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13.1 Introduction

In this section we examine some fundamental tradeoffs among bandwidth, power, and error perfor-
mance of digital communication systems. The criteria for choosing modulation and coding schemes,
based on whether a system is bandwidth limited or power limited, are reviewed for several system
examples. Emphasis is placed on the subtle but straightforward relationships we encounter when
transforming from data-bits to channel-bits to symbols to chips.

1A version of this chapter has appeared as a paper in the IEEE Communications Magazine, November 1993, under the title
“Defining, Designing, and Evaluating Digital Communication Systems.”
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The design or definition of any digital communication system begins with a description of the
communication link. The link is the name given to the communication transmission path from
the modulator and transmitter, through the channel, and up to and including the receiver and
demodulator. The channel is the name given to the propagating medium between the transmitter
and receiver. A link description quantifies the average signal power that is received, the available
bandwidth, the noise statistics, and other impairments, such as fading. Also needed to define the
system are basic requirements, such as the data rate to be supported and the error performance.

13.1.1 The Channel

For radio communications, the concept of free space assumes a channel region free of all objects
that might affect radio frequency (RF) propagation by absorption, reflection, or refraction. It further
assumes that the atmosphere in the channel is perfectly uniform and nonabsorbing, and that the earth
is infinitely far away or its reflection coefficient is negligible. The RF energy arriving at the receiver
is assumed to be a function of distance from the transmitter (simply following the inverse-square
law of optics). In practice, of course, propagation in the atmosphere and near the ground results in
refraction, reflection, and absorption, which modify the free space transmission.

13.1.2 The Link

A radio transmitter is characterized by its average output signal power Pt and the gain of its trans-
mitting antenna Gt . The name given to the product PtGt , with reference to an isotropic antenna is
effective radiated power (EIRP) in watts (or dBW). The predetection average signal power S arriving at
the output of the receiver antenna can be described as a function of the EIRP, the gain of the receiving
antenna Gr , the path loss (or space loss) Ls , and other losses, Lo, as follows [14, 15]:

S = EIRP Gr

LsLo

(13.1)

The path loss Ls can be written as follows [15]:

Ls =
(

4πd

λ

)2

(13.2)

where d is the distance between the transmitter and receiver and λ is the wavelength.
We restrict our discussion to those links distorted by the mechanism of additive white Gaussian

noise (AWGN) only. Such a noise assumption is a very useful model for a large class of communication
systems. A valid approximation for average received noise power N that this model introduces is
written as follows [5, 9]:

N ∼= kT ◦W (13.3)

where k is Boltzmann’s constant (1.38×10−23 joule/K), T ◦ is effective temperature in kelvin, and W

is bandwidth in hertz. Dividing Eq. (13.3) by bandwidth, enables us to write the received noise-power
spectral density N0 as follows:

N0 = N

W
= kT ◦ (13.4)

Dividing Eq. (13.1) by N0 yields the received average signal-power to noise-power spectral density
S/N0 as

S

N0
= EIRP Gr/T ◦

kLsLo

(13.5)
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where Gr/T ◦ is often referred to as the receiver figure of merit. A link budget analysis is a compilation
of the power gains and losses throughout the link; it is generally computed in decibels, and thus takes
on the bookkeeping appearance of a business enterprise, highlighting the assets and liabilities of
the link. Once the value of S/N0 is specified or calculated from the link parameters, we then shift
our attention to optimizing the choice of signalling types for meeting system bandwidth and error
performance requirements.

Given the received S/N0, we can write the received bit-energy to noise-power spectral density
Eb/N0, for any desired data rate R, as follows:

Eb

N0
= STb

N0
= S

N0

(
1

R

)
(13.6)

Equation (13.6) follows from the basic definitions that received bit energy is equal to received average
signal power times the bit duration and that bit rate is the reciprocal of bit duration. Received Eb/N0
is a key parameter in defining a digital communication system. Its value indicates the apportionment
of the received waveform energy among the bits that the waveform represents. At first glance, one
might think that a system specification should entail the symbol-energy to noise-power spectral
density Es/N0 associated with the arriving waveforms. We will show, however, that for a given S/N0
the value of Es/N0 is a function of the modulation and coding. The reason for defining systems in
terms of Eb/N0 stems from the fact that Eb/N0 depends only on S/N0 and R and is unaffected by
any system design choices, such as modulation and coding.

13.2 Bandwidth and Power Considerations

Two primary communications resources are the received power and the available transmission band-
width. In many communication systems, one of these resources may be more precious than the
other and, hence, most systems can be classified as either bandwidth limited or power limited. In
bandwidth-limited systems, spectrally efficient modulation techniques can be used to save bandwidth
at the expense of power; in power-limited systems, power efficient modulation techniques can be
used to save power at the expense of bandwidth. In both bandwidth- and power-limited systems,
error-correction coding (often called channel coding) can be used to save power or to improve error
performance at the expense of bandwidth. Recently, trellis-coded modulation (TCM) schemes have
been used to improve the error performance of bandwidth-limited channels without any increase in
bandwidth [17], but these methods are beyond the scope of this chapter.

13.2.1 The Bandwidth Efficiency Plane

Figure 13.1 shows the abscissa as the ratio of bit-energy to noise-power spectral density Eb/N0 (in
decibels) and the ordinate as the ratio of throughput, R (in bits per second), that can be transmitted
per hertz in a given bandwidth W . The ratio R/W is called bandwidth efficiency, since it reflects how
efficiently the bandwidth resource is utilized. The plot stems from the Shannon–Hartley capacity
theorem [12, 13, 15], which can be stated as

C = W log2

(
1 + S

N

)
(13.7)

where S/N is the ratio of received average signal power to noise power. When the logarithm is
taken to the base 2, the capacity C, is given in bits per second. The capacity of a channel defines the
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maximum number of bits that can be reliably sent per second over the channel. For the case where
the data (information) rate R is equal to C, the curve separates a region of practical communication
systems from a region where such communication systems cannot operate reliably [12, 15].

