

2. Construct a pipeline that counts the number of lines in /etc/passwd that contain the
pattern home. Now count the lines that do not contain the pattern.

Answer:

$ grep home /etc/passwd | wc -l Number of lines containing
home

$ grep -v home /etc/passwd | wc -l Number of lines not containing
home

3. Modify your pipeline from the above exercise so that you save all of the entries from
/etc/passwd that contain the pattern home to a file called all.users before passing the

output to be counted.

Answer:

$ grep home /etc/passwd | tee all.users | wc -l

4. Construct a pipeline that will sort the contents of the names file found under your HOME
directory, and display the sorted output in three-column format with no header or trailer.

Answer:

$ sort names | pr -3 -t

5. Create an alias called whoson that will display an alphabetical listing of the users
currently logged into your system.

Answer:

$ alias whoson="who | sort"

6. Construct a pipeline to obtain a listing of just the user names of those users presently
logged into the system.

Answer:

$ who | cut -c1-8

or

$ who | cut -f1 -d" "

Solutions-39 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

7. Construct a pipeline to obtain a long listing of just file permissions and file names
currently in your working directory.

Answer:

$ ll | cut -c2-10,58-

8. Construct a pipeline that lists only the user name, size, and file name of each file in your
HOME directory into a file called listing.out. At the same time, display on your screen
only the total number of files.

Answer:

$ ll | cut -c16-24,34-44,58- | tee listing.out | wc -l

9. Create a pipeline that will only capture the user name, user number, and HOME directory
of every user account on your system. First, output the list in alphabetical order by user name.
Now modify the pipeline so it sorts the list of user accounts by UID number instead of user
name. Hint: the information can be found in /etc/passwd.

Answer:

$ cut -f1,3,6 -d: /etc/passwd | sort
Alphabetical sort

$ cut -f1,3,6 -d: /etc/passwd | sort -n -t: -k 2 Numerical sort

13-11. LAB: Exercises

1. Use the hostname command to determine the name of your local system. What systems
can you communicate with?

Answer:

The hostname command reports the local host name. By looking at the /etc/hosts file,
you can see all of the computers your local computer can talk to.

2. Use telnet to log in to another computer. Use the hostname command to verify that you
are connected to the correct computer. Log off the remote computer when you have finished.

Answer:

$ telnet fred
Trying...
Connected to fred
Escape character is ’^]’.

HP-UX fred 10.00 B 9000/715

login: enter your name
Password: enter your password

51434S G.02 Solutions-40
© 1999 Hewlett-Packard Company

Solutions

.

.

.
$ hostname
fred
$ exit

3. Transfer one of your files to your HOME directory on a remote computer using ftp, and
then use rcp to copy another file to the remote machine. Notice the differences.

Answer:

In ftp, you would use the put command, similar to the example given in the student notes.

4. Use remsh to list the contents of the remote directory to verify that the copy worked.

Answer:

$ remsh system ls

The ls command will list your HOME directory on system.

14-10. LAB: Adding and Deleting Text and Moving the Cursor

1. vi the file tst.

Answer:

$ vi tst

2. Insert the word only between the words will be.

Answer:

Move cursor to the second line, type j or Return or 2G.
Move cursor to the last l in will, type ee or 2e or several ls.
Append text after the l, type a; type only or
Move cursor to the first b in be, type ww or 2w or several ls.
Insert text before the b, type i; type only.

3. Add the words many, many on the end of the line It will be used for.

Answer:

Go back to command mode, type ESC .
Move the cursor to the end of the line, type $.
Add (append) the text, a; enter text many, many.

4. Add a new blank line at the end of the file, and enter your name. DON’T PRESS THE ESC !

Solutions-41 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

Go back to command mode, type ESC .
Move cursor to the last line: G.
Open a new line below, o.
Type your name.

5. Using the Backspace , remove your name and enter your partner’s name.

Answer:

Backspace over the first name.
Type in your partner’s name.

6. Open a new line at the top of your file (Hint: O).

Answer:

Go back to command mode, type ESC .
1GO

7. Enter 12345.

Answer:

12345

8. Backspace 2 times. Do any of the numbers disappear from your display?

Answer:

Backspace Backspace
The cursor will be under the 4. No characters disappear.

