Chapter 5
Higher Orders

Differential Equations

5.1. Linear Equations

5.1.1. Preliminary Comments

n

n d
In this Chapter, we denote higher derivatives by y; ) that stands for 4 Y
x

1. The general solution of a nonhomogeneous linear equation of the nth order

fn(x)ygn) + fn—ly,gcnil) ot f1(x)y; + fo(fﬁ)y =0 (1)
has the form
y=Ciy(z) + Caya(z) + - + Cryn(2), (2)
where y1(x), y2(z), ..., yn(z) make up a fundamental set of solutions (yj are linearly-
independent solutions; yi Z 0); Cy, Cs, ..., C, are arbitrary constants.

2. Let yo = yo(x) be a nontrivial particular solution of equation (1). Then, the sub-
stitution y = yo(z) [ 2(x) dz leads to a linear equation of the (n — 1) th order for function

Given m linearly-independent solutions yi(x), y2(z), ..., ym(x) of equation (1), its
order can be lowered down to (n —m) by the following technique. The substitution y =
ym(x) [ z(z) dz leads to an (n — 1) th order equation for z(z), with the following linearly-
independent solutions known:

( Y1 )’ ( Y2 )’ (ym—1 )’
z21 = y, 2= ——], ceey Am—1 =\ —— ) -
Ym 7z Ym / Ym z

Furthermore, the substitution z = z,_1(z) [ w(z)dz yields an (n — 2)th order equation,
etc. Thus, the above procedure applied m times results in an (n —m) th order homogeneous
linear equation.

3. A nonhomogeneous linear equation of the nth order has the form

Fa@y$ + faoy ™+t fi(@)yl + folz)y = g(=). (3)

The general solution of equation (3) is the sum of its particular solution and the general
solution of the corresponding homogeneous equation (1).
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Let {y1(x), ..., yn(z)} be a fundamental set of solutions of the homogeneous differ-
ential equation (1), and W (x) is the Wronskian:

yiz) o (@)
Wi, o oep) = | A0 el @
w' M@ @)
where y,gm)(x) = (ilmgj:, m=12 ..., n—-1;, k=1,2 ..., n. Denote by W,(z)
determinant (4) wherein the v th column is replaced by the column 0, 0, ..., 0, g (from top

to bottom). Then, the general solution of the nonhomogeneous linear equation (3) can be

written as
y=3 Cola) + o) [ A

(@
5.1.2. Equations Containing Power Functions

1. yf) +ay =0.
1°. For a =0,
y=0C1+ Cox+ 03.1?2 + 0431‘3 + 05.%‘4 + C’st.

2°. For a = k% > 0,

k
y = Cy cos kx + Cy sin kx + cos Tx(Cg cosh& 4+ Cysinh§)

+sin%(C’5 cosh€ + Cgsinh¢), €= kx2\/§

3°. For a = —k% < 0,

k
y = C1 cosh kx + Co sinh kx + cosh Tx(Cg cos& + Cysiné)

+ sinh %x(cg, cos€ + Cgsing), €= kzv/3.

2
2. yf”) = aZ"y.
Solution:
n—1
y = C1e" + Coe™** 4 Z e¥* (A cos Oy + By sin0y),
k=1
k k
where ¢ = ax cos —ﬂ, 0r = axsin —W; Cy, Cy, Ak, B, (k=1,2, ..., n—1) are
n n

arbitrary constants.
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3. Y+ an1y™ o+ aryl, + aoy = 0.
The homogeneous constant-coefficient linear equation.
To solve this equation determine the n roots of the characteristic polynomial
POA) = A" 4 ap A" - a ) +ap.
The general solution is determined by these characteristic roots. Several cases are
possible:
1. The roots are all real and different. Denote them by A1, Aa, ..., A\;. Then, the

general solution of the original equation is

y = Crexp(Aiz) + Caexp(Aaz) + - - - + Cp exp(Aan).

2. There are m < n equal real roots, A\ = Ao = --- = \,;,, while the other roots are
real and different. In this case, the general solution is

y = exp(Mz)(Cy + Cox + - - + Cppz™ 1)
+ Crmy1exp(Amg12) + Crg2 exp(App2) + - - 4 Cp exp(Azn).

3. There are m equal pairs (2m < n) of complex conjugate roots, A\ = o & i3, while
the other roots are real and different. Then, the general solution has the form

y = exp(ax) cos(Bz)(A; + Aoz + -+ + Az™ 1)
+ exp(ax)sin(fz)(By + Box + - - - + Bpz™ 1)
+ Coms1 eXp(/\2m+11') + Com2 eXP(/\2m+2$) +-+ 0y eXp(/\2n)7

where Ay, ..., A, B1, ..., By, are arbitrary constants.
4. In the general case, there are r different roots A1, Ao, ..., A, of multiplicities
mai, Ma, ..., My, respectively. Hence, the characteristic polynomial can be factorized:

PA)=A=A)"™ A=) .. (A= \)™,

where my +msg + - - - +m, = n. Then, the general solution of the original equation is
given by the formula

r
y = Z exp(Axx)(Cro+ Craz + -+ Ck,mk—lzmk71)7
k=1

where C},; are arbitrary constants.
If P(X) has complex conjugate roots, in the above solution the real and imaginary
parts should be taken, in view of the formula: exp(a +i3) = e*(cos § % isin 3).

4. yi") =axy+ b, a > 0.

Solution:
tn+1

n e}
= CV v Tt — ————— dta
y VZ:O 9 /0 exp |:€ T a(nJr 1)

27 - b
h = ( ), C = —, 2 = —1.
where ¢, = exp i VE:O v = )
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10.

11.

12.

13.

14.

15.

16.

y$™ 4 az’y! + ave’ "ty = 0.

This equation can be reduced to an (n — 1) th order equation: yg(gnfl) + ax¥y = C,
where C' is an arbitrary costant.

y™ 4 azFtly! —a(n —1)z*y = 0.
The substitution z = a2y, — (n — 1)y leads to an (n — 1) th order equation: Y 4
ark*tlz = 0.

y;n) + axktly’ ! +a(k+ n)x*y = 0.

The transformation z = t~1, y = wt'~" leads to an equation of the form 5.1.2.5:
wgn) + btYw) + bvt* 1w = 0, where b = a(—1)"T!, v =1—k — 2n.

(") + axk :(Em) — (ab™z* + b™)y = 0.
Particular solution: vy = €.
y;n) + (az® — b”_m)y;m) —ab™zky = 0.
Particular solution: gy = €.
(") + (az™*! + bz™)y! — az™y = 0.

Particular solution: yg = ax + b.

y;n) + ay;n—l) + b:cmy; + abz™y = 0.

Particular solution: yg = e 7.

(Bygn) nmy:gn 1)+awy=0, n=234,..., m=1, 2,3, ...
Solution:

d \m
y = g(mFn=1 (xl_”a) (' "w),

where w is the general solution of the constant coefficient equation w;(pn) +aw = 0.

(n—1)

—|—ny = axy + b.

The substitution w = xy leads to a constant coefficient equation: w( " = quw + b.

(n—1)

zyl™ + nyl = ax’y +b.

(n) _

The substitution w = xy leads to an equation of the form 5.1.2.4: w, ’ = azw + b.

:13ym ) 4 (n—m — l)y(" Dy azky! — amz*~ly = 0.

Particular solution: yg = ™

mya(vn) + aa:ky;m) — (az® + amz** +x +n)y =0.

Particular solution: gy = ze”.
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17.

18.

19.

20.

21.

22,

23.

n—1

2y = Y [(aAui1 — Az + Ay,

v=0
where A, =1, Ag = 0; a and A, are arbitrary numbers (v =1, 2, ..., n —1).
Denote f(A) = Zg;é A, 1A, Let all the roots A1, Ag, ..., Ay_1 of the equation
f(A) = 0 be different, and f(a) # 0. Then, the solution is as follows:
I
y=C1eMT + Cre™® 4 .. 4+ Cp_1eM 1% 4 Cpre®™ [m — J;a(_@))} .
a

Z (apx + b,,)y;") =0.

vr=0

The Laplace equation.
Particular solutions:

Y = /(:Zk Pit) exp [mt—i— / %dt] dt,

where P(t) =3 ""_ a,t”, Q(t)=> 1 _,b,t"; i and B are found from the condition

oofors [ 20 a)

In many cases, the path of integration should be chosen on the complex plane.

