Chapter 4
Fourth Order

Differential Equations

4.1. Linear Equations

4.1.1. Preliminary Comments

1. A nonhomogeneous linear equation of the fourth order has the form

11

f4y£3771+f3y§rl'/rab+f2ygx+fly;+f0y:g(x)5 fk:fk(x) (1)

Let yo =yo(x) be a nontrivial particular solution of the corresponding homogeneous equation
(with g = 0). Then, the substitution

y = y0(®) / o(z) da ()

leads to a linear equation of the third order:

"

fayo2" +(4fayo+fayo) 2" +(6 fayy +3 f3y0+ fayo) 2"+ (4 fayo +3 f3yo +2favo+ fryo) 2 =g, (3)
where prime denotes differentiation with respect to z.

2. Let y; = y1(x) and yo = y(z) be two nontrivial linearly-independent particular
solutions of equation (1) with g = 0. Then, the substitution

y=y1/92Wd$—y2/91Wde (4)
yields a second order linear equation:

faDiw” + (3f1s + fsAr)w' + [f4(3A5 + 2¢) + 2f3A; + foArJw = g, (5)

where

", 1 i

AL =9y — vy, Do =ylye — s, As=uy"yo—v1ys . € =uylys — Yivs-

4.1.2. Equations Containing Power Functions

1. .+ ay =0.

ya::cwac

1°. Solution with a = 0:

Yy = Cl + C2517 + 03$2 + 04173.
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10.

11.

2°. Solution with a = 4k* > 0:
y = C cosh kx cos kx 4+ Cs cosh kx sin kx + C3 sinh kx cos kx + Cy sinh kx sin kx.
3°. Solution with a = —k* < 0:

y = Cq coskx + Cysin kx + C5 cosh kx + Cy sinh kx.

oAy = ax® 4 bx? + cx + s, A # 0.

Z/ﬂla:ﬂﬂt

1
Solution: y = —(az® +bax® + cx +s) +w(z), where w(x) is the general solution of
the equation 4.1.2.1: w?”” + Aw = 0.

TXxTTIT

"

Yo e = axy + b.

This is a special case of equation 5.1.2.4 with n = 4.

"
ym:c:cac

For m = -2, —4, —6, —8, and —9, see equations 4.1.2.34, 4.1.2.42, 4.1.2.47, 4.1.2.48,
and 4.1.2.53, respectively.
The transformation z = t~!, y = wt~3 leads to an equation of the similar form:
mro__ —m—8
Wiy = AL w.

= ax™y.

Yozze + Y, + 0y = 0.

This is a special case of equation 4.1.2.24.

"
ymwmm

+ 2ay!, — a®?z?y = 0.

This is a special case of equation 4.1.2.13 with n = 1.

o e T 4axyl + (2a — a?zt)y = 0.

yil?:L'(lHE

This is a special case of equation 4.1.2.13 with n = 2.

"4 ax(2b — 3a — a2;1;2)y; +b(2a — b+ a?z?)y = 0.

Z/ﬂla:ﬂﬂt

The substitution w =y — azy!, + by leads to a second order linear equation of the
form 2.1.2.28: w!, + azw) + (2a — b+ a*2?)w = 0.

"

m—1
Yozxa

+ ax™y! — 3ax y =0.
3

Particular solution: yg = x°.
The substitution z = xy,, — 3y leads to a third order equation of the form 3.1.2.7:
20 +axz=0.

g

"

y  +ax™y, + amz™ 'y = 0.

Integrating yields a third order equation: y/  + ax™y = C.

Trx

yur .+ ax™yl +a(m + 3)z™ 1y = 0.

The transformation x = t~!, y = wt™3 leads to an equation of the form 4.1.2.10:
will, + bt"w) + bnt"tw = 0, where b = —a, n = —m — 6.
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12. A S T a(a® + bx™)y = 0.

yw:cww

This is a special case of equation 4.1.5.1 with f = bz™.

13. y”” 4+ 2anz™ 'y’ +a[n(n — 1)z 2 — ax®"]y = 0.
xr

ywwww

The substitution w =y, + az™y leads to a second order equation of the form 2.1.2.7:
wl —ax"w = 0.

zx

14. y”” 4+ (az™ + b®)y’, + abz™y = 0.

ymmmm

Particular solution: gy = e~ "%,

15. y2” 4 (az™t! 4 bx™)y!, — az™y = 0.

ymwmm

Particular solution: yg = ax + b.

16. y2" 4+ 2ay! + a’y =0.
1°. Solution with a = k% > 0:
y = (C1 + Cax) cos(kzx) + (C5 + Cyx) sin(kx).
2°. Solution with a = —k? < 0:
y = (C1 + Cox) exp(kz) + (C5 + Cyx) exp(—kz).
17. y .+ (a+b)yl 4+ aby =0.
The case of a = b is given in 4.1.2.16. Let a # b.

1°. Solution with a = a? >0, b= 2 > 0:
y = C1 cos(ax) + Cysin(ax) + Cs cos(Bx) + Cy sin(Bz).

2°. Solution with a =a? >0, b= -2 < 0:

y = Cq cos(ax) + Cysin(azx) + Cs exp(Bx) + Cy exp(—Lx).
3°. Solution with ¢ = —a? <0, b= 32> 0:

y = Crexp(ax) + Cy exp(—ax) + Cs cos(Bx) + Cy sin(fz).
4°. Solution with a = —a? <0, b= -2 < 0:

y = Cy exp(ax) + Cyexp(—ax) + Cs exp(Bz) + Cy exp(—Lx).
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18.

19.

20.

21.

22,

23.

bl 2a2yc’c’gc + a*y — Aazx — b) (v, — a?y) = 0.

zla:a:aun

This equation is met with in the turbulence theory. Assuming

#(2) = yyl, — a®y, (1)
yields a second order linear equation of the form 2.1.2.12:

2! —a*z — Nax —b)z = 0. (2)

T

Given the boundary conditions

y(0) = y,(0) =0, y(1) =y,(1) =0, (3)

xr xr
2ay = e** / e zdr —e " / e zdx
0 0

The latter is the solution of equation (1) that satisfies the first pair of the boundary
conditions (3). In order to satisfy the second pair of the boundary conditions, the
solution z(x) of equation (2) must meet the requirements

1 1
/ e rdx = / e*zdxr = 0.
0 0

yor . +ax™yl 4+ blax™ — b)y = 0.
1°. Particular solutions with b > 0: y; = cos (:1:\/5)7 Yo = sin(x\/g).
2°. Particular solutions with b < 0: y; = exp(fz\/fb), Yo = €xp (a?\/fb).