9. Enter 1234. What happens to the numbers that you backspaced over?

Answer:

The 4 and 5 will be typed over.

10. Backspace 3 times.

Answer:

Backspace Backspace Backspace
The cursor is now under the second 2.

11. Press ESC . What happens to the characters you backspaced over? Where does the cursor
end up?

Answer:

The second 234 will disappear, and the cursor will back up so it is under the 1.

51434S G.02 Solutions-42
© 1999 Hewlett-Packard Company

Solutions

12. Type in 4 a’s. How many a’s appear? Why?

Answer:

Three a’s appear because the first a is taken to be the vi append command.

13. Backspace 5 times. What happens? Why?

Answer:

You can only Backspace three times, because you have only entered 3 letters in this input
session.

14. Press ESC . What happens?

Answer:

All of the a’s you just entered disappear. You are back in command mode.

15. Quit your vi session saving the changes you made to the file tst.

Answer:

Enter :wq or ZZ

14-19. LAB: Modifying Text

1. Start a vi session on the file vi.tst, and make the modifications as directed in that file.
Following is a copy of the contents of vi.tst.

Enter your name here ->

Change the following to your favorite color -> lavender
Change the following to your favorite flower -> rose
Change the following to your favorite book -> A Tale of Two Cities

Correct the typos in the next two lines:
Corect teh typooos im thiss line.
Ther awe mroe mistakkes in thsi linne.

The above two lines should read:
Correct the typos in this line.
There are more mistakes in this line.

Delete every occurrence of the word "jog" in the next line:
walk jog run walk jog run walk jog run walk jog run

Change every occurrence of the word "walk" to "WALK" in the above line.

line1

Solutions-43 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

line2
line3
line4
line5
line6
line7
line8

Complete the following exercises on line1 through line8 above:

1. Move the lines containing line1 through line5 and paste them after
the line containing line8.

2. Copy the lines containing line2 through line4 and paste them before
the line containing line6, and also after the line containing line3.

Quit your edit session on "vi.tst" saving the changes that you have made.

2. Start a new session by editing the file called funfile in your HOME directory and change
all occurrences of bug to FEATURE.

Answer:

:1,$s/bug/FEATURE/g

3. Write the first forty lines of the funfile out to another file called new.40.

Answer:

:1,40w new.40

4. Go to the last line in funfile.

Answer:

G

5. Find and execute the command to place your cursor midway down the window.

This file is silly.

Answer:

This file is silly.

ESC

6. Without quitting vi, write your new version of the file out to a file called funfile.123.

Answer:

:w funfile.123

7. Without leaving vi, load the file new.40 into the buffer, overwriting the previous contents.

51434S G.02 Solutions-44
© 1999 Hewlett-Packard Company

Solutions

Answer:

:e new.40

8. Turn on line numbering with the ex number option.

Answer:

:set number

9. Search for an occurrence of FEATURE in new.40.

Answer:

/FEATURE

10. Change all occurrences of FEATURE to BUG and save it into new.new.40.

Answer:

cwBUG ESC

11. Copy funfile to funfile.new. In funfile.new, search for all occurrences of the string
System or system and using /, cw, n, and . change all but one of them to XXXXX.

Answer:

1G
/[Ss]ystem
cwXXXXX ESC

n
.
n
n
.
n
.
n
.

12. Write your current edit session and quit the editor.

Answer:

:wq

or

ZZ

Solutions-45 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

15-7. LAB: Process Control

1. Under your HOME directory you will find a program called infinite. Execute this
program in the foreground and notice what it does. Enter a Ctrl + c to terminate the program.

$ infinite
hello
hello
hello
Ctrl + c
$

2. Run infinite in the background and redirect its output to a file called infin.out

$ infinite > infin.out &

Execute the ps -f command. Take note of the PID and PPID of the infinite program. Now
log out, log in again, and execute the ps -ef | grep user_id, where user_id is your login
identifier. Where is the infinite process? Remove infin.out before the next exercise.

