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Chapter 3

Comparametric Transforms for Transmitting
Eye Tap Video with Picture Transfer Protocol
(PTP)

W. Steve G. Mann

University of Toronto

Eye Tap video is a new genre of video imaging facilitated by and for the apparatus
of the author’s eyeglass-based “wearable computer” invention [1]. This invention
gives rise to a new genre of video that is best processed and compressed by way of
comparametric equations, and comparametric image processing. These new meth-
ods are based on an Edgertonian philosophy, in sharp departure from the traditional
Nyquist philosophy of signal processing. A new technique is given for estimating
the comparameters (relative parameters between successive frames of an image se-
quence) taken with a camera (or Eye Tap device) that is free to pan, tilt, rotate about
its optical axis, and zoom. This technique solves the problem for two cases of static
scenes: images taken from the same location of an arbitrary 3-D scene and images
taken from arbitrary locations of a flat scene, where it is assumed that the gaze pattern
of the eye sweeps on a much faster time scale than the movement of the body (e.g.,
an assumption that image flow across the retina induced by change in eye location is
small compared to that induced by gaze pattern).

3.1 Introduction: Wearable Cybernetics

Wearable cybernetics is based on the WearComp invention of the 1970s, originally
intended as a wearable electronic photographer’s assistant [2].



3.1.1 Historical Overview of WearComp

A goal of the author’s WearComp/WearCam (wearable computer and personal
imaging) inventions of the 1970s and early 1980s (Fig. 3.1) was to make the metaphor
of technology as an extension of the mind and body into a reality. In some sense,
these inventions transformed the body into not just a camera, but also a networked
cybernetic entity. The body thus became part of a system always seeking the best
picture, in all facets of ordinary day-to-day living. These systems served to illustrate
the concept of the camera as a true extension of the mind and body of the wearer.

FIGURE 3.1
Personal Imaging in the 1970s and 1980s: Early embodiments of the author’s
WearComp invention that functioned as a “photographer’s assistant” for use in
the field of personal imaging. (a) Author’s early headgear. (b) Author’s early
“smart clothing” including cybernetic jacket and cybernetic pants (continued).

3.1.2 Eye Tap Video

Eye Tap video [3] is video captured from the pencil of rays that would otherwise
pass through the center of the lens of the eye. The Eye Tap device is typically worn
like eyeglasses.



FIGURE 3.1
(Cont.) (c) Author’s 1970s chording keyboard comprising switches mounted to
a light source, similar to the mid 1980s version depicted in author’s right hand
in (b).

3.2 The Edgertonian Image Sequence

Traditional image sequence compression, such as MPEG [4, 5] (see, for example,
the Moving Picture Expert Group FAQ), is based on processing frames of video as
a continuum. The integrity of motion is often regarded as being more important
than, or at least as important as, the integrity of each individual frame of the image
sequence. However, it can be argued that temporal integrity is not always of the
utmost importance and can, in fact, often be sacrificed with good reason.

3.2.1 Edgertonian versus Nyquist Thinking

Consider the very typical situation in which the frame rate of a picture acquisi-
tion process vastly exceeds the frame rate at which it is possible to send pictures of
satisfactory quality over a given bandwidth-limited communications channel. This



situation arises, for example, with Web-based cameras, including the Wearable Wire-
less Webcam [6].

Suppose that the camera provides 30 pictures per second, but the channel allows us
to send only one picture per second (ignore for the moment the fact that we can trade
spatial resolution, temporal resolution, and compression quality to adjust the frame
rate). In order to downsample our 30 pictures per second to one picture per second,
the “Nyquist school of thought” would suggest that we temporally lowpass filter
the image sequence in order to remove any temporal frequencies that would exceed
the Nyquist frequency. To apply this standard “lowpass filter then downsample”
approach, we might average each 30 successive pictures to obtain one output picture.
Thus, fast moving objects would be blurred to prevent temporal aliasing.

We might be tempted to think that this blurring is desirable, given temporal alias-
ing that would otherwise result. However, cinematographers and others who produce
motion pictures often disregard concepts’ temporal aliasing. Most notably, Harold E.
Edgerton [7], inventor of the electronic flash and known for his movies of high speed
events in which objects are “frozen” in time, has produced movies and other artifacts
that defy any avoidance of temporal aliasing. Edgerton’s movies provide us with a
temporal sampling that is more like a Dirac comb (downsampling of reality) than a
lowpass-filtered and then downsampled version of reality. For the example of down-
sampling from 30 frames per second to one frame per second, an Edgertonian thinker
would likely advocate simply taking every 30th frame from the original sequence and
throwing all the others away.

The Edgertonian downsampling philosophy gives rise to image sequences in which
propeller blades or wagon wheel spokes appear to spin backwards or stand still. The
Nyquist philosophy, on the other hand, gives rise to image sequences in which the
propeller blades or wagon wheel spokes visually disappear. The author believes
that it is preferable that the propeller blades and wagon wheel spokes appear to spin
backwards, or stand still, rather than visually disappear. More generally, an important
assumption upon which the thesis of this chapter rests is that it is preferable to have a
series of crisp well-defined “snapshots” of reality, rather than the blur of images that
one would get by following the antialiasing approach of traditional signal processing.

The author’s personal experience with his wearable Eye Tap video camera inven-
tion, wearing the camera often 8 to 16 hours a day, led to an understanding of how
the world looks through Web-based video. On this system, it was possible to choose
from among various combinations of Edgertonian and Nyquist sampling strategies.
It was found that experiencing the world through “Edgertonian eyes” was generally
preferable to the Nyquist approach.

3.2.2 Frames versus Rows, Columns, and Pixels

There is a trend now toward processing sequences of images as spatio-temporal
volumes, e.g., as a function f (x, y, t). Within this conceptual framework, motion
pictures are treated as static three-dimensional volumes of data. So-called spatio-
temporal filters h(x, y, t) are applied to these spatio-temporal volumes f (x, y, t).



However, this unified treatment of the three dimensions (discretized to row, col-
umn, and frame number) ignores the fact that the time dimension has a much dif-
ferent intuitive meaning than the other two dimensions. Apart from the progressive
(forward-only) direction of time, there is the more important fact (even for stored
image sequences) that a snapshot in time (a still picture selected from the sequence)
often has immediate meaning to the human observer. A single row of pixels across
a picture or a single column of pixels down a picture do not generally have similar
significance to the human observer. Likewise, a single pixel means little to the human
observer in the absence of surrounding pixels.

Notwithstanding their utility, slices of the formf (x, y0, t) or of the formf (x0, y, t)

are often confusing at best, compared to the still picture f (x, y, t0) that remains as an
extraction from a picture sequence which is far more meaningful to a typical human
observer. Thus the author believes that downsampling across rows or downsampling
down columns of an image should be preceded by lowpass filtering, whereas temporal
downsampling should not.

There is, therefore, a special significance to the notion of a “snapshot in time” and
the processing, storage, transmission, etc. of a motion picture as a sequence of such
snapshots. The object of this chapter is to better understand the relationship between
individual sharply defined frames of an Edgertonian sequence of pictures.

3.3 Picture Transfer Protocol (PTP)

When applying data compression to a stream of individual pictures that will be
viewed in real-time (for example, in videoconferencing, such as the first-person-
perspective videoconferencing of the wearable Eye Tap device), it is helpful to con-
sider the manner in which the data will be sent. Most notably, pictures are typically
sent over a packet-based communications channel. For example, Wearable Wireless
Webcam used the AX25 Amateur Radio [8] protocol. Accordingly, packets typically
arrive either intact or corrupted. Packets that are corrupt traditionally would be resent.
An interesting approach is to provide data compression on a per-image basis, and to
vary the degree of compression so that the size of each picture in the image sequence
is exactly equal to the length of one packet.

Together with the prior assumption (that images are acquired at a rate that exceeds
the channel capacity), it will generally be true that by the time we know that a packet
(which is a complete picture) is corrupt at the receiver, a newer picture will have
already been acquired. For example, if the round trip time (RTT) were 100 ms
(which is equal to the time it takes to generate three pictures), there would be little
sense in resending a picture that was taken three pictures ago. The commonly arising
situation in which pictures are captured at a rate that exceeds the RTT suggests that
there will always be newer picture information at the transmit site than what would
be resent in the event of a lost packet.