Bk
=0.
«

k

22yl + 2nay(* Y+ n(n — 1)y = az’y +b.

The substitution w = z2y leads to a constant coefficient equation: wg(gn) =aw + b.

mzy;n) + 2nwy§n_1) + n(n — 1)y;n_2) = ax3y + b.
The substitution w = x2y leads to a equation of the form 5.1.2.4: wf(vn) = azxw + b.

z(x + m)y;n) + z(azk — = — n)y;m) —a(x +m)x*y = 0.

Particular solution: yg = xe®.

wzny;n) = ay.

The transformation ¢ = t~1, y = wt' ™™ leads to a constant coefficient equation:
wgn) = (—-1)"aw.

a:"yg(zzn) = ay.
Solution: .
y =" [Cialn (2877 ) + CraFon (266,
k=1
where I, and K, are modified Bessel functions; 0y, B2, ..., B, are the roots of the

equation 8" = \/a.
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24.

25.

26.

27.

28.

29.

30.

31.

xz3 y(2") = ay.

The transformation x = t~1, y = wt!~2" leads to an equation of the form 5.1.2.23:

t"w (2n) = aw.

mn+1/2yg(c2n+1) = ay.

Solution:
2n

y = aCr AN O[T 12 (206 ) + i1 /2 (2867

k=0

where By, B1, ..., Pon are the roots of the equation 32"+ = —ai; 2 = —1.

w3n+3/2y§:2n+1) = ay.

The transformation z = t~1, y = wt~2" leads to an equation of the form 5.1.2.25:
tn+1/2w£2n+1) —

—aw.
an™yd" + an_12 1y Y o+ arzyl, + aoy = 0.
The FEuler equation.

If all the roots A (k =1, 2, ..., n) of the algebraic equation

Zal, A=1)...(A—v+1)=—ag

are different, the general solution of the original differential equation has the form
y = Cilz™ + Cola + - + Cplaf™.

In the general case, the substitution ¢ = In|z| leads to a constant coefficient
equation of the form 5.1.2.3:

d
Zal, -1)...(D—-v+1)y=—agy, where D = T
x

m2”+1y§,n) = ay + bx™.

The transformation z = t~1, y = wt'~" leads to an equation of the form 5.1.2.4:
w™ = (=1)"(atw + b).

m2n+1y§:") + nmzny;"_l) — axy.
The substitution w = zy leads to an equation of the form 5.1.2.22: 227w ™ = qw.
w2n+1y;n) + na:2"y,gn_1) = ay.

2"+1w§;n)

The substitution w = zy leads to an equation of the form 5.1.2.28: x = aw.
2"y + 2nan—1yPn Y = ay.
The substitution w = xy leads to an equation of the form 5.1.2.23: x™ (Qn) = aw.
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32.

33.

34.

35.

36.

37.

38.

w3ny§32") + 2nm3"_1y,(32"_1) = ay.

The substitution w = zy leads to an equation of the form 5.1.2.24: 23"w*™ = aw.
:c”+1y:(62"+1) + (2n + 1)ac"y§:2") = a/zy.

The substitution w=zy leads to an equation of the form 5.1.2.25: 2"+1/2" ™) = g0,
$3n+3/2y§:2"+1) + (2n + 1)m3n+1/2ya(02n) = ay.

The substitution w = xy leads to an equation of the form 5.1.2.26: :c3"+3/2w£.2"+1) =

aw.

(az + b)2"+t1y{™ = (cz + d)y.

The transformation
cx+d Y

g:azzc—ﬁ—b7 w:(ax—i—b)”*l

leads to an equation of the form 5.1.2.4: wé") = A™"¢w, where A = bc — ad.

(ax + b)™(cx + d)”y;n) = ky.

1°. The transformation

P s L
cex4d’ ~ (cx +d)n1

leads to a constant coeflicient equation.

2°. The transformation

C_cwc—i—b w Y
cx+d’ ~ (ex +d)nl

leads to the Euler equation 5.1.2.27: C”wén) = kA "w, where A = ad — bc.

(ax? + bx + c)"yin) = ky.
The transformation

1—n

dx 9
= _— = b 2
£ /am2+bx+c’ w = y(ax® + bx + ¢)
leads to a constant coefficient equation.

(ax + b)™(cx + d)3"y£2n) = ky.

The transformation
ar +b . Y

gzcm—i—d’ v (cx + d)?»-1

leads to an equation of the form 5.1.2.23: §"w§2n) = kA™?"w, where A = ad — bc.
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39.

40.

41.

(am + b)n+1/2(0$ + d)3n+3/2y:(c2n+l) _ ky

The transformation

g_aa:—t—b w Y
cxtd’ ~ (cx+d)2n

leads to an equation of the form 5.1.2.25: §”+1/2w22n+1) = kA2 Ly, where A =
ad — be.

P 1(2)y” + Paa(@)ys" ™0 + -+ -+ Pu(2)yl, + (@12 + b1)yl, — mary =0,
where P, are polynomials of the degree < v, m is a positive integer, a; # 0.

A particular solution of this equation is the polynomial of degree m which can be
written as

1 \k
Yo = Z(——) (2™ Iz~ Y (P,_1D" + -+ + P D* + by D)]*z™,
ai
k=0
d v+1
where D = e Iz¥ = j+1 with v # —1.

[ana™ + Po_1(2)]yS™” + -+« + [a12 + Po(2)]y, + aoy = 0,
where P, are polynomials of the degree < v.

Assume that for some integer m > 0,

n
m!
g Cpvta, =0, where C}, = ——,
‘ vl (m—v)!
v=

and m is the least of the numbers satisfying this condition. Then, there exists a
solution in the form of a polynomial of degree m such that no polynomial of a smaller
degree satisfies the original equation.

5.1.3. Equations Containing Exponential Functions

y;n) + (ax + b)e“’y; — ae?y = 0.

Particular solution: yg = ax + b.

yén) + (ae)\m _ bn—m)ya(cm) _ abmeAwy = 0.
Particular solution: yo = 2.
i ¢ aymh 4 be**y! + abe*®y = 0.

Particular solution: yg=e %"

y;") + ae"wy:(cm) — (ab™e*® + ™)y = 0.

Particular solution: gy = €.
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n—1

5.y =) (A€ + bArt1 — ARy,
k=0
where A,, =1, Ay = 0; b and Ay are arbitrary numbers (k=1,2, ..., n—1).

Particular solutions: y,, = e#™* where u,, are the roots of the polynomial equation
S0 Argpp® = 0.
6. a:yg(:n) + aa:e)‘"’yg(zm) — [a(z + m)e*® + x + n]y = 0.

Particular solution: yg = xe”.
7. a:ya(Jn) +(n—m— l)yén_l) + aa:e)‘wy; — ame*®y = 0.

Particular solution: yg = ™.

8. x(x+ m)y;n) + z(aer® —x — n)y;m) —a(x + m)e*®y = 0.

Particular solution: yg = xe”.

9. (ax™ + be® + c)y;n) = be®y, m=0,1,2, ..., n—1.

Particular solution: yg = ax™ + be” + c.

10. (az™e® + by = (-1)"by, m=0,1,2, ..., n—1.

Particular solution: yg = ax™ + be™".

n—1
11. (aem + Z bk:z:k) y;") = ae®y.

k=0
n—1
Particular solution: yg = ae® + Z brpa®.
k=0

12. y;") + acosh* z y_f;") — (ab™ cosh® z + b))y = 0.

Particular solution: vy = €.

13. y;n) + (a cosh® z — b"_m)y;m) — ab™ cosh* zy = 0.

Particular solution: vy = €®?.

14. y™ + (ax 4 b) cosh™ (Ax)y., — a cosh™(Ax)y = 0.

Particular solution: yo = ax + b.

15. my;n) + ax cosh® z yim) — [a(x + m) cosh®*z + = + nl]y = 0.

