Introduction to Oracle9i: PL/SQL

Student Guide . Volume 2

40054GC10
Production 1.0
June 2001
D32946

ORALCLE"

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors

and Reviewers

AnnaAtkinson
Bryan Roberts
Caroline Pereda
Cedjas Zarco
Chaya Rao

Coley William
Daniel Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff

Judy Brink
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Robert Squires
Roger Abuzalaf
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Sue Onraget

Susan Dee

Publisher
Sandya Krishna

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface
Curriculum Map

Introduction
Course Objectives 1-2
About PL/SQL 1-3
PL/SQL Environment |-4
Benefits of PL/SQL I-5
Benefits of Subprograms 1-10
Invoking Stored Procedures and Functions 1-11
Summary [-12

1 Declaring Variables
Objectives 1-2
PL/SQL Block Structure 1-3
Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5
Program Constructs 1-6
Use of Variables 1-7
Handling Variables in PL/SQL 1-8
Types of Variables 1-9
Using iSQL*Plus Variables Within PL/SQL Blocks 1-10
Types of Variables 1-11
Declaring PL/SQL Variables 1-12
Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14
Variable Initialization and Keywords 1-15
Scalar Data Types 1-17
Base Scalar Data Types 1-18
Scalar Variable Declarations 1-22
The %TYPE Attribute 1-23
Declaring Variables with the % TYPE Attribute 1-24
Declaring Boolean Variables 1-25
Composite Data Types 1-26
LOB Data Type Variables 1-27
Bind Variables 1-28
Using Bind Variables 1-30
Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33
Practice 1 Overview 1-35

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data type Conversion 2-10
Nested Blocks and Variable Scope 2-12
Identifier Scope 2-14
Qualify an Identifier 2-15
Determining Variable Scope 2-16
Operators in PL/SQL 2-17
Programming Guidelines 2-19
Indenting Code 2-20
Summary 2-21
Practice 2 Overview 2-22

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-13
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX by Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of PL/SQL Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-7
Opening the Cursor 6-9
Fetching Data from the Cursor 6-10
Closing the Cursor 6-12
Explicit Cursor Attributes 6-13
The %ISOPEN Attribute 6-14
Controlling Multiple Fetches 6-15
The %NOTFOUND and %ROWCOUNT Attributes 6-16
Example 6-18
Cursors and Records 6-19
Cursor FOR Loops 6-20
Cursor FOR Loops Using Subqueries 6-22
Summary 6-24
Practice 6 Overview 6-25

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

Vi

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8
Predefined Exceptions 8-11
Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13
Functions for Trapping Exceptions 8-14
Trapping User-Defined Exceptions 8-16
User-Defined Exception 8-17
Calling Environments 8-18
Propagating Exceptions 8-19
RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22
Summary 8-23
Practice 8 Overview 8-23

9 Creating Procedures
Objectives 9-2
PL/SQL Program Constructs 9-4
Overview of Subprograms 9-5
Block Structure for Anonymous PL/SQL Blocks 9-6
Block Structure for PL/SQL Subprograms 9-7
PL/SQL Subprograms 9-8
Developing Subprograms by Using iSQL*Plus 9-9
What Is a Procedure? 9-11
Syntax for Creating Procedures 9-12
Developing Procedures 9-13
Formal Versus Actual Parameters 9-14
Procedural Parameter Modes 9-15
Creating Procedures with Parameters 9-16

vii

10

IN Parameters: Example 9-17

OUT Parameters: Example 9-18

Viewing OUT Parameters 9-20

IN OUT Parameters 9-21

Viewing IN OUT Parameters 9-22

Methods for Passing Parameters 9-23

DEFAULT Option for Parameters 9-24

Examples of Passing Parameters 9-25

Declaring Subprograms 9-26

Invoking a Procedure from an Anonymous PL/SQL Block 9-27
Invoking a Procedure from Another Procedure 9-28
Handled Exceptions 9-29

Unhandled Exceptions 9-31

Removing Procedures 9-33

Benefits of Subprograms 9-34

Summary 9-35

Practice 9 Overview 9-37

Creating Functions

Objectives 10-2

Overview of Stored Functions 10-3

Syntax for Creating Functions 10-4

Creating a Function 10-5

Creating a Stored Function by Using iSQL*Plus 10-6

Creating a Stored Function by Using iSQL*Plus: Example 10-7
Executing Functions 10-8

Executing Functions: Example 10-9

Advantages of User-Defined Functions in SQL Expressions 10-10
Invoking Functions in SQL Expressions: Example 10-11
Locations to Call User-Defined Functions 10-12

Restrictions on Calling Functions from SQL Expressions 10-13
Restrictions on Calling from SQL 10-15

Removing Functions 10-16

Procedure or Function? 10-17

Comparing Procedures and Functions 10-18

Benefits of Stored Procedures and Functions 10-19

Summary 10-20

Practice 10 Overview 10-21

viii

11 Managing Subprograms
Objectives 11-2
Required Privileges 11-3
Granting Access to Data 11-4
Using Invoker's-Rights 11-5
Managing Stored PL/SQL Objects 11-6
USER_OBJECTS 11-7
List All Procedures and Functions 11-8
USER_SOURCE Data Dictionary View 11-9
List the Code of Procedures and Functions 11-10
USER_ERRORS 11-11
Detecting Compilation Errors: Example 11-12
List Compilation Errors by Using USER_ERRORS 11-13
List Compilation Errors by Using SHOW ERRORS 11-14
DESCRIBE in iSQL*Plus 11-15
Debugging PL/SQL Program Units 11-16
Summary 11-17
Practice 11 Overview 11-19