This approach forms the basis for the Picture Transfer Protocol (PTP) proposed
by the author. In particular, PTP is based on the idea of treating each snapshot in
time as a single entity, in isolation, and compressing it into a single packet, so it will
have either arrived in its entirety or not arrived at all (and therefore can be discarded).
It should be clear that the philosophical underpinnings of PTP are closely related to
those of Edgertonian downsampling.

3.4 Best Case Imaging and Fear of Functionality

A direct result of Edgertonian sampling is that a single picture from a picture
sequence has a high degree of relevance and meaning even when it is taken in isolation.
Similarly, a direct result of PTP is that a single packet from a packet sequence has a
high degree of relevance and meaning even when it is taken in isolation (for example,
when the packets before and after it have been corrupted). It is therefore apparent
that if a system were highly unreliable, to the extent that pictures could be transmitted
only occasionally and unpredictably, then the Edgertonian sampling combined with
PTP would provide a system that would degrade gracefully.

Indeed, if we were to randomly select just a few frames from one of Edgerton’s
motion pictures, we would likely have a good summary of the motion picture, since
any given frame would provide us with a sharp picture in which subject matter of
interest could be clearly discerned. Likewise, if we were to randomly select a few
packets from a stream of thousands of packets of PTP, we would have data that would
provide a much more meaningful interpretation to the human observer than if all we
had were randomly selected packets from an MPEG sequence.

Personal imaging systems are characterized by a wearable incidentalist “always
ready” mode of operation in which the system need not always be functioning to be
of benefit. It is the potential functionality, rather than the actual functionality, of
such a system that makes it so different from other imaging systems such as hand-
held cameras and the like. Accordingly, an object of the personal imaging project
is to provide a system that transmits pictures in harsh or hostile environments. One
application of such a system is the personal safety device (PSD) [9]. The PSD differs
from other wireless data transmission systems in the sense that it was designed for
“best case” operation. Ordinarily, wireless transmissions are designed for worst
case scenarios, such as might guarantee a certain minimum level of performance
throughout a large metropolitan area. The PSD, however, is designed to make it hard
for an adversary to guarantee total nonperformance.

It is not a goal of the PSD to guarantee connectivity in the presence of hostile
jamming of the radio spectrum but, rather, to make it difficult for the adversary to
guarantee the absence of connectivity. Therefore, an otherwise potential perpetrator of
a crime would never be able to be certain that the wearer’s device was nonoperational
and would therefore need to be on his or her best behavior at all times.



Traditional surveillance networks, based on so-called public safety camera systems,
have been proposed to reduce the allegedly rising levels of crime. However, building
such surveillance superhighways may do little to prevent, for example, crime by
representatives of the surveillance state, or those who maintain the database of images.
Human rights violations can continue, or even increase, in a police state of total state
surveillance. The same can be true of owners of an establishment where surveillance
systems are installed and maintained by these establishment owners. An example is
the famous Latasha Harlins case, in which a shopper was falsely accused of shoplifting
by a shopkeeper and was then shot dead by the shopkeeper. Therefore, what is needed
is a PSD to function as a crime deterrent, particularly with regard to crimes perpetrated
by those further up the organizational hierarchy.

Since there is the possibility that only one packet, which contains just one picture,
would provide incriminating evidence of wrongdoing, individuals can wear a PSD
to protect themselves from criminals, assailants, and attackers, notwithstanding any
public or corporate video surveillance system already in place.

An important aspect of this paradigm is the fear of functionality (FoF) model. The
balance is usually tipped in favor of the state or large organization in the sense that
state- or corporate-owned surveillance cameras are typically mounted on fixed mount
points and networked by way of high bandwidth land lines. The PSD, on the other
hand, would be connected by way of wireless communication channels of limited
bandwidth and limited reliability. For example, in the basement of a department
store, the individual has a lesser chance of getting a reliable data connection than
does the store-owned surveillance cameras. Just as many department stores use a
mixture of fake, nonfunctional cameras and real ones, so the customer never knows
whether or not a given camera is operational, what is needed is a similar means of best
case video transmission. Not knowing whether or not one is being held accountable
for his actions, one must be on his best behavior at all times. Thus, a new philosophy,
based on FoF, can become the basis of design for image compression, transmission,
and representation.

Fig. 3.2(a) illustrates an example of a comparison between two systems, SYSTEM
A, and SYSTEM B. These systems are depicted as two plots, in a hypothetical pa-
rameter space. The parameter space could be time, position, or the like. For example,
SYSTEM A might work acceptably (e.g., meet a certain guaranteed degree of func-
tionality FGUAR) everywhere at all times, whereas SYSTEM B might work very well
sometimes and poorly at others. Much engineering is motivated by an articulability
model, i.e., that one can make an articulable basis for choosing SYSTEM A because
it gives the higher worst case degree of functionality.

A new approach, however, reverses this argument by regarding functionality as a
bad thing — bad for the perpetrator of a crime — rather than a good thing. Thus we
turn the whole graph on its head, and, looking at the problem in this reversed light,
come to a new solution, namely that SYSTEM B is better because there are times
when it works really well.

Imagine, for example, a user in the sub-basement of a building, inside an elevator.
Suppose SYSTEM A would have no hope of connecting to the outside world. SYS-



FIGURE 3.2
Fear of Functionality (FoF): (a) Given two different systems, SYSTEM A having
a guaranteed minimum level of functionality FGUAR that exceeds that of SYS-
TEM B, an articulable basis for selecting SYSTEM A can be made. Such an
articulable basis might appeal to lawyers, insurance agents, and others who are
in the business of guaranteeing easily defined articulable boundaries. However,
a thesis of this chapter is that SYSTEM B might be a better choice. Moreover,
given that we are designing and building a system like SYSTEM B, traditional
worst case engineering would suggest focusing on the lowest point of functionality
of SYSTEM B (continued).

TEM B, however, through some strange quirk of luck, might actually work, but we
don’t know in advance one way or the other.

The fact of the matter, however, is that one who was hoping that the system would
not function, would be more afraid of SYSTEM B than SYSTEM A because it would
take more effort to ensure that SYSTEM B would be nonfunctional.

The FoF model means that if the possibility exists that the system might function
part of the time, a would-be perpetrator of a crime against the wearer of the PSD must
be on his or her best behavior at all times.

Fig. 3.2(b) depicts what we might do to further improve the “fear factor” of SYS-
TEM B, to arrive at a new SYSTEM B̃. The new SYSTEM B̃ is characterized by
being even more idiosyncratic; the occasional times that SYSTEM B̃ works, it works
very well, but most of the time it either doesn’t work at all or works very poorly.

Other technologies, such as the Internet, have been constructed to be robust enough
to resist the hegemony of central authority (or an attack of war). However, an impor-



FIGURE 3.2
(Cont.) (b) Instead, it is proposed that one might focus one’s efforts on the highest
point of functionality of SYSTEM B, to make it even higher, at the expense
of further degrading the SYSTEM B worst case, and even at the expense of
decreasing the overall average performance. The new SYSTEM B̃ is thus sharply
serendipitous (peaked in its space of various system parameters).

tant difference here is that the FoF paradigm is not suggesting the design of robust
data compression and transmission networks.

Quite the opposite is true!
The FoF paradigm suggests the opposite of robustness in that SYSTEM B̃ is even

more sensitive to mild perturbations in the parameter space about the optimal operating
point, POPT , than is SYSTEM B. In this sense, our preferred SYSTEM B̃ is actually
much less robust than SYSTEM B. Clearly it is not robustness, in and of itself, that the
author is proposing here. The PSD doesn’t need to work constantly but rather must
simply present criminals with the possibility that it could work sometimes or even
just occasionally. This scenario forms the basis for best-case design as an alternative
to the usual worst-case design paradigm.

The personal imaging system therefore transmits video, but the design of the system
is such that it will, at the very least, occasionally transmit a meaningful still image.
Likewise, the philosophy for data compression and transforms needs to be completely
rethought for this FoF model.

This rethinking extends from the transforms and compression approach right down
to the physical hardware. For example, typically the wearer’s jacket functions as a
large low frequency antenna, providing transmission capability in a frequency band



that is very hard to stop. For example, the 10-meter band is a good choice because
of its unpredictable performance (owing to various “skip” phenomena, etc.). How-
ever, other frequencies are also used in parallel. For example, a peer-to-peer form
of infrared communication is also included to “infect” other participants with the
possibility of having received an image. In this way, it becomes nearly impossible
for a police state to suppress the signal because of the possibility that an image may
have escaped an iron-fisted regime.