FIGURE 13.1: Bandwidth-efficiency plane.

13.2.2 M-ary Signalling

Each symbol in an M-ary alphabet can be related to a unique sequence of m bits, expressed as

M = 2m or m = log2 M (13.8)

where M is the size of the alphabet. In the case of digital transmission, the term symbol refers to the
member of the M-ary alphabet that is transmitted during each symbol duration Ts . To transmit the
symbol, it must be mapped onto an electrical voltage or current waveform. Because the waveform
represents the symbol, the terms symbol and waveform are sometimes used interchangeably. Since
one of M symbols or waveforms is transmitted during each symbol duration Ts , the data rate R in
bits per second can be expressed as

R = m

Ts

= log2 M

Ts

(13.9)

Data-bit-time duration is the reciprocal of data rate. Similarly, symbol-time duration is the reciprocal
of symbol rate. Therefore, from Eq. (13.9), we write that the effective time duration Tb of each bit in
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terms of the symbol duration Ts or the symbol rate Rs is

Tb = 1

R
= Ts

m
= 1

mRs

(13.10)

Then, using Eqs. (13.8) and (13.10) we can express the symbol rate Rs in terms of the bit rate R as
follows:

Rs = R

log2 M
(13.11)

From Eqs. (13.9) and (13.10), any digital scheme that transmits m = log2 M bits in Ts seconds, using
a bandwidth of W hertz, operates at a bandwidth efficiency of

R

W
= log2 M

WTs

= 1

WTb

(b/s)/Hz (13.12)

where Tb is the effective time duration of each data bit.

13.2.3 Bandwidth-Limited Systems

From Eq. (13.12), the smaller the WTb product, the more bandwidth efficient will be any digital
communication system. Thus, signals with small WTb products are often used with bandwidth-
limited systems. For example, the European digital mobile telephone system known as Global System
for Mobile Communications (GSM) uses Gaussian minimum shift keying (GMSK) modulation
having a WTb product equal to 0.3 Hz/(b/s), where W is the 3-dB bandwidth of a Gaussian filter [4].

For uncoded bandwidth-limited systems, the objective is to maximize the transmitted information
rate within the allowable bandwidth, at the expense of Eb/N0 (while maintaining a specified value
of bit-error probability PB). The operating points for coherent M-ary phase-shift keying (MPSK)
at PB = 10−5 are plotted on the bandwidth-efficiency plane of Fig. 13.1. We assume Nyquist
(ideal rectangular) filtering at baseband [10]. Thus, for MPSK, the required double-sideband (DSB)
bandwidth at an intermediate frequency (IF) is related to the symbol rate as follows:

W = 1

Ts

= Rs (13.13)

where Ts is the symbol duration and Rs is the symbol rate. The use of Nyquist filtering results in
the minimum required transmission bandwidth that yields zero intersymbol interference; such ideal
filtering gives rise to the name Nyquist minimum bandwidth.

From Eqs. (13.12) and (13.13), the bandwidth efficiency of MPSK modulated signals using Nyquist
filtering can be expressed as

R/W = log2 M (b/s)/Hz (13.14)

The MPSK points in Fig. 13.1 confirm the relationship shown in Eq. (13.14). Note that MPSK
modulation is a bandwidth-efficient scheme. As M increases in value, R/W also increases. MPSK
modulation can be used for realizing an improvement in bandwidth efficiency at the cost of increased
Eb/N0. Although beyond the scope of this chapter, many highly bandwidth-efficient modulation
schemes are under investigation [1].
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13.2.4 Power-Limited Systems

Operating points for noncoherent orthogonal M-ary FSK (MFSK) modulation at PB = 10−5 are
also plotted on Fig. 13.1. For MFSK, the IF minimum bandwidth is as follows [15]

W = M

Ts

= MRs (13.15)

where Ts is the symbol duration and Rs is the symbol rate. With MFSK, the required transmission
bandwidth is expanded M-fold over binary FSK since there are M different orthogonal waveforms,
each requiring a bandwidth of 1/Ts . Thus, from Eqs. (13.12) and (13.15), the bandwidth efficiency
of noncoherent orthogonal MFSK signals can be expressed as

R

W
= log2 M

M
(b/s)/Hz (13.16)

The MFSK points plotted in Fig. 13.1 confirm the relationship shown in Eq. (13.16). Note that MFSK
modulation is a bandwidth-expansive scheme. As M increases, R/W decreases. MFSK modulation
can be used for realizing a reduction in required Eb/N0 at the cost of increased bandwidth.

In Eqs. (13.13) and (13.14) for MPSK, and Eqs. (13.15) and (13.16) for MFSK, and for all the
points plotted in Fig. 13.1, ideal filtering has been assumed. Such filters are not realizable! For
realistic channels and waveforms, the required transmission bandwidth must be increased in order
to account for realizable filters.

In the examples that follow, we will consider radio channels that are disturbed only by additive
white Gaussian noise (AWGN) and have no other impairments, and for simplicity, we will limit
the modulation choice to constant-envelope types, i.e., either MPSK or noncoherent orthogonal
MFSK. For an uncoded system, MPSK is selected if the channel is bandwidth limited, and MFSK is
selected if the channel is power limited. When error-correction coding is considered, modulation
selection is not as simple, because coding techniques can provide power-bandwidth tradeoffs more
effectively than would be possible through the use of any M-ary modulation scheme considered in
this chapter [3].