Particular solution: gy = ze”.

16. y;n) + asinh* 2 y;m) — (ab™sinh* z + b™)y = 0.

Particular solution: gy = €.
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17. (") + (asinh® z — b7~ m)y(m) —ab™sinh* zy = 0.

Particular solution: gy = eb®.

18.  y{” + (az + b) sinh™ (Az)y, — asinh™ (Az)y = 0.

Particular solution: yo = ax + b.

19. wyé ) + ax sinh® z y;’") [a(x + m) sinh®* z + = + nly = 0.
Particular solution: yg = xe”.

20. ™ + atanh® z yw — (ab™ tanh* z + b™)y = 0.

Particular solution: gy = €.

21. ¢+ (atanh® x b"_m)y;m) — ab™tanh* zy = 0.

Particular solution: vy = €.

22. y + (az + b) tanh™ (Az)y, — atanh™ (Az)y = 0.

Particular solution: yg = ax + b.

23. wyz + ax tanh® y;m) [a(x +m) tanh* z + x + nly = 0.
Particular solution: yg = xe”.

24. y{ + acoth® 2 y{™ — (ab™ coth® z + b")y = 0.

Particular solution: gy = eb®.

25. y;n) + (acoth® x — b”_m)ya(vm) — ab™ coth* zy = 0.

Particular solution: yo = 2.

26. y™ + (ax 4 b) coth™ (Ax) y., — acoth™(Az) y = 0.

Particular solution: yg = ax + b.

27.  zy{™ + ax coth® z y{™ — [a(z + m) coth* x + = + n]y = 0.

Particular solution: gy = ze”.

5.1.4. Equations Containing Trigonometric Functions

1. ( ) + asin wy( ™) — (ab™ sin® z + b™)y = 0.
Particular solution: o = e*®.

2. y{™ 4 (asin®z — b~m)y{™ — abmsin* zy = 0.
Particular solution: yo = 2.
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3. y& +ayl"Y + bsin™(Ax)y, + absin™ (Ax)y = 0.

Particular solution: o = e~ %",

4. yén) + (ax + b) sin™ (Ax)y., — asin™ (Az)y = 0.

Particular solution: yg = ax + b.

5. (n) + a cos® x ya(v — (ab™ cos* x + b™)y = 0.

Particular solution: yo = 2.

6. (n) + (acos® x — b"~ m)y(m) —ab™coskFzy = 0.

Particular solution: vy = €.

7. y$ +ayd Y + beos™(Az)yl, + abcos™(Az)y = 0.

Particular solution: yg = e~ %",

8. y;n) + (ax + b) cos™(Az)y,, — acos™(Ax)y = 0.
Particular solution: yg = ax + b.

9. (n) + atan® z y( ) — (ab™ tan® x + b")y = 0.

Particular solution: o = eb®.

10. ¥ + (atan®z — b»~™)y{™ — ab™ tan* zy = 0.

Particular solution: vy = €.

11y + ayl ™Y + btan™(Az)y,, + abtan™(Az)y = 0.

Particular solution: yg = e~ .

12. y{™ 4+ (ax 4 b) tan™ (Ax)y., — atan™(Az)y = 0.

Particular solution: yg = ax + b.

13. wym ) 4 azxsin (Am)y(m) [a(x + m) sin®*(Az) + = + n]y = 0.

Particular solution: gy = ze®.

14. zy{™ + axcos*Az)yl™ — [a(z + m) cosk(Az) + = + n]y = 0.

Particular solution: yg = xe”.

15. 2yl + ax tank()\m)y(m) — [a(z + m) tan®(Az) + = + n]y = 0.

Particular solution: gy = xe®.

™
16. (az™ + bsinw)yé") = bsin(:c + T)y, m=0,1,2, ..., n—1.

Particular solution: gy = ax™ + bsin x.
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n—1
17. (a sinx + Z bkmk>y;") = asin(w + ™ )y
k=0

2
n—1
Particular solution: yo = asinx + Z brpa®.
k=0
™n
18. (az™ + bcos x)y;") = bcos(:l: + T)y, m=20,1,2, ..., n—1

Particular solution: yg = ax™ + bcosz.

n—1
19. (Cl, cos T + Z bka}k) ygn) = acos(w + ﬂ)y
k=0 2

n—1
Particular solution: yo = asinx + Z bkack.
k=0

5.1.5. Equations Containing Arbitrary Functions

—

yM = f(a).

Solution:

n—1
O
yzgcyx +/mO aén—1)! f(t)dt,

where xg may be chosen arbitrarily.

2. oy +zf(2)y, — mf(z)y = 0.

Ifm=0,1,2,..., or n— 1, the equation has a particular solution yy = =", and the
substitution z = xy!, — my leads to an (n — 1) th order equation:

n—m-—1 ng”m) d
D + f(z)z =0, where D= —.
x dz

In particular, for m = n — 1, we have zg(ﬂnfl) +xf(x)z = 0.

3.y + (ax +b)f(2)y), — af(z)y = 0.

Particular solution: yo = ax + b.

4. y;n) + f(ac)(wzy;'m —2zy! +2y) = 0.

Particular solutions: y1 =z, ys = z°.

The substitution z = 2%y, — 2zy’. + 2y leads to a linear equation of the (n —2) th

order.

5. o+ f@)yl™ — [a™ + a™ f(z)]y = 0.

Particular solution: yo = e®*.
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6. oy 4+ (f—arm)l™ —amfy=o, f=7f(z).

Particular solution: gy = €%

7.y 4+ a4 fyl +afy =0, F = f(x).

Particular solution: gy =e™%*

8.y + @yl + 9(x)ul" P + h(z) = 0.

The substitution w(z) = "7 Jeads to a linear equation of the second order: wl +

f@)w;, + g(z)w + h(z) = 0.

9.y +an 1y + o+ a1yl + aoy = ().

The nonhomogeneous constant-coefficient linear equation.

The general solution of this equation is the sum of the general solution of the
corresponding homogeneous equation (see 5.1.2.3) and any particular solution of the
nonhomogeneous equation.

If all the roots of the polynomial

POA) = A" 4 an A" d +ag

are different, the original equation has the general solution

n

n e)\um
y=>» CeM +y — /f z)e M dx
2 2Py 1@

v=1

(with complex roots, the real part should be taken).

In Table 5.1 are listed the forms of particular solutions corresponding to some
special forms of functions on the right-hand side of the linear nonhomogeneous equa-
tion.

(n—1

10. 2"y +b,_q2nym p bizy! + boy = f(x).
The substitution z = ae® (a # 0) leads to an equation of the form 5.1.5.9.

11. (") + f(x) Z( 1)kk'Ck lic"_k_lyé"_k_l) =0,

k=0
m!
where C ————— are binomial coefficients.
Iy (m —k)!
Particular solutions: y,, = 2™, wherem=1, 2, ..., n—1.
n—1
The substitution z = Z(—l)kk!Cﬁflmn_k_lyr(ﬁn_k_l) leads to a first order linear
k=0

equation: z! + 2" ! f(z)z = 0. Having solved this equation, we obtain an (n — 1) th
order equation of the form 5.1.5.10 for function y(z).

n—1
12y =" (araf — ar)yl,
k=0
where f = f(x); a, =1, ag = 0; ay, are arbitrary numbers (k=1, 2, ..., n—1).
Particular solutions: y, = e** (k =1, 2, ..., n — 1), where \; are the roots of the

polynomial equation Y7~ a1 AF = 0.
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TABLE 5.1

The forms of particular solutions of the nonhomogeneous constant-coefficient

linear equation ya(v") + an_lyén_l

o+ ay) + aoy = f(z)

which correspond to some special forms of function f(x).

of function f(z)

The form Roots of the characteristic equation

A"+ ap NP+t a A tag=0

The form of a particular

solution y = y(x)

Zero is not a root of the

(av is a real number)

(@) characteristic equation (i.e., ag # 0) P (2)
P (x
" Zero is a root of the "B
characteristic equation (multiplicity r) @ Py (2)
« is not a root of the ~
o . P, (x)e™”
P, (z)e®” characteristic equation

a is a root of the
characteristic equation (multiplicity r)

13 is not a root of the P,(z) cos Sz
Py () cos Bz characteristic equation + éu(m) sin Sz
+ Qn(2) sin o i3 is a root of the 2" [P, (z) cos B
characteristic equation (multiplicity r) + @V(x) sin ]
a+ 140 is not a root of the [P, () cos Bz
[Pon() cos Bz characteristic equation + Qu(z) sin fz]e™”
+ Qn(2)sin fale a + i is a root of the :zzr[ﬁ,,(x) cos B

characteristic equation (multiplicity r)

+Qu () sin fle””

Notation: Py, and @Q, are polynomials of the degrees m and n with given coefficients;
P, P,, and @, are polynomials of the degrees m and v whose coefficients are de-
termined as a result of substituting the particular solution into the basic equation;

v =max(m, n); i2 = —1.
13, 2yl +zfyl™ — (@ +m)f+x+nly=0, f=f(x)

14.

