
Chapter 5
Higher Orders

Differential Equations

5.1. Linear Equations

5.1.1. Preliminary Comments

In this Chapter, we denote higher derivatives by y
(n)
x that stands for

dny

dxn
.

1. The general solution of a nonhomogeneous linear equation of the n th order

fn(x)y(n)
x + fn−1y

(n−1)
x + · · · + f1(x)y′x + f0(x)y = 0 (1)

has the form
y = C1y1(x) + C2y2(x) + · · · + Cnyn(x), (2)

where y1(x), y2(x), . . . , yn(x) make up a fundamental set of solutions (yk are linearly-
independent solutions; yk �≡ 0); C1, C2, . . . , Cn are arbitrary constants.

2. Let y0 = y0(x) be a nontrivial particular solution of equation (1). Then, the sub-
stitution y = y0(x)

∫
z(x) dx leads to a linear equation of the (n − 1) th order for function

z(x).
Given m linearly-independent solutions y1(x), y2(x), . . . , ym(x) of equation (1), its

order can be lowered down to (n − m) by the following technique. The substitution y =
ym(x)

∫
z(x) dx leads to an (n − 1) th order equation for z(x), with the following linearly-

independent solutions known:

z1 =
( y1

ym

)′

x
, z2 =

( y2

ym

)′

x
, . . . , zm−1 =

( ym−1

ym

)′

x
.

Furthermore, the substitution z = zm−1(x)
∫
w(x) dx yields an (n − 2) th order equation,

etc. Thus, the above procedure applied m times results in an (n−m) th order homogeneous
linear equation.

3. A nonhomogeneous linear equation of the n th order has the form

fn(x)y(n)
x + fn−1y

(n−1)
x + · · · + f1(x)y′x + f0(x)y = g(x). (3)

The general solution of equation (3) is the sum of its particular solution and the general
solution of the corresponding homogeneous equation (1).
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Let { y1(x), . . . , yn(x) } be a fundamental set of solutions of the homogeneous differ-
ential equation (1), and W (x) is the Wronskian:

W (y1, y2, . . . , yn) =

∣∣∣∣∣∣∣
y1(x) · · · yn(x)
y′1(x) · · · y′n(x)
· · · · · · · · ·

y
(n−1)
1 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣ , (4)

where y
(m)
k (x) =

dmyk
dxm

, m = 1, 2, . . . , n − 1; k = 1, 2, . . . , n. Denote by Wν(x)

determinant (4) wherein the ν th column is replaced by the column 0, 0, . . . , 0, g (from top
to bottom). Then, the general solution of the nonhomogeneous linear equation (3) can be
written as

y =
n∑

ν=1

Cνyν(x) +
n∑

ν=1

yν(x)
∫

Wν(x) dx
fn(x)W (x)

.

5.1.2. Equations Containing Power Functions

1. y
(6)
x + ay = 0.

1◦. For a = 0,

y = C1 + C2x + C3x
2 + C4x

3 + C5x
4 + C6x

5.

2◦. For a = k6 > 0,

y = C1 cos kx + C2 sin kx + cos
kx

2
(C3 cosh ξ + C4 sinh ξ)

+ sin
kx

2
(C5 cosh ξ + C6 sinh ξ), ξ =

kx
√

3
2

.

3◦. For a = −k6 < 0,

y = C1 cosh kx + C2 sinh kx + cosh
kx

2
(C3 cos ξ + C4 sin ξ)

+ sinh
kx

2
(C5 cos ξ + C6 sin ξ), ξ =

kx
√

3
2

.

2. y
(2n)
x = a2ny.

Solution:

y = C1e
ax + C2e

−ax +
n−1∑
k=1

eϕk(Ak cos θk + Bk sin θk),

where ϕk = ax cos
kπ

n
, θk = ax sin

kπ

n
; C1, C2, Ak, Bk (k = 1, 2, . . . , n − 1) are

arbitrary constants.
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3. y
(n)
x + an−1y

n−1 + · · · + a1y
′
x + a0y = 0.

The homogeneous constant-coefficient linear equation.
To solve this equation determine the n roots of the characteristic polynomial

P (λ) = λn + an−1λ
n−1 + · · · + a1λ + a0.

The general solution is determined by these characteristic roots. Several cases are
possible:

1. The roots are all real and different. Denote them by λ1, λ2, . . . , λn. Then, the
general solution of the original equation is

y = C1 exp(λ1x) + C2 exp(λ2x) + · · · + Cn exp(λ2n).

2. There are m ≤ n equal real roots, λ1 = λ2 = · · · = λm, while the other roots are
real and different. In this case, the general solution is

y = exp(λ1x)(C1 + C2x + · · · + Cmxm−1)
+ Cm+1 exp(λm+1x) + Cm+2 exp(λm+2x) + · · · + Cn exp(λ2n).

3. There are m equal pairs (2m ≤ n) of complex conjugate roots, λ = α ± iβ, while
the other roots are real and different. Then, the general solution has the form

y = exp(αx) cos(βx)(A1 + A2x + · · · + Amxm−1)

+ exp(αx) sin(βx)(B1 + B2x + · · · + Bmxm−1)
+ C2m+1 exp(λ2m+1x) + C2m+2 exp(λ2m+2x) + · · · + Cn exp(λ2n),

where A1, . . . , Am, B1, . . . , Bm are arbitrary constants.

4. In the general case, there are r different roots λ1, λ2, . . . , λr of multiplicities
m1, m2, . . . , mr, respectively. Hence, the characteristic polynomial can be factorized:

P (λ) = (λ− λ1)m1(λ− λ2)m2 . . . (λ− λr)mr ,

where m1 +m2 + · · ·+mr = n. Then, the general solution of the original equation is
given by the formula

y =
r∑

k=1

exp(λkx)(Ck,0 + Ck,1x + · · · + Ck,mk−1x
mk−1),

where Ck,l are arbitrary constants.
If P (λ) has complex conjugate roots, in the above solution the real and imaginary

parts should be taken, in view of the formula: exp(α± iβ) = eα(cosβ ± i sinβ).

4. y
(n)
x = axy + b, a > 0.

Solution:

y =
n∑

ν=0

Cνεν

∫ ∞

0

exp
[
ενxt−

tn+1

a(n + 1)

]
dt,

where εν = exp
( 2πνi
n + 1

)
,

n∑
ν=0

Cν =
b

a
, i2 = −1.
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5. y
(n)
x + axνy′

x + aνxν−1y = 0.

This equation can be reduced to an (n − 1) th order equation: y
(n−1)
x + axνy = C,

where C is an arbitrary costant.

6. y
(n)
x + axk+1y′

x − a(n − 1)xky = 0.

The substitution z = xy′x − (n − 1)y leads to an (n − 1) th order equation: z
(n−1)
x +

axk+1z = 0.

7. y
(n)
x + axk+1y′

x + a(k + n)xky = 0.

The transformation x = t−1, y = wt1−n leads to an equation of the form 5.1.2.5:
w

(n)
t + btνw′

t + bνtν−1w = 0, where b = a(−1)n+1, ν = 1 − k − 2n.

8. y
(n)
x + axky

(m)
x − (abmxk + bn)y = 0.

Particular solution: y0 = ebx.

9. y
(n)
x + (axk − bn−m)y(m)

x − abmxky = 0.

Particular solution: y0 = ebx.

10. y
(n)
x + (axm+1 + bxm)y′

x − axmy = 0.

Particular solution: y0 = ax + b.

11. y
(n)
x + ay

(n−1)
x + bxmy′

x + abxmy = 0.

Particular solution: y0 = e−ax.

12. xy
(n)
x − nmy

(n−1)
x + axy = 0, n = 2, 3, 4, . . . , m = 1, 2, 3, . . .

Solution:
y = x(m+1)n−1

(
x1−n d

dx

)m

(x1−nw),

where w is the general solution of the constant coefficient equation w
(n)
x + aw = 0.

13. xy
(n)
x + ny

(n−1)
x = axy + b.

The substitution w = xy leads to a constant coefficient equation: w
(n)
x = aw + b.

14. xy
(n)
x + ny

(n−1)
x = ax2y + b.

The substitution w = xy leads to an equation of the form 5.1.2.4: w
(n)
x = axw + b.

15. xy
(n)
x + (n − m − 1)y(n−1)

x + axky′
x − amxk−1y = 0.

Particular solution: y0 = xm.

16. xy
(n)
x + axky

(m)
x − (axk + amxk−1 + x + n)y = 0.

Particular solution: y0 = xex.
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17. xy(n)
x =

n−1∑
ν=0

[(aAν+1 − Aν)x + Aν+1]y(ν)
x ,

where An = 1, A0 = 0; a and Aν are arbitrary numbers (ν = 1, 2, . . . , n− 1).