It is not necessary to have a large aggregate bandwidth to support an FoF network.
In fact, quite the opposite. Since it is not necessary that everyone transmit everything
they see, at all times, very little bandwidth is needed. It is only necessary that
anyone could transmit a picture at any time. This potential transmission (e.g., fear
of transmission) does not even need to be done on the Internet; for example, it could
simply be from one person to another.

3.5 Comparametric Image Sequence Analysis

Video sequences from the PSD are generally collected and assembled into a small
number of still images, each still image being robust to the presence or absence of
individual constituent frames of the video sequence from which it is composed.

Processing video sequences from the apparatus of the author’s Eye Tap camera
requires finding the coordinate transformation between two images of the same scene
or object. Whether to recover gaze motion between video frames, stabilize retinal
images, relate or recognize Eye Tap images taken from two different eyes, compute
depth within a 3-D scene, or align images for lookpainting (high-resolution enhance-
ment resulting from looking around), it is desired to have both a precise description
of the coordinate transformation between a pair of Eye Tap video frames, and some
indication as to its accuracy.

Traditional block matching [10] (such as used in motion estimation) is really a
special case of a more general coordinate transformation. This chapter proposes
a solution to the motion estimation problem using this more general estimation of
a coordinate transformation, together with a technique for automatically finding the
comparametric projective coordinate transformation that relates two frames taken of
the same static scene. The technique takes two frames as input and automatically
outputs the comparameters of the exact model to align the frames. It does not require
the tracking or correspondence of explicit features, yet it is computationally practical.
Although the theory presented makes the typical assumptions of static scene and no
parallax, the estimation technique is robust to deviations from these assumptions. In
particular, the technique is applied to image resolution enhancement and lookpaint-
ing [11], illustrating its success on a variety of practical and difficult cases, including
some that violate the nonparallax and static scene assumptions.



A coordinate transformation maps the image coordinates, x = [x, y]T , to a new
set of coordinates, x̃ = [x̃, ỹ]T . Generally, the approach to finding the coordinate
transformation relies on assuming that it will take one of the models in Table 3.1,
and then estimating the two to twelve scalar parameters of the chosen model. An
illustration showing the effects possible with each of these models is given in Fig. 3.3.

Table 3.1 Image Coordinate Transformations Discussed in this Chapter: The
Translation, Affine, and Projective Models Are Expressed in Vector Form; e.g.,
x = [x, y]T is a Vector of dimension 2, and A ∈ R

2×2 is a Matrix of Dimension 2 by 2,
etc.

Model Coordinate transformation from x to x̃ Parameters

Translation x̃ = x + b b ∈ R
2

Affine x̃ = Ax + b A ∈ R
2×2,b ∈ R

2

Bilinear x̃ = qx̃xyxy + qx̃xx + qx̃yy + qx̃
ỹ = qỹxyxy + qỹxx + qỹyy + qỹ q∗ ∈ R

Projective x̃ = Ax+b
cT x+1

A ∈ R
2×2,b, c ∈ R

2

Pseudopers- x̃ = qx̃xx + qx̃yy + qx̃ + qαx
2 + qβxy

pective ỹ = qỹxx + qỹyy + qỹ + qαxy + qβy
2 q∗ ∈ R

Biquadratic x̃ = qx̃x2x
2 + qx̃xyxy + qx̃y2y

2 + qx̃xx + qx̃yy + qx̃

ỹ = qỹx2x
2 + qỹxyxy + qỹy2y

2 + qỹxx + qỹyy + qỹ q∗ ∈ R

FIGURE 3.3
Pictorial effects of the six coordinate transformations of Table 3.1, arranged left
to right by number of parameters. Note that translation leaves the original house
unchanged, except in its location. Most importantly, only the three coordinate
transformations at the right affect the periodicity of the window spacing (e.g., in-
duce the desired “chirping” which corresponds to what we see in the real world).
Of these, only the projective coordinate transformation preserves straight lines.
The 8-parameter projective coordinate transformation “exactly” describes the
possible camera motions.

The most common assumption (especially in motion estimation for coding and
optical flow for computer vision) is that the coordinate transformation between frames



is a translation. Tekalp, Ozkan, and Sezan [12] have applied this assumption to high-
resolution image reconstruction. Although translation is the least constraining and
simplest to implement of the six coordinate transformations in Table 3.1, it is poor at
handling large changes due to camera zoom, rotation, pan, and tilt.

Zheng and Chellappa [13] considered a subset of the affine model — translation,
rotation, and scale — in image registration. Other researchers [14, 15] have assumed
affine motion (six parameters) between frames. For the assumptions of static scene
and no parallax, the affine model exactly describes rotation about the optical axis of
the camera, zoom of the camera, and pure shear, which the camera does not do except
in the limit as the lens focal length approaches infinity. The affine model cannot
capture camera pan and tilt and, therefore, cannot accurately express the “chirping”
and “keystoning” seen in the real world (see Fig. 3.3). Consequently, the affine model
tries to fit the wrong parameters to these effects. When the parameter estimation is
not done properly to align the images, a greater burden is placed on designing post-
processing to enhance the poorly aligned images.

The 8-parameter projective model gives the exact eight desired parameters to ac-
count for all the possible camera motions. However, its parameters have traditionally
been mathematically and computationally too hard to find. Consequently, a variety
of approximations have been proposed. Before the solution to estimating the projec-
tive parameters is presented, it will be helpful to better understand these approximate
models.

Going from first order (affine) to second order gives the 12-parameter biquadratic
model. This model properly captures both the chirping (change in spatial frequency
with position) and converging lines (keystoning) effects associated with projective
coordinate transformations, although, despite its larger number of parameters, there
is still considerable discrepancy between a projective coordinate transformation and
the best-fit biquadratic coordinate transformation. Why stop at second order? Why
not use a 20-parameter bicubic model? While an increase in the number of model pa-
rameters will result in a better fit, there is a tradeoff where the model begins to fit noise.
The physical camera model fits exactly in the 8-parameter projective group; therefore,
we know that “eight is enough.” Hence, it is appealing to find an approximate model
with only eight parameters.

The 8-parameter bilinear model is perhaps the most widely used [16] in the fields
of image processing, medical imaging, remote sensing, and computer graphics. This
model is easily obtained from the biquadratic model by removing the four x2 and y2

terms. Although the resulting bilinear model captures the effect of converging lines,
it completely fails to capture the effect of chirping.

The 8-parameter pseudo-perspective model [17] does, in fact, capture both the con-
verging lines and the chirping of a projective coordinate transformation. This model
may first be thought of as the removal of two of the quadratic terms (qx̃y2 = qỹx2 = 0),
which results in a 10-parameter model (the q-chirp of Navab and Mann [18]) and then
the constraining of the four remaining quadratic parameters to have two degrees of
freedom. These constraints force the chirping effect (captured by qx̃x2 and qỹy2 ) and
the converging effect (captured by qx̃xy and qỹxy) to work together in the “right”



way to match, as closely as possible, the effect of a projective coordinate transfor-
mation. By setting qα = qx̃x2 = qỹxy , the chirping in the x-direction is forced to
correspond with the converging of parallel lines in the x-direction (and likewise for
the y-direction). Therefore, of the 8-parameter approximations to the true projective,
we would expect the pseudo-perspective model to perform the best.

Of course, the desired “exact” eight parameters come from the projective model,
but they have been notoriously difficult to estimate. The parameters for this model
have been solved by Tsai and Huang [19], but their solution assumed that features had
been identified in the two frames, along with their correspondences. In this chapter,
a simple featureless means of registering images by estimating their comparameters
is presented.

Other researchers have looked at projective estimation in the context of obtaining
3-D models. Faugeras and Lustman [20], Shashua and Navab [21], and Sawhney [22]
have considered the problem of estimating the projective parameters while computing
the motion of a rigid planar patch, as part of a larger problem of finding 3-D motion
and structure using parallax relative to an arbitrary plane in the scene. Kumar, Anan-
dan, and Hanna [23] have also euggested registering frames of video by computing
the flow along the epipolar lines, for which there is also an initial step of calculating
the gross camera movement assuming no parallax. However, these methods have
relied on feature correspondences and were aimed at 3-D scene modeling. Our focus
is not on recovering the 3-D scene model, but on aligning 2-D images of 3-D scenes.
Feature correspondences greatly simplify the problem; however, they also have many
problems which are reviewed below. The focus of this chapter is a simple feature-
less approach to estimating the projective coordinate transformation between image
frames.