Answer:

The PID (process ID number) of the shell (-sh) will be the PPID (parent process ID
number) of the infinite command. When you log out, terminating the parent process, all
child processes (including infinite) are killed.

3. The nohup command protects a process from terminating upon the death of its parent
process. Re-run the infinite command in the background, but protect it from logging out by
issuing it with nohup.

$ nohup infinite > infin.out &

Now log out and log in again. Execute the ps -ef | grep user_id again. Is infinite still
running? Who is its parent now?

Answer:

When the parent process (your shell) dies, the child process (infinite) becomes an
orphan process. Orphan processes are adopted by PID 1 (init). When you log back in,
you will see infinite still running.

4. Use the kill command to terminate your infinite program.

Answer:

$ kill PID PID is returned from the
ps command

5. Run the infinite program in the foreground and redirect its output to infin.out. Suspend
the program by issuing Ctrl + z. You will see a message on the screen telling you that the
process has been stopped. Send infinite to the background, and note the message.
Terminate the
infinite program with the kill command.

51434S G.02 Solutions-46
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ infinite > infin.out
Ctrl + z

[1] + Stopped infinite > infin.out
$ bg %1
[1] infinite > infin.out &
$ kill %1
[1] + Terminated infinite > infin.out

16-9. LAB: Introduction to Shell Programming

1. Create a shell program called whoson1 that will

• display a greeting to the user with the banner command
• define a variable MYNAME to your name
• display the value of the MYNAME variable defined above
• display the time and date
• display all of the users who are logged into the system

Answer:

$ vi whoson1
banner Welcome to whoson1
MYNAME=your_name
echo $MYNAME
date
who
$ chmod +x whoson1
$ whoson1

2. Change to the /tmp directory. Invoke the program color1. Does the shell find the color1
program?

Answer:

$ cd /tmp
$ color1
sh: color1: not found

The color1 program is not found because it does not reside under one of the directories
specified by the PATH variable.

3. Change to $HOME directory. Create a directory named bin under your HOME directory.
Move the color1 program to your bin directory. Append your bin directory to the PATH
variable so that the shell can find your color1 program. Confirm that your PATH variable
works by changing to the /tmp directory and invoking the color1 program. Remember to
define the color variable before invoking the color1 program.

Solutions-47 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ cd
$ mkdir bin
$ mv color1 bin
$ PATH=$PATH:$HOME/bin
$ cd /tmp
$ color=lavender
$ export color
$ color1
You are now running program: color1
the value of the variable color is: lavender
$

4. Change to $HOME directory. Interactively assign the output of the date command to a
variable date_var. Create a shell program called date_tst that will display the value of this
variable. Install date_tst under your bin directory.

Answer:

$ date_var=$(date)
$ export date_var
$ cd $HOME/bin
$ vi date_tst
echo the value of date_var is $date_var
$ chmod +x date_tst
$ date_tst

5. Modify date_tst so that the value of the variable date_var is assigned when the program
is executed. Does date_var need to be exported in this exercise? Do you need to change the
permissions on date_tst?

Answer:

$ vi $HOME/bin/date_tst
date_var=$(date)
echo the value of date_var is $date_var
$ date_tst

In this case date_var does not need to be exported because it is being defined and used
within the same process level. The permissions on date_tst do not need to be changed
because the program was made executable in the previous exercise. Editing a file does not
affect its permissions.

6. Create a shell program called whoson2 that will

• Display a personalized greeting to the user with the banner command, such as welcome
username, so that if user3 was logged in it would banner welcome user3 or if user2 was
logged in it would banner welcome user2. (Hint: this can be accomplished with an
environment variable or command substitution.)

• Display the system time and date.
• Display all of the users who are logged into the system.
• Display a message to the user displaying his or her ID and terminal connection.
• Display a closing message before the program concludes.

51434S G.02 Solutions-48
© 1999 Hewlett-Packard Company

Solutions

Place this program under your bin directory so that you can invoke it no matter where you
are in your hierarchy.