15.

16.

Particular solution: yg = xe®.

z(x +m)yl” + 2(f — 2 —n)yl™ — (z + m)fy =0,

Particular solution: yg = xe”.

aky + af(x)yl, — mf(z)y =0,

Particular solution: yo = ™.

eyl + (n—m — 1)z L zfy! — mfy =0,

Particular solution: gy = ™.
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m=20,1, 2, ...

f=17r@).

, n— 1.

f=r(=z).




17.

18.

19.

20.

21.

22.

23.

anyl™ 4 zmfy(™ — (nICT + mICT f)y = 0,
I'(a+1)

where f = f(x), C; = nl(a—n+1)

function.

are binomial coefficients, I'(a) is the gamma-

Particular solution: yo = z.

n—1
™y = 3" [2" (k1 f — ax) + argalyl,

k=0
where f = f(2); a, =1, ap = 0; m and ay, are arbitrary numbers (k=1, 2, ..., n—1).
Particular solutions: yj, = e M? (k=1,2,...,n—1), where )\ are the roots of the

polynomial equation ZZ;S ap1\F = 0.

> @)y = g(@)(zy), — y).

k=2
Particular solution: yo = x.
The substitution w(z) = xy., — y leads to an (n — 1) th order equation.

Y fe(@)y® = g(x)(2?yll, — 22y, + 2y).
k=3

Particular solutions: y; =z, ys = z°.

The substitution w(x) = 22y, — 2xy’. + 2y leads to an (n — 2) th order equation.

n
3 Fu(@)y® = ge) @y, — 3x>y!, + 6zy, — 6y).
k=4

Particular solutions: y; = z, yo = 22, y3 = .
The substitution w(z) = 23y, — 322y, + 6xy’, — 6y leads to an (n — 3) th order

equation.

S @y 4+ g(@) (1R CEam Ry MR — o,

k=m++1 k=0
!
where C¥ = — " are binomial coefficients.
m El'(m — k)!
Particular solutions: ys, = x°, where s =1, 2, ..., m.

The substitution z = ;" (—1)*k! Cﬁlxm’kyém_k) leads to an (n — m)th order
equation:

n / d
Z fi(z)DE=m=1) <Z—f;> +g(z)z=0, where D= —.
k=m-+1 z d

> (fr — afer)y =0,

k=0
where fr = fiu(z) (k=1,2, ..., n), foy1=fo=0.

Particular solution: yo = e®*.
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24.

25.

26.

27.

28.

29.

30.

31.

32.

Z [ fi. + (k — m) frr1]y?) =0,

k=0
where fr = fp(z) (k=1, 2, ..., n), fay1 = fo=0.

Particular solution: 1o = ™.

i — My =0, f=f).

Particular solution: yo = f(x).

Fu™ Y+ 1y =0, f = f@).

The first integral has the form

2n

STk ® = /g(m) dz + C.

k=0
inzy™ 1 si (m) _ (g . i AL | P
sinzy,” 4 sinx f(x)y, [sm(:c + 5 ) + f(x) sm(:c + 5 )}y = 0.

Particular solution: yy = sinx.

coswy;n) ~+ cos wf(w)y:(cm) - {cos(w + 7r_2n> + f(x) (;05(;3 + %)}y —0.
Particular solution: yo = cosz.
y$” = f(z)y.

The transformation z = t~!, y = wt' ™" leads to an equation of the similar form:
1
wi") = (—1)”t*2”f(?>w.

b
(n) — d)—2n ar + )
Ya (cz + d) f(icmrd)y
ar+b Y (n) _

The transformation £ = = leads to the equation we =

cx+d’ v (cx + d)nt
A" f(&)w, where A = ad — be.
Y + f(@)y, + g(x)y + h(z) = 0.
The transformation x = t~1, y = wt! =" leads to an equation of the similar form:
w™ + (=1)"2" fth(i)w' + [(n - 1)tf<l> + g(i)}w + t”*1h<i) = 0.
¢ t)t t t t

y;"‘”) + f(z)[z*y”, — 2nzy! + n(n + 1)y] = 0.

The substitution w(x) = x2y”, — 2nxy’, + n(n + 1)y leads to an nth order equation:
wi™ + 22 f(z)w = 0.
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1 1
33. a:y:(gn) + ny:(c"_l) = wl_znf(;>y + m_"_lg(;).

1 (n) _

The transformation ¢ = 27!, w = yz?~™ leads to an nth order equation: w,

(=D"[fOw + g(®)].

34. 22y 4 amyY 4 gy
+ f(x)[z?y), + (o — 2n)xy,, + (B — an +n? + n)y] = 0.
The substitution

1mw—xwg+uwvmﬂ4+w—an+ﬁ+nw

leads to an n th order equation: w'™ + f(z)w = 0.

5.1.6. Asymptotic Solutions

This subsection presents asymptotic solutions, as ¢ — 0 (¢ > 0), of some fifth-order
linear ordinary differential equations containing arbitrary functions (sufficiently smooth),
with the independent variable being a real number.

1. Consider an equation of the form

ey — f(x)y = 0. (1)

on a closed interval a <x < b. Assume that f #0. Then, the leading terms of the asymptotic
expansions of the fundamental system of solutions, as ¢ — 40, has the form
1

o= (1) e 22 1) 7 deb[1+0(0).

where w1, ws, ..., w, are the roots of the equation w™ = 1:
m .. [ 2mm
) +1 sm(

2. Consider an equation of the form

ey e @)y e fi(@)yl + fola)y = 0. (2)
on a closed interval a < x < b. Let A\, = A\p(z) (m = 1,2,...,n) be the roots of the
characteristic equation

P(2,2) = A"+ fua (@A 4 fi(@)A + folw) =

Let all the roots of the characteristic equation be different on the interval a < x <b, i.e.,
the conditions A\, (z) # Ag(z) if m # k are satisfied, which is equivalent to the fulfillment
of the conditions Py(z, A\,,) # 0. Then, the leading terms of the asymptotic expansions of
the fundamental system of solutions, as € — 40, are given by the formulae

I P cmriﬂMwm%%%%%%m}

wm:cos( ), m=1,2,...,n.

where
Py(z,\) = g—f = A" 4 (n = 1) fPTINT  20 fo () + fu(w),
2
Pu(z,\) = gT]: =n(n—DXN" 24 (n—1)(n—2)f" A" 4 .+ 6Af3(x) + 2fa(z).

© 1995 by CRC Press, Inc.



5.2. Nonlinear Equations

5.2.1. Equations Containing Power Functions

1 yyl +5ylyl ., + 10y, Yt = az™.

This is a special case of equation 5.2.6.1 with f(x) = az™.

2. y;G) = Ay~ /5.

Multiplying both sides by %7/ and differentiating with respect to z, we obtain the

equation 5yy§67) + 7y;y9(66) = 0. Having integrated the latter three times, we arrive at

a chain of equalities:

2

where Cy, C7, and Cy are arbitrary constants. Eliminating the highest derivatives
from (1)-(3), with the aid of the original equation, we can obtain a third order
equation which can be reduced to a second order equation (see equation 5.2.1.4 with
n=3).
6 5 2
3. yys” + 6yLys” + 15y, + 10(y,)" = az™.
This is a special case of equation 5.2.6.4 with f(z) = az™.