In the most general sense, M-ary signalling can be regarded as a waveform-coding procedure, i.e.,
when we select an M-ary modulation technique instead of a binary one, we in effect have replaced
the binary waveforms with better waveforms—either better for bandwidth performance (MPSK) or
better for power performance (MFSK). Even though orthogonal MFSK signalling can be thought
of as being a coded system, i.e., a first-order Reed-Muller code [8], we restrict our use of the term
coded system to those traditional error-correction codes using redundancies, e.g., block codes or
convolutional codes.

13.2.5 Minimum Bandwidth Requirements for MPSK and
MFSK Signalling

Thebasic relationshipbetween the symbol (orwaveform) transmission rateRs and thedata rateR was
shown in Eq. (13.11). Using this relationship together with Eqs. (13.13–13.16) and R = 9600b/s, a
summaryof symbol rate, minimumbandwidth, andbandwidthefficiency forMPSKandnoncoherent
orthogonal MFSK was compiled for M = 2, 4, 8, 16, and 32 (Table 13.1). Values of Eb/N0 required
to achieve a bit-error probability of 10−5 for MPSK and MFSK are also given for each value of M .
These entries (which were computed using relationships that are presented later in this chapter)
corroborate the tradeoffs shown in Fig. 13.1. As M increases, MPSK signalling provides more
bandwidth efficiency at the cost of increased Eb/N0, whereas MFSK signalling allows for a reduction
in Eb/N0 at the cost of increased bandwidth.
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TABLE 13.1 Symbol Rate, Minimum Bandwidth, Bandwidth Efficiency, and Required Eb/N0 for MPSK and

Noncoherent Orthogonal MFSK Signalling at 9600 bit/s
MPSK MPSK Noncoherent MFSK

R Rs Minimum MPSK Eb/N0 (dB) Orthog MFSK MFSK Eb/N0 (dB)
M m (b/s) (symb/s) Bandwidth (Hz) R/W PB = 10−5 Min Bandwidth (Hz) R/W PB = 10−5

2 1 9600 9600 9600 1 9.6 19,200 1/2 13.4

4 2 9600 4800 4800 2 9.6 19,200 1/2 10.6

8 3 9600 3200 3200 3 13.0 25,600 3/8 9.1

16 4 9600 2400 2400 4 17.5 38,400 1/4 8.1

32 5 9600 1920 1920 5 22.4 61,440 5/32 7.4

13.3 Example 1: Bandwidth-Limited Uncoded System

Suppose we are given a bandwidth-limited AWGN radio channel with an available bandwidth of
W = 4000Hz. Also, suppose that the link constraints (transmitter power, antenna gains, path loss,
etc.) result in the ratio of received average signal-power to noise-power spectral density S/N0 being
equal to 53 dB-Hz. Let the required data rate R be equal to 9600 b/s, and let the required bit-error
performance PB be at most 10−5. The goal is to choose a modulation scheme that meets the required
performance. In general, an error-correction coding scheme may be needed if none of the allowable
modulation schemes can meet the requirements. In this example, however, we shall find that the use
of error-correction coding is not necessary.

13.3.1 Solution to Example 1

For any digital communication system, the relationship between received S/N0 and received bit-
energy to noise-power spectral density, Eb/N0 was given in Eq. (13.6) and is briefly rewritten as

S

N0
= Eb

N0
R (13.17)

Solving for Eb/N0 in decibels, we obtain

Eb

N0
(dB) = S

N0
(dB-Hz) − R (dB-b/s)

= 53 dB-Hz − (
10× log10 9600

)
dB-b/s

= 13.2 dB (or 20.89) (13.18)

Since the required data rate of 9600 b/s is much larger than the available bandwidth of 4000 Hz,
the channel is bandwidth limited. We therefore select MPSK as our modulation scheme. We have
confined the possible modulation choices to be constant-envelope types; without such a restriction,
we would be able to select a modulation type with greater bandwidth efficiency. To conserve power,
we compute the smallest possible value of M such that the MPSK minimum bandwidth does not
exceed the available bandwidth of 4000 Hz. Table 13.1 shows that the smallest value of M meeting this
requirement isM = 8. Next we determine whether the required bit-error performance ofPB ≤ 10−5

can be met by using 8-PSK modulation alone or whether it is necessary to use an error-correction
coding scheme. Table 13.1 shows that 8-PSK alone will meet the requirements, since the required
Eb/N0 listed for 8-PSK is less than the received Eb/N0 derived in Eq. (13.18). Let us imagine that we
do not have Table 13.1, however, and evaluate whether or not error-correction coding is necessary.
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Figure 13.2 shows the basic modulator/demodulator (MODEM) block diagram summarizing the
functional details of this design. At the modulator, the transformation from data bits to symbols
yields an output symbol rate Rs , that is, a factor log2 M smaller than the input data-bit rate R, as is
seen in Eq. (13.11). Similarly, at the input to the demodulator, the symbol-energy to noise-power
spectral density ES/N0 is a factor log2 M larger than Eb/N0, since each symbol is made up of log2 M

bits. Because ES/N0 is larger than Eb/N0 by the same factor that Rs is smaller than R, we can expand
Eq. (13.17), as follows:

S

N0
= Eb

N0
R = Es

N0
Rs (13.19)