Denote f(λ) =
∑n−1

ν=0 Aν+1λ
ν . Let all the roots λ1, λ2, . . . , λn−1 of the equation

f(λ) = 0 be different, and f(a) �= 0. Then, the solution is as follows:

y = C1e
λ1x + C2e

λ2x + . . . + Cn−1e
λn−1x + Cne

ax

[
x− f ′

a(a)
f(a)

]
.

18.
n∑

ν=0

(aνx + bν)y(ν)
x = 0.

The Laplace equation.
Particular solutions:

yk =
∫ βk

αk

1
P (t)

exp
[
xt +

∫
Q(t)
P (t)

dt

]
dt,

where P (t) =
∑n

ν=0 aνt
ν , Q(t) =

∑n
ν=0 bνt

ν ; αk and βk are found from the condition

exp
(
xt +

∫
Q(t)
P (t)

dt

)∣∣∣∣βk

αk

= 0.

In many cases, the path of integration should be chosen on the complex plane.

19. x2y
(n)
x + 2nxy(n−1)

x + n(n − 1)y(n−2)
x = ax2y + b.

The substitution w = x2y leads to a constant coefficient equation: w
(n)
x = aw + b.

20. x2y
(n)
x + 2nxy(n−1)

x + n(n − 1)y(n−2)
x = ax3y + b.

The substitution w = x2y leads to a equation of the form 5.1.2.4: w
(n)
x = axw + b.

21. x(x + m)y(n)
x + x(axk − x − n)y(m)

x − a(x + m)xky = 0.

Particular solution: y0 = xex.

22. x2ny
(n)
x = ay.

The transformation x = t−1, y = wt1−n leads to a constant coefficient equation:
w

(n)
t = (−1)naw.

23. xny
(2n)
x = ay.

Solution:

y = xn/2
n∑

k=1

[
Ck1In

(
2βk

√
x

)
+ Ck2Kn

(
2βk

√
x

)]
,

where In and Kn are modified Bessel functions; β1, β2, . . . , βn are the roots of the
equation βn =

√
a.
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24. x3ny
(2n)
x = ay.

The transformation x = t−1, y = wt1−2n leads to an equation of the form 5.1.2.23:
tnw

(2n)
t = aw.

25. xn+1/2y
(2n+1)
x = ay.

Solution:

y = x(2n+1)/4
2n∑
k=0

Ck

[
J−n−1/2

(
2βk

√
x

)
+ iJn+1/2

(
2βk

√
x

)]
,

where β0, β1, . . . , β2n are the roots of the equation β2n+1 = −ai; i2 = −1.

26. x3n+3/2y
(2n+1)
x = ay.

The transformation x = t−1, y = wt−2n leads to an equation of the form 5.1.2.25:
tn+1/2w

(2n+1)
t = −aw.

27. anx
ny

(n)
x + an−1x

n−1y
(n−1)
x + · · · + a1xy

′
x + a0y = 0.

The Euler equation.
If all the roots λk (k = 1, 2, . . . , n) of the algebraic equation

n∑
ν=1

aνλ(λ− 1) . . . (λ− ν + 1) = −a0

are different, the general solution of the original differential equation has the form

y = C1|x|λ1 + C2|x|λ2 + · · · + Cn|x|λn .

In the general case, the substitution t = ln |x| leads to a constant coefficient
equation of the form 5.1.2.3:

n∑
ν=1

aνD(D − 1) . . . (D − ν + 1)y = −a0y, where D =
d

dx
.

28. x2n+1y
(n)
x = ay + bxn.

The transformation x = t−1, y = wt1−n leads to an equation of the form 5.1.2.4:
w

(n)
t = (−1)n(atw + b).

29. x2n+1y
(n)
x + nx2ny

(n−1)
x = axy.

The substitution w = xy leads to an equation of the form 5.1.2.22: x2nw
(n)
x = aw.

30. x2n+1y
(n)
x + nx2ny

(n−1)
x = ay.

The substitution w = xy leads to an equation of the form 5.1.2.28: x2n+1w
(n)
x = aw.

31. xny
(2n)
x + 2nxn−1y

(2n−1)
x = ay.

The substitution w = xy leads to an equation of the form 5.1.2.23: xnw
(2n)
x = aw.
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32. x3ny
(2n)
x + 2nx3n−1y

(2n−1)
x = ay.

The substitution w = xy leads to an equation of the form 5.1.2.24: x3nw
(2n)
x = aw.

33. xn+1y
(2n+1)
x + (2n + 1)xny

(2n)
x = a

√
xy.

The substitution w=xy leads to an equation of the form 5.1.2.25: xn+1/2w
(2n+1)
x =aw.

34. x3n+3/2y
(2n+1)
x + (2n + 1)x3n+1/2y

(2n)
x = ay.

The substitution w = xy leads to an equation of the form 5.1.2.26: x3n+3/2w
(2n+1)
x =

aw.

35. (ax + b)2n+1y
(n)
x = (cx + d)y.

The transformation
ξ =

cx + d

ax + b
, w =

y

(ax + b)n−1

leads to an equation of the form 5.1.2.4: w
(n)
ξ = ∆−nξw, where ∆ = bc− ad.

36. (ax + b)n(cx + d)ny
(n)
x = ky.

1◦. The transformation

ξ = ln
ax + b

cx + d
, w =

y

(cx + d)n−1

leads to a constant coefficient equation.

2◦. The transformation

ζ =
ax + b

cx + d
, w =

y

(cx + d)n−1

leads to the Euler equation 5.1.2.27: ζnw
(n)
ζ = k∆−nw, where ∆ = ad− bc.

37. (ax2 + bx + c)ny
(n)
x = ky.

The transformation

ξ =
∫

dx

ax2 + bx + c
, w = y(ax2 + bx + c)

1−n
2

leads to a constant coefficient equation.

38. (ax + b)n(cx + d)3ny
(2n)
x = ky.

The transformation
ξ =

ax + b

cx + d
, w =

y

(cx + d)2n−1

leads to an equation of the form 5.1.2.23: ξnw
(2n)
ξ = k∆−2nw, where ∆ = ad− bc.
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39. (ax + b)n+1/2(cx + d)3n+3/2y
(2n+1)
x = ky.

The transformation

ξ =
ax + b

cx + d
, w =

y

(cx + d)2n

leads to an equation of the form 5.1.2.25: ξn+1/2w
(2n+1)
ξ = k∆−2n−1w, where ∆ =

ad− bc.

40. Pn−1(x)y(n)
x +Pn−2(x)y(n−1)

x + · · · +P1(x)y′′
xx + (a1x+ b1)y′

x − ma1y = 0,
where Pν are polynomials of the degree ≤ ν, m is a positive integer, a1 �= 0.

A particular solution of this equation is the polynomial of degree m which can be
written as

y0 =
m∑

k=0

(
− 1

a1

)k

[xmIx−m−1(Pn−1D
n + · · · + P1D

2 + b1D)]kxm,

where D =
d

dx
, Ixν =

xν+1

ν + 1
with ν �= −1.

41. [anx
n + Pn−1(x)]y(n)

x + · · · + [a1x + P0(x)]y′
x + a0y = 0,

where Pν are polynomials of the degree ≤ ν.

Assume that for some integer m ≥ 0,

n∑
ν=0

Cν
mν! aν = 0, where Cν

m =
m!

ν! (m− ν)!
,

and m is the least of the numbers satisfying this condition. Then, there exists a
solution in the form of a polynomial of degree m such that no polynomial of a smaller
degree satisfies the original equation.

5.1.3. Equations Containing Exponential Functions

1. y
(n)
x + (ax + b)eλxy′

x − aeλxy = 0.

Particular solution: y0 = ax + b.

2. y
(n)
x + (aeλx − bn−m)y(m)

x − abmeλxy = 0.

Particular solution: y0 = ebx.

3. y
(n)
x + ay

(n−1)
x + beλxy′

x + abeλxy = 0.

Particular solution: y0 = e−ax.

4. y
(n)
x + aeλxy

(m)
x − (abmeλx + bn)y = 0.

Particular solution: y0 = ebx.
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5. y(n)
x =

n−1∑
k=0

(Ak+1e
λx + bAk+1 − Ak)y(k)

x ,

where An = 1, A0 = 0; b and Ak are arbitrary numbers (k = 1, 2, . . . , n− 1).

Particular solutions: ym = eµmx, where µm are the roots of the polynomial equation∑n−1
k=0 Ak+1µ

k = 0.

6. xy
(n)
x + axeλxy

(m)
x − [a(x + m)eλx + x + n]y = 0.

Particular solution: y0 = xex.

7. xy
(n)
x + (n − m − 1)y(n−1)

x + axeλxy′
x − ameλxy = 0.

Particular solution: y0 = xm.

8. x(x + m)y(n)
x + x(aeλx − x − n)y(m)

x − a(x + m)eλxy = 0.

Particular solution: y0 = xex.

