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8.1 Introduction

Pseudonoise sequences (PN sequences), also referred to as pseudorandom sequences, are sequences
that are deterministically generated and yet possess some properties that one would expect to find in
randomly generated sequences. Applications of PN sequences include signal synchronization, nav-
igation, radar ranging, random number generation, spread-spectrum communications, multipath
resolution, cryptography, and signal identification in multiple-access communication systems. The
correlation between two sequences {x(t)} and {y(t)} is the complex inner product of the first sequence
with a shifted version of the second sequence. The correlation is called 1) an autocorrelation if the
two sequences are the same, 2) a crosscorrelation if they are distinct, 3) a periodic correlation if
the shift is a cyclic shift, 4) an aperiodic correlation if the shift is not cyclic, and 5) a partial-period
correlation if the inner product involves only a partial segment of the two sequences. More precise
definitions are given subsequently.

Binary m sequences, defined in the next section, are perhaps the best-known family of PN se-
quences. The balance, run-distribution, and autocorrelation properties of these sequences mimic
those of random sequences. It is perhaps the random-like correlation properties of PN sequences that
makes them most attractive in a communications system, and it is common to refer to any collection
of low-correlation sequences as a family of PN sequences.

Section 8.2 begins by discussing m sequences. Thereafter, the discussion continues with a de-
scription of sequences satisfying various correlation constraints along the lines of the accompanying
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self-explanatory figure, Fig. 8.1. Expanded tutorial discussions on pseudorandom sequences may be
found in [14], in [15, Chapter 5] and in [6].

8.2 m Sequences

A binary {0, 1} shift-register sequence {s(t)} is a sequence that satisfies a linear recurrence relation
of the form

r∑
i=0

fis(t + i) = 0 , for all t ≥ 0 (8.1)

where r ≥ 1 is the degree of the recursion; the coefficients fi belong to the finite field GF(2) = {0, 1}
where the leading coefficient fr = 1. Thus, both sequences {a(t)} and {b(t)} appearing in Fig. 8.2
are shift-register sequences. A sequence satisfying a recursion of the form in Eq. (8.1) is said to have
characteristic polynomial f (x) = ∑r

i=0 fix
i . Thus, {a(t)} and {b(t)} have characteristic polynomials

given by f (x) = x3 + x + 1 and f (x) = x3 + x2 + 1, respectively.

FIGURE 8.1: Overview of pseudonoise sequences.

Since an r-bit binary shift register can assume a maximum of 2r different states, it follows that
every shift-register sequence {s(t)} is eventually periodic with period n ≤ 2r , i.e.,

s(t) = s(t + n), for all t ≥ N

for some integer N . In fact, the maximum period of a shift-register sequence is 2r − 1, since a shift
register that enters the all-zero state will remain forever in that state. The upper shift register in
Fig. 8.2 when initialized with starting state 0 01 generates the periodic sequence {a(t)} given by

0010111 0010111 0010111 · · ·  (8.2)

of period n = 7. It follows then that this shift register generates sequences of maximal period starting
from any nonzero initial state.

An m sequence is simply a binary shift-register sequence having maximal period. For every r ≥ 1,

m sequences are known to exist. The periodic autocorrelation function θs of a binary {0, 1} sequence
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FIGURE 8.2: An example Gold sequence generator. Here {a(t)} and {b(t)} are m sequences of
length 7.

{s(t)} of period n is defined by

θs(τ ) =
n−1∑
t=0

(−1)s(t+τ)−s(t) , 0 ≤ τ ≤ n − 1

An m sequence of length 2r −1has the following attributes. 1) Balance property: in each period of the
m sequence there are 2r−1 ones and 2r−1 − 1 zeros. 2) Run property: every nonzero binary s-tuple,
s ≤ r occurs 2r−s times, the all-zero s-tuple occurs 2r−s − 1 times. 3) Two-level autocorrelation
function:

θs(τ ) =
{

n if τ = 0
−1 if τ 6= 0

(8.3)

The first two properties follow immediately from the observation that every nonzero r-tuple occurs
precisely once in each period of the m sequence. For the third property, consider the difference
sequence {s(t + τ) − s(t)} for τ 6= 0. This sequence satisfies the same recursion as the m sequence
{s(t)} and is clearly not the all-zero sequence. It follows, therefore, that {s(t +τ)−s(t)} ≡ {s(t +τ ′)}
for some τ ′, 0 ≤ τ ′ ≤ n − 1, i.e., is a different cyclic shift of the m sequence {s(t)}. The balance
property of the sequence {s(t + τ ′)} then gives us attribute 3. The m sequence {a(t)} in Eq. (8.2) can
be seen to have the three listed properties.