The demodulator receives a waveform (in this example, one of M = 8 possible phase shifts) during
each time interval Ts . The probability that the demodulator makes a symbol error PE(M) is well
approximated by the following equation for M > 2 [6]:

PE(M) ∼= 2Q

[√
2Es

N0
sin
( π

M

)]
(13.20)

where Q(x), sometimes called the complementary error function, represents the probability under
the tail of a zero-mean unit-variance Gaussian density function. It is defined as follows [18]:

Q(x) = 1√
2π

∫ ∞

x

exp

(
−u2

2

)
du (13.21)

A good approximation for Q(x), valid for x > 3, is given by the following equation [2]

Q(x) ∼= 1

x
√

2π
exp

(
−x2

2

)
(13.22)

In Fig. 13.2 and all of the figures that follow, rather than show explicit probability relationships, the
generalized notation f (x) has been used to indicate some functional dependence on x.

A traditional way of characterizing communication efficiency in digital systems is in terms of the
received Eb/N0 in decibels. This Eb/N0 description has become standard practice, but recall that
there are no bits at the input to the demodulator; there are only waveforms that have been assigned
bit meanings. The received Eb/N0 represents a bit-apportionment of the arriving waveform energy.

To solve for PE(M) in Eq. (13.20), we first need to compute the ratio of received symbol-energy
to noise-power spectral density Es/N0. Since from Eq. (13.18)

Eb

N0
= 13.2 dB (or 20.89)

and because each symbol is made up of log2 M bits, we compute the following using M = 8.

Es

N0
= (

log2 M
) Eb

N0
= 3 × 20.89 = 62.67 (13.23)

Using the results of Eq. (13.23) in Eq. (13.20), yields the symbol-error probability PE = 2.2× 10−5.
To transform this to bit-error probability, we use the relationship between bit-error probability PB

and symbol-error probability PE , for multiple-phase signalling [8] for PE � 1 as follows:

PB
∼= PE

log2 M
= PE

m
(13.24)
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FIGURE 13.2: Basic modulator/demodulator (MODEM) without channel coding.

which is a good approximation when Gray coding is used for the bit-to-symbol assignment [6]. This
last computation yields PB = 7.3 × 10−6, which meets the required bit-error performance. No
error-correction coding is necessary, and 8-PSK modulation represents the design choice to meet the
requirements of the bandwidth-limited channel, which we had predicted by examining the required
Eb/N0 values in Table 13.1.

13.4 Example 2: Power-Limited Uncoded System

Now, suppose that we have exactly the same data rate and bit-error probability requirements as in
Example 1, but let the available bandwidth W be equal to 45 kHz, and the available S/N0 be equal to
48 dB-Hz. The goal is to choose a modulation or modulation/coding scheme that yields the required
performance. We shall again find that error-correction coding is not required.

13.4.1 Solution to Example 2

The channel is clearly not bandwidth limited since the available bandwidth of 45 kHz is more than
adequate for supporting the required data rate of 9600 bit/s. We find the received Eb/N0 from
Eq. (13.18), as follows:

Eb

N0
(dB) = 48dB-Hz − (

10× log10 9600
)

dB-b/s = 8.2 dB (or 6.61) (13.25)

Since there is abundant bandwidth but a relatively small Eb/N0 for the required bit-error probability,
we consider that this channel is power limited and choose MFSK as the modulation scheme. To
conserve power, we search for the largest possible M such that the MFSK minimum bandwidth is
not expanded beyond our available bandwidth of 45 kHz. A search results in the choice of M = 16
(Table 13.1). Next, we determine whether the required error performance of PB ≤ 10−5 can be met
by using 16-FSK alone, i.e., without error-correction coding. Table 13.1 shows that 16-FSK alone
meets the requirements, since the required Eb/N0 listed for 16-FSK is less than the received Eb/N0
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derived in Eq. (13.25). Let us imagine again that we do not have Table 13.1, and evaluate whether or
not error-correction coding is necessary.

The block diagram in Fig. 13.2 summarizes the relationships between symbol rate Rs , and bit
rate R, and between Es/N0 and Eb/N0, which is identical to each of the respective relationships in
Example1. The16-FSKdemodulator receives awaveform(oneof16possible frequencies)duringeach
symbol time interval Ts . For noncoherent orthogonal MFSK, the probability that the demodulator
makes a symbol error PE(M) is approximated by the following upper bound [20]:

PE(M) ≤ M − 1

2
exp

(
− Es

2N0

)
(13.26)

To solve for PE(M) in Eq. (13.26), we compute ES/N0, as in Example 1. Using the results of
Eq. (13.25) in Eq. (13.23), with M = 16, we get

Es

N0
= (

log2 M
) Eb

N0
= 4 × 6.61 = 26.44 (13.27)

Next, using the results of Eq. (13.27) in Eq. (13.26), yields the symbol-error probability PE =
1.4 × 10−5. To transform this to bit-error probability, PB , we use the relationship between PB and
PE for orthogonal signalling [20], given by

PB = 2m−1

(2m − 1)
PE (13.28)

This last computationyieldsPB = 7.3×10−6, whichmeets the requiredbit-errorperformance. Thus,
we can meet the given specifications for this power-limited channel by using 16-FSK modulation,
without any need for error-correction coding, as we had predicted by examining the required Eb/N0
values in Table 13.1.