9. (axm + bex + c)y(n)
x = bexy, m = 0, 1, 2, . . . , n − 1.

Particular solution: y0 = axm + bex + c.

10. (axmex + b)y(n)
x = (−1)nby, m = 0, 1, 2, . . . , n − 1.

Particular solution: y0 = axm + be−x.

11.
(
aex +

n−1∑
k=0

bkx
k

)
y(n)

x = aexy.

Particular solution: y0 = aex +
n−1∑
k=0

bkx
k.

12. y
(n)
x + a coshk x y

(m)
x − (abm coshk x + bn)y = 0.

Particular solution: y0 = ebx.

13. y
(n)
x + (a coshk x − bn−m)y(m)

x − abm coshk x y = 0.

Particular solution: y0 = ebx.

14. y
(n)
x + (ax + b) coshm(λx)y′

x − a coshm(λx)y = 0.

Particular solution: y0 = ax + b.

15. xy
(n)
x + ax coshk x y

(m)
x − [a(x + m) coshk x + x + n]y = 0.

Particular solution: y0 = xex.

16. y
(n)
x + a sinhk x y

(m)
x − (abm sinhk x + bn)y = 0.

Particular solution: y0 = ebx.
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17. y
(n)
x + (a sinhk x − bn−m)y(m)

x − abm sinhk x y = 0.

Particular solution: y0 = ebx.

18. y
(n)
x + (ax + b) sinhm(λx)y′

x − a sinhm(λx)y = 0.

Particular solution: y0 = ax + b.

19. xy
(n)
x + ax sinhk x y

(m)
x − [a(x + m) sinhk x + x + n]y = 0.

Particular solution: y0 = xex.

20. y
(n)
x + a tanhk x y

(m)
x − (abm tanhk x + bn)y = 0.

Particular solution: y0 = ebx.

21. y
(n)
x + (a tanhk x − bn−m)y(m)

x − abm tanhk x y = 0.

Particular solution: y0 = ebx.

22. y
(n)
x + (ax + b) tanhm(λx)y′

x − a tanhm(λx)y = 0.

Particular solution: y0 = ax + b.

23. xy
(n)
x + ax tanhk x y

(m)
x − [a(x + m) tanhk x + x + n]y = 0.

Particular solution: y0 = xex.

24. y
(n)
x + a cothk x y

(m)
x − (abm cothk x + bn)y = 0.

Particular solution: y0 = ebx.

25. y
(n)
x + (a cothk x − bn−m)y(m)

x − abm cothk x y = 0.

Particular solution: y0 = ebx.

26. y
(n)
x + (ax + b) cothm(λx) y′

x − a cothm(λx) y = 0.

Particular solution: y0 = ax + b.

27. xy
(n)
x + ax cothk x y

(m)
x − [a(x + m) cothk x + x + n]y = 0.

Particular solution: y0 = xex.

5.1.4. Equations Containing Trigonometric Functions

1. y
(n)
x + a sink x y

(m)
x − (abm sink x + bn)y = 0.

Particular solution: y0 = ebx.

2. y
(n)
x + (a sink x − bn−m)y(m)

x − abm sink x y = 0.

Particular solution: y0 = ebx.
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3. y
(n)
x + ay

(n−1)
x + b sinm(λx)y′

x + ab sinm(λx)y = 0.

Particular solution: y0 = e−ax.

4. y
(n)
x + (ax + b) sinm(λx)y′

x − a sinm(λx)y = 0.

Particular solution: y0 = ax + b.

5. y
(n)
x + a cosk x y

(m)
x − (abm cosk x + bn)y = 0.

Particular solution: y0 = ebx.

6. y
(n)
x + (a cosk x − bn−m)y(m)

x − abm cosk x y = 0.

Particular solution: y0 = ebx.

7. y
(n)
x + ay

(n−1)
x + b cosm(λx)y′

x + ab cosm(λx)y = 0.

Particular solution: y0 = e−ax.

8. y
(n)
x + (ax + b) cosm(λx)y′

x − a cosm(λx)y = 0.

Particular solution: y0 = ax + b.

9. y
(n)
x + a tank x y

(m)
x − (abm tank x + bn)y = 0.

Particular solution: y0 = ebx.

10. y
(n)
x + (a tank x − bn−m)y(m)

x − abm tank x y = 0.

Particular solution: y0 = ebx.

11. y
(n)
x + ay

(n−1)
x + b tanm(λx)y′

x + ab tanm(λx)y = 0.

Particular solution: y0 = e−ax.

12. y
(n)
x + (ax + b) tanm(λx)y′

x − a tanm(λx)y = 0.

Particular solution: y0 = ax + b.

13. xy
(n)
x + ax sink(λx)y(m)

x − [a(x + m) sink(λx) + x + n]y = 0.

Particular solution: y0 = xex.

14. xy
(n)
x + ax cosk(λx)y(m)

x − [a(x + m) cosk(λx) + x + n]y = 0.

Particular solution: y0 = xex.

15. xy
(n)
x + ax tank(λx)y(m)

x − [a(x + m) tank(λx) + x + n]y = 0.

Particular solution: y0 = xex.

16. (axm + b sinx)y(n)
x = b sin

(
x +

πn

2

)
y, m = 0, 1, 2, . . . , n − 1.

Particular solution: y0 = axm + b sinx.
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17.
(
a sinx +

n−1∑
k=0

bkx
k

)
y(n)

x = a sin
(
x +

πn

2

)
y.

Particular solution: y0 = a sinx +
n−1∑
k=0

bkx
k.

18. (axm + b cosx)y(n)
x = b cos

(
x +

πn

2

)
y, m = 0, 1, 2, . . . , n − 1.

Particular solution: y0 = axm + b cosx.

19.
(
a cosx +

n−1∑
k=0

bkx
k

)
y(n)

x = a cos
(
x +

πn

2

)
y.

Particular solution: y0 = a sinx +
n−1∑
k=0

bkx
k.

5.1.5. Equations Containing Arbitrary Functions

1. y
(n)
x = f(x).

Solution:

y =
n−1∑
ν=0

Cνx
ν +

∫ x

x0

(x− t)n−1

(n− 1)!
f(t) dt,

where x0 may be chosen arbitrarily.

2. y
(n)
x + xf(x)y′

x − mf(x)y = 0.

If m = 0, 1, 2, . . . , or n− 1, the equation has a particular solution y0 = xm, and the
substitution z = xy′x −my leads to an (n− 1) th order equation:

Dn−m−1

(
z
(m)
x

x

)
+ f(x)z = 0, where D =

d

dx
.

In particular, for m = n− 1, we have z
(n−1)
x + xf(x)z = 0.

3. y
(n)
x + (ax + b)f(x)y′

x − af(x)y = 0.

Particular solution: y0 = ax + b.

4. y
(n)
x + f(x)(x2y′′

xx − 2xy′
x + 2y) = 0.

Particular solutions: y1 = x, y2 = x2.
The substitution z = x2y′′xx−2xy′x +2y leads to a linear equation of the (n−2) th

order.

5. y
(n)
x + f(x)y(m)

x − [an + amf(x)]y = 0.

Particular solution: y0 = eax.
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6. y
(n)
x + (f − an−m)y(m)

x − amfy = 0, f = f(x).

Particular solution: y0 = eax.

7. y
(n)
x + ay

(n−1)
x + fy′

x + afy = 0, f = f(x).

Particular solution: y0 = e−ax.

8. y
(n)
x + f(x)y(n−1)

x + g(x)y(n−2)
x + h(x) = 0.

The substitution w(x) = y
(n−2)
x leads to a linear equation of the second order: w′′

xx +
f(x)w′

x + g(x)w + h(x) = 0.

9. y
(n)
x + an−1y

(n−1)
x + · · · + a1y

′
x + a0y = f(x).

The nonhomogeneous constant-coefficient linear equation.
The general solution of this equation is the sum of the general solution of the

corresponding homogeneous equation (see 5.1.2.3) and any particular solution of the
nonhomogeneous equation.

If all the roots of the polynomial

P (λ) = λn + an−1λ
n−1 + · · · + a1λ + a0

are different, the original equation has the general solution

y =
n∑

ν=1

Cνe
λνx +

n∑
ν=1

eλνx

P ′
λ(λν)

∫
f(x)e−λνx dx

(with complex roots, the real part should be taken).
In Table 5.1 are listed the forms of particular solutions corresponding to some

special forms of functions on the right-hand side of the linear nonhomogeneous equa-
tion.

10. xny
(n)
x + bn−1x

n−1y
(n−1)
x + · · · + b1xy

′
x + b0y = f(x).

The substitution x = aet (a �= 0) leads to an equation of the form 5.1.5.9.

11. y(n)
x + f(x)

n−1∑
k=0

(−1)kk!Ck
n−1x

n−k−1y(n−k−1)
x = 0,

where Ck
m =

m!
k! (m− k)!

are binomial coefficients.