If {s(t)} is any sequence of period n and d is an integer, 1 ≤ d ≤ n, then the mapping {s(t)} →
{s(dt)} is referred to as a decimation of {s(t)} by the integer d . If {s(t)} is an m sequence of period
n = 2r −1 and d is an integer relatively prime to 2r −1, then the decimated sequence {s(dt)} clearly
also has period n. Interestingly, it turns out that the sequence {s(dt)} is always also an m sequence
of the same period. For example, when {a(t)} is the sequence in Eq. (8.2), then

a(3t) = 0011101 0011101 0011101· · · (8.4)

and

a(2t) = 0111001 0111001 0111001· · · (8.5)

The sequence {a(3t)} is also an m sequence of period 7, since it satisfies the recursion

s(t + 3) + s(t + 2) + s(t) = 0 for all t
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of degree r = 3. In fact {a(3t)} is precisely the sequence labeled {b(t)} in Fig. 8.2. The sequence
{a(2t)} is simply a cyclically shifted version of {a(t)} itself; this property holds in general. If {s(t)} is
any m sequence of period 2r −1, then {s(2t)} will always be a shifted version of the same m sequence.
Clearly, the same is true for decimations by any power of 2.

Starting from an m sequence of period 2r −1, it turns out that one can generate all m sequences of
the same period through decimations by integers d relatively prime to 2r − 1. The set of integers d ,
1 ≤ d ≤ 2r −1satisfying (d, 2r −1) = 1 forms a group under multiplication modulo 2r −1, with the
powers {2i | 0 ≤ i ≤ r−1} of 2 forming a subgroup of order r . Since decimation by a power of 2 yields
a shifted version of the same m sequence, it follows that the number of distinct m sequences of period
2r − 1 is [φ(2r − 1)/r] where φ(n) denotes the number of integers d , 1 ≤ d ≤ n, relatively prime to
n. For example, when r = 3, there are just two cyclically distinct m sequences of period 7, and these
are precisely the sequences {a(t)} and {b(t)} discussed in the preceding paragraph. Tables provided
in [12] can be used to determine the characteristic polynomial of the various m sequences obtainable
through the decimation of a single given m sequence. The classical reference on m sequences is [4].

If one obtains a sequence of some large length n by repeatedly tossing an unbiased coin, then such
a sequence will very likely satisfy the balance, run, and autocorrelation properties of an m sequence
of comparable length. For this reason, it is customary to regard the extent to which a given sequence
possesses these properties as a measure of randomness of the sequence. Quite apart from this, in
many applications such as signal synchronization and radar ranging, it is desirable to have sequences
{s(t)} with low autocorrelation sidelobes i.e., |θs(τ )| is small for τ 6= 0. Whereas m sequences are a
prime example, there exist other methods of constructing binary sequences with low out-of-phase
autocorrelation.

Sequences {s(t)} of period n having an autocorrelation function identical to that of an m sequence,
i.e., having θs satisfying Eq. (8.3) correspond to well-studied combinatorial objects known as cyclic
Hadamard difference sets. Known infinite families fall into three classes 1) Singer and Gordon, Mills
and Welch, 2) quadratic residue, and 3) twin-prime difference sets. These correspond, respectively,
to sequences of period n of the form n = 2r − 1, r ≥ 1; n prime; and n = p(p + 2) with both p and
p + 2 being prime in the last case. For a detailed treatment of cyclic difference sets, see [2]. A recent
observation by Maschietti in [9] provides additional families of cyclic Hadamard difference sets that
also correspond to sequences of period n = 2r − 1.