12 Creating Packages
Objectives 12-2
Overview of Packages 12-3
Components of a Package 12-4
Referencing Package Objects 12-5
Developing a Package 12-6
Creating the Package Specification 12-8
Declaring Public Constructs 12-9
Creating a Package Specification: Example 12-10
Creating the Package Body 12-11
Public and Private Constructs 12-12
Creating a Package Body: Example 12-13
Invoking Package Constructs 12-15
Declaring a Bodiless Package 12-17
Referencing a Public Variable from a Stand-alone Procedure 12-18
Removing Packages 12-19
Guidelines for Developing Packages 12-20
Advantages of Packages 12-21
Summary 12-23
Practice 12 Overview 12-26

13 More Package Concepts
Objectives 13-2
Overloading 13-3
Overloading: Example 13-4
Using Forward Declarations 13-7
Creating a One-Time-Only Procedure 13-9
Restrictions on Package Functions Used in SQL 13-10
User Defined Package: taxes_pack 13-11
Invoking a User Defined Package Function from a SQL Statement 13-12
Persistent State of Package Variables: Example 13-13
Persistent State of Package Variables 13-14
Controlling the Persistent State of a Package Cursor 13-15
Executing PACK_CUR 13-17
PL/SQL Tables and Records in Packages 13-18
Summary 13-19
Practice 13 Overview 13-20

14 Oracle Supplied Packages
Objectives 14-2
Using Supplied Packages 14-3
Using Native Dynamic SQL 14-4
Execution Flow 14-5
Using the DBMS_SQL Package 14-6
Using DBMS_SQL 14-8
Using the EXECUTE IMMEDIATE Statement 14-9
Dynamic SQL Using EXECUTE IMMEDIATE 14-11
Using the DBMS_DDL Package 14-12
Using DBMS_JOB for Scheduling 14-13
DBMS_JOB Subprograms 14-14
Submitting Jobs 14-15
Changing Job Characteristics 14-17
Running, Removing, and Breaking Jobs 14-18
Viewing Information on Submitted Jobs 14-19
Using the DBMS_OUTPUT Package 14-20
Interacting with Operating System Files 14-21
What Is the UTL_FILE Package? 14-22
File Processing Using UTL_FILE 14-23
UTL_FILE Procedures and Functions 14-24
Exceptions Specific to the UTL_FILE Package 14-25
The FOPEN and IS _OPEN Functions 14-26
Using UTL_FILE 14-27

15

UTL_HTTP Package 14-29

Using the UTL_HTTP Package 14-30
Using the UTL_TCP Package 14-31
Oracle-Supplied Packages 14-32
Summary 14-33

Practice 14 Overview 14-34

Manipulating Large Objects

Objectives 15-2

What Is a LOB? 15-3

Contrasting LONG and LOB Data Types 15-4
Anatomy of a LOB 15-5

Internal LOBs 15-6

Managing Internal LOBs 15-7

What Are BFILES? 15-8

Securing BFILEs 15-9

A New Database Object: DIRECTORY 15-10
Guidelines for Creating DIRECTORY Objects 15-11
Managing BFILEs 15-12

Preparing to Use BFILEs 15-13

The BFILENAME Function 15-14

Loading BFILEs 15-15

Migrating from LONG to LOB 15-17

The DBMS_LOB Package 15-19
DBMS_LOB.READ and DBMS_LOB.WRITE 15-22
Adding LOB Columns to a Table 15-23
Populating LOB Columns 15-24

Updating LOBs by Using SQL 15-26

Updating LOBs by Using DBMS_LOB in PL/SQL 15-27

Selecting CLOB Values by Using SQL 15-28
Selecting CLOB Values, Using DBMS_LOB 15-29
Selecting CLOB Values in PL/SQL 15-30
Removing LOBs 15-31

Temporary LOBs 15-32

Creating a Temporary LOB 15-33

Summary 15-34

Practice 15 Overview 15-36

Xi

16 Creating Database Triggers
Objectives 16-2
Types of Triggers 16-3
Guidelines for Designing Triggers 16-4
Database Trigger: Example 16-5
Creating DML Triggers 16-6
DML Trigger Components 16-7
Firing Sequence 16-11
Syntax for Creating DML Statement Triggers 16-13
Creating DML Statement Triggers 16-14
Testing SECURE_EMP 16-15
Using Conditional Predicates 16-16
Creating a DML Row Trigger 16-17
Creating DML Row Triggers 16-18
Using OLD and NEW Qualifiers 16-19
Using OLD and NEW Quialifiers: Example Using Audit Emp_Table 16-20
Restricting a Row Trigger 16-21
INSTEAD OF Trigger 16-22
Creating an INSTEAD OF Trigger 16-23
Differentiating between Database Triggers and Stored Procedures 16-27
Differentiating between Database Triggers and Form Builder Triggers 16-28
Managing Triggers 16-29
DROP TRIGGER Syntax 16-30
Trigger Test Cases 16-31
Trigger Execution Model and Constraint Checking 16-32
Trigger Execution Model and Constraint Checking: Example 16-33
A Sample Demonstration for Triggers Using Package Constructs 16-34
After Row and After Statement Triggers 16-35
Demonstration: VAR_PACK Package Specification 16-36
Demonstration: Using the AUDIC_EMP Procuedure 16-38
Summary 16-39
Practice 16 Overview 16-40