Answer:

$ vi $HOME/bin/whoson2

banner welcome $LOGNAME or banner welcome $(whoami)

date
who
echo your terminal session identification information is
who am i
echo thank you for using whoson2
$ chmod +x $HOME/bin/whoson2
$ whoson2

7. If the command line for a shell program is

$ myshellprog abc def -d -4 +900 xyz

what will be printed out from the shell program if it contains the following?

echo $#
echo $3
echo $7
echo $*
echo $0

Answer:

6
-d
A blank line.
abc def -d -4 +900 xyz
myshellprog

8. If the shell program invoked by the command line in the previous exercise contained a
shift 2 command as the first line, write the results of the following:

echo $#
echo $3
echo $7
echo $*
echo $0

Answer:

4
+900
A blank line.

Solutions-49 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

-d -4 +900 xyz
myshellprog

9. What would be the output of the following shell program if, when prompted, the user typed
in the following input?

James A. Smith, Jr.

Shell program:

echo "Please type in your first, middle, and last names"
read first middle last
echo "$last, $first $middle"

Answer:

Please type in your first, middle, and last names
James A. Smith, Jr.
Smith, Jr., James A.

Note that "Smith, Jr." is read into the last variable.

10. Write a shell program named search1 that prompts the user for a string to search for in
all of the files in his or her current directory. Print the file names of all of the files that contain
the string.

Answer:

This is shell program search1:

echo "Please enter a string to search for: \c"
read string
echo The following files contain the string $string:
grep -l $string *

11. Write a shell program called backwards that will receive up to ten arguments and list the
arguments in reverse order.

Answer:

#!/usr/bin/sh
backwards: reverses command line arguments
usage: reverse a b c d e f g h i
#
echo ${10} $9 $8 $7 $6 $5 $4 $3 $2 $1

12. Write a shell program called myecho that will do the following:

• print the number of arguments passed to it

• print the first three arguments on separate lines

• print the remaining arguments on one line

51434S G.02 Solutions-50
© 1999 Hewlett-Packard Company

Solutions

Execute the program with 12 arguments.

What argument list will produce the following output from this shell program?

I cannot
seem to
find my KEYS.

Answer:

#!/usr/bin/sh
myecho: Display the number of command line arguments,
print the first three arguments on separate lines
and print the remaining arguments on one line
usage: myecho a b c
#
echo "The number of command line arguments is $#."
#
echo $1;echo $2;echo $3
shift 3
echo $*
$ myecho a b c d e f g h i j k l
The number of command line arguments is 12
a
b
c
d e f g h i j k l
$ myecho "I cannot" "seem to" "find my KEYS."

13. Create a program my_vi that will accept a command-line argument which designates a file
to edit. my_vi should make a backup copy of the specified file and then start a vi session on
the file. Use an extension like .bak when creating the backup file. At this point, only use file
names of ten characters or less.

Answer:

#!/usr/bin/sh
my_vi: Create a backup file prior to starting a vi session
usage: my_vi filename
#
echo Copying $1 to ${1}.bak
cp $1 ${1}.bak
vi $1
echo Edit of $1 is complete
echo You may recover your original file from ${1}.bak

14. Create a companion program to my_vi called my_recover that will restore a file
designated as a command-line argument from its backup file. Specify the file name without the
.bak extension. For example if you want to restore the file tst1 from tst1.bak you would
execute my_recover tst1.

Solutions-51 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

#!/usr/bin/sh
my_recover: Recover a file from backup
usage: my_recover filename
echo Restoring $1 from ${1}.bak
cp ${1}.bak $1
echo $1 is recovered

15. Write a shell program called info that will prompt the user for the following:

• name

• street address

• city, state, and zip code

The program should then store the replies in variables and display what the user entered with
an informative format.

Answer:

#!/usr/bin/sh
info: Prompt user for mailing address
#
echo "Input your name: \c"
read name
echo "Input your street address: \c"
read address
echo "Input your City, State, and Zip Code: \c"
read where
echo;echo
echo "Your name is $name"
echo "You live at $address"
echo " $where"

16. Write a shell program called home that prompts for any user’s login_id and displays that
user’s HOME directory. Recall that the HOME directory is the sixth field in the /etc/passwd
file. You should display the login_id’s from the /etc/passwd file in four columns so that the
user knows what the available login IDs are.