Two similar efforts exist to the new work presented here. Mann [24] and Szeliski
and Coughlan [25] independently proposed featureless registration and compositing
of either pictures of a nearly flat object or pictures taken from approximately the same
location. Both used a 2-D projective model and searched over its 8-parameter space to
minimize the mean square error (or maximize the inner product) between one frame
and a 2-D projective coordinate transformation of the next frame. However, in both
these earlier works, the algorithm relies on nonlinear optimization techniques which
we are able to avoid with the new technique presented here.

3.5.1 Camera, Eye, or Head Motion:
Common Assumptions and Terminology

Two assumptions are relevant to this work. The first is that the scene is relatively
constant — changes of scene content and lighting are small between frames, relative to
changes that are induced by camera, eye, or head motion (e.g., a person can turn his or
her head, hence turning an Eye Tap camera, and induce a much greater image flowfield
than that induced by movement of objects in the scene). The second assumption is
that of an ideal pinhole camera — implying unlimited depth of field with everything in



focus (infinite resolution) and implying that straight lines map to straight lines.1 This
assumption is particularly valid for laser Eye Tap cameras which actually do have
infinite depth of focus. Consequently, the camera, eye, or head has three degrees of
freedom in 2-D space and eight degrees of freedom in 3-D space: translation (X, Y,Z),
zoom (scale in each of the image coordinates x and y), and rotation (rotation about
the optical axis, pan, and tilt).

In this chapter, an “uncalibrated camera” refers to one in which the principal point2

is not necessarily at the center (origin) of the image and the scale is not necessarily
isotropic. It is assumed that the film, sensor, retina, or the like is flat (although we
know in fact that the retina is curved).

It is assumed that the zoom is continually adjustable by the camera user, and that
we do not know the zoom setting or if it changed between recording frames of the
image sequence. We also assume that each element in the camera sensor array returns
a quantity that is linearly proportional to the quantity of light received.3

3.5.2 VideoOrbits

Tsai and Huang [19] noted that the elements of the projective group give the true
camera motions with respect to a planar surface. They explored the group structure
associated with images of a 3-D rigid planar patch, as well as the associated Lie al-
gebra, although they assume that the correspondence problem has been solved. The
solution presented in this chapter (which does not require prior solution of correspon-
dence) also relies on projective group theory. We briefly review the basics of this
theory, before presenting the new solution in the next section.

Projective Group in 1-D

For simplicity, the theory is first reviewed for the projective coordinate transforma-
tion in one dimension:4 x̃ = (ax + b)/(cx + 1), where the images are functions of
one variable, x. The set of all projective coordinate transformations for which a 	= 0
forms a group, P, the projective group. When a 	= 0 and c = 0, it is the affine group.
When a = 1 and c = 0, it becomes the translation group.

Of the six coordinate transformations in the previous section, only the projective,
affine, and translation operations form groups. A group of operators together with
the set of 1-D images (operands) form a group operation.5 The new set of images

1When using low cost wide-angle lenses, there is usually some barrel distortion which we correct using
the method of Campbell and Bobick [26].
2The principal point is where the optical axis intersects the film, retina, sensor, or the like, as the case may
be.
3This condition can be enforced over a wide range of light intensity levels, by using the Wyckoff princi-
ple [27, 28].
4In a 2-D world, the “camera” consists of a center of projection (pinhole lens) and a line (1-D sensor array
or 1-D “film”).
5Also known as a group action or G-set [29].



that results from applying all possible operators from the group to a particular image
from the original set is called the orbit of that image under the group operation [29].

A camera at a fixed location, and free to zoom and pan, gives rise to a resulting pair
of 1-D frames taken by the camera, which are related by the coordinate transformation
from x1 to x2, given by [30]:

x2 = z2 tan (arctan (x1/z1) − θ) , ∀x1 	= o1

= (ax1 + b) / (cx1 + 1) , ∀x1 	= o1 (3.1)

where a = z2/z1, b = −z2 tan(θ), c = tan(θ)/z1, and o1 = z1 tan(π/2+θ) = −1/c
is the location of the singularity in the domain. We should emphasize that c, the degree
of perspective, has been given the interpretation of a chirp-rate [30]. The coordinate
transformations of Eq. (3.1) form a group operation. This result and the proof of this
group’s isomorphism to the group corresponding to nonsingular projections of a flat
object are given in Mann and Picard [31].

Projective Group in 2-D

The theory for the projective, affine, and translation groups also holds for the
familiar 2-D images taken of the 3-D world. The video orbit of a given 2-D frame
is defined to be the set of all images that can be produced by applying operators
from the 2-D projective group to the given image. Hence, we restate the coordinate
transformation problem: given a set of images that lie in the same orbit of the group,
we wish to find for each image pair that operator in the group which takes one image
to the other image.

If two frames, say f1 and f2, are in the same orbit, then there is a group operation
p such that the mean squared error (MSE) between f1 and f ′

2 = p ◦f2 is zero, where
the symbol ◦ denotes the operation of p acting on frame f2. In practice, however, we
find which element of the group takes one image “nearest” the other, for there will
be a certain amount of parallax, noise, interpolation error, edge effects, changes in
lighting, depth of focus, etc. Fig. 3.4 illustrates the operator p acting on frame f2 to
move it nearest to frame f1. (This figure does not, however, reveal the precise shape
of the orbit, which occupies an 8-D space.)

The primary assumptions in these cases are that of no parallax and of a static
scene. Because the 8-parameter projective model is “exact,” it is theoretically the
right model to use for estimating the coordinate transformation. The examples that
follow demonstrate that it also performs better in practice than the other proposed
models. In the next section, a new technique for estimating its eight parameters is
shown.



FIGURE 3.4
Video orbits. (a) The orbit of frame 1 is the set of all images that can be produced
by acting on frame 1 with any element of the operator group. Assuming that
frames 1 and 2 are from the same scene, frame 2 will be close to one of the possible
projective coordinate transformations of frame 1. In other words, frame 2 lies
near the orbit of frame 1. (b) By bringing frame 2 along its orbit (which is nearly
the same orbit as the orbit of frame 1), we can determine how closely the two
orbits come together at frame 1.

3.6 Framework: Comparameter Estimation and Optical Flow

Before the new results are presented, existing methods of comparameter estimation
for coordinate transformations are reviewed. Comparameters refer to the relative
parameters that transform one image into another, between a pair of images from an
image sequence. Estimation of comparameters in a pairwise fashion can be dealt with
globally based on the group properties, assuming the parameters in question trace an
orbit of a group.

We classify existing methods into two categories: feature-based and featureless. Of
the featureless methods, consider two subcategories: methods based on minimizing
MSE (generalized correlation, direct nonlinear optimization) and methods based on
spatio-temporal derivatives and optical flow. Note that variations such as multiscale
have been omitted from these categories; multiscale analysis can be applied to any
of them. The new algorithm developed in this chapter (with final form given in
Section 3.7) is featureless and is based on multiscale spatio-temporal derivatives.

Some of the descriptions below are presented for hypothetical 1-D images taken in a
2-D space. This simplification yields a clearer comparison of the estimation methods.
The new theory and applications will be presented subsequently for 2-D images taken
in a 3-D space.

3.6.1 Feature-Based Methods

Feature-based methods [32, 33] assume that point correspondences in both images
are available. In the projective case, given at least three correspondences between
point pairs in the two 1-D images, we find the element p = {a, b, c} ∈ P that maps the



second image into the first. Let xk, k = 1, 2, 3, . . . be the points in one image, and let
x̃k be the corresponding points in the other image. Then, x̃k = (axk + b)/(cxk + 1).
Rearranging yields axk + b− xkx̃kc = x̃k , so that a, b, and c can be found by solving
k ≥ 3 linear equations in three unknowns:

[
xk 1 −x̃kxk

] [
a b c

]T = [
x̃k

]
(3.2)

using least squares if there are more than three correspondence points. The extension
from 1-D images to 2-D images is conceptually identical; for the affine and projective
models, the minimum number of correspondence points needed in 2-D is three and
four, respectively.

A major difficulty with feature-based methods is finding the features. Good features
are often hand-selected or computed, possibly with some degree of human interven-
tion [34]. A second problem with features is their sensitivity to noise and occlusion.
Even if reliable features exist between frames, these features may be subject to signal
noise and occlusion. The emphasis in the rest of this chapter is on robust featureless
methods.