Xii

17 More Trigger Concepts
Objectives 17-2
Creating Database Triggers 17-3
Creating Triggers on DDL Statements 17-4
Creating Triggers on System Events 17-5
LOGON and LOGOFF Trigger Example 17-6
CALL Statement 17-7
Reading Data from a Mutating Table 17-8
Mutating Table: Example 17-9
Implementating Triggers 17-11
Controlling Security within the Server 17-12
Controlling Security with a Database Trigger 17-13
Using the Server Facility to Audit Data Operations 17-14
Auditing by Using a Trigger 17-15
Enforcing Data Integrity within the Server 17-16
Protecting Data Integrity with a Trigger 17-17
Enforcing Referential Integrity within the Server 17-18
Protecting Referential Integrity with a Trigger 17-19
Replicating a Table within the Server 17-20
Replicating a Table with a Trigger 17-21
Computing Derived Data within the Server 17-22
Computing Derived Values with a Trigger 17-23
Logging Events with a Trigger 17-24
Benefits of Database Triggers 17-26
Managing Triggers 17-27
Viewing Trigger Information 17-28
Using USER_TRIGGERS 17-29
Listing the Code of Triggers 17-30
Summary 17-31
Practice 17 Overview 17-32

Xiii

18 Managing Dependencies
Objectives 18-2
Understanding Dependencies 18-3
Dependencies 18-4
Local Dependencies 18-5
A Scenario of Local Dependencies 18-6
Displaying Direct Dependencies by Using USER_DEPENDENCIES 18-7
Displaying Direct and Indirect Dependencies 18-8
Displaying Dependencies 18-9
Another Scenario of Local Dependencies 18-10
A Scenario of Local Naming Dependencies 18-11
Understanding Remote Dependencies 18-12
Concepts of Remote Dependencies 18-13
REMOTE_DEPENDENCIES_MODE Parameter 18-14
Remote Dependencies and Time stamp Mode 18-15
Remote Procedure B Compiles at 8:00 a.m. 18-16
Local Procedure A Compiles at 9:00 a.m. 18-17
Execute Procedure A 18-18
Remote Procedure B Recompiled at 11:00 a.m. 18-19
Execute Procudre A 18-20
Signature Mode 18-21
Recompiling a PL/SQL Program Unit 18-22
Unsuccessful Recompilation 18-23
Successful Recompilation 18-24
Recompilation of Procedures 18-25
Packages and Dependencies 18-26
Summary 18-28
Practice 18 Overview 18-29

A Practice Solutions

B Table Descriptions and Data

C Creating Program Units by Using Procedure Builder
D

REF Cursors

Xiv

Creating Packages

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Describe packages and list their possible
components

* Create a package to group together related
variables, cursors, constants, exceptions,
procedures, and functions

* Designate a package construct as either public or
private

* Invoke a package construct
* Describe ause for a bodiless package

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson you learn what a package is and what its components are. Y ou aso learn how to create and
use packages.

Introduction to Oracle9i: PL/SQL 12-2

Overview of Packages

Packages:
®* Group logically related PL/SQL types, items, and
subprograms

* Consist of two parts:
— Specification
— Body
®* Cannot be invoked, parameterized, or nested

* Allow the Oracle server to read multiple objects
Into memory at once

12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Packages Overview

Packages bundle related PL/SQL types, items, and subprograms into one container. For example, a
Human Resources package can contain hiring and firing procedures, commission and bonus functions, and
tax exemption variables.

A package usually has a specification and a body, stored separately in the database.

The specification is the interface to your applications. It declares the types, variables, constants,
exceptions, cursors, and subprograms available for use. The package specification may also include
PRAGRMAS, which are directives to the compiler.

The body fully defines cursors and subprograms, and so implements the specification.

The package itself cannot be called, parameterized, or nested. Still, the format of a package is similar to
that of a subprogram. Once written and compiled, the contents can be shared by many applications.

When you call a packaged PL/SQL construct for the first time, the whole package is loaded into memory.
Thus, later callsto constructs in the same package require no disk input/output (1/0).

Introduction to Oracle9i: PL/SQL 12-3

Package

Package
body

12-4

specification

Components of a Package

s

Public variable

Procedure A
declaration

Public procedure

-

J

~

Private variable

Procedure B
definition

Private procedure

Procedure A
definition

\

Public procedure

Local variable

' /

Copyright © Oracle Corporation, 2001. All rights reserved.

Package Development

Y ou create a package in two parts: first the package specification, and then the package body. Public
package congtructs are those that are declared in the package specification and defined in the package
body. Private package constructs are those that are defined solely within the package body.

Scope of the Construct

Description

Placement within the Package

other constructs which are
part of the same package

Public Can be referenced from any Declared within the package
Oracle server environment specification and may be defined
within the package body
Private Can bereferenced only by Declared and defined within the

package body

Note: The Oracle server stores the specification and body of a package separately in the database. This

enables you to change the definition of a program construct in the package body without causing the
Oracle server to invalidate other schema objects that call or reference the program construct.