8.3 The q-ary Sequences with Low Autocorrelation

As defined earlier, the autocorrelation of a binary {0, 1} sequence {s(t)} leads to the computation of
the inner product of an {−1, +1} sequence {(−1)s(t)} with a cyclically shifted version {(−1)s(t+τ)} of
itself. The {−1, +1} sequence is transmitted as a phase shift by either 0◦ and 180◦ of a radio-frequency
carrier, i.e., using binary phase-shift keying (PSK) modulation. If the modulation is q-ary PSK, then
one is led to consider sequences {s(t)} with symbols in the set Zq , i.e., the set of integers modulo q.
The relevant autocorrelation function θs(τ ) is now defined by

θs(τ ) =
n−1∑
t=0

ωs(t+τ)−s(t)

where n is the period of {s(t)} and ω is a complex primitive qth root of unity. It is possible to construct
sequences {s(t)} over Zq whose autocorrelation function satisfies

θs(τ ) =
{

n if τ = 0
0 if τ 6= 0
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For obvious reasons, such sequences are said to have an ideal autocorrelation function.
We provide without proof two sample constructions. The sequences in the first construction are

given by

s(t) =
{

t2/2 (mod n) when n is even

t (t + 1)/2 (mod n) when n is odd

Thus, this construction provides sequences with ideal autocorrelation for any period n. Note that
the size q of the sequence symbol alphabet equals n when n is odd and 2n when n is even.

The second construction also provides sequences over Zq of period n but requires that n be a
perfect square. Let n = r2 and let π be an arbitrary permutation of the elements in the subset
{0, 1, 2, . . . , (r − 1)} of Zn: Let g be an arbitrary function defined on the subset {0, 1, 2, . . . , r − 1}
of Zn. Then any sequence of the form

s(t) = rt1π(t2) + g(t2) (mod n)

where t = rt1 + t2 with 0 ≤ t1, t2 ≤ r − 1 is the base-r decomposition of t , has an ideal au-
tocorrelation function. When the alphabet size q equals or divides the period n of the sequence,
ideal-autocorrelation sequences also go by the name generalized bent functions. For details, see [6].

8.4 Families of Sequences with Low Crosscorrelation

Given two sequences {s1(t)} and {s2(t)} over Zq of period n, their crosscorrelation function θ1,2(τ )

is defined by

θ1,2(τ ) =
n−1∑
t=0

ωs1(t+τ)−s2(t)

where ω is a primitive qth root of unity. The crosscorrelation function is important in code-division
multiple-access (CDMA) communication systems. Here, each user is assigned a distinct signature
sequence and to minimize interference due to the other users, it is desirable that the signature
sequences have pairwise, low values of crosscorrelation function. To provide the system in addition
with a self-synchronizing capability, it is desirable that the signature sequences have low values of the
autocorrelation function as well.

Let F = {{si(t)} | 1 ≤ i ≤ M} be a family of M sequences {si(t)} over Zq each of period n. Let
θi,j (τ ) denote the crosscorrelation between the ith and j th sequence at shift τ , i.e.,

θi,j (τ ) =
n−1∑
t=0

ωsi(t+τ)−sj (t) , 0 ≤ τ ≤ n − 1

The classical goal in sequence design for CDMA systems has been minimization of the parameter

θmax = max
{∣∣θi,j (τ )

∣∣ | either i 6= j or τ 6= 0
}

for fixed n and M . It should be noted though that, in practice, because of data modulation the
correlations that one runs into are typically of an aperiodic rather than a periodic nature (see Sec-
tion 8.5). The problem of designing for low aperiodic correlation, however, is a more difficult one. A
typical approach, therefore, has been to design based on periodic correlation, and then to analyze the
resulting design for its aperiodic correlation properties. Again, in many practical systems, the mean
square correlation properties are of greater interest than the worst-case correlation represented by a
parameter such as θmax. The mean square correlation is discussed in Section 8.6.
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Bounds on the minimum possible value of θmax for given period n, family size M , and alphabet
size q are available that can be used to judge the merits of a particular sequence design. The most
efficient bounds are those due to Welch, Sidelnikov, and Levenshtein, see [6]. In CDMA systems,
there is greatest interest in designs in which the parameter θmax is in the range

√
n ≤ θmax ≤ 2

√
n.

Accordingly, Table 8.1 uses the Welch, Sidelnikov, and Levenshtein bounds to provide an order-of-
magnitude upper bound on the family size M for certain θmax in the cited range.

Practical considerations dictate that q be small. The bit-oriented nature of electronic hardware
makes it preferable to have q a power of 2. With this in mind, a description of some efficient
sequence families having low auto- and crosscorrelation values and alphabet sizes q = 2 and q = 4
are described next.