Answer:

#!/usr/bin/sh
home: Return the value of a user"s HOME directory
usage: home
echo Select a user identifier from the following list:
cut -f1 -d: /etc/passwd | pr -4 -t
echo "Input user identifier: \c"
read user
home=$(grep $user /etc/passwd | cut -f6 -d:)
echo;echo "user:$user HOME directory: $home"

51434S G.02 Solutions-52
© 1999 Hewlett-Packard Company

Solutions

17. Write a shell program called alpha that will display the first and last command line
arguments. Hint: use the cut command.

Answer:

#!/usr/bin/sh
alpha: Displays the first and last command line arguments
#
last=$(echo $* | cut -f$# -d" ")
echo "The first command line argument is $1."
echo "The last command line argument is $last."

18. Create a shell program called copy that will provide a user interface to the cp command.
Your program should prompt the user for the names of the files that he or she wants copied,
and then prompt the user for the destination of the copy. The destination should be a directory
when copying multiple files, and the destination can be a file when copying only one file. Ring
the bell when the program is completed.

Answer:

#!/usr/bin/sh
file_copy: User interface for copying files
usage: copy
#
echo Please enter the names of the file(s) you want to copy:
echo "-> \c"
read filenames
echo Please enter the destination.
banner NOTE!
echo If you entered more than one file, the destination must be a
directory.
echo "Enter destination here -> \c"
read dest
echo Copying files now ...
cp $filenames $dest
echo Done copying files "\a"

17-13. LAB: Shell Programming — Branches

1. Define a variable called X equal to some string. Use the test command to determine if the
value of X is the string xyz. (Hint: you must display the return value of the test command.)

Answer:

$ X=xyz
$ test "$X" = "xyz"
$ echo $?
0

Solutions-53 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

2. Define a variable called Y and assign it to some number. Use the test command to
determine if the value of Y is greater than 0. (Hint: you must display the return value of the
test command.)

Answer:

$ Y=100
$ test "$Y" -gt 0 or ["$Y" -gt 0]
$ echo $?
0

$ Y=-100
$ test "$Y" -gt 0 or ["$Y" -gt 0]
$ echo $?
1

3. In a shell program, create an if statement that will echo yes if the argument passed is
equal to abc and no if it is not.

Answer:

if
["$1" = "abc"]

then
echo yes

else
echo no

fi

4. Create a short shell program that will prompt the user to enter a number. Store the user’s
input in a variable called Y. Use an if construct which will echo Y is positive if Y is
greater than zero and Y is not positive if it is not. Also display the value of Y to the user.
(Hint: the read command will retrieve the user’s input.)

Answer:

echo "please enter a number: \c"
read Y
if

["$Y" -gt 0]
then

echo Y is positive
echo The value of Y is $Y

else
echo Y is not positive
echo The value of Y is $Y

fi

5. Write a shell program which checks the number of command line arguments and echoes an
error message if there are not exactly three arguments or echoes the arguments themselves if
there are three. (Hint: The number of command line arguments is available through the special
shell variable $#. What special shell variable stores all of the command line arguments?)

51434S G.02 Solutions-54
© 1999 Hewlett-Packard Company

Solutions

Answer:

if
["$#" -ne 3]

then
echo "there are not exactly three command line arguments" >&2

else
echo $*

fi

6. Write a shell program that prompts the user for input and takes one of three possible
actions:

• If the input is A, the program should echo "good morning".

• If the input is B or b, the program should echo "good afternoon".

• If the input is C or quit, the program should terminate.

• If any other input is provided, issue an error message and exit the program setting the
return code to 99.

Answer:

echo "Please input A, B, b, or C: \c"
read input
case $input in

A) echo good morning
;;

[Bb]) echo good afternoon
;;

C|quit) exit
;;

*) echo You entered an illegal option.
exit 99
;;

esac

7. Create a shell program that will prompt for a user-ID name. Verify that the user ID
entered corresponds to an account on your system. If a legal user-id is provided, display the
pathname of the user’s home directory. If a user-id is entered that is not recognized, display an
error message.