The substitution w = y2 + by leads to a second order linear equation: w? +
(az™ — b)w = 0.

we obtain

o .+ ax™tly”  — dax™y! + 6axz™ 'y = 0.

ymm:ﬂm

Particular solutions: 1 = 22, 1y = 2.

The substitution w = 902%’$ 4yl + 6y leads to a second order linear equation
of the form 2.1.2.7: w”, + az" 1w = 0.

mr .+ 10az™y”  + 10anz™ 'y’ + [3an(n — 1)z™ 2 + 9a?z*"|y = 0.

yil?:L'(lHE

This is a special case of equation 4.1.5.26 with f = az™.

yor o+ (ax™ + b)y + abx™y = 0.
1°. Particular solutions with b > 0: y; = cos (a:\/g), Yo = sin(x\/g).
2°. Particular solutions with b < 0: y; = exp(—x\/—b), Yo = €Xp (m\/—b).

The substitution w =y, + by leads to a second order linear equation of the form
2.1.2.7: wl, + ax™w = 0.

"

Yozxa + a‘ylm,z + bﬂ?"y; + bn:c"_lny = sx™
Intergating yields a third order equation: y."  + ay +bz"y =s f 2™ dr 4 C.
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24.

"

yur e+ asyl., + a2yl + agy = 0.

For ap = 0, the substitution w(z) = y., leads to a third order equation. Let ag # 0
and P(\) = A* + az\® + aaA? + a1\ + ag be the characteristic polynomial.

1°. Let P be factorizable, so that
PO = A=A\ = A2)(A = A3) (A — \a),

where A1, Aa, Az, and A4 are real numbers. The following cases are possible:

a) A; are all different, then
y = C1eMT 4 Cre™2® 4+ C3e3% + Cye™;
b) A1 = Ag; A3 and )4 are different and not equal to Aq, then
y=(C1+ ng)e)‘lx + C5e™3% + Cye™;
c) A1 = A2 = A3 # Ay, then
y = (C) + Cox + C3z?)eM® 4 Cyet®;
d) A1 = X2 = A3 = Ay, then
y = (C1 + Cox + C32? 4+ Cyx3)eM®.

2°. Let
P(A) = (A= A1) (A = A2) (A% 4 2by A + by),

where A\; and Mg are real numbers, and b — by < 0. If

a) A1 # Ag, then

y = C1eM + Cae™2® 4 e~ "1%[C3 cos(px) + Cysin(pux)], p=1/bo — b3

b) )\1 = )\2, then

y = (C1 + Coz)eM® + e~ 01Oy cos(ux) 4+ Cy sin(px)], pw=1/bg —b3.
3°. Let us assume that
P()\) = (/\2 + 261\ + bo)()\Q + 2012+ ﬁo),

where b2 — by < 0 and 82 — By < 0. If
a) (b1 — B1)* + (bo — Bo)? # 0, then

y = e %[0} cos(px) + Cosin(uz)] + e P1%[C5 cos(va) + Cysin(vz)],

where 1 = /b — b2, v = /B0 — 5%

b) bl = ﬁ1 and bo = ﬂo, then

y = e "[(Cy + Caz) cos(ux) + (Cs + Cyx)sin(pa)],  p=/bo — b2.
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25.

26.

27.

28.

29.

30.

31.

32.

33.

" _+_ 4awy///

yw:cww TXTT

+ 6a%z?y” + 4a®z3y! + a*z*y = 0.

Solution:
y = Z Ciexp(\iz — +az?),
where ); are the roots of the biquadratic equation A* — 6a\? + 3a? = 0.

Yoo T (ax + b)Yy, + [b(a + o)z + clyg, + bPcxy, — b?cy = 0.
Particular solutions: y; =z, y» = e "%,

" n, "

ymmmm = ax ymmm + by.’fn - a’bwny'
Particular solutions: y, = exp(Agz) (k =1, 2, 3), where A\ are the roots of the
cubic equation A3 — b = 0.

y;,v,:,c/wac _+_ awn—l—Sy;/:/cm _ 3awn+2 // _+_ 6aw”+1 ’ 6ax™ y = 0.

Particular solutions: y; =z, y2 = x2, Y3 = gg3_

The substitution w = x3y;';gﬂ 3x2y;’$ + 62y, — 6y leads to a first order linear
equation: w!, + ax" 3w = 0.

" +a:c y///w+bwm+1 // 2b£Bmy/ -|—2b£1:m 1y 0.

Yaezax
2

Particular solutions: y; =z, y2 = x”.

The substitution w = ny;’w — 2zy!, + 2y leads to a second order linear equation:

zw?, + (ax" T — 2)w! + ba™ 2w = 0.

"

ymwm: + ax™y!! +bx™yl + acx™y! + c(bx™ — c)y = 0.
. Particular solutions with ¢ > 0: y; = cos(zy/c), y2 =sin(z/c).
2°. Particular solutions with ¢ < 0: y; = exp(—zv/—c), y2 =exp(zy/—c).
The substitution w = y2, + cy leads to a second order linear equation: w!, +

azx™wl, + (ba™ — c)w = 0.

II//

y . +ax™yl 4+ (bx™ + c)yl, + acx™y., + bex™y = 0.
. Particular solutions with ¢ > 0: y; = cos(zy/c), y2 = sin(zy/c).

2°. Particular solutions with ¢ < 0: y; = exp(fx\/fc), Yo = exp(a:\/fc).

The substitution w = y2, + cy leads to a second order linear equation: w!, +
ax™wl, + bx™mw = 0.

The substitution w(z) = zy leads to a constant coefficient equation of the form 4.1.2.1:

////
zmxr +aw = 0

nn "

Yy — 4MYy, .+ axy = 0, m=1, 2, 3, ...

v=a ) ()

where w = w(x) is the general solution of the constant coefficient equation 4.1.2.1

////
Wrgax +aw = 0.

Solution:
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34.

35.

36.

37.

38.

39.

40.

41.

42.

2,111 J—
LY rxax — Y-

This is a special case of equation 5.1.2.23 with n = 2.

22y —2(ax® + 6)y” + a(ax? + 4)y = 0.
Particular solutions: y; = x*1/211/2(z\/5), Yo = x’l/zKl/Q(x\/a), where I
and K/, are modified Bessel functions.

2,111

eyl . + 6yl + 6y, — Ny =0.

The equation of transverse vibrations of a pointed bar.
Solution:

v= = [CR(VA) + O (3VAR) + Gl (VAR + O (20

where J; and Y7 are Bessel functions, I; and K; are modified Bessel functions.

w?yl o+ 2(a+2)xyl. + (a+1)(a+ 2)yl, — by =0.