13.5 Example 3: Bandwidth-Limited and
Power-Limited Coded System

We start with the same channel parameters as in Example 1 (W = 4000Hz, S/N0 = 53dB-Hz, and
R = 9600b/s), with one exception.
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In this example, we specify that PB must be at most 10−9. Table 13.1
shows that the system is both bandwidth limited and power limited,
based on the available bandwidth of 4000 Hz and the available Eb/N0
of 20.2 dB, from Eq. (13.18); 8-PSK is the only possible choice to meet
the bandwidth constraint; however, the available Eb/N0 of 20.2 dB is
certainly insufficient to meet the required PB of 10−9. For this small
value of PB , we need to consider the performance improvement that
error-correction coding can provide within the available bandwidth.
In general, one can use convolutional codes or block codes.
The Bose–Chaudhuri–Hocquenghem (BCH) codes form a large class
of powerful error-correcting cyclic (block) codes [7]. To simplify the
explanation, we shall choose a block code from the BCH family. Ta-
ble 13.2 presents a partial catalog of the available BCH codes in terms
of n, k, and t , where k represents the number of information (or data)
bits that the code transforms into a longer block of n coded bits (or
channel bits), and t represents the largest number of incorrect channel
bits that the code can correct within each n-sized block. The rate of a
code is defined as the ratio k/n; its inverse represents a measure of the
code’s redundancy [7].

TABLE 13.2

BCH Codes

(Partial Catalog)
n k t

7 4 1

15 11 1
7 2
5 3

31 26 1
21 2
16 3
11 5

63 57 1
51 2
45 3
39 4
36 5
30 6

127 120 1
113 2
106 3
99 4
92 5
85 6
78 7
71 9
64 10

13.5.1 Solution to Example 3

Since this example has the same bandwidth-limited parameters given in Example 1, we start with
the same 8-PSK modulation used to meet the stated bandwidth constraint. We now employ error-
correction coding, however, so that the bit-error probability can be lowered to PB ≤ 10−9.

To make the optimum code selection from Table 13.2, we are guided by the following goals.

1. The output bit-error probability of the combined modulation/coding system must meet
the system error requirement.

2. The rate of the code must not expand the required transmission bandwidth beyond the
available channel bandwidth.

3. The code should be as simple as possible. Generally, the shorter the code, the simpler will
be its implementation.

The uncoded 8-PSK minimum bandwidth requirement is 3200 Hz (Table 13.1) and the allowable
channel bandwidth is 4000 Hz, and so the uncoded signal bandwidth can be increased by no more
than a factor of 1.25 (i.e., an expansion of 25%). The very first step in this (simplified) code selection
example is to eliminate the candidates in Table 13.2 that would expand the bandwidth by more than
25%. The remaining entries form a much reduced set of bandwidth-compatible codes (Table 13.3).

In Table 13.3, a column designated Coding Gain G (for MPSK at PB = 10−9) has been added.
Coding gain in decibels is defined as follows:

G =
(

Eb

N0

)
uncoded

−
(

Eb

N0
s

)
coded

(13.29)

G can be described as the reduction in the required Eb/N0 (in decibels) that is needed due to the
error-performance properties of the channel coding. G is a function of the modulation type and
bit-error probability, and it has been computed for MPSK at PB = 10−9 (Table 13.3). For MPSK
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TABLE 13.3

Bandwidth-Compatible BCH Codes
Coding Gain, G (dB)

n k t MPSK, PB = 10−9

31 26 1 2.0

63 57 1 2.2
51 2 3.1

127 120 1 2.2
113 2 3.3
106 3 3.9

modulation, G is relatively independent of the value ofM . Thus, for a particular bit-error probability,
a given code will provide about the same coding gain when used with any of the MPSK modulation
schemes. Coding gains were calculated using a procedure outlined in the subsequent Calculating
Coding Gain section.

A block diagram summarizes this system, which contains both modulation and coding (Fig. 13.3).
The introduction of encoder/decoder blocks brings about additional transformations. The rela-
tionships that exist when transforming from R b/s to Rc channel-b/s to Rs symbol/s are shown at
the encoder/modulator. Regarding the channel-bit rate Rc, some authors prefer to use the units of
channel-symbol/s (or code-symbol/s). The benefit is that error-correction coding is often described
more efficiently with nonbinary digits. We reserve the term symbol for that group of bits mapped
onto an electrical waveform for transmission, and we designate the units of Rc to be channel-b/s (or
coded-b/s).

FIGURE 13.3: MODEM with channel coding.

We assume that our communication system cannot tolerate any message delay, so that the channel-
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bit rate Rc must exceed the data-bit rate R by the factor n/k. Further, each symbol is made up of
log2 M channel bits, and so the symbol rate Rs is less than Rc by the factor log2 M . For a system
containing both modulation and coding, we summarize the rate transformations as follows:

Rc =
(n

k

)
R (13.30)

Rs = Rc

log2 M
(13.31)

At the demodulator/decoder in Fig.13.3, the transformations among data-bit energy, channel- bit
energy, and symbol energy are related (in a reciprocal fashion) by the same factors as shown among
the rate transformations in Eqs. (13.30) and (13.31). Since the encoding transformation has replaced
k data bits with n channel bits, then the ratio of channel-bit energy to noise-power spectral density
Ec/N0 is computed by decrementing the value of Eb/N0 by the factor k/n. Also, since each trans-
mission symbol is made up of log2 M channel bits, then ES/N0, which is needed in Eq. (13.20) to
solve for PE , is computed by incrementing Ec/N0 by the factor log2 M . For a system containing both
modulation and coding, we summarize the energy to noise-power spectral density transformations
as follows:

Ec

N0
=

(
k

n

)
Eb

N0
(13.32)

Es

N0
= (

log2 M
) Ec

N0
(13.33)

Using Eqs. (13.30) and (13.31), we can now expand the expression for S/N0 in Eq. (13.19), as follows
(Appendix).