Introduction to Oracle9i: PL/SQL 12-4

Referencing Package Objects

~
—>

Package
specification

Procedure A
declaration

-
.

AN

Procedure B
Package definition
body A
Procedure A
definition
12-5 Copyright © Oracle Corporation, 2001. All rights reserved.
Package Development (continued)

Visibility of the Construct Description

Local A variable defined within a subprogram that is not
visible to external users.

Private (local to the package) variable: You can
define variables in a package body. These variables
can be accessed only by other objectsin the same
package. They are not visible to any subprograms or
objects outside of the package.

Global A variable or subprogram that can be referenced
(and changed) outside the package and is visible to
external users. Global package items must be
declared in the package specification.

Introduction to Oracle9i: PL/SQL 12-5

Developing a Package
{ Editor

Code }@
ISQL*Plus
‘Load and runthefile. sql ’

4 L

4)
Oracle \ Source code \

P code

Execute

C

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop a Package
1. Writethe syntax: Enter the codein atext editor and saveit as a SQL script file.

2. Compilethe code: Run the SQL script file to generate and compile the source code. The source
code is compiled into P code.

Introduction to Oracle9i: PL/SQL 12-6

Developing a Package

* Saving the text of the CREATE PACKAGE statement
in two different SQL files facilitates later
modifications to the package.

* A package specification can exist without a
package body, but a package body cannot exist
without a package specification.

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop a Package
There are three basic steps to devel oping a package, similar to those steps that are used to develop
a stand-al one procedure.

1. Writethetext of the CREATE PACKAGE statement within a SQL script file to create the package
specification and run the script file. The source code is compiled into P code and is stored within the
datadictionary.

2. Writethetext of the CREATE PACKAGE BODY statement within a SQL script file to create the
package body and run the script file.
The source code is compiled into P code and is &l so stored within the data dictionary.

3. Invoke any public construct within the package from an Oracle server environment.

Introduction to Oracle9i: PL/SQL 12-7

Creating the Package Specification

Syntax:

CREATE [OR REPLACE] PACKAGE package nane
I S| AS
public type and item decl arati ons
subprogram speci fi cati ons
END package_ nane,

* The REPLACE option drops and recreates the
package specification.

* Variables declared in the package specification are
initialized to NULL by default.

* All the constructs declared in a package
specification are visible to users who are granted
privileges on the package.

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Package Specification
To create packages, you declare al public constructs within the package specification.
» Specify theREPLACE option when the package specification already exists.

« Initialize a variable with a constant value or formula within the declaration, if required; otherwise,
the variable is initialized implicitly toNULL.

Syntax Definition

Parameter Description
package nane Name the package
public type and Declare varigbles, constants, cursors, exceptions, or types

i temdecl ar at i ons

subpr ogram Declare the PL/SQL subprograms
speci fications

Introduction to Oracle9i: PL/SQL 12-8

Declaring Public Constructs

COVW PACKAGE package
[|

~

G_COWM (D
Package
specification
P RESET COWM
procedure @
declaration
12-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a Package Specification
In the preceding dide, G_COVMis a public (global) variable, and RESET_COMMis a public procedure.

In the package specification, you declare public variables, public procedures, and public functions.

The public procedures or functions are routines that can be invoked repeatedly by other constructsin
the same package or from outside the package.

Introduction to Oracle9i: PL/SQL 12-9

Creating a Package Specification:
Example

CREATE OR REPLACE PACKACGE comm package 1S
g_comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset _comm
(p_comm |IN NUMBER);

END comm package;

/

Fackags creatad

e G _COWIis a global variable and is initialized to 0.10.

e RESET_COWis a public procedure that is
implemented in the package body.

‘ 12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Specification for COVMM_PACKAGE
In the preceding dide, the variable G_COMMand the procedure RESET _COMMare public constructs.

Introduction to Oracle9i: PL/SQL 12-10

Creating the Package Body

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package nane
I S| AS

private type and item decl arati ons

subpr ogram bodi es
END package nane;

* The REPLACE option drops and recreates the
package body.

* |dentifiers defined only in the package body are
private constructs. These are not visible outside
the package body.

* All private constructs must be declared before
they are used in the public constructs.

‘ 12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating the Package Body
To create packages, define all public and private constructs within the package body.
« Specify theREPLACE option when the package body already exists.

e The order in which subprograms are defined within the package body is important: you must declare
a variable before another variable or subprogram can refer to it, and you must declare or define
private subprograms before calling them from other subprograms. It is quite common in the package
body to see all private variables and subprograms defined first and the public subprograms defined
last.

Syntax Definition
Define all public and private procedures and functions in the package body.

Parameter Description
package namne Is the name of the package
private type and Declares variables, constants, cursors, exceptions, or types

i tem decl ar ati ons

subprogram bodi es Defines the PL/SQL subprograms, public and private

Introduction to Oracle9i: PL/SQL 12-11

Public and Private Constructs

COMM PACKAGE package

a N
G_COWM @
Package
specification RESET _COWM
procedure declaration @
\,l | //
4)
VAL| DATE_COW
function definition <:>
Package
body T
RESET _COWM @
procedure definition
- J

‘ 12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Create a Package Body Example
In the preceding dide:

* 1lis apublic (global) variable
* 2is apublic procedure
e 3is a private function

You can define a private procedure or function to modularize and clarify the code of public procedures and
functions.