Solution:
y = 1721 J4(€) + CaYa(€) + Cs14(€) + CuKa(9)],

where & = 2by/z, J, and Y, are Bessel functions, I, and K, are modified Bessel
functions.

wzy:,v/:c/a:w + Swy:/n,a/cm + 12y:/n,ac + aw2y =0

The substitution w(r) = 2%y leads to a constant coefficient equation of the form
4.1.2.1: w4+ aw = 0.

Trrxr

2y, + 8xyll, + 12y, = az’y +b.

"

The substitution w(x) = 2%y leads to an equation of the form 4.1.2.3: w =azw+b.

2?2y +axy! 4+ (bx™ T+ )y + (a—4)bz™y. +b(c—2a+6)x™ 1y =0.
The substitution w(x) = 2%y, + (a — 4)zy’, + (¢ — 2a + 6)y leads to a first order

equation of the form 2.1.2.7: w”, + bx"tw = 0.

Y e T 28 Y e — YL, + Y, — a'z’y = 0.
Solution:

y = C1Jo(az) + CoYy(ax) + Csly(az) + CyKo(ax)],

where Jy and Y, are Bessel functions, Iy and K are modified Bessel functions.

4, .1 _
T Yrrze — Y-

Solution:
y = Ciz" + Cox®? 4 Caas + Cyas,

whereku:%:l: %—i—\/a—i—l, k374:%:|: %—\/a—i—l.
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43.

44.

45.

46.

47.

48.

49.

50.

w4y;’:’c’ww + A3w3y;’:’w + A2w2y;’w + Aizy! 4+ Aoy = 0.

The FEuler equation.
The substitution ¢ = In |z| leads to a constant coefficient equation of the form
4.1.2.24:

Y + (As — 6)yyy + (11 = 3A3 + A2)yy; + (245 — Ao + A1 — 6)y, + Aoy = 0.
Y gaee — 2n(n+ )2y +4n(n+ 1)@y, +[az? +n(n+1)(n+3)(n—2)]y =0,
where 7 is a positive integer.

Solution:

4
y=az" Z Cy exp(M\z) P, (2), a#0,
v=1

where A, are four different roots of the equation A* + a = 0, and P, is some definite
polynomial of the degree < 4n. For a = 0, we have the Euler equation 4.1.2.43.

iy +2(2—n)z?y” 4+ (1 —n)(2—n)z?y” —a*z®y=0.
Solution:
y =V [CrJi/n(&) + C2Y1 /(&) + O3l (§) + CaKy n (£)],
2
where & = —am"/z, J, and Y, are Bessel functions, I,, and K, are modified Bessel
functions.

:B4y:,v/:lzlmw + 6m3y;:,:/z:m + [411]‘4 + (7 - a2 - b2)$2]yclc,m
+ (1622 + 1 — a? — b?)y’, + (822 + a?b?)y = 0.

Solution with ab # 0:
y = Cidu(x)J,(z) + Codyu(2)Y, (x) + C3Y,u(x)J, () + CaY,(2)Y, (2),
where J, and Y,, are Bessel functions, 2y =a+0b, 2v =a — b.

6, /111 —
€T ymmmm = ay.

This is a special case of equation 5.1.2.24 with n = 2.

8,111 —_
x ymmmm = ay.

The transformation z =t~!, y=wt =3 yields a constant coefficient equation: w}?/, = aw.

8, 1111 Ta 1

nn

The substitution w(x) = zy leads to an equation of the form 4.1.2.48: 28w

= aw.

(ax + b)*(cx + d)*yl) . = ky.

The transformation
ar+b Y

=ln— =<
¢ Nt d’ v (cx + d)3

leads to a constant coefficient equation.
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51.

52.

53.

54.

4.1.3. Equations Containing Exponential, Hyperbolic, and Logarithmic

(ax? + bx + c)4y:’c’.,’3’ww = ky.

The transformation

Y

gz/aﬂ—i—bx—l—c’ w:(ax2+bx+c)3/2

leads to a constant coefficient equation:

wigee — 3 Dwfe + (3§ D° —kJw =0, where

The transformation
- axr +b w Y
Cocx4d’ " (cx +d)3

leads to an equation of the form 4.1.2.34:

D = b? — 4ac.

20! = kA *w, where A = ad — be.

1339

9, 1111

zy, . . = ay + bx?.

The transformation z = ¢!, y = wt~3 leads to an equation of the form 4.1.2.3:

nn
wyy = atw + b.

(az + b)%y2" = (cz + d)y.

The transformation

cx+d Y
L -
ax+b (ax + b)3

leads to an equation of the form 4.1.2.3:

Wegee = A *¢w, where A = ad — bc.

Functions

7" + a3y; _|_ beaw(a2 _ beaw)y = 0.

ywmww

The substitution w =y + ay., + be®*y leads to a second order linear equation of the

form 2.1.3.10: w/, — aw}, + (a® — be**)w = 0.

yr .+ aer®y’ — (abe*® + bt)y = 0.
Particular solution: yo = e®?.

IIII + za)\e)\:z:y + a()\Z Az _ ae2Am)y = 0.

mwmm

The substitution w = y”_ + ae**y leads to a second order linear equation of the form

2.1.3.1: w!, — ae’w = 0.

//// + (aeAm + b3)y + abe)‘zy = 0.

mwa:m

Particular solution: yo = e~ %*.
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10.

11.

12.

13.

"+ (ax + b)e)‘my; — ae?y = 0.

ya::cww
Particular solution: yo = ax + b.

m .+ aer®y” — b(ae*® + b)y = 0.

ymwmm

1°. Particular solutions with b > 0: y; = exp(—a:\/g), Yo = exp (x\/g)
2°. Particular solutions with b < 0: y; = cos (a:\/—b), Yo = sin(x\/—b).

The substitution w =y, — by leads to a second order linear equation of the form
2.1.3.10: w’, + (ae’® + b)w = 0.

yr .+ (a+ be*®)y” + aber®y = 0.
1°. Particular solutions with a > 0: y; = cos(zv/a), y2 =sin(z/a).
2°. Particular solutions with a < 0: y; = exp(—x —a), Yo = exp(m —a).

The substitution w =y 4+ ay leads to a second order linear equation of the form
2.1.3.1: w!, + be’w = 0.

m .+ 10aer®y” 4+ 10axe*®y! + (3ar?e ™ 4 9a?e? )y = 0.

yil%l:mll?

This is a special case of equation 4.1.5.26 with f(z) = ae’?.

"

Yezzx + a‘y,m,;;m + beAwy; + abe*wy = 0.

Particular solution: yo = e~ .

mro __ A, 11 r_ Az
ywwmw = ae ymwm + bym abe Y.