S

N0
= Eb

N0
R = Ec

N0
Rc = Es

N0
Rs (13.34)

As before, a standard way of describing the link is in terms of the receivedEb/N0 in decibels. However,
there are no data bits at the input to the demodulator, and there are no channel bits; there are only
waveforms that have bit meanings and, thus, the waveforms can be described in terms of bit-energy
apportionments.

Since S/N0 and R were given as 53 dB-Hz and 9600 b/s, respectively, we find as before, from
Eq. (13.18), that the received Eb/N0 = 13.2 dB. The received Eb/N0 is fixed and independent of
n, k, and t (Appendix). As we search, in Table 13.3 for the ideal code to meet the specifications, we
can iteratively repeat the computations suggested in Fig. 13.3. It might be useful to program on a
personal computer (or calculator) the following four steps as a function of n, k, and t . Step 1 starts
by combining Eqs. (13.32) and (13.33), as follows.

Step 1:
Es

N0
= (

log2 M
) Ec

N0
= (

log2 M
) ( k

n

)
Eb

N0
(13.35)

Step 2:

PE(M) ∼= 2Q

[√
2Es

N0
sin
( π

M

)]
(13.36)

which is the approximation for symbol-error probability PE rewritten from Eq. (13.20). At each
symbol-time interval, the demodulator makes a symbol decision, but it delivers a channel-bit se-
quence representing that symbol to the decoder. When the channel-bit output of the demodulator is
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quantized to two levels, 1 and 0, the demodulator is said to make hard decisions. When the output is
quantized to more than two levels, the demodulator is said to make soft decisions [15]. Throughout
this paper, we shall assume hard-decision demodulation.

Now that we have a decoder block in the system, we designate the channel-bit-error probability
out of the demodulator and into the decoder as pc, and we reserve the notation PB for the bit-error
probability out of the decoder. We rewrite Eq. (13.24) in terms of pc for PE � 1 as follows.

Step 3:

pc
∼= PE

log2 M
= PE

m
(13.37)

relating the channel-bit-error probability to the symbol-error probability out of the demodulator,
assuming Gray coding, as referenced in Eq. (13.24).

For traditional channel-coding schemes and a given value of received S/N0, the value of Es/N0
with coding will always be less than the value of Es/N0 without coding. Since the demodulator
with coding receives less Es/N0, it makes more errors! When coding is used, however, the system
error-performance does not only depend on the performance of the demodulator, it also depends
on the performance of the decoder. For error-performance improvement due to coding, the decoder
must provide enough error correction to more than compensate for the poor performance of the
demodulator.

The final output decoded bit-error probability PB depends on the particular code, the decoder,
and the channel-bit-error probability pc. It can be expressed by the following approximation [11].

Step 4:

PB
∼= 1

n

n∑
j=t+1

j

(
n

j

)
p

j
c (1 − pc)

n−j (13.38)

where t is the largest number of channel bits that the code can correct within each block of n bits.
Using Eqs. (13.35–13.38) in the four steps, we can compute the decoded bit-error probability PB as
a function of n, k, and t for each of the codes listed in Table 13.3. The entry that meets the stated
error requirement with the largest possible code rate and the smallest value of n is the double-error
correcting (63, 51) code. The computations are as follows.

Step 1:
Es

N0
= 3

(
51

63

)
20.89 = 50.73

where M = 8, and the received Eb/N0 = 13.2 dB (or 20.89).
Step 2:

PE
∼= 2Q

[√
101.5 × sin

(π

8

)]
= 2Q(3.86) = 1.2 × 10−4

Step 3:

pc
∼= 1.2 × 10−4

3
= 4 × 10−5

Step 4:

PB
∼= 3

63

(
63

3

)(
4 × 10−5

)3 (
1 − 4 × 10−5

)60

+ 4

63

(
63

4

)(
4 × 10−5

)4 (
1 − 4 × 10−5

)59 + · · ·
= 1.2 × 10−10
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where the bit-error-correcting capability of the code is t = 2. For the computation of PB in step 4,
we need only consider the first two terms in the summation of Eq. (13.38) since the other terms have
a vanishingly small effect on the result. Now that we have selected the (63, 51) code, we can compute
the values of channel-bit rate Rc and symbol rate Rs using Eqs. (13.30) and (13.31), with M = 8,

Rc =
(n

k

)
R =

(
63

51

)
9600≈ 11,859channel-b/s

Rs = Rc

log2 M
= 11859

3
= 3953symbol/s

13.5.2 Calculating Coding Gain

Perhaps a more direct way of finding the simplest code that meets the specified error performance
is to first compute how much coding gain G is required in order to yield PB = 10−9 when using
8-PSK modulation alone; then, from Table 13.3, we can simply choose the code that provides this
performance improvement. First, we find the uncoded Es/N0 that yields an error probability of
PB = 10−9, by writing from Eqs. (13.24) and (13.36), the following:

PB
∼= PE

log2 M
∼=

2Q

[√
2Es

N0
sin
( π

M

)]
log2 M

= 10−9 (13.39)

At this low value of bit-error probability, it is valid to use Eq. (13.22) to approximate Q(x)

in Eq. (13.39) By trial and error (on a programmable calculator), we find that the uncoded
Es/N0 = 120.67 = 20.8 dB, and since each symbol is made up of log2 8 = 3 bits, the required
(Eb/N0)uncoded = 120.67/3 = 40.22 = 16dB. From the given parameters and Eq. (13.18), we know
that the received (Eb/N0)coded = 13.2 dB. Using Eq. (13.29), the required coding gain to meet the
bit-error performance of PB = 10−9 in decibels is

G =
(

Eb

N0

)
uncoded

−
(

Eb

N0

)
coded

= 16− 13.2 = 2.8

To be precise, each of the Eb/N0 values in the preceding computation must correspond to exactly
the same value of bit-error probability (which they do not). They correspond to PB = 10−9

and PB = 1.2 × 10−10, respectively. At these low probability values, however, even with such a
discrepancy, this computation still provides a good approximation of the required coding gain. In
searching Table 13.3 for the simplest code that will yield a coding gain of at least 2.8 dB, we see that
the choice is the (63, 51) code, which corresponds to the same code choice that we made earlier.