Note: In the slide, the private function is shown above the public procedure. When you are coding the
package body, the definition of the private function has to be above the definition of the public procedure.

Only subprograms and cursors declarations without body in a package specification have an underlying
implementation in the package body. So if a specification declares only types, constants, variables,
exceptions, and call specifications, the package body is unnecessary. However, the body can still be used to
initialize items declared in the package specification.

Introduction to Oracle9i: PL/SQL 12-12

Creating a Package Body: Example

comm pack. sql

CREATE OR REPLACE PACKAGE BODY comm package
IS
FUNCTI ON val i date_conm (p_conm | N NUVBER)
RETURN BOOLEAN

IS
V_max_conmm NUMVBER,
BEG N
SELECT MAX(commi ssi on_pct)

| NTO V_max_comm
FROM enpl oyees;
| F p_comm > v_max_comm THEN RETURN(FALSE) ;
ELSE RETURN(TRUE);
END | F;
END val i dat e_conm

‘ 12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Body for COMM _PACKAGE

Define afunction to validate the commission. The commission may not be greater than the highest
commission among al existing employees.

Introduction to Oracle9i: PL/SQL 12-13

Creating a Package Body: Example

conmm pack. sql

PROCEDURE reset_comm (p_comm | N NUMBER)

IS
BEG N
| F validate_conm(p_conmm
THEN g _comm =p_conm --reset global variable
ELSE
RAI SE_APPLI CATI ON_ERROR(- 20210, "I nval i d conm ssion’);
END | F;

END reset _comm
END comm package;
/

Package bady created.

‘ 12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Body for COVM_PACKAGE (continued)
Define a procedure that enables you to reset and validate the prevailing commission.

Introduction to Oracle9i: PL/SQL 12-14

Invoking Package Constructs

Example 1: Invoke a function from a procedure within
the same package.

CREATE OR REPLACE PACKACGE BODY comm package IS

PéOCEbURE reset _comm
(p_comm | N NUMBER)
IS
BEG N
| Fval i dat e_conm(p_conmm)|
THEN g_comm : = p_conmm

ELSE
RAI SE_APPLI CATI ON_ERROR
(-20210, ’'Invalid conm ssion’);
END | F;

END reset _comm
END comm package;

‘ 12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs

After the package is stored in the database, you can invoke a package construct within the package or
from outside the package, depending on whether the construct is private or public.

When you invoke a package procedure or function from within the same package, you do not need to
qualify its name.

Example 1

Cdll the VALI DATE _COWMfunction from the RESET _COVMprocedure. Both subprograms are in the
COVM_PACKAGE package.

Introduction to Oracle9i: PL/SQL 12-15

Invoking Package Constructs

Example 2: Invoke a package procedure from iSQL*Plus.

EXECUTE comm package. reset _commq(0. 15)

Example 3: Invoke a package procedure in a different
schema.

EXECUTE scott.comm package. reset _comm(0. 15)

Example 4: Invoke a package procedure in a remote
database.

EXECUTE conm package. reset _conm@y/(0. 15)

12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs (continued)

When you invoke a package procedure or function from outside the package, you must qualify its name
with the name of the package.

Example 2

Call the RESET_COvWMprocedure from i SQL* Plus, making the prevailing commission 0.15 for the user
session.

Example 3

Call the RESET_COWprocedure that is located in the SCOTT schema from i SQL* Plus, making the
prevailing commission 0.15 for the user session.

Example 4

Call the RESET_COvWprocedure that is located in a remote database that is determined by the database
link named NY from i SQL*Plus, making the prevailing commission 0.15 for the user session.

Adhere to normal naming conventions for invoking a procedure in a different schema, or in adifferent
database on another node.

Introduction to Oracle9i: PL/SQL 12-16

Declaring a Bodiless Package

CREATE OR REPLACE PACKACE gl obal consts IS
mle 2 kilo CONSTANT NUMBER := 1.6093;
kKilo_2 mle CONSTANT NUMBER := 0.6214;
yard 2 neter CONSTANT NUMBER := 0.9144;
meter_2 yard CONSTANT NUMBER := 1.0936;

END gl obal _consts;

/

EXECUTE DBMS_COUTPUT. PUT_LINE(’ 20 mles = ' || 20*

gl obal _consts.mle_2 kilo||’ km)

Package created.
20 miles = 32186 kum
PLIZQL procedure successfilly completed.

‘ 12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring a Bodiless Package

Y ou can declare public (global) variablesthat exist for the duration of the user session. Y ou can
create a package specification that does not need a package body. As discussed earlier in thislesson,
if a specification declares only types, constants, variables, exceptions, and call specifications, the
package body is unnecessary.

Example

In the preceding dide, a package specification containing several conversion ratesis defined. All the
globa identifiers are declared as constants.

A package body is not required to support this package specification because implementation details
are not required for any of the constructs of the package specification.

Introduction to Oracle9i: PL/SQL 12-17

Referencing a Public Variable from
a Stand-Alone Procedure

Example:

CREATE OR REPLACE PROCEDURE neter to_yard
(p_nmeter I N NUMBER, p_yard OUT NUMBER)

IS
BEG N
p_yard := p_neter * global consts.neter_2 yard,;
END neter _to_yard,
/

VARI ABLE yard NUMBER
EXECUTE neter _to_yard (1, :yard)

Procedurs creared
PLIEGQL procedme successily oongdebed

TARD

‘ 12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Use the procedure METER _TO_YARD to convert meters to yards, using the conversion rate packaged in
GLOBAL_CONSTS.
When you reference a variable, cursor, constant, or exception from outside the package, you must qualify
its name with the name of the package.