Answer:

echo "Input a user login name -> \c"
read user
if

grep $user /etc/passwd > /dev/null
then

home=$(grep $user /etc/passwd | cut -f6 -d:)
echo The HOME directory for $user is $home

else

Solutions-55 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

echo;echo "$user is not here!!!"
fi

8. Use the date command to determine if it is morning (before 12:00 noon), afternoon
(between 12:00 and 6:00 p.m.) or evening (after 6:00 p.m.). Depending on the time, create a
shell program called greeting that will echo out the appropriate message: good morning,
good afternoon or good evening. (Hint: The date command uses a 24-hour clock.)

Answer:

time=$(date | cut -c12-20)
hour=$(echo $time | cut -f1 -d:)

if [$hour -lt 12]
then

echo good morning
else

if [$hour -ge 12 -a $hour -lt 18]
then

echo good afternoon
else

echo good evening
fi

fi

9. Create a shell program that will ask the user if he or she would like to see the contents of
the current directory. Inform the user that you are looking for a yes or no answer. Issue an
error message if the user does not enter yes or no. If the user enters yes display the contents
of the current directory. If the user enters no, ask what directory he or she would like to see
the contents of. Get the user’s input and display the contents of that directory. Remember to
verify that the requested directory exists prior to displaying its contents.

Answer:

echo Would you like to see the contents of your current directory?
echo Please enter yes or no.
echo "----> \c"
read ans1
case $ans1 in

yes) ls
;;

no) echo What directory would you like to see?
read ans2
if test -d $ans2
then

ls $ans2
else

echo directory $ans2 does not exist
fi
;;

*) echo You have not entered a proper response.
echo Please try again.
;;

esac

51434S G.02 Solutions-56
© 1999 Hewlett-Packard Company

Solutions

10. Create a program mycp which will copy one file to another. The program will accept two
command line arguments, a source and a destination. Check for the following situations:

• It should make sure that the source and destination do not reference the same file.
• The program should verify that the destination is a file.
• The program should verify that the source file exists.
• The program should check to see if the destination exists. If it does, ask the user if he or she

wants to overwrite it.

Answer:

#!/usr/bin/sh
mycp file1 file2
if ["$#" -ne 2]

then
echo "Usage: $0 file1 file2" >&2
exit 1

fi
if ["$1" = "$2"]
then

echo "$1 = $2"
echo "No copy performed" >&2
exit 2

fi

if test -d $2
then

echo "Your target is a directory." >&2
echo "No copy performed!" >&2
exit 4

fi

if test -f $2
then

echo "Your target file already exists."
echo "Do you want to overwrite it? [y/n]: \c"
read ans
if ["$ans" != "y" -o "$ans" != "Y"]
then

echo "No copy performed!" >&2
exit 3

fi
fi

if test -f $1
then

cp $1 $2
echo "Copy complete"

else
echo "Source file does not exist"
echo "No copy performed"
exit 4

fi

Solutions-57 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

11. Write a shell program called options which responds to command line arguments as
follows:

• If the first argument on the command line is -d, the program will run the date command.

• If the first argument on the command line is -w, the program will list all of the users who
are on the system.

• If the first argument on the command line is -l, the program will list the contents of the
directory provided as the second command line argument.

• If no arguments or more than two arguments are on the command line, issue a usage
message, and set the return code to 10.

• If an option is provided that is not recognized, issue a usage message, and set the return
code to 20.

Answer:

if
["$#" -lt 1 -o "$# "-gt 2]

then
echo "usage: $0 -d" >&2
echo " $0 -l directory" >&2
echo " $0 -w" >&2
exit 10

fi
case $1 in

-d) date
;;

-w) who
;;

-l) if test -d $2
then

echo the contents of directory $2 are:
ls -F $2

else
echo directory $2 does not exist

fi
;;

*) echo "bad option" >&2
echo "usage: $0 -d" >&2
echo " $0 -l directory" >&2
echo " $0 -w" >&2
exit 20
;;

esac

51434S G.02 Solutions-58
© 1999 Hewlett-Packard Company

Solutions

18-12. LAB: Shell Programming — Loops

1. Create a program called double_it that will prompt the user for a number and then
display two times the number.

Answer:

#!/usr/bin/sh
double_it: Prompt the user for a number and then display 2 times
its value.
#
echo "Input an integer value: \c"
read num
echo "Two times the number you entered is \c"
let num=num*2
echo $num

2. Create a program called sum_them that will prompt the user to input 10 numbers. The
program will add all of the numbers that the user has entered, and display the final sum.
(Hint: accumulate the sum each time a new number is entered.)
Optional: Modify sum_them so that the number of numbers that the user would like to add

together is provided through a command line argument. For example sum_them 6 would
prompt the user for six numbers and add them together.