Particular solutions: ym = xm, where m = 1, 2, . . . , n− 1.

The substitution z =
n−1∑
k=0

(−1)kk!Ck
n−1x

n−k−1y
(n−k−1)
x leads to a first order linear

equation: z′x + xn−1f(x)z = 0. Having solved this equation, we obtain an (n− 1) th
order equation of the form 5.1.5.10 for function y(x).

12. y(n)
x =

n−1∑
k=0

(ak+1f − ak)y(k)
x ,

where f = f(x); an = 1, a0 = 0; ak are arbitrary numbers (k = 1, 2, . . . , n− 1).

Particular solutions: yk = eλkx (k = 1, 2, . . . , n − 1), where λk are the roots of the
polynomial equation

∑n−1
k=0 ak+1λ

k = 0.
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TABLE 5.1
The forms of particular solutions of the nonhomogeneous constant-coefficient

linear equation y
(n)
x + an−1y

(n−1)
x + · · · + a1y

′
x + a0y = f(x)

which correspond to some special forms of function f(x).

The form
of function f(x)

Roots of the characteristic equation
λn + an−1λ

n−1 + · · · + a1λ + a0 = 0
The form of a particular

solution y = ỹ(x)

Zero is not a root of the
characteristic equation (i.e., a0 �= 0) P̃m(x)

Pm(x)
Zero is a root of the

characteristic equation (multiplicity r) xrP̃m(x)

α is not a root of the
characteristic equation P̃m(x)eαx

Pm(x)eαx

(α is a real number) α is a root of the
characteristic equation (multiplicity r) xrP̃m(x)eαx

iβ is not a root of the
characteristic equation

P̃ν(x) cosβx
+ Q̃ν(x) sinβxPm(x) cosβx

+ Qn(x) sinβx iβ is a root of the
characteristic equation (multiplicity r)

xr[P̃ν(x) cosβx
+ Q̃ν(x) sinβx]

α + iβ is not a root of the
characteristic equation

[P̃ν(x) cosβx
+ Q̃ν(x) sinβx]eαx[Pm(x) cosβx

+ Qn(x) sinβx]eαx α + iβ is a root of the
characteristic equation (multiplicity r)

xr[P̃ν(x) cosβx
+ Q̃ν(x) sinβx]eαx

Notation: Pm and Qn are polynomials of the degrees m and n with given coefficients;
P̃m, P̃ν , and Q̃ν are polynomials of the degrees m and ν whose coefficients are de-
termined as a result of substituting the particular solution into the basic equation;
ν = max(m, n); i2 = −1.

13. xy
(n)
x + xfy

(m)
x − [(x + m)f + x + n]y = 0, f = f(x).

Particular solution: y0 = xex.

14. x(x + m)y(n)
x + x(f − x − n)y(m)

x − (x + m)fy = 0, f = f(x).

Particular solution: y0 = xex.

15. xky
(n)
x + xf(x)y′

x − mf(x)y = 0, m = 0, 1, 2, . . . , n − 1.

Particular solution: y0 = xm.

16. xny
(n)
x + (n − m − 1)xn−1y

(n−1)
x + xfy′

x − mfy = 0, f = f(x).

Particular solution: y0 = xm.
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17. xny
(n)
x + xmfy

(m)
x − (n!Cn

a + m!Cm
a f)y = 0,

where f = f(x), Cn
a =

Γ(a + 1)
n! Γ(a− n + 1)

are binomial coefficients, Γ(a) is the gamma-

function.

Particular solution: y0 = xa.

18. xmy(n)
x =

n−1∑
k=0

[xm(ak+1f − ak) + ak+1]y(k)
x ,

where f = f(x); an = 1, a0 = 0; m and ak are arbitrary numbers (k = 1, 2, . . . , n−1).

Particular solutions: yk = eλkx (k = 1, 2, . . . , n − 1), where λk are the roots of the
polynomial equation

∑n−1
k=0 ak+1λ

k = 0.

19.
n∑

k=2

fk(x)y(k)
x = g(x)(xy′

x − y).

Particular solution: y0 = x.
The substitution w(x) = xy′x − y leads to an (n− 1) th order equation.

20.
n∑

k=3

fk(x)y(k)
x = g(x)(x2y′′

xx − 2xy′
x + 2y).

Particular solutions: y1 = x, y2 = x2.
The substitution w(x) = x2y′′xx − 2xy′x + 2y leads to an (n− 2) th order equation.

21.
n∑

k=4

fk(x)y(k)
x = g(x)(x3y′′′

xxx − 3x2y′′
xx + 6xy′

x − 6y).

Particular solutions: y1 = x, y2 = x2, y3 = x3.
The substitution w(x) = x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y leads to an (n− 3) th order

equation.

22.
n∑

k=m+1

fk(x)y(k)
x + g(x)

m∑
k=0

(−1)kk!Ck
mxm−ky(m−k)

x = 0,

where Ck
m =

m!
k! (m− k)!

are binomial coefficients.

Particular solutions: ys = xs, where s = 1, 2, . . . , m.
The substitution z =

∑m
k=0(−1)kk!Ck

mxm−ky
(m−k)
x leads to an (n − m) th order

equation:

n∑
k=m+1

fk(x)D(k−m−1)

(
z′x
xm

)
+ g(x)z = 0, where D =

d

dx
.

23.
n∑

k=0

(fk − afk+1)y(k)
x = 0,

where fk = fk(x) (k = 1, 2, . . . , n), fn+1 ≡ f0 ≡ 0.

Particular solution: y0 = eax.
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24.
n∑

k=0

xk[fk + (k − m)fk+1]y(k)
x = 0,

where fk = fk(x) (k = 1, 2, . . . , n), fn+1 ≡ f0 ≡ 0.

Particular solution: y0 = xm.

25. fy
(n)
x − f

(n)
x y = 0, f = f(x).

Particular solution: y0 = f(x).

26. fy
(2n+1)
x + f

(2n+1)
x y = 0, f = f(x).

The first integral has the form

2n∑
k=0

(−1)kf (2n−k)
x y

(k)
x =

∫
g(x) dx + C.

27. sinx y(n)
x + sinx f(x)y(m)

x −
[
sin

(
x +

πn

2

)
+ f(x) sin

(
x +

πm

2

)]
y = 0.

Particular solution: y0 = sinx.

28. cosx y(n)
x + cosxf(x)y(m)

x −
[
cos

(
x +

πn

2

)
+ f(x) cos

(
x +

πm

2

)]
y = 0.

Particular solution: y0 = cosx.

29. y
(n)
x = f(x)y.

The transformation x = t−1, y = wt1−n leads to an equation of the similar form:

w
(n)
t = (−1)nt−2nf

( 1
t

)
w.

30. y(n)
x = (cx + d)−2nf

( ax + b

cx + d

)
y.

The transformation ξ =
ax + b

cx + d
, w =

y

(cx + d)n−1
leads to the equation w

(n)
ξ =

∆−nf(ξ)w, where ∆ = ad− bc.

31. y
(n)
x + f(x)y′

x + g(x)y + h(x) = 0.

The transformation x = t−1, y = wt1−n leads to an equation of the similar form:

w
(n)
t + (−1)nt−2n

{
−t2f

( 1
t

)
w′

t +
[
(n− 1)tf

( 1
t

)
+ g

( 1
t

)]
w + tn−1h

( 1
t

)}
= 0.

32. y
(n+2)
x + f(x)[x2y′′

xx − 2nxy′
x + n(n + 1)y] = 0.

The substitution w(x) = x2y′′xx − 2nxy′x + n(n + 1)y leads to an n th order equation:
w

(n)
x + x2f(x)w = 0.
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33. xy(n)
x + ny(n−1)

x = x1−2nf
( 1

x

)
y + x−n−1g

( 1

x

)
.

The transformation t = x−1, w = yx2−n leads to an n th order equation: w
(n)
t =

(−1)n[f(t)w + g(t)].

34. x2y
(n+2)
x + αxy

(n+1)
x + βy

(n)
x

+ f(x)[x2y′′
xx + (α − 2n)xy′

x + (β − αn + n2 + n)y] = 0.

The substitution

w(x) = x2y′′xx + (α− 2n)xy′x + (β − αn + n2 + n)y

leads to an n th order equation: w
(n)
x + f(x)w = 0.

5.1.6. Asymptotic Solutions

This subsection presents asymptotic solutions, as ε → 0 (ε > 0), of some fifth-order
linear ordinary differential equations containing arbitrary functions (sufficiently smooth),
with the independent variable being a real number.

1. Consider an equation of the form

εny
(n)
x − f(x)y = 0. (1)

on a closed interval a≤x≤ b. Assume that f �=0. Then, the leading terms of the asymptotic
expansions of the fundamental system of solutions, as ε → +0, has the form

ym =
[
f(x)

]− 1
2 + 1

2n exp
{

ωm

ε

∫ [
f(x)

] 1
n dx

}[
1 + O(ε)

]
,

where ω1, ω2, . . . , ωn are the roots of the equation ωn = 1:

ωm = cos
( 2πm

n

)
+ i sin

( 2πm
n

)
, m = 1, 2, . . . , n.