Particular solutions: 1y, = ¢%* (k =1, 2, 3), where 3 are the roots of the cubic
equation 33 — b = 0.

Yy o+ aer®y’ 4+ bet*y!” + ace*®y’ + c(bet® — c)y = 0.
1°. Particular solutions with ¢ > 0: y1 = cos(z\/c), y2 = sin(zy/c).
2°. Particular solutions with ¢ < 0: y; = exp(—x\/—c), Yo = exp(x\/—c).

The substitution w =y, + cy leads to a second order linear equation:

" Az, ! T
why, + ae™wy, + c(be!” — c)w = 0.

yrr .+ aer®yl 4 (ber® + )yl + ace*®y! + beetTy = 0.
1°. Particular solutions with ¢ > 0: y; = cos (x\/E), Yo = sin(x\/E).
2°. Particular solutions with ¢ < 0: y; = exp(—as —c), Yy = exp(x\/—c).

The substitution w = y2. + cy leads to a second order linear equation: w! +
ae N w! + beFtw = 0.

" 3 Az, /11 2 Az, 1" Az, ,/ Az —
Ypowe T AT € TY - — 3ax“e ™y + 6axe Ty, — 6ae Ty = 0.

Particular solutions: y1 =, w2 =22, y3 = 2°.
The substitution w = x3y”  — 322y + 6xy,, — 6y leads to a first order linear
equation: w!, + az3e?®

w = 0.
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14. (ae® +b)y”” = ae®y.

LTI

Particular solution: o = ae®” + b.
15. (az™ + be” 4 c)y! . = be®y, m=1, 2, 3.

Particular solution: o = ax™ + be” + c.
16. (ax™e” 4 b)y." == by, m=20, 1, 2, 3.

Particular solution: yg = ax™ + be™".
17. ym .+ bexp(Ax™)y + albexp(Az™) —aly = 0.

This is a special case of equation 4.1.5.5 with f(z) = bexp(Az™).
18. gy .+ [a+ bexp(Ax™)]yL . + abexp(Az™)y = 0.

This is a special case of equation 4.1.5.6 with f(x) = bexp(Az").
19. g2 .+ bsinh™(Az)y” + albsinh™(Az) — aly = 0.

This is a special case of equation 4.1.5.5 with f(z) = bsinh™(A\z).
20. y2” + [a+ bsinh™(Ax)]y” + absinh™(Az)y = 0.

This is a special case of equation 4.1.5.6 with f(z) = bsinh™(Az).
21. y2"  + bcosh™(Ax)y! + a[bcosh™(Ax) —aly = 0.

This is a special case of equation 4.1.5.5 with f(z) = bcosh™ (Az).
22. y"  + [a+ bcosh™(Ax)]yY, + abcosh™(Axz)y = 0.

This is a special case of equation 4.1.5.6 with f(x) = bcosh™(\x).

23. z%y""  + 2azy’, — a[l + az?In®*(bzx)]y = 0.

The substitution w =y + aln(bx)y leads to a second order linear equation: w!/, —
aln(br)w = 0.
24. y?" +aln"(Azx)(z®y  — 3x2y! + 6xy. — 6y) = 0.

This is a special case of equation 4.1.5.15 with f(z) = aIn"(A\z).

4.1.4. Equation Containing Trigonometric Functions

1. e + 2abcos(bx) yl, — a[b? sin(bx) + asin®(bx)]y = 0.

ymmmm

The substitution w =y, + asin(bx) y leads to a second order linear equation of the
form 2.1.6.3: w!, — asin(bz)w = 0.

9. " 4 asin™(Ax) y{'E + blasin™ (Ax) — b3]y =0.

ymmmm

Particular solution: yo = e~ %*.
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3. " 4 lasin™(Ax) + b3]y; + absin™(Ax)y = 0.

yw:cwac

Particular solution: gy = e %,

4. " 4 atan™(A\x) y:’c + bla tan™(A\x) — b3]y =0.

yw:cwac

Particular solution: gy = e "%,

5. mn e+ [atan™(Az) + by, 4+ abtan™(Az) y = 0.

yw:cwac

Particular solution: gy = e %,

6. y  +asin™(Ax)y? + blasin”(Ax) — bly = 0.

The substitution w = yJ, + by leads to a second order linear equation: w!, +
[asin™(Az) — blw = 0.

7. oy .+ [a+bsin™(Ax)]y” 4+ absin™(Ax)y = 0.

The substitution w = y.. + ay leads to a second order linear equation: w!, +
bsin” (A\x) w = 0.

8. yu . +btan"(Ax)yl + albtan™(Ax) — aly = 0.
This is a special case of equation 4.1.5.5 with f(z) = btan™(\x).
9. yrv . +la+btan”(Ax)]yZ + abtan™(Ax)y = 0.
This is a special case of equation 4.1.5.6 with f(z) = btan™(\x).
10,y +asin™(Az) (2®y), — 32y, + 6zy, — 6y) = 0.
This is a special case of equation 4.1.5.15 with f(z) = asin”(\x).
11, y” . = asin™(Ax)y? + by — absin”(Ax) y.

Particular solutions: 1y = e* (k =1, 2, 3), where 3, are the roots of the cubic
equation 33 — b = 0.

12. y" = atan™(Ax)yl + by, —abtan™(Ax)y.

Particular solutions: 1y, = e”** (k =1, 2, 3), where 3 are the roots of the cubic
equation 83 — b = 0.

13. 2%y + asin™(Az) (2?y”, — 4zy’ + 6y) = 0.

The substitution w = x?y”  — 4xy’ + 6y leads to a second order linear equation:
yfl?m xr

wl + asin”(Ax) w = 0.
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14.

15.

16.

17.

18.

nn
TITITT

1"
TXTT

+ sinz cosz (2sin’ z + 3) y’, + (a*sin* z — 3)y = 0.

sin*zy + 2sin® zcoszy”” + sin®z (sin? x — 3) Yo

The equation of a loaded rigid spherical shell.
If a* = 1 — A2 then the equation can be written as

2

d d
LL(y) — A%y =0, where L= ey + cot T cot? z.

This equation falls into two second order equations:
L(y)+Ay=0,  L(y) - Ay =0,

which differ only in the sign of parameter A. The transformation £ =sin® z, w= y/sinx
reduces the latter equations to the hypergeometric equations 2.1.2.158:

€€ — Dwg, + (3¢ - 2)wg + TIFNw=0.
(acosx 4+ b))y = acoszy.
Particular solution: yo = acosx + b.

"
TXTTIT

(ax™ 4+ bceosx)y =bcoszy, m=1, 2, 3.

Particular solution: yg = ax™ + bcosx.