TABLE 8.1 Bounds on Family Size M for

Given n, θmax
Upper bound on M Upper Bound on M

θmax q = 2 q > 2

√
n n/2 n√
2n n n2/2

2
√

n 3n2/10 n3/2

8.4.1 Gold and Kasami Sequences

Given the low autocorrelation sidelobes of an m sequence, it is natural to attempt to construct families
of low correlation sequences starting from m sequences. Two of the better known constructions of
this type are the families of Gold and Kasami sequences.

Let r be odd and d = 2k + 1 where k, 1 ≤ k ≤ r − 1, is an integer satisfying (k, r) = 1. Let {s(t)}
be a cyclic shift of an m sequence of period n = 2r − 1 that satisfies S(dt) 6≡ 0 and let G be the Gold
family of 2r + 1 sequences given by

G = {s(t)} ∪ {s(dt)} ∪ {{s(t) + s(d[t + τ ])} | 0 ≤ τ ≤ n − 1}
Then each sequence in G has period 2r − 1 and the maximum-correlation parameter θmax of G
satisfies

θmax ≤
√

2r+1 + 1

An application of the Sidelnikov bound coupled with the information that θmax must be an odd
integer yields that for the family G, θmax is as small as it can possibly be. In this sense the family G
is an optimal family. We remark that these comments remain true even when d is replaced by the
integer d = 22k − 2k + 1 with the conditions on k remaining unchanged.

The Gold family remains the best-known family of m sequences having low crosscorrelation. Ap-
plications include the Navstar Global Positioning System whose signals are based on Gold sequences.

The family of Kasami sequences has a similar description. Let r = 2v and d = 2v + 1. Let {s(t)}
be a cyclic shift of an m sequence of period n = 2r − 1 that satisfies s(dt) 6≡ 0, and consider the
family of Kasami sequences given by

K = {s(t)} ∪ {{s(t) + s(d[t + τ ])} | 0 ≤ τ ≤ 2v − 2
}

Then the Kasami family K contains 2v sequences of period 2r − 1. It can be shown that in this case

θmax = 1 + 2v
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This time an application of the Welch bound and the fact that θmax is an integer shows that the Kasami
family is optimal in terms of having the smallest possible value of θmax for given n and M .

8.4.2 Quaternary Sequences with Low Crosscorrelation

The entries in Table 8.1 suggest that nonbinary (i.e., q > 2) designs may be used for improved
performance. A family of quaternary sequences that outperform the Gold and Kasami sequences is
now discussed below.

Let f (x) be the characteristic polynomial of a binary m sequence of length 2r −1 for some integer
r . The coefficients of f (x) are either 0 or 1. Now, regard f (x) as a polynomial over Z4 and form the
product (−1)rf (x)f (−x). This can be seen to be a polynomial in x2. Define the polynomial g(x)

of degree r by setting g(x2) = (−1)rf (x)f (−x). Let g(x) = ∑r
i=0 gix

i and consider the set of all
quaternary sequences {a(t)} satisfying the recursion

∑r
i=0 gia(t + i) = 0 for all t .

It turns out that with the exception of the all-zero sequence, all of the sequences generated in
this way have period 2r − 1. Thus, the recursion generates a family A of 2r + 1 cyclically distinct
quaternary sequences. Closer study reveals that the maximum correlation parameter θmax of this
family satisfies θmax ≤ 1 + √

2r . Thus, in comparison to the family of Gold sequences, the family
A offers a lower value of θmax (by a factor of

√
2) for the same family size. In comparison to the

set of Kasami sequences, it offers a much larger family size for the same bound on θmax. Family A
sequences may be found discussed in [16, 3].

We illustrate with an example. Let f (x) = x3 + x + 1 be the characteristic polynomial of the m

sequence {a(t)} in Eq. (8.1). Then over Z4

g
(
x2

)
= (−1)3f (x)f (−x) = x6 + 2x4 + x2 + 3

so that g(x) = x3 + 2x2 + x + 3. Thus, the sequences in family A are generated by the recursion
s(t + 3) + 2s(t + 2) + s(t + 1) + 3s(t) = 0 mod 4. The corresponding shift register is shown in
Fig. 8.3. By varying initial conditions, this shift register can be made to generate nine cyclically
distinct sequences, each of length 7. In this case θmax ≤ 1 + √

8.