2. Consider an equation of the form

εny
(n)
x + εn−1fn−1(x)y(n−1)

x + · · · + εf1(x)y′x + f0(x)y = 0. (2)

on a closed interval a ≤ x ≤ b. Let λm = λm(x) (m = 1, 2, . . . , n) be the roots of the
characteristic equation

P (x, λ) ≡ λn + fn−1(x)λn−1 + · · · + f1(x)λ + f0(x) = 0.

Let all the roots of the characteristic equation be different on the interval a ≤ x ≤ b, i.e.,
the conditions λm(x) �= λk(x) if m �= k are satisfied, which is equivalent to the fulfillment
of the conditions Pλ(x, λm) �= 0. Then, the leading terms of the asymptotic expansions of
the fundamental system of solutions, as ε → +0, are given by the formulae

ym = exp
{

1
ε

∫
λm(x) dx− 1

2

∫
[λm(x)]′x

Pλλ

(
x, λm(x)

)
Pλ

(
x, λm(x)

) dx

}
,

where

Pλ(x, λ) ≡ ∂P

∂λ
= nλn−1 + (n− 1)fn−1λn−2 + . . . + 2λf2(x) + f1(x),

Pλλ(x, λ) ≡ ∂2P

∂λ2
= n(n− 1)λn−2 + (n− 1)(n− 2)fn−1λn−3 + . . . + 6λf3(x) + 2f2(x).
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5.2. Nonlinear Equations

5.2.1. Equations Containing Power Functions

1. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = axn.

This is a special case of equation 5.2.6.1 with f(x) = axn.

2. y
(6)
x = Ay−7/5.

Multiplying both sides by y7/5 and differentiating with respect to x, we obtain the
equation 5yy(7)

x + 7y′xy
(6)
x = 0. Having integrated the latter three times, we arrive at

a chain of equalities:

5yy(6)
x + 2y′xy

(5)
x − 2y′′xxy

′′′′
xxxx + (y′′′xxx)

2 = 2C2, (1)

5yy(5)
x − 3y′xy

′′′′
xxxx + y′′xxy

′′′
xxx = 2C2x + C1, (2)

5yy′′′′xxxx − 8y′xy
′′′
xxx + 9

2 (y′′xx)
2 = C2x

2 + C1x + C0, (3)

where C0, C1, and C2 are arbitrary constants. Eliminating the highest derivatives
from (1)–(3), with the aid of the original equation, we can obtain a third order
equation which can be reduced to a second order equation (see equation 5.2.1.4 with
n = 3).

3. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = axn.

This is a special case of equation 5.2.6.4 with f(x) = axn.

4. y(2n)
x = Ay

1+2n
1−2n .

Multiply both sides by y
2n+1
2n−1 and differentiate with respect to x. As a result we

obtain
(2n− 1)yy(2n+1)

x + (2n + 1)y′xy
(2n)
x = 0.

Three integrals containing arbitrary constants C0, C1, and C2 are presented in 5.2.6.22
wherein we should let f ≡ 0. Eliminating the highest derivatives from those integrals
and the original equation, we may always obtain a (2n− 3) th order equation. With
the aid of the transformation

t =
∫

dx

P
, w = yP

1−2n
2 , where P = C2x

2 + C1x + C0,

the latter equation can be reduced to the autonomous form 5.2.6.40. Therefore, the
substitution z(w) = w′

t finally leads to a (2n − 4) th order equation with respect to
z = z(w).

5. y
(2n)
x = Ayk, k �= −1.

Having integrated, we arrive at

n−1∑
m=1

(−1)my
(m)
x y

(2n−m)
x +

1
2

(−1)n
[
y
(n)
x

]2= − A

k + 1
yk+1 + C,

where C is an arbitrary number. Further, the order of the obtained autonomous
equation can be lowered by the substitution w(y) = y′x.
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6. y
(n)
x = ax−nym.

This is a special case of equation 5.2.6.10 with f(y) = aym.

7. y
(n)
x = axkym.

1◦. The transformation x = t−1, y = t1−nw(t) leads to an equation of the similar
form: w

(n)
t = (−1)nAt−k−(n−1)m−n−1wm.

2◦. The transformation ξ=xn+kym−1, z=xy′x/y leads to an (n−1) th order equation.

8. yy
(2n+1)
x = axn + b.

This is a special case of equation 5.2.6.16 with f(x) = axn + b.

9. y
(n)
x = xm−nm−n−1(ay + bxn−1)m.

This is a special case of equation 5.2.6.11 with f(w) = (aw + b)m.

10. y(2n)
x = x

m−2nm−2n−1
2

(
ay + bx

2n−1
2

)m

.

This is a special case of equation 5.2.6.12 with f(w) = (aw + b)m.

11. y
(n)
x = (ay + bxk)m; k = 1, 2, . . . , n − 1.

The substitution aw = ay+ bxk leads to an autonomous equation: w
(n)
x = amwm (see

5.2.1.4, 5.2.1.5, and 5.2.6.40).

12. y(n)
x = (ax2 + bx + c)

m−nm−n−1
2 ym.

This is a special case of equation 5.2.6.21 with f(w) = wm.

13. y
(n)
x = (ax + b)−n(cx + d)m−nm−1ym.

This is a special case of equation 5.2.6.20 with f(w) = wm.

14. yy
(2n+1)
x = ay′

xy
(2n)
x .

The equation admits two different (with a �= −1) first integrals:

y
(2n)
x = C̃1y

a,

yy
(2n)
x + (a + 1)

n−1∑
m=1

(−1)my
(m)
x y

(2n−m)
x + 1

2 (−1)n(a + 1)
[
y
(n)
x

]2 = C̃2,

where C̃1 and C̃2 are arbitrary constants. Eliminating the highest derivative from the
integrals, we arrive at a (2n− 1) th order autonomous equation:

n−1∑
m=1

(−1)my
(m)
x y

(2n−m)
x + 1

2 (−1)n
[
y
(n)
x

]2 = C1y
a+1 + C2,

where C1 = − C̃1

a + 1
, C2 =

C̃2

a + 1
. The order of the obtained equation next can be

lowered by the standard substitution w(y) = y′x.
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15. y
(n−2)
x y

(n)
x = a

(
y

(n−1)
x

)2.

Solution:

y =

{
C0 + C1x + · · · + Cn−3x

n−3 + (Cn−2 + Cn−1x)n−2+
1

1−a if a �= 1,
C0 + C1x + · · · + Cn−3x

n−3 + Cn−2 exp(Cn−1x) if a = 1.

16. y
(n)
x = axm−ny1−m(y′

x)m.

This is a special case of equation 5.2.6.15 with f(w) = awm.

17. y
(n+1)
x = ayky′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = y−k, g(w) = awm.

18. y
(n)
x = axm(xy′

x − y)k(y′′
xx)l.

The substitution w(x) = xy′x − y leads to an (n− 1) th order equation:

dn−2

dxn−2

( w′
x

x

)
= axm−lwk(w′

x)
l
.

19. y
(n)
x = axm1ym2(y′

x)m3 · · · (y(n−1)
x )mn+1 .

Homogeneous equation in the extended sense.

The transformation ξ = xλyµ, w =
xy′x
y

, where

λ = n + m1 −m3 − 2m4 − · · · − (n− 1)mn+1, µ = m2 + m3 + · · · + mn+1 − 1,

leads to an (n− 1) th order equation.

20. xy
(n)
x + ny

(n−1)
x = axmym.

This is a special case of equation 5.2.6.23 with f(w) = awm.

21. x2y
(n)
x + 2nxy(n−1)

x + n(n − 1)y(n−2)
x = ax2mym.

This is a special case of equation 5.2.6.24 with f(w) = awm.

22. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = axm.

This is a special case of equation 5.2.6.22 with f(x) = axm.

23.
(√

y
d

dx

)n−1

(y′
x) = ax + b.

The transformation x = x(t), y = (x′
t)

2 leads to a constant coefficient linear equation:
2x(n+1)

t = ax + b.

24. 2
n−1∑
m=1

(−1)my(m)
x y(2n−m)

x + (−1)n
[
y(n)

x

]2
+ λ(y′

x)2 = ay2 + by + c.

Differentiating both sides with respect to x and dividing by y′x, we arrive at a constant
coefficient equation: 2y(2n)

x − 2λy′′xx + 2ay + b = 0.
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25. 2
n−1∑
m=1

(−1)my(m)
x y(2n−m)

x + (−1)n
[
y(n)

x

]2
= α(xy′

x − y) + βy′
x + γ.