(asinx + b)y2" = asinzy.

Particular solution: yo = asinx + b.

(ax™ + bsinx)y!” = bsinxy, m=1, 2, 3.

Particular solution: gy = ax™ + bsin x.

4.1.5. Equations containing arbitrary functions

Notation: f, g, and h are arbitrary functions of x; a, b, and ¢ are parameters.

yu e+ YL, —a(f +a®)y =o0.

Particular solution: gy = €.

yr o+ (f+a®)y, +afy =0.

Particular solution: yo = e™%*.

Particular solution: yo =«
The substitution z = zy,, — 3y leads to a third order equation: 2/ + xfz = 0.

3

Yowee T (@ +b) fy, —afy = 0.

Particular solution: yo = ax + b.
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10.

11.

12.

13.

14.

1°. Particular solutions with a > 0: y; = cos(zy/a), y2 =sin(z/a).
2°. Particular solutions with a < 0: y; = exp(fw fa), Yo = €xp (x fa).

The substitution w =y, +ay leads to a second order equation: w!, +(f—a)w=0.

Yowoe + (F + )y, +afy=0.
1°. Particular solutions with a > 0: y; = cos(zy/a), y2 =sin(zy/a).
2°. Particular solutions with a < 0: y; = exp(fx fa), Yo = exp (9: fa).

The substitution w =y, + ay leads to a second order equation: w!, + fw = 0.

Y o + (@) (z?yll, — 4zyl, + 6y) = 0.

Particular solutions: y; = xz, Yo = 3.

The substitution w = 2%y, — 4xy’, + 6y leads to a second order linear equation:

w! + 2% fw =0.

yu o+ (ax® +bx +c) fyl, — 2afy =0.

Particular solution: yo = ax? + bx + c.

"

Particular solution: o = x°.

Yrtww T FUns — 202yl — a®fy,, +a*y = 0.

Particular solutions: y; =e™ %%, yo = e*.

Yovow T FYaza T 9Yae + afy, +alg —a)y = 0.
1°. Particular solutions with a > 0: y; = cos(zv/a), y2 =sin(zva).
2°. Particular solutions with a < 0: y; = exp(—a: —a), Yo = exp (x —a).

The substitution w = y, + ay leads to a second order linear equation: w? +
fwl + (g —a)w=0.

Yowa T FVnee + (9 + @)y, + afy; + agy = 0.
1°. Particular solutions with a > 0: y; = cos(zv/a), y2 =sin(zva).
2°. Particular solutions with a < 0: y; = exp(—x\/—a), Yo = exp(a: —a).

The substitution w =1y +ay leads to a second order equation: w?, + fw,+gw=0.

Particular solution: yo = x.

Yy e + (@)Yl + g(x) (2?yl, — 2xy!, + 2y) = 0.

Particular solutions: y; =z, ys = .

The substitution z = 2%y, — 2zy/, + 2y leads to a second order equation: z2/ +

(zf —2)2, + 2392 = 0.
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

Particular solutions: y; =z, yo =22, y3 =23

The substitution w = x3yl;L 3x2y;’I + 62y, — 6y leads to a first order linear
equation: w!, + x3 fw = 0.

"

Particular solutions: g, = e (k =1, 2, 3), where \; are the roots of the cubic
equation A% —a = 0.

yur » = (f —a)yll 4+ (af —b)y, + (bf — )y, +cfy =0.

Particular solutions: g, = e (k =1, 2, 3), where \; are the roots of the cubic
equation A3 + aA? + b\ +c = 0.

Yyt e+ (F+a)yli, + (af + g+ axg)yll, + a’zgy!, — a’gy = 0.

Particular solutions: y; =z, gy =e %",

Yozza T (f3 + ) Upz, + (f2 + afs)y, + (f1 + afo)y, +afiy =0,
Where fk - fk( ) (k - 17 2a 3)

Particular solution: yg = e 7.

The substitution w(x) = zy leads to a nonhomogeneous constant-coefficient linear

equation: w2+ aw = f(x).

zyllt L+ xfy, —[(x+1)f+x+4]y=0.

Particular solution: gy = xe”.

2,111

22y +axy?  + (2®f + by’ + (a —)zfy, + (b—2a+6)fy =0.
The substitution w = 2%y, + (a — 4)zy), + (b — 2a + 6)y leads to a second order
equation: wl, + fw =0.

a4, 111 3,,/1

Particular solution: yo = e

Yooz + FYe + f2¥ =9
Integrating yields y2. . + fy = [gdz + C.

yo et 2oyl + (. — Ay =0.

The substitution w =y + fy leads to a second order equation: w, — fw = 0.

Yoowa T 10y, + 10f2y, + (3f7, +9f%)y = 0.

Solution:
Y= Clwz{’ + ng%wg + C3w1w§ + C4w§’7

where w; and wy are nontrivial linearly-independent solutions of the second order
equation w!, + fw = 0.

© 1995 by CRC Press, Inc.



27.

28.

29.

30.

31.

32.

33.

34.

yut e+ (F+ 9y, +2fiyl + (f2f, + fg)y = 0.

The substitution w =y + fy leads to a second order equation: w!, + gw = 0.

Yortww 6 F Yy +(4fL+11f24+109) . + (fu, +Tf fL+6f>+30fg+10g. )y,
+3(2f.9+5fg., +6f%g9+ g, + 39*)y = 0.

Solution:
y = Clwf + C’gwfwg + 03w1w§ + C’4w§,
where wy; and wy form a fundamental set of solutions of the second order equation
wl + fwl, + gw = 0.
The equation of transverse vibrations of a bar.
T -t

Solution: y = Ci + Cox + W(Cg + Cyt) dt.

Particular solution: yg = cosz.

Particular solution: yo = sinz.

Y e = f(x)y.

The transformation z = ¢!, y = wt™> leads to an equation of the similar form:
withy =t f(1/thw.

" :f(anrb) Yy
rLTT cx+d/ (cx+d)8’
b
The transformation & = Z:fid , W= = i I leads to a simpler equation:

Wegee = A f(©w, where A = ad — be.

yur o+ F(@)y, + g(x)y + h(z) = 0.

The transformation = t~!,y = wt~3 leads to an equation of the similar form:

w170 f ()i + 3777 (3) + 7% () o+ om (5 ) =o0.
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4.1.6. Asymptotic Solutions

This subsection presents asymptotic solutions, as ¢ — 0 (¢ > 0), of some fourth-order
linear ordinary differential equations containing arbitrary functions (sufficiently smooth),
with the independent variable being a real number.