142n
4. yg") = Ay 1-2n
2n41
Multiply both sides by y 2n—1 and differentiate with respect to z. As a result we

obtain

(2n — Dy + @2+ Dy,pt™ =0,
Three integrals containing arbitrary constants Cy, C7, and C5 are presented in 5.2.6.22
wherein we should let f = 0. Eliminating the highest derivatives from those integrals
and the original equation, we may always obtain a (2n — 3) th order equation. With
the aid of the transformation

dCC 1—2n 2
t:/?, w=yP 2 , where P = Cyx” + Cix + C,

the latter equation can be reduced to the autonomous form 5.2.6.40. Therefore, the
substitution z(w) = w; finally leads to a (2n — 4) th order equation with respect to
z = z(w).

5. yP™ = Ayk, kK # -1

Having integrated, we arrive at

n—1
_ 1 2 A
Sy Lo b1

where C' is an arbitrary number. Further, the order of the obtained autonomous
equation can be lowered by the substitution w(y) = y.,.
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10.

11.

12.

13.

14.

y" = az—"y™

This is a special case of equation 5.2.6.10 with f(y) = ay™.

W = azkym.

1°. The transformation @ = t=1, y = t1""w(t) leads to an equation of the similar
form: u;t(n) = (-U"At_k_("—l)m—n—lwm.

2°. The transformation & = 2"+ y™=1 > =2y /y leads to an (n—1) th order equation.

yyf"-’_l) = ax™ + b.

This is a special case of equation 5.2.6.16 with f(x) = az™ + b.

y;n) — wm—nm—n—l(ay _|_ bxn—l)m.

This is a special case of equation 5.2.6.11 with f(w) = (aw + b)™.

m—2nm—2n—1 2n—1 \m
yfn) =z 2 (ay + bx 2 )

This is a special case of equation 5.2.6.12 with f(w) = (aw + b)™.

y™ = (ay + bxk)™; k=1,2,...,n—1.
The substitution aw = ay + ba* leads to an autonomous equation: w;n) =a™w™ (see
5.2.1.4, 5.2.1.5, and 5.2.6.40).

m—nm—n—1
y{™ = (az® + bz + c) 2 y™.
This is a special case of equation 5.2.6.21 with f(w) = w

m

y™ = (az + b)~"(cx + d)ym—m—lym,

m

This is a special case of equation 5.2.6.20 with f(w) = w

yya(c2n+1) (2n)

= ay,mym

The equation admits two different (with a # —1) first integrals:

g = Chy®,

n—1
n m_ (m n—m n n)y2 =~
yyS + @+ 1) 3 (D)™ T 4 L (=D (a+ 1) [] = G,

1

3
Il

where 51 and 6’2 are arbitrary constants. Eliminating the highest derivative from the
integrals, we arrive at a (2n — 1) th order autonomous equation:

n—1
m._ (m n—m n n)12
Z (=1 iy Crmm +(-1) [ya(c )] = Cy*t + Oy,
m=1
c Cy . .
where C7 = — " , Cy = 1 The order of the obtained equation next can be

a
lowered by the standard substitution w(y) = y..
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n— n n— 2
15. ¢ Py = a(yitY)%
Solution:

1
y = { Co+ Cra+ -4 Cr_gz" 3 4 (Cg + Cpyz)" T T-a  ifa#1,
Co+Crx+ -+ Cp32" 3+ Cp_gexp(Cp_17) ifa=1.

16. y;i") = az™ "y'~™(y,)™.

m

This is a special case of equation 5.2.6.15 with f(w) = aw

17, y&tY = aykyl (y5)™
This is a special case of equation 5.2.6.17 with f(y) = y~%, g(w) = aw™.

l
18,y = az™(2yl, — y)*(ylL,)"
The substitution w(x) = xy,, — y leads to an (n — 1) th order equation:

dn—2 /

w -1k l
dxn—2 (TI) = az™ " w" (w))

19. y&” = az™iym2(yl) ™ - (gl D),

Homogeneous equation in the extended sense.
/
LYy

The transformation £ = 2 y*, w = , where

A=n+m;—mz—2my—-—nm—1mpy1, p=mo+mg+--+muyi — 1,
leads to an (n — 1) th order equation.
20. a:ygn) + ny;"_l) = ax™y™.

This is a special case of equation 5.2.6.23 with f(w) = aw™

21.  22y{™ 4 2nzy" Y 4 n(n — 1)y§:n_2) = ax?my™

This is a special case of equation 5.2.6.24 with f(w) = aw™.
22. (2n — l)yygn—i_l) + (2n + 1)y;y§c2n) = ax™.

This is a special case of equation 5.2.6.22 with f(z) = ax

d

23. (\/ﬂa)n_l(y;) =az +b.

The transformation = = z(t), y = (xft)2 leads to a constant coefficient linear equation:
ngnﬂ) =ax +b.

n—1
24. 2 ) (=1)™y{myEr=m 4 (—1)" 3] + AyL)? = ay® + by +c.
m=1

Differentiating both sides with respect to « and dividing by y’,, we arrive at a constant

coeflicient equation: 2yg(52n) —2\y) .+ 2ay+b=0.
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26.

27.

n—1

2 3 (—1)mymy ™ 4 (1) [y = a(ayl, — y) + By, + .
e

Differentiating both sides of the equation with respect to x, we have

e (208" —ax — g] = 0. (1)
Equating the second factor to zero, we find
2n—2

1 axZn 1 6x2n71
- - Cra®.
YT ey T2 n o ];) R

Integration constants C} and parameters «, 3, and 7y are related by the equality

n—1

2> (=1)"m! (2n = m)! Cpp,Cap—m + (—1)"(n))*CE = BCy — aCo + 7,

m=2

which is obtained as a result of substituting the above solution into the original
equation.

In addition, there is the solution corresponding to equating the first factor in (1)
to zero:

Y= 5196-1-60, where ﬁél —a50+7:0,

1
_ 2

2 Y (—1)my{my@nmm 4 (—0)" [y + s(yl,)? = alzyl, — y) + Byl + 7,

where n is an integer greater than or equal to 3.

With s =0 see 5.2.1.25. Let s # 0. Differentiating the equation with respect to x, we
have

(2087 425y — ax — B] = 0.

Equating the second factor to zero and integrating, we obtain

_ pr?
v= 483 +F+C2x +01$+CO+///WdIdxdx’

where w = w(x) is the general solution of a constant coefficient equation of the form
5.1.2.2: (27' Y 4 sw=0. The constants of integration are related by an equality which
is found as a result of substituting the obtained solution into the original equation.

In addition, there is the solution y = C’lx + Co, where the constants of integration
are related by BC, — aCy + v =0.

n m—1
3 am{ 3 (—1) @y Eme ")+(—1)m[yfcm)]2}=ay2+2ﬂy+7.

m=1 v=1

Differentiating with respect to x, we arrive at a constant coefficient linear equation:
Sy ™ + oy + 5= 0.
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5.2.2. Equations Containing Exponential Functions

This is a special case of equation 5.2.6.1 with f(z) = ae’*.

6
2. gyl + 6yl + 15y yl,, + 10(y0,)" = aer.

This is a special case of equation 5.2.6.4 with f(z) = ae’*.

3. yfn) = aeMV.

This is a special case of equation 5.2.6.6 with f(y) = aeV.

4. y;n) = ax "e.

This is a special case of equation 5.2.6.10 with f(y) = ae?V.

5. y;n) = axkeV.

This is a special case of equation 5.2.6.31 with f(w) = aw, m =k + n.

6. y;i") = Ae**Ty™

This is a special case of equation 5.2.6.11 with m =m, and mge =mg=---=m, =0.

7. yy;2"+1) = ae*® + b.

This is a special case of equation 5.2.6.16 with f(z) = ae** +b.

8. (")—aeyecmm, m=1,2, ..., n—1.

The substitution bw = by+cz™ leads to an autonomous equation: wy(ﬁ Q— , which,

for even n, admits lowering of its order by two (see 5.2.2.3).