Differentiating both sides of the equation with respect to x, we have

y′′xx
[
2y(2n−1)

x − αx− β
]

= 0. (1)

Equating the second factor to zero, we find

y =
1
2

αx2n

(2n)!
+

1
2

βx2n−1

(2n− 1)!
+

2n−2∑
k=0

Ckx
k.

Integration constants Ck and parameters α, β, and γ are related by the equality

2
n−1∑
m=2

(−1)mm! (2n−m)!CmC2n−m + (−1)n(n!)2C2
n = βC1 − αC0 + γ,

which is obtained as a result of substituting the above solution into the original
equation.

In addition, there is the solution corresponding to equating the first factor in (1)
to zero:

y = C̃1x + C̃0, where βC̃1 − αC̃0 + γ = 0.

26. 2
n−1∑
m=1

(−1)my(m)
x y(2n−m)

x + (−1)n
[
y(n)

x

]2
+ s(y′′

xx)2 = α(xy′
x − y) + βy′

x + γ,

where n is an integer greater than or equal to 3.

With s = 0 see 5.2.1.25. Let s �= 0. Differentiating the equation with respect to x, we
have

y′′xx
[
2y(2n−1)

x + 2sy′′′xxx − αx− β
]

= 0.

Equating the second factor to zero and integrating, we obtain

y =
αx4

48s
+

βx3

12s
+ C2x

2 + C1x + C0 +
∫∫∫

w dxdx dx,

where w = w(x) is the general solution of a constant coefficient equation of the form
5.1.2.2: w

(2n−4)
x +sw=0. The constants of integration are related by an equality which

is found as a result of substituting the obtained solution into the original equation.
In addition, there is the solution y = C̃1x+ C̃0, where the constants of integration

are related by βC̃1 − αC̃0 + γ = 0.

27.
n∑

m=1

am

{
2

m−1∑
ν=1

(−1)νy(ν)
x y(2m−ν)

x + (−1)m
[
y(m)

x

]2}
= αy2 + 2βy + γ.

Differentiating with respect to x, we arrive at a constant coefficient linear equation:∑n
m=1 amy

(2m)
x + αy + β = 0.
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5.2.2. Equations Containing Exponential Functions

1. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = aeλx.

This is a special case of equation 5.2.6.1 with f(x) = aeλx.

2. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = aeλx.

This is a special case of equation 5.2.6.4 with f(x) = aeλx.

3. y
(2n)
x = aeλy.

This is a special case of equation 5.2.6.6 with f(y) = aeλy.

4. y
(n)
x = ax−neλy.

This is a special case of equation 5.2.6.10 with f(y) = aeλy.

5. y
(n)
x = axkeαy.

This is a special case of equation 5.2.6.31 with f(w) = aw, m = k + n.

6. y
(n)
x = Aeαxym.

This is a special case of equation 5.2.6.11 with m = m1 and m2 = m3 = · · · = mn = 0.

7. yy
(2n+1)
x = aeλx + b.

This is a special case of equation 5.2.6.16 with f(x) = aeλx + b.

8. y
(n)
x = aebyecxm

, m = 1, 2, . . . , n − 1.

The substitution bw= by+cxm leads to an autonomous equation: w
(n)
x = aebw, which,

for even n, admits lowering of its order by two (see 5.2.2.3).

9. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = aeλx.

This is a special case of equation 5.2.6.22 with f(x) = aeλx.

10. y
(n+1)
x = aeλyy′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = e−λy, g(w) = awm.

11. y
(n)
x = Aeαxym1(y′

x)m2 . . .
(
y

(n−1)
x

)mn .

The substitution w(x) = yeβx, where β =
α

m1 + m2 + · · · + mn − 1
, leads to an

autonomous equation of the form 5.2.6.40.

12. y
(n)
x = Aeαyxm1(y′

x)m2(y′′
xx)m3 . . .

(
y

(n−1)
x

)mn .

The transformation z = xσeαy, w = xy′x, where σ = n+m1 −m2 − 2m3 − 3m4 −· · ·−
(n− 1)mn, leads to an (n− 1) th order equation.
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5.2.3. Equations Containing Hyperbolic Functions

1. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a coshm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a coshm(λx).

2. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a sinhm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a sinhm(λx).

3. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a tanhm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a tanhm(λx).

4. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a cothm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a cothm(λx).

5. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a coshm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a coshm(λx).

6. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a sinhm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a sinhm(λx).

7. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a tanhm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a tanhm(λx).

8. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a cothm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a cothm(λx).

9. y
(2n)
x = a coshm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a coshm(λy).

10. y
(2n)
x = a sinhm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a sinhm(λy).

11. y
(2n)
x = a tanhm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a tanhm(λy).

12. y
(2n)
x = a cothm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a cothm(λy).

13. y
(n)
x = ax−n coshm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a coshm(λy).
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14. y
(n)
x = ax−n sinhm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a sinhm(λy).

15. y
(n)
x = ax−n tanhm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a tanhm(λy).

16. y
(n)
x = ax−n cothm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a cothm(λy).

17. yy
(2n+1)
x = a coshm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a coshm(λx).

18. yy
(2n+1)
x = a sinhm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a sinhm(λx).

19. yy
(2n+1)
x = a tanhm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a tanhm(λx).

20. yy
(2n+1)
x = a cothm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a cothm(λx).

21. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a coshm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a coshm(λx).

22. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a sinhm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a sinhm(λx).

23. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a tanhm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a tanhm(λx).

24. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a cothm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a cothm(λx).

25. y
(n+1)
x = a coshk(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = cosh−k(λy), g(w) = awm.

26. y
(n+1)
x = a sinhk(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = sinh−k(λy), g(w) = awm.

27. y
(n+1)
x = a tanhk(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = tanh−k(λy), g(w) = awm.

28. y
(n+1)
x = a cothk(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = coth−k(λy), g(w) = awm.
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5.2.4. Equations Containing Logarithmic Functions

1. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a lnm(bx).

This is a special case of equation 5.2.6.1 with f(x) = a lnm(bx).

2. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2
x

= a lnm(bx).

This is a special case of equation 5.2.6.4 with f(x) = a lnm(bx).

3. y
(2n)
x = a lnm(by).

This is a special case of equation 5.2.6.6 with f(y) = a lnm(by).

4. yy
(2n+1)
x = a lnm(bx).

This is a special case of equation 5.2.6.16 with f(x) = a lnm(bx).

5. y
(n)
x = y(αx + m ln y + b).

This is a special case of equation 5.2.6.30 with f(w) = lnw + b.

6. y
(n)
x = x−n(αy + m lnx + b).

This is a special case of equation 5.2.6.31 with f(w) = lnw + b.

7. y
(n)
x = ax−n lnm(by).

This is a special case of equation 5.2.6.10 with f(y) = a lnm(by).

8. y
(n)
x = ax−n−1[ln y + (1 − n) lnx].

This is a special case of equation 5.2.6.11 with f(w) = a lnw.

9. y
(n)
x = ax−n−k(ln y + k lnx).

This is a special case of equation 5.2.6.13 with f(w) = a lnw.

10. y
(n)
x = ayx−n(m ln y + k lnx).

This is a special case of equation 5.2.6.14 with f(w) = a lnw.

11. y(2n)
x = ax− 2n+1

2 [2 ln y + (1 − 2n) lnx].

This is a special case of equation 5.2.6.12 with f(w) = 2a lnw.

12. y(n)
x = (ax2 + c)

− n+1
2 [2 ln y + (1 − n) ln(ax2 + c)].

This is a special case of equation 5.2.6.21 with b = 0, f(w) = 2 lnw.

13. y
(n)
x = beαx(ln y − αx).

This is a special case of equation 5.2.6.29 with f(w) = b lnw.
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14. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a lnm(bx).

This is a special case of equation 5.2.6.22 with f(x) = a lnm(bx).

15. y
(n+1)
x = a lnk(by) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = ln−k(by), g(w) = awm.

16. y
(n+1)
x = aymyy′

x ln y
(n)
x .

This is a special case of equation 5.2.6.17 with f(y) = y−m, g(w) = a lnw.

5.2.5. Equations Containing Trigonometric Functions

1. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a cosm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a cosm(λx).

2. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a sinm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a sinm(λx).

3. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a tanm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a tanm(λx).

4. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = a cotm(λx).

This is a special case of equation 5.2.6.1 with f(x) = a cotm(λx).

5. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a cosm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a cosm(λx).

6. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a sinm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a sinm(λx).

7. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a tanm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a tanm(λx).

8. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = a cotm(λx).

This is a special case of equation 5.2.6.4 with f(x) = a cotm(λx).

9. y
(2n)
x = a cosm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a cosm(λy).

10. y
(2n)
x = a sinm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a sinm(λy).
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11. y
(2n)
x = a tanm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a tanm(λy).

12. y
(2n)
x = a cotm(λy).