1. Consider the equation
Y roea — @)y =0 (1)
on a closed interval ¢ <z <b. With the condition f > 0, the leading terms of the asymptotic
expansions of the fundamental system of solutions, as € — 0, are given by the formulae

n =@ el -1 [ iaeh, g =@ o]+ [l af,
w= @ eos{ L [@Paefe =@ snd 2 [/,

2. Now consider the “biquadratic” equation

ety — 26%g(x)yll, — fz)y = 0. 2)

Introduce the notation
D(z) = [g(2)* + f(@).
In the region where the conditions f(x) # 0 and D(x) # 0 are satisfied, the leading terms

of the asymptotic expansions of the fundamental system of solutions of equation (2) are
described by the formulae

vk = D (@)] V2D (x) 1/4exp{ //\k / [Akl()(zj) do }; k=1,2 3 4.

= o) + P ute) = s+ /o0
= o)~ P@. it =) - /o0

4.2. Nonlinear Equations

where

4.2.1. Equation Containing Power Functions

1. "o _ Ay—5/3

ymazma:

Multiply both sides of the equation by 3°/3 and differentiate the resulting expression
with respect to z. We have

Byus” + 5y, e = 0.

Integrating the latter equation three times, we obtain a chain of equalities:

Yyt + 20y — (ylr)? = 20, (1)
3YYaza — Yelra = 2022 + C1, (2)

3yy, — 2(y,)? = Caz® + Crz + Cy, (3)
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where Cy, C1, and C are arbitrary constants. By eliminating the highest derivatives
from (1)—(3) with the help of the original equation, we obtain a first order equation:

2Py, — 3Ply)? = 9(C? — 4CCy)y? — 2P% + 5AAPy*/3,

where P = Cyz? + Ciz + Cy. The substitution y = (P/w)?/? leads to an equation
with separation of variables whereof integration finally yields

—1/2 dw dz
/[9(C12 —4CyCy) + b4 Aw — 2w3] / — + / 3P = Cs.

" — Aym .

ymmmm

By integrating, we obtain (m # —1)

2 24, 4
20 Yrww — (Yuz) = P e goa

3/2

where C is an arbitrary constant. The substitution w(y) = (y,)”' "~ leads to a second

order equation:
3A
"o _ m+1 —5/3
w,, = |—— C)w .

o= omt2)
The value C' = 0 corresponds to the Emden—Fowler equation whose integrable cases
are specified in Section 2.3 for some values of m (to those cases correspond three-
parameter families of particular solutions of the original equation).

" — —3m—5, m

The transformation z = t~!, y = t73w(t) leads to an equation of the form 4.2.1.2:
w//// :Awm.
XTI

_ 3m+45

1277 _ m
ymmmm = Ax 2 Yy

This is a special case of equation 4.2.3.3 with f(w) = Aw™.

o — (ay + bx*)™, kE=0,1, 2, 3.

yil!:L'éEﬂJ

The substitution aw = ay + bx* leads to an equation of the form 4.2.1.2: w”” =

TTITT
m,,m
a w.

B (a2 + b)Y/, = ey

This is a special case of equation 4.2.3.5 with f(w) = cw™.

__ 3m+45
Yo e = (az® + bx + ¢) 2 g™

This is a special case of equation 4.2.3.6 with f(w) = w™.

Yiiew — 3 Wiy + 1507y = by~
The transformation & = eV, w(€) = £3/2y leads to an equation of the form 4.2.1.1:

Wegee = a=2bw=5/3.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

TY it T Wil = Az Y75/,

The substitution w(x) = xy leads to an equation of the form 4.2.1.1: w/” = Aw=5/3,

nn

The substitution w(z) = zy,, — y leads to a third order equation: w//, = aw™ (Sec-
: : : __1 _>5 4 _ 71 _1

tion 3.2 presents its solutions for m = -5, -5, =2, =5, —¢, —5, 0, and 1).

wzy;c/:/c/a:w + Swy:/n,n/cm + lzygw = (1:15_10/3y_5/3.

The substitution w(z) = 2%y leads to an equation of the form 4.2.1.1: w”” = aw=5/3.

Y e + 6Ty, + TRy, + 2y, = ay™?/2.

The substitution ¢ = In |z| leads to an equation of the form 4.2.1.1: y”” = ay=°/5.

" —_ 1 1
YY2zaz = WaYsre:

1

Having integrated this equation, we obtain the third order equation v,

solvable cases are specified in Section 3.2.

= C'y® whose

Yy Ay y” 4+ 3(y”)? = az™

n

This is a special case of equation 4.2.3.22 with f(x) = az™.

2 _
Yy ALY+ 3(y,)" = ay1O/3,

The substitution w = y? leads to an equation of the form 4.2.1.1: w"

5/3
TTTT *

= 2aw™

2 _
Yy e YL, + 5 (YY) = (az + b)y~/2,

The transformation x = z(t), y = (x2)2 leads to a constant-coefficient fifth-order linear
equation: 2x§5) =ax+b.

3,011

2
Yy = ARy, + 3y (Yl,) T — 6(yl)*h

This is a special case of equation 4.2.3.27 with f = 0.
Solution in the parametric form:

y:C4exp( §dé )

x = :I:/ dz + Cs, +
284 4+ o6 + O 21+ G+ Gy

y;:,wy;c/:/c,acm = a(y;c,:/ca:)z'
Solution:
3—2a
y— {C0+C1x+(Cz+C3x) I—a  ifa#£1,
Co + Crx + Cy exp(Csx) ifa=1.
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Differentiating with respect to = yields

il (v — oz — ) = 0.

By equating the expression in the parentheses to zero and integrating it, we find the

solution: .
xG 5

y=asr + 85— + Cya* + Cs2® + Coz® + Chz + Cy.

x
5!

The constants Cj and parameters «, 3, and - are related by the constraint
48CCy — 18C2 = —aCy + SO +

obtained by means of substituting the solution into the original equation. In addition,
there exists the solution

Y= 5130 + 5’0, where aéo — ﬂél —5=0.

20 yen = oy YL (Yi.)"
This is a special case of equation 4.2.3.29 with f(y) = Ay*, g(w) = w*. For k = —1

and s = 1, see equation 4.2.1.13.
The first integral has the form:

1 A,
T W) "~ k—Hy"“ =C ifk#-1,s#1; (1)
A
Inyl, — k—ﬂka =C ifk#-1,s=1; 2)
1
T W) —Alny = C ik =—1,5=1 (3)

For C = 0, equality (1) is changing to the equation

1
[0
e Th 1

which is discussed in Section 3.2 (the solutions given there generate 3-parametric
families of particular solutions of the original equation for k = (1 — s)8 — 1, where

— 7 5 4 7 1
ﬁ — T 92 T 9 72a 3y @6 2> 07 and 1)

4.2.2. Equations Containing Exponential, Hyperbolic, Logarithmic, and
Trigonometric Functions

" — Ay
1. Ypwos — @€ 7.