FIGURE 8.3: Shift register that generates family A quaternary sequences {s(t)} of period 7.

8.4.3 Binary Kerdock Sequences

The Gold and Kasami families of sequences are closely related to binary linear cyclic codes. It is well
known in coding theory that there exists nonlinear binary codes whose performance exceeds that of
the best possible linear code. Surprisingly, some of these examples come from binary codes, which
are images of linear quaternary (q = 4) codes under the Gray map: 0 → 00, 1 → 01, 2 → 11,
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3 → 10. A prime example of this is the Kerdock code, which recently has been shown to be the
Gray image of a quaternary linear code. Thus, it is not surprising that the Kerdock code yields binary
sequences that significantly outperform the family of Kasami sequences.

The Kerdock sequences may be constructed as follows: let f (x) be the characteristic polynomial
of an m sequence of period 2r − 1, r odd. As before, regarding f (x) as a polynomial over Z4
(which happens to have {0, 1} coefficients), let the polynomial g(x) over Z4 be defined via g(x2) =
−f (x)f (−x). [Thus, g(x) is the characteristic polynomial of a family A sequence set of period
2r − 1.] Set h(x) = −g(−x) = ∑r

i=0 hix
i , and let S be the set of all Z4 sequences satisfying the

recursion
∑r

i=0 his(t + i) = 0. Then S contain 4r -distinct sequences corresponding to all possible
distinct initializations of the shift register.

Let T denote the subset S of size 2r -consisting of those sequences corresponding to initializations
of the shift register only using the symbols 0 and 2 in Z4. Then the set S − T of size 4r − 2r contains
a set U of 2r−1 cyclically distinct sequences each of period 2(2r − 1). Given x = a + 2b ∈ Z4 with
a, b ∈ {0, 1}, let µ denote the most significant bit (MSB) map µ(x) = b. Let KE denote the family of
2r−1 binary sequences obtained by applying the map µ to each sequence in U . It turns out that each

sequence in U also has period 2(2r −1) and that, furthermore, for the family KE , θmax ≤ 2+√
2r+1.

Thus, KE is a much larger family than the Kasami family, while having almost exactly the same value
of θmax.

For example, taking r = 3 and f (x) = x3 + x + 1, we have from the previous family A example
that g(x) = x3 +2x2 +x +3, so that h(x) = −g(−x) = x3 +2x2 +x +1. Applying the MSB map
to the head of the shift register, and discarding initializations of the shift register involving only 0’s
and 2’s yields a family of four cyclically distinct binary sequences of period 14. Kerdock sequences
are discussed in [6, 11, 1, 17].

8.5 Aperiodic Correlation

Let {x(t)} and {y(t)} be complex-valued sequences of length (or period) n, not necessarily distinct.
Their aperiodic correlation values {ρx,y(τ )| − (n − 1) ≤ τ ≤ n − 1} are given by

ρx,y(τ ) =
min{n−1,n−1−τ }∑

t=max{0,−τ }
x(t + τ)y∗(t)

where y∗(t) denotes the complex conjugate of y(t). When x ≡ y, we will abbreviate and write ρx in
place of ρx,y . The sequences described next are perhaps the most famous example of sequences with
low-aperiodic autocorrelation values.

8.5.1 Barker Sequences

A binary {−1, +1} sequence {s(t)} of length n is said to be a Barker sequence if the aperiodic auto-
correlation values ρs(τ ) satisfy |ρs(τ )| ≤ 1 for all τ, −(n − 1) ≤ τ ≤ n − 1. The Barker property is
preserved under the following transformations:

s(t) → −s(t), s(t) → (−1)t s(t) and s(t) → s(n − 1 − t)
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as well as under compositions of the preceding transformations. Only the following Barker sequences
are known:

n = 2 + +
n = 3 + +−

n = 4 + + + −
n = 5 + + + −+

n = 7 + + + − − +−
n = 11 + + + − − − + − − +−

n = 13 + + + + + − − + + − + −+
where + denotes +1 and − denotes −1 and sequences are generated from these via the transfor-
mations already discussed. It is known that if any other Barker sequence exists, it must have length
n > 1,898,884, that is a multiple of 4.

For an upper bound to the maximum out-of-phase aperiodic autocorrelation of an m sequence,
see [13].