This is a special case of equation 5.2.6.6 with f(y) = a cotm(λy).

13. y
(n)
x = ax−n cosm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a cosm(λy).

14. y
(n)
x = ax−n sinm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a sinm(λy).

15. y
(n)
x = ax−n tanm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a tanm(λy).

16. y
(n)
x = ax−n cotm(λy).

This is a special case of equation 5.2.6.10 with f(y) = a cotm(λy).

17. yy
(2n+1)
x = a cosm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a cosm(λx).

18. yy
(2n+1)
x = a sinm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a sinm(λx).

19. yy
(2n+1)
x = a tanm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a tanm(λx).

20. yy
(2n+1)
x = a cotm(λx).

This is a special case of equation 5.2.6.16 with f(x) = a cotm(λx).

21. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a cosm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a cosm(λx).

22. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a sinm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a sinm(λx).

23. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a tanm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a tanm(λx).

24. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = a cotm(λx).

This is a special case of equation 5.2.6.22 with f(x) = a cotm(λx).
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25. y
(n+1)
x = a cosk(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = cos−k(λy), g(w) = awm.

26. y
(n+1)
x = a sink(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = sin−k(λy), g(w) = awm.

27. y
(n+1)
x = a tank(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = tan−k(λy), g(w) = awm.

28. y
(n+1)
x = a cotk(λy) y′

x

(
y

(n)
x

)m.

This is a special case of equation 5.2.6.17 with f(y) = cot−k(λy), g(w) = awm.

5.2.6. Equations Containing Arbitrary Functions

1. yy
(5)
x + 5y′

xy
′′′′
xxxx + 10y′′

xxy
′′′
xxx = f(x).

Solution:

y2 = C4x
4 + C3x

3 + C2x
2 + C1x + C0 +

1
12

∫ x

x0

(x− t)4f(t) dt,

where x0 is an arbitrary number.

2. yy
(5)
x + ay′

xy
′′′′
xxxx + (3a − 5)y′′

xxy
′′′
xxx = f(x).

Integrating the equation three times, we obtain

yy′′xx +
a− 3

2
(y′x)

2 = C2x
2 + C1x + C0 +

1
2

∫ x

x0

(x− t)2f(t) dt,

where x0 is an arbitrary number.

3. (a + y)y(5)
x + by′

xy
′′′′
xxxx + cy′′

xxy
′′′
xxx = f(x).

Integrating, we obtain

(a + y)y′′′′xxxx + (b− 1)y′xy
′′′
xxx +

1
2

(1 − b + c)(y′′xx)
2 =

∫
f(x) dx + C.

4. yy
(6)
x + 6y′

xy
(5)
x + 15y′′

xxy
′′′′
xxxx + 10(y′′′

xxx)2 = f(x).

Solution: y2 = C5x
5 + C4x

4 + C3x
3 + C2x

2 + C1x + C0 +
1
60

∫ x

x0

(x− t)5f(t) dt.

5. y
(6)
x = (ax2 + bx + c)−7/2f

(
(ax2 + bx + c)−5/2

)
.

This is a special case of equation 5.2.6.21 with n = 6.
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6. y
(2n)
x = f(y).

The first integral of the equation is

n−1∑
m=1

(−1)my
(m)
x y

(2n−m)
x + 1

2 (−1)n
[
y
(n)
x

]2 +
∫

f(y) dy = C.

Next, the order of the obtained equation can be lowered by the substitution w(y)= y′x.

7. y
(n)
x = f

(
y

(n−1)
x

)
.

Having set u(x) = y
(n−1)
x , we obtain u′

x = f(u). Further, find u from the relation

x =
∫

du

f(u)
+ C1. Then, the (n− 1)-fold integration yields y.

The solution in the parametric form is written as

x =
∫ u

C1

du

f(u)
, y =

∫ u

C2

du1

f(u1)

∫ u1

C3

du2

f(u2)
. . .

∫ un−3

Cn−1

dun−2

f(un−2)

∫ un−2

Cn

un−1 dun−1

f(un−1)
.

8. y
(n)
x = f

(
y

(n−2)
x

)
.

Setting u(x) = y
(n−2)
x , we obtain the equation u′′

xx = f(u) whose solution has the form

x =
∫

du

ϕ(u)
+ C2, where ϕ(u) = ±

[
C1 + 2

∫
f(u) du

]1/2

.

Expressing u in terms of x and integrating the resulting relation (n − 2) times, we
find y.

The solution in the parametric form is written as

x=
∫ u

C2

du

ϕ(u)
, y =

∫ u

C3

du1

ϕ(u1)

∫ u1

C4

du2

ϕ(u2)
. . .

∫ un−3

Cn−1

dun−2

ϕ(un−2)

∫ un−3

Cn

un−2 dun−2

ϕ(un−2)
.

9. y
(n)
x = f(y + axm), m = 0, 1, 2, . . . , n − 1.

The substitution w = y + axm lead to an autonomous equation: w
(n)
x = f(w), which,

for even n, admits lowering of its order by two (see 5.2.6.6).

10. y
(n)
x = x−nf(y).

The substitution t = ln |x| leads to an autonomous equation of the form 5.2.6.40.

11. y
(n)
x = x−n−1f(x1−ny).

The transformation x = t−1, y = t1−nw leads to an autonomous equation: w
(n)
t =

(−1)nf(w), whose order, for even n, can be lowered by two (see 5.2.6.6).

12. y(2n)
x = x− 2n+1

2 f
(
x

1−2n
2 y

)
.

The transformation x = et, y = x
2n−1

2 w(t) leads to an autonomous equation of the
form 5.2.6.25, whose order can be lowered by two.
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13. y
(n)
x = x−n−kf(yxk).

This is a special case of equation 5.2.6.44.
The transformation t = lnx, w = xky leads to an autonomous equation of the

form 5.2.6.40.

14. y
(n)
x = yx−nf(xkym).

The transformation t = xkym, w =
xy′x
y

leads to an (n− 1) th order equation.

15. y(n)
x = yx−nf

(
xy′

x

y

)
.

The transformation z =
xy′x
y

, w =
x2y′′xx

y
leads to an (n− 2) th order equation.

16. yy
(2n+1)
x = f(x).

Having integrated the equation, we obtain

2
n−1∑
m=0

(−1)my
(m)
x y

(2n−m)
x + (−1)n

[
y
(n)
x

]2 = 2
∫

f(x) dx + C,

where the notation y
(0)
x ≡ y is used.

17. f(y)y(n+1)
x = y′

xg
(
y

(n)
x

)
.

Having integrated the equation, we obtain∫
dw

g(w)
=

∫
dy

f(y)
+ C, where w = y

(n)
x .

Next, the order of this equation can be lowered by the substitution z(y) = y′x.

18. y
(n)
x = f(x, y).

The transformation x = t−1, y = t1−nw(t) leads to an equation of the similar form:
w

(n)
t = (−1)nt−n−1f(t−1, t1−nw).

19. y
(n)
x = f

(
x, y

(n−2)
x , y

(n−1)
x

)
.

The substitution w(x) = y
(n−2)
x leads to a second order equation: w′′

xx = f(x, w, w′
x).

20. (ax + b)n(cx + d)y(n)
x = f

(
y

(cx + d)n−1

)
.

The transformation ξ=ln
ax + b

cx + d
, w=

y

(cx + d)n−1
leads to an autonomous equation

of the form 5.2.6.40.
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21. y(n)
x = (ax2 + bx + c)

− 1+n
2 f

(
y(ax2 + bx + c)

1−n
2

)
.

1◦. The transformation

t =
∫

dx

ax2 + bx + c
, w = y(ax2 + bx + c)

1−n
2 (1)

leads to an autonomous equation with respect to w = w(t), which admits lowering of
its order by the substitution z(w) = w′

t.

2◦. Let n = 2m be an even integer (m = 1, 2, 3, . . . ). In this case, transformation (1)
yields an equation of the form 5.2.6.25, whose order can be lowered by two.

Setting P = ax2 + bx+ c, y = wP
2m−1

2 and multiplying both sides of the original

equation by w′
x = P− 1+2m

2

(
Py′x +

1 − 2m
2

P ′
xy

)
, we obtain(

Py′x +
1 − 2m

2
P ′
xy

)
y
(2m)
x = f(w)w′

x.

Integrating both sides of this equality with respect to x (the left-hand side is integrated
by parts), we have

m−2∑
k=0

(−1)kψ(k)
x y

(2m−1−k)
x + (−1)m−1

∫
ψ

(m−1)
x y

(m+1)
x dx =

∫
f(w) dw + C, (2)

where

ψ
(k)
x =

dk

dxk

(
Py′x+

1 − 2m
2

P ′
xy

)
=Py

(k+1)
x +

(
k−m+

1
2

)
P ′
xy

(k)
x +ak(k−2m)y(k−1)

x .