Answer:

#!/usr/bin/sh
sum_them: Prompt the user for 10 numbers and add them together
#
sum=0
count=1
echo You will be prompted to enter 10 numbers.
echo Their sum will be displayed after all 10 numbers have been entered.
while

[$count -le 10]
do

echo "Please enter a number ($count): \c"
read num
let sum=sum+num
let count=count+1

done
echo The sum of the 10 numbers you entered is: $sum

Optional solution supporting a command line argument identifying the number of numbers
to enter:

#!/usr/bin/sh
sum_them2: The user will provide the number of numbers to
add together as a command line argument
#
if

[$# -ne 1]
then

echo Usage: $0 number >&2

Solutions-59 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

exit 99
fi

count=1
echo You will be prompted to enter $1 numbers.
echo Their sum will be displayed after all $1 numbers have been entered.
while

[$count -le $1]
do

echo "Please enter a number ($count): \c"
read num
let sum=sum+num
let count=count+1

done
echo The sum of the $1 numbers you entered is: $sum

3. Create a program called words_in that will continue to prompt the user to input a single
word until the user enters quit. Save each word that is entered. After the user types quit
echo back all of the words that have been entered. Can you complete this exercise with a
while loop? With an until loop? Select the one you prefer. (Optional: display all of the words
entered in alphabetical order.)

Answer:

#!/usr/bin/sh
words_in: prompt the user to input words until "quit" is entered
#
until

echo Please enter a word. Enter "quit" when you are done.
read input
["$input" = quit]

do
words="$words\n$input"

done
echo $words
#Print words out in alphabetical order
echo $words | sort

4. In a shell program create a for loop that will:

• create the directories Adir, Bdir, Cdir, Ddir, Edir
• copy funfile to each directory
• list the contents of each directory to verify the copy
• echo a message when each iteration of the loop is complete

Answer:

for name in Adir Bdir Cdir Ddir Edir
do

mkdir $name
cp $HOME/funfile $name
ls $name

51434S G.02 Solutions-60
© 1999 Hewlett-Packard Company

Solutions

echo done with $name
done

an alternative method could be:

for name in A B C D E
do

mkdir ${name}dir
cp $HOME/funfile ${name}dir
ls ${name}dir
echo done with $name

done

5. Write a shell program called new_files that will accept a variable number of command
line arguments. The shell program will create a new file associated with each command line
argument (use the touch command), and echo a message that notifies the user as each file is
created.

Answer:

#!/usr/bin/sh
new_files: create new files as provided by the command line arguments
Usage: new_files f1 f2 f3 f4 ...
#
for i in $*
do

echo creating file $i
touch $i

done

6. Use vi to create a file called mailtest. At your shell prompt create an interactive for
loop to mail mailtest to everyone who is logged on. (Hint: use who and cut with command
line substitution to generate the list for the for loop.)

Answer:

$ for i in $(who | cut -f1 -d" ")
> do
> mail $i < mailtest
> done

7. Create a shell program called my_menu that will display a simple menu that has three
options.

a. The first option will run double_it (Exercise 1).
b. The second option will run sum_them (Exercise 2).
c. Quit.

The menu should be redisplayed after each selection is completed, until the user enters 3.

Answer:

#!/usr/bin/sh
my_menu: A menu interface

Solutions-61 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Usage: my_menu

#
until

[$ans -eq 3]

clear
echo
echo
echo
echo 1) Double a number.

echo 2) Add together 10 numbers.

echo 3) Quit

echo
echo "Enter your selection number ->\c"

read ans
do

case $ans in

1) double_it

;;
2) sum_them

;;
3|quit|q|Q) exit

;;

*) echo You have not entered a legal option.

echo Please try again.