9. (2n 1)yy(2n+1) +@2n+ 1)y ya ) — gere,

This is a special case of equation 5.2.6.22 with f(z) = ae’?.

10. y;n—’_l) = ae*yy ( ("))
This is a special case of equation 5.2.6.17 with f(y) = e=Y, g(w) = aw™.
11. y™ = Aeozym™ (yo)™ ... (y;n_l))mn.
The substitution w(z) = ye’®, where § = @ , leads to an
my+mo+---+my, —1

autonomous equation of the form 5.2.6.40.

12y = Aevam™ (y)™ (ylL)™ ... (y&T) ™

The transformation z = 27e*Y, w = xy!,, where 0 =n+mj —mg — 2mz — 3my — - - - —
(n — 1)m,,, leads to an (n — 1) th order equation.
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5.2.3. Equations Containing Hyperbolic Functions

10.

11.

12.

13.

n n

yym ) 4+ S5yLyrt .+ 10y2 y"' = acosh™(Ax).
This is a special case of equation 5.2.6.1 with f(x) = a cosh™(A\z).

yyw )+ S5yLyt .+ 10y2 y” = asinh™(Ax).
This is a special case of equation 5.2.6.1 with f(x) = asinh™(\z).

n

yym ) 4 S5yLyt .+ 10y2 y”" = atanh™(Ax).
This is a special case of equation 5.2.6.1 with f(z) = atanh™ (\z).

yyl® + S5yl yl 4+ 10yY y' = acoth™(Ax).
This is a special case of equation 5.2.6.1 with f(z) = acoth™(A\x).

yyl® + 6y Yz ®) 4 15y yo" .+ 10(?/;1;93 = acosh™(\x).
This is a special case of equation 5.2.6.4 with f(z) = acosh™(A\x).

yyl® + 6y Yz ®) 4 15y” y"" 4+ 10(y” )* = asinh™(Az).
This is a special case of equation 5.2.6.4 with f(z) = asinh™ (A\z).

(6) + 6y, y + 15y2 yo» .+ 10(y! = atanh™(\x).

TXrre rxrx

This is a special case of equation 5.2.6.4 with f(x) = atanh™(A\z).

yyl® + 6y’ y® + 15y” y"” 4+ 10(y” )* = acoth™(Ax).
This is a special case of equation 5.2.6.4 with f(z) = a coth™ (A\z).

y&™ = acosh™(\y).

This is a special case of equation 5.2.6.6 with f(y) = acosh™(\y).

Y& = a sinh™ (Ay).

This is a special case of equation 5.2.6.6 with f(y) = asinh™ (\y).

Y3 = atanh™ (\y).
This is a special case of equation 5.2.6.6 with f(y) = atanh™(\y).

y3™ = q coth™ (Ay).

This is a special case of equation 5.2.6.6 with f(y) = acoth™(\y).

y™ = az—m cosh™ (\y).

This is a special case of equation 5.2.6.10 with f(y) = a cosh™(\y).
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14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

y™ = az—m sinh™ (A\y).
This is a special case of equation 5.2.6.10 with f(y) = asinh™(\y).

y™ = az—m tanh™ (A\y).
This is a special case of equation 5.2.6.10 with f(y) = atanh™ (\y).

yﬁ,") = axz~ " coth™ (A\y).
This is a special case of equation 5.2.6.10 with f(y) = a coth™ (\y).

Yy = acosh™(Ax).

This is a special case of equation 5.2.6.16 with f(z) = a cosh™(A\z).

Yyt = asinh™ (Az).

This is a special case of equation 5.2.6.16 with f(z) = asinh™(Az).

yyS Y = atanh™(Ax).

This is a special case of equation 5.2.6.16 with f(z) = a tanh™ (A\x).

Yyt = acoth™(A\x).
This is a special case of equation 5.2.6.16 with f(z) = a coth™(A\x).

(2n — l)yy;(n2"+1) + (2n + l)y;yf") = acosh™(\x).
This is a special case of equation 5.2.6.22 with f(x) = a cosh™(A\z).

(2n — 1)yy§2n+1) + (2n + l)y;yf") = asinh™(Az).

This is a special case of equation 5.2.6.22 with f(x) = asinh™(A\z).

(2n — l)yyg(c2"+1) + (2n + l)y'mya(czn) = atanh™ (\x).

This is a special case of equation 5.2.6.22 with f(z) = atanh™ (\z).

(2n — Dyt + (2n + 1)y,y8" = acoth™ (Ax).
This is a special case of equation 5.2.6.22 with f(z) = a coth™(A\z).

y;""'l) = a cosh®(\y) Yo (y;n))m-

m

This is a special case of equation 5.2.6.17 with f(y) = cosh™*(\y), g(w) = aw

yé”"‘l) =a sinhk()\y) YL, (y;(c"))m.

m

This is a special case of equation 5.2.6.17 with f(y) = sinh_k()\y), g(w) = aw

y;n"'l) = atanh®(\y) Y., (ya(nn))m~

m

This is a special case of equation 5.2.6.17 with f(y) = tanh™*(\y), g(w) = aw

y;n"'l) = a coth®(\y) Y (y;n))m-

This is a special case of equation 5.2.6.17 with f(y) = coth™"*(\y), g(w) = aw™.
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5.2.4. Equations Containing Logarithmic Functions

n

1. oy + S5yLyrt .+ 10y2 y” = aln™(bx).
This is a special case of equation 5.2.6.1 with f(z) = aIn™ (bz).

2. yu” +6yLu” + 15y, + 10(y,)) = aln™ (ba).
This is a special case of equation 5.2.6.4 with f(z) = aln"™ (bz).

3. yP=a In™ (by).

This is a special case of equation 5.2.6.6 with f(y) = aIn™(by).

4. gy =a In" (bx).

This is a special case of equation 5.2.6.16 with f(z) = aln™ (bx).

5. yé") =y(ax + mlny + b).
This is a special case of equation 5.2.6.30 with f(w) = lnw + b.

6. yén) =z "(ay +mlnz + b).
This is a special case of equation 5.2.6.31 with f(w) =lnw + b.

7. y;") = axz~ " In"(by).
This is a special case of equation 5.2.6.10 with f(y) = aIn™(by).

8. yM= ax " lny+ (1 —n)lnz].

This is a special case of equation 5.2.6.11 with f(w) = alnw.

9. y;n) =azx " F(lny + klnz).

This is a special case of equation 5.2.6.13 with f(w) = alnw.

10. y;n) =ayz "(mlny + klnx).

This is a special case of equation 5.2.6.14 with f(w) = alnw.

_ 2n+41
11. yf") = azx 2 [2lny+ (1 —2n) lnzx].

This is a special case of equation 5.2.6.12 with f(w) = 2alnw.

_ n+1
12. y;") = (az® + ¢) 2 [2Iny + (1 — n)In(ax® + ¢)].

This is a special case of equation 5.2.6.21 with b =0, f(w) = 2lnw.

13. yi.") = be**(Iny — ax).

This is a special case of equation 5.2.6.29 with f(w) = blnw.
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14.

15.

16.

@2n — Dyyl" ™ + 2n 4+ 1)y yP™ = aln™(ba).
This is a special case of equation 5.2.6.22 with f(z) = aIn™(bx).

y;n-l—l) alnk(by)y ( (n))

m

This is a special case of equation 5.2.6.17 with f(y) = In""(by), g(w) = aw

gD (n)

= ay™yy, Iny,
This is a special case of equation 5.2.6.17 with f(y) =y

—m

', g(w) =alnw.

5.2.5. Equations Containing Trigonometric Functions

10.

n

yyl® + S5yl yl .+ 10yl Yy = acos™(Ax).
This is a special case of equation 5.2.6.1 with f(z) = acos™(\x).

yyl® + S5yl yl 4+ 10yY y' = asin™(Ax).
This is a special case of equation 5.2.6.1 with f(z) = asin™(\x).

yyl® + S5yLy .+ 10y2 y! = atan™(Azx).
This is a special case of equation 5.2.6.1 with f(z) = atan™(\x).

yym ) 4 S5yLyrt .+ 10yL y' = acot™(Ax).
This is a special case of equation 5.2.6.1 with f(x) = a cot™(Az).