3.6.2 Featureless Methods Based on Generalized Cross-Correlation

Cross-correlation of two frames is a featureless method of recovering translation
model comparameters. Affine and projective comparameters can also be recovered
using generalized forms of cross-correlation between two images (e.g., comparing
two images using cross correlation and related methods).

Generalized cross-correlation is based on an inner-product formulation which es-
tablishes a similarity metric between two functions, such as g and h, where h ≈ p◦g
is an approximately coordinate-transformed version of g but the comparameters of
the coordinate transformation p are unknown.6 We can find, by exhaustive search
(applying all possible operators, p, to h), the “best” p as the one that maximizes the
inner product:

∫ ∞

−∞
g(x)

p−1 ◦ h(x)∫ ∞
−∞ p−1 ◦ h(x)dx

dx (3.3)

where we have normalized the energy of each coordinate-transformedhbefore making
the comparison. Equivalently, instead of maximizing a similarity metric, we can

minimize an anti-similarity metric, such as MSE, given by
∫ ∞
−∞

(
g(x) − p−1 ◦ h(x)

)2

dx. Solving Eq. (3.3) has an advantage over finding MSE when one image is not only
a coordinate-transformed version of the other but is also an amplitude-scaled version,
as generally happens when there is an automatic gain control or an automatic iris in
the camera.

6In the presence of additive white Gaussian noise, this method, also known as “matched filtering,” leads
to a maximum likelihood estimate of the parameters [35].



In 1-D, the affine model permits only dilation and translation. Given h, an affine
coordinate-transformed version of g, generalized correlation amounts to estimating
the parameters for dilation a and translation b by exhaustive search. The collection
of all possible coordinate transformations, when applied to one of the images (say, h)
serves to produce a family of templates to which the other image, g, can be compared.
If we normalize each template so that all have the same energy

ha,b(x) = 1√
a
h(ax + b)

then the maximum likelihood estimate corresponds to selecting the member of the
family that gives the largest inner product:

〈g(x), ha,b(x)〉 =
∫ ∞

−∞
g(x)ha,b(x)dx

This result is known as a cross-wavelet transform. A computationally efficient
algorithm for the cross-wavelet transform has recently been presented [36]. (See
Weiss [37] for a good review on wavelet-based estimation of affine coordinate trans-
formations.)

Just like the cross-correlation for the translation group and the cross-wavelet for the
affine group, the cross-chirplet can be used to find the comparameters of a projective
coordinate transformation in 1-D, searching over a 3-parameter space. The chirplet
transform [38] is a generalization of the wavelet transform. The projective-chirplet
has the form

ha,b,c = h

(
ax + b

cx + 1

)
(3.4)

where h is the mother chirplet, analogous to the mother wavelet of wavelet theory.
Members of this family of functions are related to one another by projective coordinate
transformations.

With 2-D images, the search is over an 8-parameter space. A dense sampling of this
volume is computationally prohibitive. Consequently, combinations of coarse-to-fine
and iterative or repetitive gradient-based search procedures are required. Adaptive
variants of the chirplet transform have been previously reported in the literature [39].
However, there are still many problems with the adaptive chirplet approach; thus,
featureless methods based on spatio-temporal derivatives are now considered.

3.6.3 Featureless Methods Based on Spatio-Temporal Derivatives

Optical Flow — Translation Flow

When the change from one image to another is small, optical flow [40] may be
used. In 1-D, the traditional optical flow formulation assumes each point x in frame t

is a translated version of the corresponding point in frame t +$t , and that $x and$t



are chosen in the ratio $x/$t = uf , the translational flow velocity of the point in
question. The image brightness E(x, t) is described by

E(x, t) = E(x + $x, t + $t), ∀(x, t) . (3.5)

In the case of pure translation, uf is constant across the entire image. More generally
though, a pair of 1-D images are related by a quantity, uf (x) at each point in one of
the images.

Expanding the right side of Eq. (3.5) in a Taylor series and cancelling 0th order
terms give the well-known optical flow equation ufEx +Et + h.o.t. = 0, where Ex

and Et are the spatial and temporal derivatives, respectively, and h.o.t. denotes higher
order terms. Typically, the higher order terms are neglected, giving the expression
for the optical flow at each point in one of the two images:

ufEx + Et ≈ 0 . (3.6)

Affine Fit and Affine Flow: a New Relationship

Given the optical flow between two images, g and h, we wish to find the coordinate
transformation to apply to h to make it look most like g. We now describe two
approaches based on the affine model: (1) finding the optical flow at every point and
then fitting this flow with an affine model (affine fit), and (2) rewriting the optical flow
equation in terms of an affine (not translation) motion model (affine flow).

Wang and Adelson have proposed fitting an affine model to an optical flow field [41]
of 2-D images. We briefly examine their approach with 1-D images (1-D images sim-
plify analysis and comparison to other methods). Denote coordinates in the original
image, g, by x, and in the new image, h, by x̃. Suppose that h is a dilated and
translated version of g, so x̃ = ax + b for every corresponding pair (x̃, x). Equiva-
lently, the affine model of velocity (normalizing $t = 1), um = x̃ − x, is given by
um = (a − 1)x + b. We can expect a discrepancy between the flow velocity, uf ,
and the model velocity, um, due to either errors in the flow calculation or errors in the
affine model assumption. Accordingly, we apply linear regression to obtain the best
least-squares fit by minimizing:

εf it =
∑
x

(
um − uf

)2 =
∑

(um + Et/Ex)
2 . (3.7)

The constants a and b that minimize εf it over the entire patch are found by differ-
entiating Eq. (3.7), and setting the derivatives to zero. This results in the affine fit
equations [42]:

[ ∑
x x

2,
∑

x x∑
x x,

∑
x 1

] [
a − 1
b

]
= −

[ ∑
x xEt/Ex∑
x Et/Ex

]
. (3.8)

Alternatively, the affine coordinate transformation may be directly incorporated
into the brightness change constraint equation (3.5). Bergen et al. [43] have proposed
this method, which has been called affine flow to distinguish it from the affine fit



model of Wang and Adelson Eq. (3.8). Let us show how affine flow and affine fit are
related. Substituting um = (ax + b) − x directly into Eq. (3.6) in place of uf and
summing the squared error

εflow =
∑
x

(umEx + Et)
2 (3.9)

over the whole image, differentiating, and equating the result to zero gives a linear
solution for both a and b:[ ∑

x x
2E2

x,
∑

x xE
2
x∑

x xE
2
x,

∑
x E

2
x

] [
a − 1
b

]
= −

[ ∑
x xExEt∑
x ExEt

]
. (3.10)

To see how this result compares to the affine fit we rewrite Eq. (3.7)

εf it =
∑
x

(
umEx + Et

Ex

)2

(3.11)

and observe, comparing Eqs. (3.9) and (3.11), that affine flow is equivalent to a
weighted least-squares fit, where the weighting is given by E2

x . Thus the affine flow
method tends to put more emphasis on areas of the image that are spatially varying
than does the affine fit method. Of course, one is free to separately choose the
weighting for each method in such a way that affine fit and affine flow methods both
give the same result. Practical experience tends to favor the affine flow weighting, but,
more generally, perhaps we should ask, “what is the best weighting?” For example,
maybe there is an even better answer than the choice among these two. Lucas and
Kanade [44], among others, have considered weighting issues.

Another approach to the affine fit involves computation of the optical flow field
using the multiscale iterative method of Lucas and Kanade, and then fitting to the affine
model. An analogous variant of the affine flow method involves multiscale iteration
as well, but in this case the iteration and multiscale hierarchy are incorporated directly
into the affine estimator [43]. With the addition of multiscale analysis, the fit and
flow methods differ in additional respects beyond just the weighting. Experience
indicates that the direct multiscale affine flow performs better than the affine fit to
the multiscale flow. Multiscale optical flow makes the assumption that blocks of
the image are moving with pure translational motion, and then, paradoxically, the
affine fit refutes this pure-translation assumption. However, fit provides some utility
over flow when it is desired to segment the image into regions undergoing different
motions [45], or to gain robustness by rejecting portions of the image not obeying the
assumed model.