This is a special case of equation 4.2.3.1 with f(y) = aeV.

2y, = aly+ be) 5/ — e
The substitution w = y+be® leads to an equation of the form 4.2.1.1: w” = aw=>°/3.
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10.

11.

12.

13.

14.

15.

16.

yur » = a(y + be®)™ — be”.

The substitution w = y + be® leads to an equation of the form 4.2.1.2: w” == aw™.
y o — ANy 4+ 6X2y) — ANy + Aty = aexp(%)\m)y_5/3.

The substitution w(z) = ye~** leads to an equation of the form 4.2.1.1: w!" =
aw=5/3,

Yamae — WAoo, + 60y, — AXPy] + Ay = aelImmzym,

The substitution w(z) = ye~** leads to an equation of the form 4.2.1.2: w” = aw™.

2
yygalc,mac + 4y:/cy:,c,;:ac + S(y;c,:c) = ae)\m.
Solution: y? = Csa® + Caa? + C1x + Cp + 2aX\ 4 ™.

YY Lt + 4ULYL, + 3(yl,)? = acosh(Az).
Solution: y? = C32® + Ca2? + C12 + Cy + 2aX~* cosh(Az).

YWkt + WY + 3(Y),)" = atanh™ ().
This is a special case of equation 4.2.3.22 with f(z) = atanh™ (A\z).

" = aln™(by).

Z/ﬂla:ﬂﬂt

This is a special case of equation 4.2.3.1 with f(y) = aln™ (by).

"

y!  =azx ?(lny — 3lnz).

This is a special case of equation 4.2.3.2 with f(w) = alnw.

y' =azr~%2?(2lny — 3nz).

This is a special case of equation 4.2.3.3 with f(w) = 2alnw.

YYlitten + ALY, + 3(¥),)" = aln™ (Az).
This is a special case of equation 4.2.3.22 with f(z) = aln™(\x).

"
lla:a:aun

= a cos™(A\y).
This is a special case of equation 4.2.3.1 with f(y) = acos™(\y).

= atan™(\y).

ymmmz

This is a special case of equation 4.2.3.1 with f(y) = atan™(\y).

YYtrns + ALY, + 3(yl,)" = acos(Az).
Solution: y? = C32® + Cax? + C1x + Cp + 2aX~* cos(\x).

YWirnwe + 4YoYles + 3(¥y,)" = atan™(Az).
This is a special case of equation 4.2.3.22 with f(z) = atan™(\x).
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4.2.3. Equations Containing Arbitrary Functions

By integrating, we obtain
29/t — (Wh)” = 2/f(y) dy + 2C.

The substitution w(y) = |y/,|*/? leads to a second order equation:

w!! = %Uf(y)dwc]w

2 "

Yozea — w_5f(y58_3).
The transformation x = ¢!, y = wt™3 leads to an equation of the form 4.2.3.1:
"o __
wiyy, = f(w).
3.y =2 f (yx3/?).
The transformatlon z = e, y = 2%/%w leads to an equation of the form 4.2.3.14:
wnlflt/t/t g wg& - 16 w + f( )

4. y = f(y+ax®+ Bx? + vz +6).
The substitution w = y + ax? + 2% + vz + § leads to an equation of the form 4.2.3.1:

5. x(ax+ b)*y" = f(yz~3).

b
The transformation £ = In ar + , W= % leads to an autonomous equation of the
T T
form 4.2.3.34.
6. y! = (aa:2+bw+c)_5/2f( Y >
TTITT (aa:2 + bx + C)3/2

1°. The transformation
N S
az? + bz + ¢ (az? + bx + ¢)3/?
leads to an autonomous equation of the form 4.2.3.14 for w = w(§):

w!" 5 A //5 + A W = f(w)7 where A = b% — 4ac.

TTXT

Therefore, having integrated the latter equation, we obtain
2 2 2,2
wewgge — 5 (Wee)” — FA(wp)” = — 35 Xw? + /f(w) dw + C.

The substitution z(w) = |w’£|3/2

leads to a second order equation:
= %Az_l/?’ + 3 [—%A2w2 +/f(w) dw + C}z_w?’
2°. The first integral of the original equation has the form
(P, ~ L ~ S PWL) + 4 Pl + Souyly — 200" = [ F(w)duw+C.
where P = ax? + bz + ¢, w = yP~3/2.
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10.

11.

12.

13.

14.

y;’:’c/ww = f(y + aew) — ae”.
The substitution w = y + ae” leads to an autonomous equation of the form 4.2.3.1:

Wigws = J ().

"
ym:c:cac

= f(y + acoshx) — acoshx.
The substitution w = y+a cosh x leads to an autonomous equation of the form 4.2.3.1:

"
y:vaca:a:

= f(y 4+ asinhz) — asinh x.
The substitution w = y+ a sinh = leads to an autonomous equation of the form 4.2.3.1:

Wies = J ().

nn

y .= Ff(y+acosxz) —acoszx.

The substitution w =y + a cos x leads to an autonomous equation of the form 4.2.3.1:

Wies = J ().

nr

yma:mw = .f(y + aSinm) — asinz.

The substitution w = y + a sin z leads to an autonomous equation of the form 4.2.3.1:
Wiliew = f(w).

yur e = F@W)y, +g(x).

By integrating, we find

y;’;z=/f(y) dy+/g(x) dz + C.

For g(z) = 0, the order of this equation can lowered by one with the help of the
substitution w(y) = y.,.

yur e =z f(xyl, — ).

The transformation ¢t = In |z|, w = zy,, —y leads to a third order autonomous equation
of the form 3.5.5.9: w}), — bw}, + 6w, = f(w).

Yowee T WYy = F(Y).

Having integrated this equation, we obtain
2y, e — (W) + a(y,)? = 2/f(y) dy + 20,

where C'is an arbitrary constant. The substitution w(y) = |y.|>/? leads to a second
order equation:

wy, = —faw P+ 4 [ / Fly)dy + c}ww
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15.

16.

17.

18.

19.

20.

"

Yozza = w_2-f(my:,c - y)y:,c/a:

The substitution ¢ = In|z|, w = zy), — y leads to a third order equation:
wiiy — Swiy + 6wy = f(w)w.

Integrating it, we obtain a second order automous equation:
wiy, — bwy + 6w = /f(w)dw + C.
The substitution z(w) = %w,’s leads to the Abel equation of the second kind:

220, — 2= 2—15[—6w—|—/f(w)dw+0}
(see Section 1.3).

yur - =xmf(x?yl, — 2zyl + 2y).