(remind that n = 2m). It can be shown that the integrand on the left-hand side of (2)
is the total differential. Finally, we arrive at the first integral

m−2∑
k=0

(−1)k
[
Py

(k+1)
x +

(
k −m +

1
2

)
P ′
xy

(k)
x + ak(k − 2m)y(k−1)

x

]
y
(2m−1−k)
x

+ (−1)m−1

{
1
2
P

[
y
(m)
x

]2 − 1
2
P ′
xy

(m−1)
x y

(m)
x

+ a(1 −m2)y(m−2)
x y

(m)
x +

am2

2
[
y
(m−1)
x

]2}
=

∫
f(w) dw + C.

22. (2n − 1)yy(2n+1)
x + (2n + 1)y′

xy
(2n)
x = f(x).

Having integrated the equation, we have

(2n− 1)yy(2n)
x + 2

n−1∑
i=1

(−1)i+1y
(i)
x y

(2n−i)
x + (−1)n+1

[
y
(n)
x

]2 =
∫

f(x) dx + 2C2.

The second integration yields
n−1∑
i=0

(2n− 1 − 2i)(−1)iy(i)
x y

(2n−1−i)
x = 2C2x + C1 +

∫ x

x0

(x− t)f(t) dt.

The third integration leads to a (2n− 2) th order equation:
n−2∑
i=0

(i + 1)(2n− i− 1)(−1)iy(i)
x y

(2n−2−i)
x +

1
2

(−1)n−1n2
[
y
(n−1)
x

]2
= C2x

2 + C1x + C0 +
1
2

∫ x

x0

(x− t)2f(t) dt.
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23. xy
(n)
x + ny

(n−1)
x = f(xy).

The substitution w(x) =xy leads to the autonomous equation w
(n)
x = f(w) (see 5.2.6.6

and 5.2.6.40).

24. x2y
(n)
x + 2nxy(n−1)

x + n(n − 1)y(n−2)
x = f(x2y).

The substitution w(x) = x2y leads to the autonomous equation w
(n)
x = f(w) (see

5.2.6.6 and 5.2.6.40).

25.
n∑

m=1

amy(2m)
x = f(y).

The first integral has the form

n∑
m=1

am

{m−1∑
ν=1

(−1)νy(ν)
x y

(2m−ν)
x +

1
2

(−1)m
[
y
(m)
x

]2} +
∫

f(y) dy = C,

where C is an arbitrary constant. Further, the order of the obtained equation next
be lowered by the substitution w(y) = y′x.

26.
n∑

m=1

amxmy(m)
x = f(y).

The substitution t = ln |x| leads to an autonomous equation of the form 5.2.6.40.

27. y

n∑
m=0

amy(2m+1)
x = f(x).

Having integrated the equation, we obtain

n∑
m=0

am

{
2
m−1∑
ν=0

(−1)νy(ν)
x y

(2m−ν)
x + (−1)m

[
y
(m)
x

]2} = 2
∫

f(x) dx + C,

where y
(0)
x stands for y.

28.
n∑

m=0

amy(m)
x y(2n+1−m)

x = f(x).

The first integral has the form

2
n−1∑
m=0

Amy
(m)
x y

(2n−m)
x + An

[
y
(n)
x

]2 = 2
∫

f(x) dx + C,

where

Am =
m∑

k=0

(−1)m+kak = am − am−1 + am−2 − am−3 + · · · .

If the condition An = 2
∑n−1

m=0(−1)n−1+mAm is satisfied, the obtained equation can
be integrated two times more (see, in particular, equation 5.2.6.22).
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29. y
(n)
x = eαxf(ye−αx).

The substitution w(x) = ye−αx leads to an autonomous equation of the form 5.2.6.40.

30. y
(n)
x = yf(eαxym).

The transformation z = eαxym, w(z) = y′x/y leads to an (n− 1) th order equation.

31. y
(n)
x = x−nf(xmeαy).

The transformation z = xmeαy, w(z) = xy′x leads to an (n− 1) th order equation.

32. y
(n)
x = f(y + aeλx) − aλneλx.

The substitution w(x) = y+aeλx leads to an autonomous equation: w
(n)
x = f(w) (see

5.2.6.6 and 5.2.6.40).

33. y
(2n)
x = f(y + a coshx) − a coshx.

The substitution w(x) = y + a coshx leads to an autonomous equation: w
(2n)
x = f(w)

(see 5.2.6.6).

34. y
(2n)
x = f(y + a sinhx) − a sinhx.

The substitution w(x) = y + a sinhx leads to an autonomous equation of the form
5.2.6.6: w

(2n)
x = f(w).

35. y
(2n+1)
x = f(y + a coshx) − a sinhx.

The substitution w(x) = y + a coshx leads to an autonomous equation of the form
5.2.6.40: w

(2n+1)
x = f(w).

36. y
(2n+1)
x = f(y + a sinhx) − a coshx.

The substitution w(x) = y + a sinhx leads to an autonomous equation of the form
5.2.6.40: w

(2n+1)
x = f(w).

37. y(n)
x = f(y + a cosx) − a cos

(
x +

πn

2

)
.

The substitution w(x) = y + a cosx leads to an autonomous equation: w
(n)
x = f(w)

(see 5.2.6.6 and 5.2.6.40).

38. y(n)
x = f(y + a sinx) − a sin

(
x +

πn

2

)
.

The substitution w(x) = y + a sinx leads to an autonomous equation: w
(n)
x = f(w)

(see 5.2.6.6 and 5.2.6.40).

39. F
(
x, y′

x, y′′
xx, . . . , y

(n)
x

)
= 0.

The substitution w(x) = y′x leads to an (n− 1) th order equation:

F
(
x, w, w′

x, . . . , w
(n−1)
x

)
= 0.
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40. F
(
y, y′

x, y′′
xx, . . . , y

(n)
x

)
= 0.

Autonomous equation.
The substitution w(y) = y′x leads to an (n− 1) th order equation. The derivatives

of the original equation and the transformed one are related by the formulae

y′′xx = ww′
y, y′′′xxx = w2w′′

yy + w(w′
y)

2, . . . , y
(n)
x = w

(
y
(n−1)
x

)′
y
.

41. xy′
x − y = F

(
x, y′′

xx, y′′′
xxx, . . . , y

(n)
x

)
.

The substitution w(x) = xy′x − y leads to an (n− 1) th order equation:

w = F

(
x,

w′
x

x
,

d

dx

( w′
x

x

)
, . . . ,

dn−2

dxn−2

( w′
x

x

))
= 0.

42. x2y′′
xx − 2xy′

x + 2y = F
(
x, y′′′

xxx, . . . , y
(n)
x

)
= 0.

The substitution w(x) = x2y′′xx − 2xy′x + 2y leads to an (n− 2) th order equation:

w = F

(
x,

w′
x

x2
, . . . ,

dn−3

dxn−3

( w′
x

x2

))
= 0.

43.
m∑

k=0

(−1)kk!Ck
mxm−ky(m−k)

x = F (x, y(m+1)
x , . . . , y(n)

x ),

where Ck
m =

m!
k! (m− k)!

are binomial coefficients.

The substitution w(x) =
∑m

k=0(−1)kk!Ck
mxm−ky

(m−k)
x leads to an (n −m) th order

equation; the derivatives on the right-hand side are calculated in consecutive manner
using the formula y

(m+1)
x = x−mw′

x.

44. F
(
xky, xk+1y′

x, . . . , xk+ny
(n)
x

)
= 0.

Homogeneous equation in the extended sense.
The transformation t = lnx, w = xky leads to an autonomous equation of the

form 5.2.6.40.

45. F

(
xy′

x

y
,

x2y′′
xx

y
, . . . ,

xny
(n)
x

y

)
= 0.

Homogeneous equation in the extended sense.

The transformation z =
xy′x
y

, w =
x2y′′xx
y

leads to an (n− 2) th order equation.

46. F

(
xkym,

xy′
x

y
,

x2y′′
xx

y
, . . . ,

xny
(n)
x

y

)
= 0.

Homogeneous equation in the extended sense.

The transformation t = xkym, z =
xy′x
y

leads to an (n− 1) th order equation.
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47. F
(
eαxy, eαxy′

x, eαxy′′
xx, . . . , eαxy

(n)
x

)
= 0.

Exponential homogeneous equation.
The substitution w(x) = eαxy leads to an autonomous equation of the form

5.2.6.40.

48. F

(
eαxym,

y′
x

y
,

y′′
xx

y
, . . . ,

y
(n)
x

y

)
= 0.

Exponential homogeneous equation.

The transformation z = eαxym, w =
y′x
y

leads to an (n− 1) th order equation.

49. F
(
xmeαy, xy′

x, x2y′′
xx, . . . , xny

(n)
x

)
= 0.

Exponential homogeneous equation.
The transformation z = xmeαy, w = xy′x leads to an (n− 1) th order equation.
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