Projective Fit and Projective Flow: New Techniques

Analogous to the affine fit and affine flow of the previous section, two new methods
are proposed: projective fit and projective flow. For the 1-D affine coordinate trans-
formation, the graph of the range coordinate as a function of the domain coordinate
is a straight line; for the projective coordinate transformation, the graph of the range



coordinate as a function of the domain coordinate is a rectangular hyperbola [31].
The affine fit case used linear regression; however, in the projective case hyperbolic
regression is used. Consider the flow velocity given by Eq. (3.6) and the model
velocity:

um = x̃ − x = ax + b

cx + 1
− x (3.12)

and minimize the sum of the squared difference paralleling Eq. (3.9):

ε =
∑
x

(
ax + b

cx + 1
− x + Et

Ex

)2

. (3.13)

For projective-flow (p-flow) we use, as for affine flow, the Taylor series of um:

um + x = b + (a − bc)x + (bc − a)cx2 + (a − bc)c2x3 + · · · (3.14)

and again use the first three terms, obtaining enough degrees of freedom to account
for the 3 comparameters being estimated. Letting ε = ∑

(−h.o.t.)2 = ∑
((b +

(a − bc − 1)x + (bc − a)cx2)Ex + Et)
2, q2 = (bc − a)c, q1 = a − bc − 1,

and q0 = b, and differentiating with respect to each of the 3 comparameters of q,
setting the derivatives equal to zero, and verifying with the second derivatives, gives
the linear system of equations for projective flow:




∑
x4E2

x

∑
x3E2

x

∑
x2E2

x∑
x3E2

x

∑
x2E2

x

∑
xE2

x∑
x2E2

x

∑
xE2

x

∑
E2

x




 q2

q1
q0


=−




∑
x2ExEt∑
xExEt∑
ExEt


 (3.15)

In Section 3.7 we extend this derivation to 2-D images and show how a repetitive
approach may be used to compute the parameters, p, of the exact model. A feedback
system is used where the feedforward loop involves computation of the approximate
parameters, q, in the extension of Eq. (3.15) to 2-D.

As with the affine case, projective fit and projective flow Eq. (3.15) differ only
in the weighting assumed, although projective fit provides the added advantage of
enabling the motion within an arbitrary subregion of the image to be easily found.
In this chapter only global image motion is considered, for which the projective flow
model has been found to be best [42].

3.7 Multiscale Projective Flow Comparameter Estimation

In the previous section, two new techniques, p-fit and p-flow, were proposed. Now
we describe our algorithm for estimating the projective coordinate transformation
for 2-D images using p-flow. We begin with the brightness constancy constraint



equation for 2-D images [40] which gives the flow velocity components in the x and
y directions, analogous to Eq. (3.6):

ufEx + vf Ey + Et ≈ 0 . (3.16)

As is well known [40], the optical flow field in 2-D is underconstrained.7 The
model of pure translation at every point has two comparameters, but there is only
one equation (3.16) to solve. Thus it is common practice to compute the optical flow
over some neighborhood, which must be at least two pixels but is generally taken
over a small block, 3 × 3, 5 × 5, or sometimes larger (e.g., the entire image, as in this
chapter).

Our task is not to deal with the 2-D translation flow but with the 2-D projective
flow, estimating the eight comparameters in the coordinate transformation:

x̃ =
[
x̃

ỹ

]
= A[x, y]T + b

cT [x, y]T + 1
= Ax + b

cT x + 1
. (3.17)

The desired eight scalar parameters are denoted by p = [A,b; c, 1], A ∈ R
2×2,

b ∈ R
2×1, and c ∈ R

2×1.

As with the 1-D images, we make similar assumptions in expanding Eq. (3.17)
in its own Taylor series, analogous to Eq. (3.14). If we take the Taylor series up
to second order terms, we obtain the biquadratic model mentioned in Section 3.5.
As mentioned there, by appropriately constraining the twelve parameters of the bi-
quadratic model, we obtain a variety of 8-parameter approximate models. In our
algorithm for estimating the exact projective group parameters, we will use one of
these approximate models in an intermediate step.8 We illustrate the algorithm below
using the bilinear approximate model since it has the simplest notation.9 First, we
incorporate the approximate model directly into the generalized fit or generalized
flow. The Taylor series for the bilinear case gives

um + x = qx̃xyxy + (qx̃x + 1) x + qx̃yy + qx̃

vm + y = qỹxyxy + qỹxx + (
qỹy + 1

)
y + qỹ (3.18)

Incorporating these into the flow criteria yields a simple set of eight scalar “linear”

7Optical flow in 1-D did not suffer from this problem.
8Use of an approximate model that does not capture chirping or preserve straight lines can still lead to the
true projective parameters as long as the model captures at least eight degrees of freedom.
9The pseudo-perspective gives slightly better performance; its development is the same but with more
notation.



(correctly speaking, affine) equations in eight scalar unknowns, for “bilinear flow”:
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= − [
∑

Et xyEx,
∑

Et xEx,
∑

Et yEx,
∑

EtEx,
∑

Et xyEy,
∑

Et xEy,
∑

Et yEy,
∑

EtEy ]T

(3.19)

The summations are over the entire image (all x and y) if computing global motion
(as is done in this chapter), or over a windowed patch if computing local motion. This
equation looks similar to the 6 × 6 matrix equation presented in Bergen et al. [43],
except that it serves to address projective geometry rather than the affine geometry of
Bergen et al. [43].

In order to see how well the model describes the coordinate transformation between
2 images, say g and h, one might warp10 h to g, using the estimated motion model,
and then compute some quantity that indicates how different the resampled version
of h is from g. The MSE between the reference image and the warped image might
serve as a good measure of similarity. However, since we are really interested in how
the exact model describes the coordinate transformation, we assess the goodness of fit
by first relating the parameters of the approximate model to the exact model, and then
find the MSE between the reference image and the comparison image after applying
the coordinate transformation of the exact model. A method of finding the parameters
of the exact model, given the approximate model, is presented in Section 3.7.1.

3.7.1 Four Point Method for Relating Approximate Model to Exact
Model

Any of the approximations above, after being related to the exact projective model,
tend to behave well in the neighborhood of the identity, A = I,b = 0, c = 0. In 1-D,
we explicitly expanded the Taylor series model about the identity; here, although we
do not explicitly do this, we assume that the terms of the Taylor series of the model
correspond to those taken about the identity. In the 1-D case, we solve the three linear
equations in three unknowns to estimate the comparameters of the approximate motion
model, and then we relate the terms in this Taylor series to the exact comparameters,

10The term warp is appropriate here, since the approximate model does not preserve straight lines.



a, b, and c (which involves solving another set of three equations in three unknowns,
the second set being nonlinear, although very easy to solve).

In the extension to 2-D, the estimate step is straightforward, but the relate step is
more difficult because we now have eight nonlinear equations in eight unknowns,
relating the terms in the Taylor series of the approximate model to the desired exact
model parameters. Instead of solving these equations directly, we now propose a
simple procedure for relating the parameters of the approximate model to those of
the exact model, which we call the four point method:

1. Select four ordered pairs (such as the four corners of the bounding box contain-
ing the region under analysis, or the four corners of the image if the whole image
is under analysis). Here suppose, for simplicity, that these points are the corners
of the unit square: s = [s1, s2, s3, s4] = [(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T ].

2. Apply the coordinate transformation using the Taylor series for the approximate
model [e.g., Eq. (3.18)] to these points: r = um(s).

3. Finally, the correspondences between r and s are treated just like features. This
results in four easy-to-solve linear equations:[

x̃k
ỹk

]
=

[
xk,yk,1,0,0,0,−xkx̃k,−ykx̃k
0,0,0,xk,yk,1,−xkỹk,−ykỹk

]
[
ax̃x,ax̃y,bx̃ ,aỹx,aỹy,bỹ ,cx,cy

]
T (3.20)

where 1 ≤ k ≤ 4 is resulting in the exact eight parameters, p.

We remind the reader that the four corners are not feature correspondences as used
in the feature-based methods of Section 3.6.1, but, rather, are used so that the two
featureless models (approximate and exact) can be related to one another.

It is important to realize the full benefit of finding the exact parameters. While the
approximate model is sufficient for small deviations from the identity, it is not adequate
to describe large changes in perspective. However, if we use it to track small changes
incrementally, and each time relate these small changes to the exact model Eq. (3.17),
then we can accumulate these small changes using the law of composition afforded
by the group structure. This is an especially favorable contribution of the group
framework. For example, with a video sequence, we can accommodate very large
accumulated changes in perspective in this manner. The problems with cumulative
error can be eliminated, for the most part, by constantly propagating forward the true
values, computing the residual using the approximate model, and each time relating
this to the exact model to obtain a goodness-of-fit estimate.