The substitution w = 2%y/, — 2y’ +2y leads to a second order equation: zw! —2w! =

a3 f(w).
For m = —4, the substitution z(w) = 4w/, leads to the Abel equation of the
second kind: zz], — z = ¢ f(w) (see Subsection 1.3.1).

"

ymmmw + a‘ylm,;m + byzln,m + cy:,n = ekmf(ye_km)'

-z

The substitution w(z) = ye leads to an autonomous equation:

nn

Wy + (AN + a)wih, + (6A% + 3aX + b)w),
+ (4X% 4 3aA? + 20X + c)wl, + (AT 4+ aX® + A% + cA)w = f(w),

which can be reduced to a third order equation by means of the substitution z(w)=w/,.

For a = —4X and ¢ = 8\% — 2b), the above equation coincides, to a precision of the
notation, with the equation 4.2.3.14 and can be reduced to a second order equation.

Y tee T Wone = f(zY).

The substitution w(x) = xy leads to an equation of the form 4.2.3.1: w! = f(w).

T2y e + 8Ty + 12y, = f(2%y).
The substitution w(z) = 2%y leads to an autonomous equation of the form 4.2.3.1:

4, 1111 3,,/1

The substitution ¢ = In|z| leads to an autonomous equation:
Yitte + (as = 6)ypfy + (11 = Bas + az)yry + (203 — az + a1 — 6)y; = f(v),

the order of which can lowered with the help of the substitution w(y) = y;. For ag =6
and a; = as — 6, the latter equation coincides, to a precision of the notation, with the
equation 4.2.3.14 and can be reduced to a second order equation.
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21.

22.

23.

24.

25.

26.

27.

atylll .+ axtyll + byl + cxyl, + sy = xR f(ya).

The transformation t = Inz, w = ya* leads to an autonomous equation of the form
4.2.3.34.

YWimn T WU, +3(U1,)" = f(2).
Solution: y? = C323 + Ca2? + Crz + Cp + %/ (x —t)3f(¢)dt.

Zo

"

YWiltew + ALY e, + (0 — 1)(yl,)" = f(2).
Having integrated this equation, we find

x

-2
yy§$+aT(y;)2=Cm+Co+/ (x —t)f(t)dt.

Yy (ayl+ fy)y 3y ) +3fyy” +g=0, f=rf(x), g=g(=x).

The substitution w = (yy,)" leads to a first order linear equation: w’, + fw + g = 0.

Solution:
T

y? = Oz + C1z + Co + / (z —t)%w(t) dt,

Zo

where w(z) = e F@[Cy — [ '@ g(z)da], F(z)= [ f(z)dr; x¢ is any number.

Yy e+ (AU, + F)YL, +3(y2)* + BFYL, +9y)ylr, + (L) +hyyl, +s =0,
where f = f(x)a g = g(‘r)a h = h(l’), §= S(SU)

The substitution w = yy, leads to a nonhomogeneous third-order linear equation:
wlt + fwl 4+ gwl, + hw+ s =0.

(y + az + b)y .+ 4y, + )y, + 3(yL,)? = f(x).

Solution: (y + ax + b)? = C323 + Cea? + Crz + Cy + %/ (x — )3 f(t) dt.

Zo

"

o " \2 (y;:)4 " ’I\2 y;
YY%aze = 4ymymwm + 3(y:cm) —6 y2 + [yya:m - (y:c) ]f 7 :

/

1 7N 2

The transformation £ = ﬁ, w = Jzz _ (y—*> leads to a second order linear
Y Yy

equation for w?: (w2)gE =242 + 2f(€). Integrating yields

3
w2:02§+01+2§4+2/ (€ —t)f(t)dt.

Taking into account that &, = w, y., = &y, yé = &y/w, we find the solution in the

parametric form:
$:/£+C3, y:CALGXP(/%),
w w

3
w::I:\/C’2§+Cl+2§4+2/£ (€ — t)f(t) dt.

where
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28.

29.

30.

31.

32.

33.

34.

35.

36.

2 5
YooYroze — 3Waza) = F(@yy — v)(¥5,)"
The Legendre transformation « = u}, y = tu}, — u leads to an equation of the form
4.2.3.1: uwlll, = — f(u).
1" 4

By integrating, we obtain a third order autonomous equation:

/d_w — /f(y) dy + C, where w =y .
g(w)

the order of which can be lowered by means of the substitution z(y) = y..

wy/l
OVl + 20 = (o0 f (),

VryL — vy

The substitution w(z) = xy!, — y leads to a third order equation of the form 3.5.2.11:

!
e = PP(L2 ). where F(©=€75(6)
ey . + 22yl = f(2Pyl, — 2xy) + 2y)g (=YL,

The substitution w(x) = 2%y, — 22y, + 2y leads to a second order equation of the
form 2.9.4.2: w! = f(w)g(w.).

Yoooe = §(@)9(2°y50, — 327y, + 6zy; — 6y).
The substitution w(z) = 23y . — 3z%y!/, + 6xy!, — 6y leads to a first order equation

with separation of variables: w’, = 23 f(x)g(w).

17 —_ / 17 1774
y .= F(e, yl, yr, yl ).
1" !

The substitution w(z) =y, leads to a third order equation: w’! = f(z, w, w.,, wl,).

"

Autonomous equation.
The substitution w(y) = (y,)° leads to a third order equation:

wwy, + Twiwl, =2f(y, £y, w, £V,

e :yf(y_;, ym ym)

’ " 7\ 2
The transformation £ = y—m, w = Yoz _ (y—””> leads to a second order equation:
Y Y Y

w2wg§ + w(wg)2 + d&wwg + 3w? + 662w + €1 = f(€, wH+ €2, wwj 4 3&w + &).

2,/ 3,1
—apf Ty, Ty zy
ylmlglg,mm =yx f<$ ym’ ym ’ ymm ) ymmm .
The homogeneous equation in the extended sense.
/
LYz

The transformation t = aFy™, z =

leads to a third order equation.
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2,/ 3,,/1

37 no_ yw_4f< my:/z: T Ype LT Yzga )

ym:cm:c 4 )

Yy Yy Yy

/ 2,1

The transformation z = —%, w = —=L leads to a second order equation.
Y
nn —_ —4 m O ’ 2.,/ 3,1
38, Yipex =T F(z™meY, LYy LYpes L ywzm)

The transformation z = z™e*¥, w = zy., leads to a third order equation.

’ n n
Y Y Y
39. y:c'gm = y.f (eawym, :; ’ ;w ) a:;ww )

The transformation z = e**y™, w =y /y leads to a third order equation.
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