Introduction to Oracle9i: PL/SQL 12-18

Removing Packages

To remove the package specification and the body,
use the following syntax:

'DROP PACKAGE package_narne; |

To remove the package body, use the following syntax :

DROP PACKAGE BODY package_nane, |

‘ 12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Package

When a package is no longer required, you can use a SQL statement in iSQL*Plusto drop it. A package
has two parts, so you can drop the whole package or just the package body and retain the package
specification.

Introduction to Oracle9i: PL/SQL 12-19

Guidelines for Developing Packages

®* Construct packages for general use.
* Define the package specification before the body.

* The package specification should contain only
those constructs that you want to be public.

* Place items in the declaration part of the package
body when you must maintain them throughout
a session or across transactions.

®* Changes to the package specification require
recompilation of each referencing subprogram.

* The package specification should contain as few
constructs as possible.

‘ 12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Writing Packages

Keep your packages as genera as possible so that they can be reused in future applications. Also, avoid
writing packages that duplicate features provided by the Oracle server.

Package specifications reflect the design of your application, so define them before defining the package
bodies.

The package specification should contain only those constructs that must be visible to users of the
package. That way other developers cannot misuse the package by basing code on irrelevant details.

Place itemsin the declaration part of the package body when you must maintain them throughout a
session or across transactions. For example, declare avariable called NUMBER _EMPLOYED as a private
variable, if each call to a procedure that uses the variable needs to be maintained. When declared as a
globa variable in the package specification, the value of that global variable getsinitialized in asession
the first time a construct from the package is invoked.

Changes to the package body do not require recompilation of dependent constructs, whereas changesto
the package specification require recompilation of every stored subprogram that references the package.
To reduce the need for recompiling when code is changed, place as few constructs as possiblein a
package specification.

Introduction to Oracle9i: PL/SQL 12-20

Advantages of Packages

* Modularity: Encapsulate related constructs

* Easier application design: Code and compile
specification and body separately
* Hiding information :

— Only the declarations in the package
specification are visible and accessible to
applications

— Private constructs in the package body are
hidden and inaccessible

— All coding is hidden in the package body

‘ 12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using Packages

Packages provide an aternative to creating procedures and functions as stand-al one schema objects, and
they offer several benefits.

Modularity

Y ou encapsulate logically related programming structures in a named module. Each package is easy to
understand, and the interface between packagesis simple, clear, and well defined.

Easier Application Design
All you need initially isthe interface information in the package specification. Y ou can code and compile

a specification without its body. Then stored subprograms that reference the package can compile as well.
Y ou need not define the package body fully until you are ready to complete the application.

Hiding I nformation

Y ou can decide which constructs are public (visible and accessible) or private (hidden and inaccessible).
Only the declarations in the package specification are visible and accessible to applications. The package
body hides the definition of the private constructs so that only the package is affected (not your application
or any calling programs) if the definition changes. This enables you to change the implementation without
having to recompile calling programs. Also, by hiding implementation details from users, you protect the
integrity of the package.

Introduction to Oracle9i: PL/SQL 12-21

Advantages of Packages

* Added functionality: Persistency of variables
and cursors

* Better performance:

— The entire package is loaded into memory
when the package is first referenced

— Thereis only one copy in memory for all users
— The dependency hierarchy is simplified

®* Overloading: Multiple subprograms of the
same name

‘ 12-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using Packages (continued)
Added Functionality
Packaged public variables and cursors persist for the duration of a session. Thus, they can be shared by all
subprograms that execute in the environment. They a so enable you to maintain data across transactions

without having to storeit in the database. Private constructs also persist for the duration of the session, but
can only be accessed within the package.

Better Performance

When you call a packaged subprogram the first time, the entire package is loaded into memory. This way,
later callsto related subprograms in the package require no further disk 1/0. Packaged subprograms aso
stop cascading dependencies and so avoid unnecessary compilation.

Overloading

With packages you can overload procedures and functions, which means you can create multiple
subprograms with the same name in the same package, each taking parameters of different number or
datatype.

Introduction to Oracle9i: PL/SQL 12-22

Summary

In this lesson, you should have learned how to:

* Improve organization, management, security, and
performance by using packages

®* Group related procedures and functions together
in a package

* Change a package body without affecting a
package specification

* Grant security access to the entire package

‘ 12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
Y ou group related procedures and function together into a package. Packages improve organization,
management, security, and performance.
A package consists of package specification and a package body. Y ou can change a package body without
affecting its package specification.

Introduction to Oracle9i: PL/SQL 12-23

Summary

In this lesson, you should have learned how to:
®* Hide the source code from users

* Load the entire package into memory on the
first call

* Reduce disk access for subsequent calls
* Provide identifiers for the user session

‘ 12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Packages enable you to hide source code from users. When you invoke a package for the first time, the
entire package isloaded into memory. This reduces the disk access for subsequent calls.