8.5.2 Sequences with High Merit Factor

The merit factor F of a {−1, +1} sequence {s(t)} is defined by

F = n2

2
∑n−1

τ=1 ρ2
s (τ )

Since ρs(τ ) = ρs(−τ) for 1 ≤ |τ | ≤ n − 1 and ρs(0) = n, factor F may be regarded as the ratio of
the square of the in-phase autocorrelation, to the sum of the squares of the out-of-phase aperiodic
autocorrelation values. Thus, the merit factor is one measure of the aperiodic autocorrelation prop-
erties of a binary {−1, +1} sequence. It is also closely connected with the signal to self-generated
noise ratio of a communication system in which coded pulses are transmitted and received.

Let Fn denote the largest merit factor of any binary {−1, +1} sequence of length n. For example,
at length n = 13, the Barker sequence of length 13has a merit factor F = F13 = 14.08. Assuming
a certain ergodicity postulate it was established by Golay that limn→∞ Fn = 12.32. Exhaustive
computer searches carried out for n ≤ 40have revealed the following.

1. For 1 ≤ n ≤ 40, n 6= 11, 13,

3.3 ≤ Fn ≤ 9.85 ,

2. F11 = 12.1, F13 = 14.08.

The value F11 is also achieved by a Barker sequence. From partial searches, for lengths up to 117,
the highest known merit factor is between 8 and 9.56; for lengths from 118to 200, the best-known
factor is close to 6. For lengths > 200, statistical search methods have failed to yield a sequence
having merit factor exceeding 5.

An offset sequence is one in which a fraction θ of the elements of a sequence of length n are chopped
off at one end and appended to the other end, i.e., an offset sequence is a cyclic shift of the original
sequence by nθ symbols. It turns out that the asymptotic merit factor of m sequences is equal to 3 and
is independent of the particular offset of the m sequence. There exist offsets of sequences associated
with quadratic-residue and twin-prime difference sets that achieve a larger merit factor of 6. Details
may be found in [7].

c©1999 by CRC Press LLC



8.5.3 Sequences with Low Aperiodic Crosscorrelation

If {u(t)} and {v(t)} are sequences of length 2n − 1 defined by

u(t) =
{

x(t) if 0 ≤ t ≤ n − 1

0 if n ≤ t ≤ 2n − 2

and

v(t) =
{

y(t) if 0 ≤ t ≤ n − 1

0 if n ≤ t ≤ 2n − 2

then
{ρx,y(τ ) | −(n − 1) ≤ τ ≤ n − 1} = {

θu,v(τ ) | 0 ≤ τ ≤ 2n − 2
}

(8.6)

Given a collection
U = {{xi(t)} | 1 ≤ i ≤ M}

of sequences of length n over Zq , let us define

ρmax = max
{∣∣ρa,b(τ )

∣∣ | a, b ∈ U , either a 6= b or τ 6= 0
}

It is clear from Eq. (8.6) how bounds on the periodic correlation parameter θmax can be adapted
to give bounds on ρmax. Translation of the Welch bound gives that for every integer k ≥ 1,

ρ2k
max ≥

(
n2k

M(2n − 1) − 1

) {
M(2n − 1)(2n+k−2

k

) − 1

}

Setting k = 1 in the preceding bound gives

ρmax ≥ n

√
M − 1

M(2n − 1) − 1

Thus, for fixed M and large n, Welch’s bound gives

ρmax ≥ O
(
n1/2

)
There exist sequence families which asymptotically achieve ρmax ≈ O(n1/2), [10].

8.6 Other Correlation Measures

8.6.1 Partial-Period Correlation

The partial-period (p-p) correlation between the sequences {u(t)} and {v(t)} is the collection
{1u,v(l, τ, t0) | 1 ≤ l ≤ n, 0 ≤ τ ≤ n − 1, 0 ≤ t0 ≤ n − 1} of inner products

1u,v (l, τ, t0) =
t=t0+l−1∑

t=t0

u(t + τ)v∗(t)

where l is the length of the partial period and the sum t + τ is again computed modulo n.

c©1999 by CRC Press LLC



In direct-sequence CDMA systems, the pseudorandom signature sequences used by the various
users are often very long for reasons of data security. In such situations, to minimize receiver hardware
complexity, correlation over a partial period of the signature sequence is often used to demodulate
data, as well as to achieve synchronization. For this reason, the p-p correlation properties of a
sequence are of interest.