3.7.2 Overview of the New Projective Flow Algorithm

Below is an outline of the new algorithm for estimation of projective flow. Details
of each step are in subsequent sections.

Frames from an image sequence are compared pairwise to test whether or not they
lie in the same orbit:



1. A Gaussian pyramid of three or four levels is constructed for each frame in the
sequence.

2. The comparameters p are estimated at the top of the pyramid, between the two
lowest-resolution images of a frame pair, g and h, using the repetitive method
depicted in Fig. 3.5.

3. The estimated p is applied to the next higher-resolution (finer) image in the
pyramid, p ◦ g, to make the two images at that level of the pyramid nearly
congruent before estimating the p between them.

4. The process continues down the pyramid until the highest-resolution image in
the pyramid is reached.

FIGURE 3.5
Method of computation of eight comparameters p between two images from the
same pyramid level, g and h. The approximate model parameters q are related
to the exact model parameters p in a feedback system.

3.7.3 Multiscale Repetitive Implementation

The Taylor-series formulations we have used implicitly assume smoothness; the
performance is improved if the images are blurred before estimation. To accomplish
this, we do not downsample critically after lowpass filtering in the pyramid. How-
ever, after estimation we use the original (unblurred) images when applying the final
coordinate transformation.

The strategy we present differs from the multiscale iterative (affine) strategy of
Bergen et al. in one important respect beyond simply an increase from six to eight
parameters. The difference is the fact that we have two motion models, the “exact
motion model” Eq. (3.17) and the “approximate motion model,” namely the Taylor
series approximation to the motion model itself. The approximate motion model is
used to iteratively converge to the exact motion model, using the algebraic law of
composition afforded by the exact projective group model. In this strategy, the exact
parameters are determined at each level of the pyramid, and passed to the next level.
The steps involved are summarized schematically in Fig. 3.5, and described below:

1. Initialize: set h0 = h and set p0,0 to the identity operator.



2. Iterate (k = 1 . . . K):

(a) Estimate: estimate the 8 or more terms of the approximate model be-
tween two image frames, g and hk−1. This results in approximate model
parameters qk .

(b) Relate: relate the approximate parameters qk to the exact parameters
using the “four point method.” The resulting exact parameters are pk .

(c) Resample: apply the law of composition to accumulate the effect of the
pk’s. Denote these composite parameters by p0,k = pk ◦p0,k−1. Then set
hk = p0,k ◦h. (This should have nearly the same effect as applying pk to
hk−1, except that it will avoid additional interpolation and anti-aliasing
errors you would get by resampling an already resampled image [16].)

Repeat until either the error between hk and g falls below a threshold, or until
some maximum number of repetitions is achieved. After the first repetition, the
parameters q2 tend to be near identity since they account for the residual between the
“perspective-corrected” image h1 and the “true” image g. We find that only two or
three repetitions are usually needed for frames from nearly the same orbit.

A rectangular image assumes the shape of an arbitrary quadrilateral when it un-
dergoes a projective coordinate transformation. In coding the algorithm, we pad the
undefined portions with the quantity NaN, a standard IEEE arithmetic [46] value, so
that any calculations involving these values automatically inherit NaN without slow-
ing down the computations. The algorithm, running in Matlab on an HP 735, takes
about six seconds per repetition for a pair of 320x240 images. A C language version,
optimized, compiled, and running on the wearable computer portion of various PSDs
built by the author, typically runs in a fraction of a second, in some cases on the order
of 1/10th of a second or so. A Xilinx FPGA-based version of the PSD is currently
being built by the author, together with Professor Jonathan Rose and others at the
University of Toronto, and is expected to run the entire process in less than 1/60th of
a second.

3.7.4 Exploiting Commutativity for Parameter Estimation

A fundamental uncertainty [47] is involved in the simultaneous estimation of pa-
rameters of a noncommutative group, akin to the Heisenberg uncertainty relation of
quantum mechanics. In contrast, for a commutative11 group (in the absence of noise),
we can obtain the exact coordinate transformation.

Segman, Rubinstein, and Zeevi [48] considered the problem of estimating the
parameters of a commutative group of coordinate transformations, in particular, the

11A commutative (or Abelian) group is one in which elements of the group commute. For example,
translation along the x-axis commutes with translation along the y-axis, so the 2-D translation group is
commutative.



parameters of the affine group [49]. Their work also deals with noncommutative
groups, in particular, in the incorporation of scale in the Heisenberg group12 [50].

Estimating the parameters of a commutative group is computationally efficient,
e.g., through the use of Fourier cross-spectra [51]. We exploit this commutativity
for estimating the parameters of the noncommutative 2-D projective group by first
estimating the parameters that commute. For example, we improve performance if
we first estimate the two parameters of translation, correct for the translation, and
then proceed to estimate the eight projective parameters. We can also simultaneously
estimate both the isotropic-zoom and the rotation about the optical axis by applying a
log-polar coordinate transformation followed by a translation estimator. This process
may also be achieved by a direct application of the Fourier-Mellin transform [52].
Similarly, if the only difference between g and h is a camera pan, then the pan may
be estimated through a coordinate transformation to cylindrical coordinates, followed
by a translation estimator.

In practice, we run through the following commutative initialization before esti-
mating the parameters of the projective group of coordinate transformations:

1. Assume that h is merely a translated version of g.

(a) Estimate this translation using the method of Girod and Kuo [51].

(b) Shift h by the amount indicated by this estimate.

(c) Compute the MSE between the shiftedh andg and compare to the original
MSE before shifting.

(d) If an improvement has resulted, use the shifted h from now on.

2. Assume that h is merely a rotated and isotropically zoomed version of g.

(a) Estimate the two parameters of this coordinate transformation.

(b) Apply these parameters to h.

(c) If an improvement has resulted, use the coordinate-transformed (rotated
and scaled) h from now on.

3. Assume that h is merely an x-chirped (panned) version of g and similarly x-
dechirped h. If an improvement results, use the x-dechirped h from now on.
Repeat for y (tilt.)

Compensating for one step may cause a change in choice of an earlier step. Thus it
might seem desirable to run through the commutative estimates repetitively. However,
our experience on lots of real video indicates that a single pass usually suffices and, in
particular, will catch frequent situations where there is a pure zoom, pure pan, pure tilt,
etc. both saving the rest of the algorithm computational effort, as well as accounting
for simple coordinate transformations such as when one image is an upside-down

12While the Heisenberg group deals with translation and frequency-translation (modulation), some of the
concepts could be carried over to other more relevant group structures.



version of the other. (Any of these pure cases corresponds to a single parameter
group, which is commutative.) Without the commutative initialization step, these
parameter estimation algorithms are prone to getting caught in local optima and thus
never converging to the global optimum.

3.8 Performance/Applications

3.8.1 A Paradigm Reversal in Resolution Enhancement

Much of the previous work on resolution enhancement [14, 53, 54] has been di-
rected toward military applications, where one cannot get close to the subject matter;
therefore, lenses of very long focal lengths were generally used. In this case, there
was very little change in perspective and the motion could be adequately approxi-
mated as affine. Budgets also permitted lenses of exceptionally high quality, so the
resolving power of the lens far exceeded the resolution of the sensor array.

Sensor arrays in earlier applications generally had a small number of pixels com-
pared to today’s sensors, leaving considerable “dead space” between pixels. Conse-
quently, using multiple frames from the image sequence to fill in gaps between pixels
was perhaps the single most important consideration in combining multiple frames
of video.

We argue that in the current age of consumer video, the exact opposite is generally
true: subject matter generally subtends a larger angle (e.g., is either closer, or more
panoramic in content), and the desire for low cost has led to cheap plastic lenses
that have very large distortion. Moreover, sensor arrays have improved dramatically.
Accurate solution of the projective model is more important than ever in these new
applications.

In addition to consumer video, there will be a large market in the future for small
wearable wireless cameras. A prototype, the wearable wireless webcam (an eyeglass-
based video production facility uplinked to the Internet [11]) has provided one of the
most extreme testbeds for the algorithms explored in this research, as it captures noisy
transmitted video frames, grabbed by a camera attached to a human head, free to move
at the will of the individual. The projective model is especially well-suited to this new
application, as people can turn their heads (camera rotation about an approximately
fixed center of projection) much faster than they can undergo locomotion (camera
translation). The new algorithm described in this chapter has consistently performed
well on noisy data gathered from the headcam, even when the scene is not static and
there is parallax.

