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FOREWORD

Exact solutions have always played and still play an important role in properly un-
derstanding the qualitative features of many phenomena and processes in various fields of
natural science.

Equations of applied and theoretical physics often contain parameters or functions which
are found experimentally and therefore are not stringently fixed. At the same time, equa-
tions that model real phenomena and processes must be sufficiently simple to make possible
their analysis and solution. It is natural to adopt, as one of feasible criterions of simplicity,
the requirement that the model equation admits a solution in a closed form.

It should be noted that even exact solutions of nonlinear equations (including those with-
out a clear physical sense and which do not correspond to real phenomena and processes)
play an important role of “test” problems for verifying the correctness and assessment of
accuracy of various numerical, asymptotic, and approximate methods. Moreover, the model
equations and problems admitting exact solutions serve as the basis for the development of
new numerical, asymptotic, and approximate methods, which, in turn, enable us to study
more complicated problems having no analytical solution.

This book contains nearly 5000 ordinary differential equations and their solutions. The
total number of linear and nonlinear equations is several times greater than those found in
any other text. The table below compares data presented in this book with those of currently
available handbooks concerning the general number of concrete second- and higher-order
nonlinear ordinary differential equations analyzed.

The order of equations E. Kamke (1976) M. Murphy (1960) This book

Second order 249 315 1228
Third order 13 22 587
Fourth order 3 3 75
Higher order 3 9 160
Total number of equations 268 349 2045

When selecting the material, the authors gave preference to the following two types of
equations:

1. Equations that traditionally attracted the attention of many researchers: those of the
simplest appearance but involving the most difficulties for integration (Abel equations,
Emden—Fowler equations, Painlevé equations, etc.).

2. Equations that encountered in various applications (in the theory of heat and mass
transfer, nonlinear mechanics, hydrodynamics, the theory of nonlinear oscillations, the
theory of combustion, chemical engineering science, etc.).

Special attention is paid to equations containing arbitrary functions. The other equa-
tions contain one or more arbitrary parameters (i.e., actually, this book deals with whole
families of ordinary differential equations) which can be fixed by a reader at will. Many
solutions have been obtained just recently with the aid of new (discrete group) methods
described in other books by the authors (1993, 1994).

When compiling this book, the handbooks by E. Kamke (1976), M. Murphy (1960), and
D. Zwillinger (1989) were partly used in which one can find basic notions and definitions
of the theory of ordinary differential equations, apart from concrete equations. In these
handbooks, classical and some new methods of solving differential equations are described
as well—see also the books by E.L. Ince (1964), P.J. Olver (1986), and N.H. Ibragimov
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(1993). The latter books give a great number of references to the original papers and
books by other authors, which are devoted to exact solutions and methods of the theory of
ordinary differential equations.

In addition, when describing solutions of linear ordinary differential equations, which
are connected to higher transcendental functions (Bessel, Legendre, Mathieu, hypergeomet-
ric, etc.), the handbooks by G. Beitmen and A. Erdeii (1953–1955), M. Abramowitz and
I.A. Stegun (1964) were used.

In some sections of this book, asymptotic solutions of some classical equations of non-
linear mechanics and theoretical physics are also given, which are discussed in the books by
J.D. Cole (1968), M.V. Fedoryuk (1983), and A.H. Nayfeh (1973, 1971) in detail.

The detailed table of contents enables a reader to quickly navigate through this book
in searching for desired equations.

The authors hope that this book will be helpful for a wide range of scientists, lec-
tures, engineers, and students engaged in the fields of mathematics, physics, mechanics,
and chemical engineering science.

Andrei D. Polyanin
Valentin F. Zaitsev
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Some Remarks and Notation

1. In this book, in the original equations the independent variable is denoted by x, and
the dependent one is denoted by y. In the given solutions, the symbols C, C0, C1, C2, . . .
stand for arbitrary integration constants.

2. The following notation is used for derivatives: y′x =
dy

dx
, y′′xx =

d2y

dx2
, y′′′xxx =

d3y

dx3
,

y′′′′xxxx =
d4y

dx4
, and y(n)

x =
dny

dxn
with n ≥ 5.

3. In some cases, we use the operator notation
(
f

d

dx

)n

g which is defined by the
recurrence relation

(
f(x)

d

dx

)n

g(x) = f(x)
d

dx

[(
f(x)

d

dx

)n−1

g(x)
]
.

4. In some sections of the book (see, for example, 1.3, 2.3–2.6, 3.2–3.4), for the sake of
brevity, solutions are represented as several formulae containing the terms with the signs
“±” and “∓.” By this is meant two formulae—one correspond to the upper signs, and
another corresponds to the lower signs. For example, the solution of equation 1.3.1.6 can
be written in the parametric form

x=af−1 exp(∓τ2), y=af−1
[
exp(∓τ2)±2τf

]
, where f =

∫
exp(∓τ2) dτ−C, A=∓2a2.

This is equivalent to that the solutions of equation 1.3.1.6 are given by the formulae

x=af−1 exp(−τ2), y=af−1
[
exp(−τ2)+2τf

]
, where f =

∫
exp(−τ2) dτ−C, A=−2a2

and

x = af−1 exp(τ2), y = af−1
[
exp(τ2) − 2τf

]
, where f =

∫
exp(τ2) dτ − C, A = 2a2.

5. When referencing to a particular equation, the notation like “4.1.2.5” stands for
“equation 5 in Subsection 4.1.2.”

6. The book includes two supplements that provide a reader with useful information on
some elementary and special functions which appear in solutions of the differential equation
outlined.

7. References that may be helpful for a reader are given at the end of the book.
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