13.6 Example 4: Direct-Sequence (DS)
Spread-Spectrum Coded System

Spread-spectrum systems are not usually classified as being bandwidth- or power-limited. They
are generally perceived to be power-limited systems, however, because the bandwidth occupancy of
the information is much larger than the bandwidth that is intrinsically needed for the information
transmission. In a direct-sequence spread-spectrum (DS/SS) system, spreading the signal bandwidth
by some factor permits lowering the signal-power spectral density by the same factor (the total average
signal power is the same as before spreading). The bandwidth spreading is typically accomplished
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by multiplying a relatively narrowband data signal by a wideband spreading signal. The spreading
signal or spreading code is often referred to as a pseudorandom code or PN code.

13.6.1 Processing Gain

A typical DS/SS radio system is often described as a two-step BPSK modulation process. In the first
step, the carrier wave is modulated by a bipolar data waveform having a value +1 or −1 during each
data-bit duration; in the second step, the output of the first step is multiplied (modulated) by a bipolar
PN-code waveform having a value +1 or −1 during each PN-code-bit duration. In reality, DS/SS
systems are usually implemented by first multiplying the data waveform by the PN-code waveform
and then making a single pass through a BPSK modulator. For this example, however, it is useful to
characterize the modulation process in two separate steps—the outer modulator/demodulator for
the data, and the inner modulator/demodulator for the PN code (Fig. 13.4).

FIGURE 13.4: Direct-sequence spread-spectrum MODEM with channel coding.

A spread-spectrum system is characterized by a processing gain Gp , that is defined in terms of the
spread-spectrum bandwidth Wss and the data rate R as follows [20]:

Gp = Wss

R
(13.40)

For a DS/SS system, the PN-code bit has been given the name chip, and the spread-spectrum signal
bandwidth can be shown to be about equal to the chip rate Rch as follows:

Gp = Rch

R
(13.41)
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Some authors define processing gain to be the ratio of the spread-spectrum bandwidth to the symbol
rate. This definition separates the system performance that is due to bandwidth spreading from the
performance that is due to error-correction coding. Since we ultimately want to relate all of the
coding mechanisms relative to the information source, we shall conform to the most usually accepted
definition for processing gain, as expressed in Eqs. (13.40) and (13.41).

A spread-spectrum system can be used for interference rejection and for multiple access (allowing
multiple users to access a communications resource simultaneously). The benefits of DS/SS signals
are best achieved when the processing gain is very large; in other words, the chip rate of the spreading
(or PN) code is much larger than the data rate. In such systems, the large value of Gp allows the
signalling chips to be transmitted at a power level well below that of the thermal noise. We will use a
value of Gp = 1000. At the receiver, the despreading operation correlates the incoming signal with
a synchronized copy of the PN code and, thus, accumulates the energy from multiple (Gp) chips
to yield the energy per data bit. The value of Gp has a major influence on the performance of the
spread-spectrum system application. We shall see, however, that the value of Gp has no effect on the
received Eb/N0. In other words, spread spectrum techniques offer no error-performance advantage
over thermal noise. For DS/SS systems, there is no disadvantage either! Sometimes such spread-
spectrum radio systems are employed only to enable the transmission of very small power-spectral
densities and thus avoid the need for FCC licensing [16].

13.6.2 Channel Parameters for Example 13.4

Consider a DS/SS radio system that uses the same (63, 51) code as in the previous example. Instead
of using MPSK for the data modulation, we shall use BPSK. Also, we shall use BPSK for modulating
the PN-code chips. Let the received S/N0 = 48 dB-Hz, the data rate R = 9600b/s, and the
required PB ≤ 10−6. For simplicity, assume that there are no bandwidth constraints. Our task is
simply to determine whether or not the required error performance can be achieved using the given
system architecture and design parameters. In evaluating the system, we will use the same type of
transformations used in the previous examples.

13.6.3 Solution to Example 13.4

A typical DS/SS system can be implemented more simply than the one shown in Fig. 13.4. The
data and the PN code would be combined at baseband, followed by a single pass through a BPSK
modulator. We will, however, assume the existence of the individual blocks in Fig. 13.4 because they
enhance our understanding of the transformation process. The relationships in transforming from
data bits, to channel bits, to symbols, and to chips Fig. 13.4 have the same pattern of subtle but
straightforward transformations in rates and energies as previous relationships (Figs. 13.2 and 13.3).
The values of Rc, Rs , and Rch can now be calculated immediately since the (63, 51) BCH code has
already been selected. From Eq. (13.30) we write

Rc =
(n

k

)
R =

(
63

51

)
9600≈ 11,859channel-b/s

Since the data modulation considered here is BPSK, then from Eq. (13.31) we write