Four Ways by which Resolution May be Enhanced:

1. Sub-pixel — “Filling in the gaps.”



2. Scene widening — Increased spatial extent; stitching together images in a
panorama.

3. Saliency — Suppose we have a wide shot of a scene, and then zoom into one
person’s face in the scene. In order to insert the face without downsampling it,
we need to upsample the wide shot, increasing the meaningful pixel count of
the whole image.

4. Perspective — In order to seamlessly mosaic images from panning with a wide
angle lens, images need to be brought into a common system of coordinates
resulting in a keystoning effect on the previously rectangular image boundary.
Thus, we must hold the pixel resolution constant on the “squashed” side and
upsample on the “stretched” side, resulting in increased pixel resolution of the
entire mosaic.

The first of these four may arise from either microscopic camera movement (induc-
ing image motion on the order of a pixel or less) or macroscopic camera movement
(inducing motion on the order of many pixels). However, as movement increases,
errors in registration will tend to increase, and enhancement due to sub-pixels will
be reduced, while the enhancement due to scene widening, saliency, and perspective
will increase.

Results of applying the proposed method to subpixel resolution enhancement are
not presented in this chapter but may be found in Mann and Picard [31].

3.8.2 Increasing Resolution in the “Pixel Sense”

Fig. 3.6 shows some frames from a typical image sequence. Fig. 3.7 shows the
same frames transformed into the coordinate system of frame (c); that is, the middle
frame was chosen as the reference frame.

Given that we have established a means of estimating the projective coordinate
transformation between any pair of images, there are two basic methods we use for
finding the coordinate transformations between all pairs of a longer image sequence.
Because of the group structure of the projective coordinate transformations, it suffices
to arbitrarily select one frame and find the coordinate transformation between every
other frame and this frame. The two basic methods are:

1. Differential comparameter estimation: the coordinate transformations be-
tween successive pairs of images, p0,1, p1,2, p2,3, . . . , estimated.

2. Cumulative comparameter estimation: the coordinate transformation be-
tween each image and the reference image is estimated directly. Without loss
of generality, select frame zero (E0) as the reference frame and denote these
coordinate transformations as p0,1, p0,2, p0,3, . . .

Theoretically, the two methods are equivalent:

E0 = p0,1 ◦ p1,2 ◦ . . . ◦ pn−1,nEn — differential method

E0 = p0,nEn — cumulative method (3.21)



FIGURE 3.6
Received frames of image sequence transformed by way of comparameters with
respect to frame (c). Frames from original image orbit, sent from the apparatus
of the author’s WearComp (“wearable computer”) invention [1], connected to
eyeglass-based imaging apparatus. (Note the apparatus captures a sideways
view so that it can “paint” out the image canvas with a wider “brush,” when
sweeping across for a panorama.) The entire sequence, consisting of all 20 color
frames, is available (see note at end of the references section), together with
examples of applying the proposed algorithm to this data.

FIGURE 3.7
Received frames from image video orbit, transformed by way of comparameters
with respect to frame (c). This transformed sequence involves moving them
along the orbit to the reference frame (c). The coordinate-transformed images
are alike except for the region over which they are defined. Note that the regions
are not parallelograms; thus, methods based on the traditional affine model fail.

However, in practice the two methods differ for two reasons:

1. Cumulative error: in practice, the estimated coordinate transformations be-
tween pairs of images register them only approximately, due to violations of
the assumptions (e.g., objects moving in the scene, center of projection not
fixed, camera swings around to bright window and automatic iris closes, etc.).
When a large number of estimated parameters are composed, cumulative error
sets in.



2. Finite spatial extent of image plane: theoretically, the images extend infinitely
in all directions, but, in practice, images are cropped to a rectangular bounding
box. Therefore, a given pair of images (especially if they are far from adjacent
in the orbit) may not overlap at all; hence, it is not possible to estimate the
parameters of the coordinate transformation using those two frames.

The frames of Fig. 3.6 were brought into register using the differential parameter
estimation and “cemented” together seamlessly on a common canvas. Cementing
involves piecing the frames together, for example by median, mean, or trimmed
mean, or combining on a subpixel grid [31]. (Trimmed mean was used here, but the
particular method made little visible difference.) Fig. 3.8 shows this result (projec-
tive/projective), with a comparison to two nonprojective cases. The first comparison
is to affine/affine where affine parameters were estimated (also multiscale) and used
for the coordinate transformation. The second comparison, affine/projective, uses the
six affine parameters found by estimating the eight projective parameters and ignor-
ing the two chirp parameters c (which capture the essence of tilt and pan). These six
parameters A, b are more accurate than those obtained using the affine estimation,
as the affine estimation tries to fit its shear parameters to the camera pan and tilt. In
other words, the affine estimation does worse than the six affine parameters within
the projective estimation. The affine coordinate transform is finally applied, giving
the image shown. Note that the coordinate-transformed frames in the affine case are
parallelograms.

3.9 Summary

Some new connections between different motion estimation approaches, in par-
ticular a relation between affine fit and affine flow have been presented. This led to
the proposal of two new techniques, projective fit and projective flow which estimate
the projective comparameters (coordinate transformation) between pairs of images,
taken with a camera that is free to pan, tilt, rotate about its optical axis and zoom.

A new multiscale repetitive algorithm for projective flow was presented and applied
to comparametric transformations for sending images over a serendipitous communi-
cations channel. The algorithm solves for the 8 parameters of the “exact” model (the
projective group of coordinate transformations), is fully automatic, and converges
quickly.

The proposed method was found to work well on image data collected from both
good-quality and poor-quality video under a wide variety of transmission conditions
(noisy communications channels, etc.) as well as a wide variety of visual conditions
(sunny, cloudy, day, night). It has been tested primarily with an eyeglass-mounted
PSD, and performs successfully even in the presence of noise, interference, scene
motion (such as people walking through the scene), and parallax (such as the author’s
head moving freely.)



FIGURE 3.8
Frames of Fig. 3.7 “cemented” together on single image “canvas,” with com-
parison of affine and projective models. Note the good registration and nice
appearance of the projective/projective image despite the noise in the serendipi-
tous transmitter of the wearable Personal Safety Device, wind-blown trees, and
the fact that the rotation of the camera was not actually about its center of pro-
jection. To see this image in color, see http://wearcam.org/orbitswhere
additional examples (e.g., some where the algorithm still worked despite “crowd
noise” where many people were entering and leaving the building) also appear.
Selecting just a few of the 20 frames produces approximately the same picture.
In this way the methodology makes it difficult for a criminal to jam or prevent
the operation of the Personal Safety Device. Note also that the affine model fails
to properly estimate the motion parameters (affine/affine), and even if the “ex-
act” projective model is used to estimate the affine parameters, there is no affine
coordinate transformation that will properly register all of the image frames.

By looking at image sequences as collections of still pictures related to one another
by global comparameters, the images were expressed as part of the orbit of a group of
coordinate transformations. This comparametric philosophy for transforms, image
sequence coding, and transmission suggests that rather than sending every frame of
a video sequence, we might send a reference frame, and the comparameters relating
this reference frame to the other frames. More generally, we can send a photoquanti-
graphic image composite [1], along with a listing of the comparameters from which
each image in the sequence may be drawn.

A new framework for constructing transforms, based on an Edgertonian rather
than a Nyquist sampling philosophy, was proposed. Concomitant with Edgertonian
sampling, was the principle of Fear of Functionality (FoF). By putting ourselves in the
shoes of one who would regard functionality as undesirable, a new framework emerges
in which unpredictability is a good thing. While the FoF framework seems at first



paradoxical, it leads the way to new kinds of image transforms and image compression
schemes. For example, the proposed comparametric image compression is based on
a best case FoF model.

This model of comparametric compression is best suited to a wearable serendipitous
personal imaging system, especially one that naturally taps the mind’s eye, with the
possibility that at any time what goes in the eye might also go into an indestructible
(e.g., distributed on the World Wide Web) photographic/videographic memory recall
system.

In the future, it is expected that many people will wear personal imaging devices,
and that there will be a growing market for EyeTap (TM) video cameras once they are
manufactured in mass production. The fundamental issue of limited bandwidth over
wireless networks will make it desirable to further develop and refine this compara-
metric image compression and transmission approach. Moreover, a robust best-case
wireless network may well supplant the current worst-case engineering approach used
with many wireless networks.

PTP, a lossy, connectionless, serendipitously updated transmission protocol, will
find new applications in the future world of ubiquitous Eye Tap video transmissions
of first-person experiences.
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