( ) + 6y, y —|— 15y2 y .+ 10(y;’;m = a cos™(Ax).
This is a special case of equation 5.2.6.4 with f(z) = acos™(\x).

yyl® + 6y Ya ®) 4+ 15y” " +10(y"” _)* = asin™(Azx).
This is a special case of equation 5.2.6.4 with f(z) = asin™(\x).

yys” + 6yLys” + 15y, + 10(yh,)" = atan™ (z).
This is a special case of equation 5.2.6.4 with f(z) = atan™(\x).

yyl® + 6y Yz ®) 4 15y yo" .+ 1O(y;’£’w)2 = acot™(Ax).
This is a special case of equation 5.2.6.4 with f(z) = acot™(Ax).

y;2n) = a cos™(\y).

This is a special case of equation 5.2.6.6 with f(y) = acos™(\y).

yf") = asin™(\y).

This is a special case of equation 5.2.6.6 with f(y) = asin™(\y).
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

yf") = atan™(A\y).

This is a special case of equation 5.2.6.6 with f(y) = atan™(\y).

yf") = acot™(\y).

This is a special case of equation 5.2.6.6 with f(y) = acot™(\y).

y;n) = ax~ "™ cos™(Ay).

This is a special case of equation 5.2.6.10 with f(y) = acos™(\y).

y™ = az—m sin™ (Ay).
This is a special case of equation 5.2.6.10 with f(y) = asin™(A\y).

i = az—m tan™ (A\y).

This is a special case of equation 5.2.6.10 with f(y) = atan™(\y).

y;i") = ax~ "™ cot™(Ay).
This is a special case of equation 5.2.6.10 with f(y) = acot™(A\y).

Yyt = g cos™ ().

This is a special case of equation 5.2.6.16 with f(z) = acos™(A\x).

Yyt = a sin™ (Az).

This is a special case of equation 5.2.6.16 with f(z) = asin™(\x).

yy§32"+1) = atan™(Ax).

This is a special case of equation 5.2.6.16 with f(z) = atan™(\x).

yyPrt) = ¢ cot™(Ax).

This is a special case of equation 5.2.6.16 with f(z) = acot™(A\x).

(2n — l)yyg(c2n+1) + (2n + l)y;yg") = a cos™(Ax).

This is a special case of equation 5.2.6.22 with f(x) = a cos™(Ax).

(2n — 1)yya(c2n+1) + (2n + 1)y’my§:2n) = asin™(A\x).

This is a special case of equation 5.2.6.22 with f(z) = asin™ (\x).

(2n — l)yyizn—H) + (2n + 1)y;y;2") = atan™(A\x).

This is a special case of equation 5.2.6.22 with f(z) = atan™(\x).

(2n — l)yyg(c2"+1) + (2n + l)y'mya(czn) = acot™(A\zx).

This is a special case of equation 5.2.6.22 with f(z) = a cot™(\x).
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25. y;"-’_l) = acos®(\y) yw( (n))

This is a special case of equation 5.2.6.17 with f(y) = cos™*(\y), g(w) = aw™.

26. y;i"-’_l) = asmk()\y) ym( ("))

This is a special case of equation 5.2.6.17 with f(y) = sin *(\y), g(w) = aw™.

27. y;n"’_l) = atan*(Ay) v, (y (n))

This is a special case of equation 5.2.6.17 with f(y) = tan=*(\y), g(w) = aw™.

28. ygﬂ—l) = a cot®(\y) ym( (n))

This is a special case of equation 5.2.6.17 with f(y) = cot=*(\y), g(w) = aw™.

5.2.6. Equations Containing Arbitrary Functions

n n

Solution:

1 T
y? = Cya’ + C32® + Cox? +C1x+00+5/ (x —t)*f(t) dt,

where g is an arbitrary number.

2wyl + gLy, + (Ba— Byl = f(=).
Integrating the equation three times, we obtain

x

-3 1
Yy + GT(y;)Q = Cox? + Chz + Cy + 5/ (z —t)2f(t)dt,
o

where xg is an arbitrary number.

5
3. (a+y)u +byly 4+ eyl Yl = f(z).

Integrating, we obtain

1

4 gy +6yLu”) 15y, + 10(,)" = f(2).

Solution: y? = Cs2° + Cyat + Csa® 4 Cpa® + Crx + Co + % / (z — )5 f(t) dt.

5. y;(cﬁ) = (az? + bz + ¢)~7/2f ((ax? + bx + c)~%/2).

This is a special case of equation 5.2.6.21 with n = 6.
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6. y&" =f(y).
The first integral of the equation is

n—1

m_(m n—m n n)12
> ) T [y =c.
m=1

Next, the order of the obtained equation can be lowered by the substitution w(y) =y,

T

7. oy =fY).
Having set u(x) = y;n_l), we obtain u/, = f(u). Further, find u from the relation
d
x = / Tz) + C1. Then, the (n — 1)-fold integration yields y.

The solution in the parametric form is written as

o Y du Y= Y duy “ o dug /“”*3 duy,_o /“”*2 Upy—1 AUp—_1
Cq f(u) 7 Cy f(ul) C3 f(’LLQ) o Ch_1 f(un—2) C, f(un—l)
8. y&M =r@Ed?).
Setting u(x) = y{"=?) e obtain the equation ull . = f(u) whose solution has the form

1/2

_/%JrCQ, where ¢(u) ::I:{Cl +2/f(u) du]

Expressing u in terms of x and integrating the resulting relation (n — 2) times, we

find y.
The solution in the parametric form is written as

/" du /“ duq /“1 dus /“"*3 JATINN /“"*3 Upy—9 AUy —2
€Tr = —_— y = P .
Co So(u) C3 So(ul) Cy SO(UQ) Chn_1 So(un72) Ch So(un72)

9. yi")Zf(y+a:cm), m=0,1,2, ..., n—1.

The substitution w = y 4+ az™ lead to an autonomous equation: wg(,;") = f(w), which,

for even n, admits lowering of its order by two (see 5.2.6.6).

10. y$” =z " f(y).

The substitution ¢ = In |z| leads to an autonomous equation of the form 5.2.6.40.

11 gl =& "1 f (2 "y).
The transformation = ¢!, y = ¢t! "w leads to an autonomous equation: wgn) =
(—1)" f(w), whose order, for even n, can be lowered by two (see 5.2.6.6).

_ 2n+1 1—2n
12. yf"):w 2 _f(a: 2 y)

2n—1

The transformation z = e, y =2~ 2 w(t) leads to an autonomous equation of the
form 5.2.6.25, whose order can be lowered by two.
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13.

14.

15.

16.

17.

18.

19.

20.

Y™ = ok f(yak).

This is a special case of equation 5.2.6.44.
The transformation t = Inz, w = z*y leads to an autonomous equation of the
form 5.2.6.40.

y™ = ya=n f(zhy™).

x
The transformation ¢t = z*y™, w = 2Y2 jeads to an (n — 1) th order equation.
Yy

n el Y
0 = oy (225,
Yy

2!
The transformation z = —22 , W= L Y2z 1eads to an (n — 2) th order equation.
Y Y
2n+1
yys" ) = f(@).

Having integrated the equation, we obtain

QZ( 1) (m) (2n T)’L)+( 1 n) /f dz+C’

(0)

where the notation y, ' = y is used.

F@)ytY =y g(yiM).

Having integrated the equation, we obtain

dw dy (n)
= + C, where w =1y, .
/ g(w) f(y)

Next, the order of this equation can be lowered by the substitution z(y) = y.

y;n) = f(wa y)

The transformation z = t=1, y = t!""w(t) leads to an equation of the similar form:
w™ = (=)L ).

Y™ = fla, o772, oY),

The substitution w(z) = y;" %) Jeads to a second order equation: wll. = f(z, w, w).

(az + b)"(cx + d)yl™ = f(#)

(cx + d)yn—1
. ar +b Yy .
The transformation £ =In S W= leads to an autonomous equation
cx+d (cx + d)n1

of the form 5.2.6.40.
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21.