Introduction to Oracle9i: PL/SQL 12-24

Summary

Command Task

CREATE [OR REPLACE] PACKACE |Create (or modify) an existing
package specification
CREATE [OR REPLACE] PACKAGE |Create (or modify) an existing
BCDY package body

DROP PACKAGE Remove both the package
specification and the package body

DROP PACKAGE BODY Remove the package body only

‘ 12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Y ou can create, delete, and modify packages. Y ou can remove both package specification and body
by using the DROP PACKAGE command. Y ou can drop the package body without affecting its
specification.

Introduction to Oracle9i: PL/SQL 12-25

Practice 12 Overview

This practice covers the following topics:
* Creating packages
* Invoking package program units

12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

In this practice, you will create package specifications and package bodies. Y ou will invoke the
constructs in the packages, using sample data.

Introduction to Oracle9i: PL/SQL 12-26

Practice 12

1. Create a package specification and body called JOB_PACK. (Y ou can save the package body and
specification in two separate files.) This package contains your ADD_JOB, UPD_JOB, and
DEL_J OB procedures, as well asyour Q_JOB function.

Note: Use the code in your previously saved script files when creating the package.
a Makeadl the constructs public.
Note: Consider whether you still need the stand-al one procedures and functions you just
packaged.
b. Invoke your ADD JOB procedure by passing values| T_SYSAN and SYSTEMS ANALYST
as parameters.

c. Query the JOBS table to see the result.

JOB_ID JOB_TITLE MIN_SALARY |MAX SALARY
IT_SYSAMN [Systerns Analyst

2. Create and invoke a package that contains private and public constructs.

a. Create a package specification and package body called EMP_PACK that contains your
NEW EMP procedure as a public construct, and your VALI D_DEPTI D function as a private
construct. (Y ou can save the specification and body into separate files.)

b. Invoke the NEW EMP procedure, using 15 as a department number. Asthe department ID
15 does not exist in the DEPARTMENTS table, you should get an error message as specified
in the exception handler of your procedure.

c. Invoke the NEW EMP procedure, using an existing department 1D 80.
If you havetime:

3. a Createapackage called CHK PACK that contains the procedures CHK HI REDATE and
CHK_DEPT_MGR. Make baoth constructs public. (Y ou can save the specification and body
into separatefiles.)

The procedure CHK_HI REDATE checks whether an employee’s hire date is within the
following range: BYSDATE - 50 yearsSYSDATE + 3 months].
Note:

« If the date is invalid, you should raise an application error with an appropriate
message indicating why the date value is not acceptable.

e Make sure the time component in the date value is ignored.

* Use a constant to refer to the 50 years boundary.

* A null value for the hire date should be treated as an invalid hire date.
The procedur€HK DEPT_MGR checks the department and manager combination for a
given employee. TheHK DEPT _MGR procedure accepts an employee ID and a
manager ID. The procedure checks that the manager and employee work in the same

department. The procedure also checks that the job title of the manager number provided is
MANAGER

Note: If the department number and manager combination is invalid, you should raise an
application error with an appropriate message.

Introduction to Oracle9i: PL/SQL 12-27

Practice 12 (continued)
b. Test the CHK HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hiredat e(’ 01- JAN-47")
What happens, and why?
c. Testthe CHK_HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hi redat e(NULL)
What happens, and why?
d. Testthe CHK DEPT_MGR procedure with the following command:
EXECUTE chk_pack. chk_dept ngr (117, 100)
What happens, and why?

Introduction to Oracle9i: PL/SQL 12-28

More Package Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write packages that use the overloading feature

®* Describe errors with mutually referential
subprograms

® Initialize variables with a one-time-only procedure
* Listthe four purity levels of a function
* Identify persistent states

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson introduces more advanced features of PL/SQL, including overloading, forward referencing, a
one-time-only procedure, and the persistency of variables, constants, exceptions, and cursors. It also looks
at the effect of packaging functionsthat are used in SQL statements.

Introduction to Oracle9i: PL/SQL 13-2

Overloading

* Enables you to use the same name for different
subprograms inside a PL/SQL block, a
subprogram, or a package

®* Requires the formal parameters of the
subprograms to differ in number, order, or
datatype family

* Enables you to build more flexibility because a
user or application is not restricted by the specific
datatype or number of formal parameters

Note: Only local or packaged subprograms can be
overloaded. You cannot overload stand-alone
subprograms.

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading

This feature enables you to define different subprograms with the same name. Y ou can distinguish the
subprograms both by name and by parameters. Sometimes the processing in two subprograms is the same, but
the parameters passed to them varies. In that caseit islogical to give them the same name. PL/SQL determines
which subprogram is called by checking its formal parameters. Only local or packaged subprograms can be
overloaded. Stand-al one subprograms cannot be overloaded.

Restrictions

Y ou cannot overload:
« Two subprograms if their formal parameters differ only in datatype and the different datatypes are in the
same family NUMBER andDECI MAL belong to the same family)
* Two subprograms if their formal parameters differ only in subtype and the different subtypes are based
on types in the same familyARCHAR andSTRI NGare PL/SQL subtypes MARCHAR2)
» Two functions that differ only in return type, even if the types are in different families
You get a run-time error when you overload subprograms with the above features.

Note: The above restrictions apply if the names of the parameters are also the same. If you use different names
for the parameters, then you can invoke the subprograms by using named notation for the parameters.