Researchers have attempted to determine the moments of the p-p correlation. Here the main tool
is the application of the Pless power-moment identities of coding theory [8]. The identities often
allow the first and second p-p correlation moments to be completely determined. For example, this
is true in the case of m sequences (the remaining moments turn out to depend upon the specific
characteristic polynomial of the m sequence). Further details may be found in [15].

8.6.2 Mean Square Correlation

Frequently in practice, there is a greater interest in the mean-square correlation distribution of a
sequence family than in the parameter θmax. Quite often in sequence design, the sequence family is
derived from a linear, binary cyclic code of length n by picking a set of cyclically distinct sequences of
period n. The families of Gold and Kasami sequences are so constructed. In this case, as pointed out
by Massey, the mean square correlation of the family can be shown to be either optimum or close to
optimum, under certain easily satisfied conditions, imposed on the minimum distance of the dual
code. A similar situation holds even when the sequence family does not come from a linear cyclic
code. In this sense, mean square correlation is not a very discriminating measure of the correlation
properties of a family of sequences. An expanded discussion of this issue may be found in [5].

8.6.3 Optical Orthogonal Codes

Given a pair of {0, 1} sequences {s1(t)} and {s2(t)} each having period n, we define the Hamming
correlation function θ12(τ ), 0 ≤ τ ≤ n − 1, by

θ12(τ ) =
n−1∑
t=0

s1(t + τ)s2(t)

Such correlations are of interest, for instance, in optical communication systems where the 1’s and
0’s in a sequence correspond to the presence or absence of pulses of transmitted light.

An (n, w, λ) optical orthogonal code (OOC) is a family F = {{si(t)} | i = 1, 2, . . . , M}, of
M {0, 1} sequences of period n, constant Hamming weight w, where w is an integer lying between 1
and n − 1 satisfying θij (τ ) ≤ λ whenever either i 6= j or τ 6= 0.

Note that the Hamming distance da,b between a period of the corresponding codewords {a(t)},
{b(t)}, 0 ≤ t ≤ n − 1 in an (n, w, λ) OOC having Hamming correlation ρ, 0 ≤ ρ ≤ λ, is given
by da,b = 2(w − ρ), and, thus, OOCs are closely related to constant-weight error correcting codes.
Given an (n, w, λ) OOC, by enlarging the OOC to include every cyclic shift of each sequence in the
code, one obtains a constant-weight, minimum distance dmin ≥ 2(w − λ) code. Conversely, given
a constant-weight cyclic code of length n, weight w and minimum distance dmin, one can derive an
(n, w, λ) OOC code with λ ≤ w − dmin/2 by partitioning the code into cyclic equivalence classes
and then picking precisely one representative from each equivalence class of size n.

Bymakinguseof this connection, one canderiveboundson the sizeof anOOCfromknownbounds
on the size of constant-weight codes. The bound given next follows directly from the Johnson bound
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for constant weight codes [8]. The number M(n, w, λ) of codewords in a (n, w, λ) OOC satisfies

M(n, w, λ) ≤ 1

w

⌊
n − 1

w − 1
· · ·

⌊
n − λ + 1

w − λ + 1

⌊
n − λ

w − λ

⌋⌋
· · ·

⌋

An OOC code that achieves the Johnson bound is said to be optimal. A family {Fn} of OOCs
indexed by the parameter n and arising from a common construction is said to be asymptotically
optimum if

lim
n→∞

|Fn|
M(n, w, λ)

= 1

Constructions for optical orthogonal codes are available for the cases when λ = 1 and λ = 2. For
larger values of λ, there exist constructions which are asymptotically optimum. Further details may
be found in [6].

Defining Terms

Autocorrelation of a sequence: The complex inner product of the sequence with a shifted ver-
sion itself.

Crosscorrelation of two sequences: The complex inner product of the first sequence with a
shifted version of the second sequence.

m Sequence: A periodic binary {0, 1} sequence that is generated by a shift register with linear
feedback and which has maximal possible period given the number of stages in the shift
register.

Pseudonoise sequences: Also referred toaspseudorandomsequences (PN), theseare sequences
that are deterministically generated and yet possess some properties that one would expect
to find in randomly generated sequences.

Shift-register sequence: A sequence with symbols drawn from a field, which satisfies a linear-
recurrence relation and which can be implemented using a shift register.
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