22,

1+n 1—n

Yy = (az® +bz+c) 2 f(y(az+bz+e) 2 ).

1°. The transformation

dx 2 3
=] wE e v ylartbrao) (1)

leads to an autonomous equation with respect to w = w(t), which admits lowering of
its order by the substitution z(w) = wj.

2°. Let n = 2m be an even integer (m =1, 2, 3, ...). In this case, transformation (1)

yields an equation of the form 5.2.6. 25 whose order can be lowered by two.
—1
Setting P = ax? +bx +c, y = wP and multiplying both sides of the original

1+2 1
(Pyz TR@), we obtain
(Py; L Piy)y™ = flwyu,.
Integrating both sides of this equality with respect to x (the left-hand side is integrated
by parts), we have
m—2
> (08 camt [ulr Oy e [y ses @
k=0
where

equation by w/, = P~

d* 1-2
v = —— Py +—Ply) = Py (k—mt )P’ ") 4 ak(k—2m)yEY.
(remind that n =2m). It can be shown that the integrand on the left-hand side of (2)
is the total differential. Finally, we arrive at the first integral

m—2

1 _ _1-
S DF [P+ (k= mt 5 ) Pyl + ak(k — 2m)ylY [y
k=0

1 1 —
+ (1)m1{5P[yi-m)]2 - 5Pg/cy§c eyl

_ am2 _ 2
Fall = m2 " )

= /f(w) dw + C.
(2n = Dyye™ ™ + @n + Dy ul™ = f(@).
Having integrated the equatlon we have
(2n — 1)y +22 1)ty @y COn=d 4 (pyni [ /f )z + 2Cs.

The second 1ntegrat10n ylelds

n—1 ) ) T

S @n—1-20)(-1) P = 200 + Oy + / (z —t)f(¢)dt.

i=0 xo
The third integration leads to a (2n — 2) th order equation:

n—2 1

Do+ @0 —i - DDy )+ () )
=0

1 x
= Coz® + Oz + Co + 5 / (z — )2 f(t) dt.

Zo
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23. ayl” +nyl" Y = f(zy).

The substitution w(z) = zy leads to the autonomous equation wi™ = = f(w) (see 5.2.6.6
and 5.2.6.40).

24. 22y{™ + 2nzy" Y + n(n — l)y(" 2 — = f(z?%y).

The substitution w(z) = 22y leads to the autonomous equation w(™ = f(w) (see

5.2.6.6 and 5.2.6.40).

25. Z amy®™ = f(y).

The first integral has the form

Z am{ i (_1)uy;u)ya(c2m—u) + %(_Um [yﬂ(;n)]?} n / f(y) dy =

m=1 v=1

where C' is an arbitrary constant. Further, the order of the obtained equation next
be lowered by the substitution w(y) = y.

26. Z AT y(m) = f(y).

The substitution ¢ = In |z| leads to an autonomous equation of the form 5.2.6.40.

27. y Z amyPmtY = f(x).

Having integrated the equation, we obtain

n m—1
> am { STy (0 ™) } /f )dz + C,

m=0 v=0

(0)

where gy, ’ stands for y.

28. Z amy(m) (2n+1—m) _f(ili)

The first integral has the form

QZAmy;" y ™ A, [y —2/f )dx + C,
where .
=3 (-1)"ay = ap — tmo1 + Az — amoz + - .
k=0

If the condition A4, =2 ( 1)~ 1tmA,, is satisfied, the obtained equation can
be integrated two times more (see in particular, equation 5.2.6.22).
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

y;") — eawf(ye—aw).

The substitution w(x) = ye~** leads to an autonomous equation of the form 5.2.6.40.

e = yf(emy™).
The transformation z = e**y™, w(z) = y.,/y leads to an (n — 1) th order equation.

y;n) — w—nf(xmeay).

The transformation z = z™e*Y, w(z) = xy., leads to an (n — 1) th order equation.

y;n) — f(y + ae)\m) _ aAneAw.

The substitution w(x) =y + ae*® leads to an autonomous equation: wi = f(w) (see
5.2.6.6 and 5.2.6.40).

yézn) = f(y + acoshx) — acoshx.
The substitution w(z) = y + a cosh z leads to an autonomous equation: wi*™ = f(w)
(see 5.2.6.6).
(2n) __ . .
Ys ~ = f(y + asinhz) — asinh .

The substitution w(z) = y + asinhz leads to an autonomous equation of the form
5.2.6.6: w™™ = f(w).

y&"*) = £(y + acoshz) — asinhz.

The substitution w(z) = y + acoshz leads to an autonomous equation of the form

5.2.6.40: wi™ T = f(w).

yf"dl_l) = f(y + asinhz) — a coshz.

The substitution w(z) = y + asinhz leads to an autonomous equation of the form
5.2.6.40: w" Y = f(w).

™n
yé") = f(y+acosx) — acos(w + T)

The substitution w(z) = y + acosz leads to an autonomous equation: w(™ = f(w)
(see 5.2.6.6 and 5.2.6.40).

™

(n) — ) — asi ™
Yy’ = f(y + asinz) a51n(a:+ 5 )

The substitution w(z) = y + asinz leads to an autonomous equation: wi™ = f(w)
(see 5.2.6.6 and 5.2.6.40).

F(‘Ba y,wa ylmlma sy ya(cn)) = 0.

The substitution w(x) =y, leads to an (n — 1) th order equation:

F(z, w, wl, ..., wy(gn_l)) =0.
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40.

41.

42.

43.

44.

45.

46.

F(y’ y;,,;a y;/ma ) y:(cn)) = 0.

Autonomous equation.
The substitution w(y) =y, leads to an (n — 1) th order equation. The derivatives
of the original equation and the transformed one are related by the formulae

Yl =wuwl, Y =wiell wwl)?, L, Y = w(yé"_”)'y-
wy, —y=F(z, g/, v/ ey y$M).

The substitution w(z) = zy), — y leads to an (n — 1) th order equation:
w'’ d w' dn—2 w'
=F(e, 22, —(22),, ——(=2)) =0
v <x x  dx \ z dz"=2 \ z

" (n)

il:zy;,m _2wy;+2y=F(w’ Yoxaxr =+ Yz ) = 0.

The substitution w(z) = 22y, — 2zy), + 2y leads to an (n — 2) th order equation:

w, a3 s wl,
Z(_l)kk! Cfnmm_kyim_k) = F(z, y;m-i-l)a ceey y;")),
k=0
!
where CF = m are binomial coeflicients.

The substitution w(z) = >y (—1)"k! C,’fl:cm*kygn_k) leads to an (n — m)th order

equation; the derivatives on the right-hand side are calculated in consecutive manner

(m+1)

using the formula y, =z~ "w!

wy,.

F(sr:ky, xktly , sck"‘”y;")) =0.

’
PRI

Homogeneous equation in the extended sense.
The transformation ¢t = Inz, w = 2*y leads to an autonomous equation of the
form 5.2.6.40.

vy’ mz ” xm (n)
P, P 2
Y Y )
Homogeneous equation in the extended sense.
xy! 2%yl .
The transformation z = —2= , W= Y22 1eads to an (n — 2) th order equation.
wy/ wzy// m"y(n)
F(ackym, o, PVpn 2 ) —o.
Yy ) )
Homogeneous equation in the extended sense.
/
LYz

The transformation ¢t = 2%y™, 2 = leads to an (n — 1) th order equation.
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47. F(e*®y, e*®y!, e*®yl , ..., eamy:i")) =0.

Exponential homogeneous equation.
The substitution w(z) = e**y leads to an autonomous equation of the form

5.2.6.40.
’ ” (n)
48. F(eamym, ﬁ, h, e Yo ):0.
) Y Y

Exponential homogeneous equation.

/
The transformation z = e**y™, w = Yo leads to an (n — 1) th order equation.
Y

49. F(xz™e™Y, zyl, %y, ..., m”y;n)) =0.

Exponential homogeneous equation.
The transformation z = 2™e*Y, w = xy!, leads to an (n — 1) th order equation.
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