Rs = Rc ≈ 11,859symbol/s

and from Eq. (13.41), with an assumed value of Gp = 1000

Rch = GpR = 1000× 9600= 9.6 × 106 chip/s
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Since we have been given the same S/N0 and the same data rate as in Example 2, we find the value
of received Eb/N0 from Eq. (13.25) to be 8.2 dB (or 6.61). At the demodulator, we can now expand
the expression for S/N0 in Eq. (13.34) and the Appendix as follows:

S

N0
= Eb

N0
R = Ec

N0
Rc = Es

N0
Rs = Ech

N0
Rch (13.42)

Corresponding to each transformed entity (data bit, channel bit, symbol, or chip) there is a change
in rate and, similarly, a reciprocal change in energy-to-noise spectral density for that received entity.
Equation (13.42) is valid for any such transformation when the rate and energy are modified in a
reciprocal way. There is a kind of conservation of power (or energy) phenomenon that exists in the
transformations. The total received average power (or total received energy per symbol duration) is
fixed regardless of how it is computed, on the basis of data bits, channel bits, symbols, or chips.

The ratio Ech/N0 is much lower in value than Eb/N0. This can be seen from Eqs. (13.42)
and (13.41), as follows:

Ech

N0
= S

N0

(
1

Rch

)
= S

N0

(
1

GpR

)
=
(

1

Gp

)
Eb

N0
(13.43)

But, even so, the despreading function (when properly synchronized) accumulates the energy con-
tained in a quantityGp of the chips, yielding the same valueEb/N0 = 8.2dB, as was computed earlier
from Eq. (13.25). Thus, the DS spreading transformation has no effect on the error performance of
an AWGN channel [15], and the value of Gp has no bearing on the value of PB in this example.

From Eq. (13.43), we can compute, in decibels,

Ech

N0
= Eb/N0 − Gp

= 8.2 − (
10× log10 1000

)
= −21.8 (13.44)

The chosen value of processing gain (Gp = 1000) enables the DS/SS system to operate at a value of
chip energy well below the thermal noise, with the same error performance as without spreading.

Since BPSK is the data modulation selected in this example, each message symbol therefore corre-
sponds to a single channel bit, and we can write

Es

N0
= Ec

N0
=
(

k

n

)
Eb

N0
=
(

51

63

)
× 6.61 = 5.35 (13.45)

where the received Eb/N0 = 8.2 dB (or 6.61). Out of the BPSK data demodulator, the symbol-error
probability PE (and the channel-bit error probability pc) is computed as follows [15]:

pc = PE = Q

(√
2Ec

N0

)
(13.46)

Using the results of Eq. (13.45) in Eq. (13.46) yields

pc = Q(3.27) = 5.8 × 10−4

Finally, using this value of pc in Eq. (13.38) for the (63,51) double-error correcting code yields
the output bit-error probability of PB = 3.6 × 10−7. We can, therefore, verify that for the given
architecture and design parameters of this example the system does, in fact, achieve the required
error performance.
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13.7 Conclusion

The goal of this section has been to review fundamental relationships used in evaluating the perfor-
mance of digital communication systems. First, we described the concept of a link and a channel
and examined a radio system from its transmitting segment up through the output of the receiving
antenna. We then examined the concept of bandwidth-limited and power-limited systems and how
such conditions influence the system design when the choices are confined to MPSK and MFSK mod-
ulation. Most important, we focused on the definitions and computations involved in transforming
from data bits to channel bits to symbols to chips. In general, most digital communication systems
share these concepts; thus, understanding them should enable one to evaluate other such systems in
a similar way.

Appendix: Received Eb/N0 Is Independent of the
Code Parameters

Starting with the basic concept that the received average signal power S is equal to the received symbol
or waveform energy, Es , divided by the symbol-time duration, Ts (or multiplied by the symbol rate,
Rs), we write

S

N0
= Es/Ts

N0
= Es

N0
Rs (A13.1)

where N0 is noise-power spectral density.
Using Eqs. (13.27) and (13.25), rewritten as

Es

N0
= (

log2 M
) Ec

N0
and Rs = Rc

log2 M

let us make substitutions into Eq. (A13.1), which yields

S

N0
= Ec

N0
Rc (A13.2)

Next, using Eqs. (13.26) and (13.24), rewritten as

Ec

N0
=
(

k

n

)
Eb

N0
and Rc =

(n

k

)
R

let us now make substitutions into Eq. (A13.2), which yields the relationship expressed in Eq. (13.11)

S

N0
= Eb

N0
R (A13.3)

Hence, the received Eb/N0 is only a function of the received S/N0 and the data rate R. It is
independent of the code parameters, n, k, and t . These results are summarized in Fig. 13.3.
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Further Information

A useful compilation of selected papers can be found in: Cellular Radio & Personal Communications–
A Book of Selected Readings, edited by Theodore S. Rappaport, Institute of Electrical and Electronics
Engineers, Inc., Piscataway, New Jersey, 1995. Fundamental design issues, such as propagation,
modulation, channel coding, speech coding, multiple-accessing and networking, are well represented
in this volume.

Another useful sourcebook that covers the fundamentals of mobile communications in great
detail is: Mobile Radio Communications, edited by Raymond Steele, Pentech Press, London 1992.
This volume is also available through the Institute of Electrical and Electronics Engineers, Inc.,
Piscataway, New Jersey.

For spread spectrum systems, an excellent reference is: Spread Spectrum Communications Hand-
book, by Marvin K. Simon, Jim K. Omura, Robert A. Scholtz, and Barry K. Levitt, McGraw-Hill Inc.,
New York, 1994.
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