;;
esac
sleep 3

screen clears before displaying menu

done

8. Create a program called msg_me that will display a message to your screen once every 5
seconds, for a minute. (Hint: look up the sleep command.) You might want to store the
message in a separate text file so that it can be easily changed.

Answer:

#!/usr/bin/sh
msg_me: display a message to your terminal every 5 seconds
#
term=$(who am i | cut -c12-18)
count=1
while

[$count -lt 12]
do

cat msg.file > /dev/$term
sleep 5
let count=count+1

done

9. Write a shell program called ison that will run in the background and check every 60
seconds whether a particular user has logged into the system. The user name should be
passed into ison as a command line argument. When the user logs in, print a message on

51434S G.02 Solutions-62
© 1999 Hewlett-Packard Company

Solutions

your terminal informing you of the login, and report what terminal the user logged into. (Hint:
Use the sleep command.)

If you are on a standalone system in a network, you might want to try the rwho command.

Answer:

#!/usr/bin/sh
ison: Check for a user to log into the system
Usage: ison username
#
if ["$#" -ne 1]
then

echo "usage: $0 user_id" >&2
exit 99

fi

until who | grep $1 > /dev/null
do

sleep 60
done

When you reach this point, the user has logged in

echo $1 has logged on
who | grep $1

10. Create a directory called .waste in your home directory. Write a shell program called
myrm that will move all of the files you delete into the .waste directory, your wastebasket.
This is a useful tool which will allow restoration of files after they have been removed.
Remember, the UNIX system has no undelete capability.

Have myrm also include the options:

-l List contents of the wastebasket

-d Dump the contents of the wastebasket

Solutions-63 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

Answer:

#!/usr/bin/sh
myrm: WasteBasket
#
if ["$1" = ""]

then
echo "Usage: $0 file [file ...]" >&2
echo " or: $0 [-l] | [-d]" >&2
exit 5

fi
opt=$(echo $1 | cut -c1)
if ["$opt" = "-"]
then

case $1 in
-l) echo;echo "The WasteBasket includes the following files:"

ls $HOME/.waste;;
-d) echo;echo "The WasteBasket is being dumped!"

rm $HOME/.waste/*;;
-*) echo "$0: $1 invalid argument" >&2

exit;;
esac

else
echo "Are you sure you want to remove $*? [y/n]: \c"
read ans
if ["$ans" = "y" -o "$ans" = "Y"]
then

for i in $*
do

if test -f $i
then

mv "$i" $HOME/.waste
else

echo "$i: Does not exist" >&2
fi

done
else

exit
fi

fi

19-4. LAB: Offline File Storage

1. Using tar, create an archive of all files in your HOME directory that start with abc.

Answer:

$ tar cf /dev/rmt/0m abc*

2. Obtain a table of contents listing of this tape archive.

51434S G.02 Solutions-64
© 1999 Hewlett-Packard Company

Solutions

Answer:

$ tar tf /dev/rmt/0m

3. Using find and cpio, make a backup of your whole directory structure from your HOME
directory on down.

Answer:

$ cd
$ find . | cpio -ocv > /dev/rmt/0m

4. Remove the file backup from your current directory. Then restore the file from tape using
the cpio command.

Answer:

$ rm backup
$ cpio -iumc "backup" < /dev/rmt/0m
$ ll backup

5. Create the directory $HOME/tree.cp. Look up the pass mode of the cpio command in
cpio(1). Using the cpio command in the pass mode, recreate the directory structure
$HOME/tree under the directory $HOME/tree.cp.

Answer:

$ mkdir $HOME/tree.cp
$ cd $HOME/tree
$ find . | cpio -pcduv $HOME/tree.cp

Solutions-65 51434S G.02
© 1999 Hewlett-Packard Company

Solutions

51434S G.02 Solutions-66
© 1999 Hewlett-Packard Company

Glossary

Glossary-1 51434S G.02
© 1999 Hewlett-Packard Company