Resolving Calls

The compiler tries to find a declaration that matches the call. It searches first in the current scope and then, if
necessary, in successive enclosing scopes. The compiler stops searching if it finds one or more subprogram
declarations in which the name matches the name of the called subprogram. For like-named subprograms at the
same level of scope, the compiler needs an exact match in number, order, and datatype between the actual and

formal parameters. Introduction to Oracle9i: PL/SQL 13-3

Overloading: Example

over _pack. sql

CREATE OR REPLACE PACKAGE over _pack
IS
PROCEDURE |add_dept
(p_deptno I N departnents. departnent i d%d'YPE,

p_name | N departnents. depart nent nanme%l YPE
DEFAULT ' unknown’

p_loc IN departnents.|ocation_i ddYPE DEFAULT 0);
PROCEDURE add_dept

(p_nane I N departnents. departnment nanme%l YPE
DEFAULT ' unknown’

p loc INdepartnents.|ocation_id¥%WYPE DEFAULT 0);
END over _pack;
/

Paclkage created.

13-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: Example
The preceding slide shows the package specification of a package with overloaded procedures.

The package contains ADD_DEPT as the name of two overloaded procedures. Thefirst definition takes three
parametersto be able to insert a new department to the department table. The second definition takes only

two parameters, because the department ID is populated through a sequence.

Introduction to Oracle9i: PL/SQL 13-4

Overloading: Example

over _pack_body. sql

CREATE OR REPLACE PACKAGE BODY over_pack IS

PROCEDURE| add_dept
(p_deptno TN departnents. depart nment _i d%'YPE,

p_nane | N departnments. departnent _name%l YPE DEFAULT ' unknown’,
p_loc |IN departments.|ocation_i d%YPE DEFAULT 0)
IS
BEG N
| NSERT | NTO departnments (departnent id,
department _nane, |ocation_id)
VALUES (p_deptno, p_nanme, p_loc);

END add_dept ;
PROCEDURE | add_dept
(p_nane | N departments. departnent_nane% YPE DEFAULT ' unknown’,

p_loc |IN departments.|ocation_i d¥YPE DEFAULT 0)

IS

BEG N
| NSERT | NTO departments (departnent _id,

department _nane, |ocation_id)

VALUES (departnents_seq. NEXTVAL, p_nane, p_loc);

END add_dept ;

END over _pack;

/

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading Example (continued)

If you call ADD_DEPT with an explicitly provided department 1D, PL/SQL usesthe first version of the
procedure. If you call ADD_DEPT with no department 1D, PL/SQL uses the second version.

EXECUTE over _pack. add_dept (980, Educati on’, 2500)
EXECUTE over _pack. add _dept (' Training , 2400)
SELECT * FROM departnents

WHERE departnent _id = 980;

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER_ID | LOCATION_ID
| 980 |Education | | 2600

SELECT * FROM departnents
WHERE departnment _nane = ' Training';

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER_ID | LOCATION_ID
| 280 |Training | | 2400

Introduction to Oracle9i: PL/SQL 13-5

Overloading: Example

® Most built-in functions are overloaded.

* For example, see the TO CHAR function of the
STANDARD package.

FUNCTI ON TO CHAR (pl DATE) RETURN VARCHARZ;

FUNCTI ON TO CHAR (p2 NUMBER) RETURN VARCHAR?;

FUNCTI ON TO CHAR (pl DATE, P2 VARCHAR?) RETURN VARCHAR?;
FUNCTI ON TO CHAR (pl NUMBER P2 VARCHAR2) RETURN VARCHARZ;

* |f you redeclare a built-in subprogram in a PL/SQL
program, your local declaration overrides the
global declaration.

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading Example (continued)

Most built-in functions are overloaded. For example, the function TO_CHAR in the package STANDARD has
four different declarations, as shown in the slide. The function can take either the DATE or the NUVBER
datatype and convert it to the character datatype. The format into which the date or number hasto be
converted can also be specified in the function call.

If you redeclare a built-in subprogram in another PL/SQL program, your local declaration overridesthe
standard or built-in subprogram. To be able to access the built-in subprogram, you need to qualify it with its
package name. For example, if you redeclarethe TO_CHAR function, to access the built-in function you
refer it as: STANDARD. TO CHAR

If you redeclare a built-in subprogram as a stand-al one subprogram, to be able to access your subprogram
you need to qudify it with your schema name, for example, SCOTT. TO_CHAR.

Introduction to Oracle9i: PL/SQL 13-6

Using Forward Declarations
You must declare identifiers before referencing them.
CREATE OR REPLACE PACKAGE BODY forward_pack
IS’PROCEDURE award_bonus(. . .)
BEGI N
calc_ratingK. Co)s --illegal reference
END;
PROCEDURE cal c_rating(. . .)
BEGI N
END;
/END f orwar d_pack;
13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations

PL/SQL does not allow forward references. Y ou must declare an identifier before using it. Therefore, a
subprogram must be declared before calling it.

In the preceding dlide, the procedure CALC_RATI NG cannot be referenced because it has not yet been
declared. You can solve theillegal reference problem by reversing the order of the two procedures.
However, this easy solution does not always work. Suppose the procedures call each other or you
absolutely want to define them in a phabetical order.

PL/SQL enables for a special subprogram declaration called aforward declaration. It consists of the
subprogram specification terminated by a semicolon. You can use forward declarations to do the following:

» Define subprograms in logical or alphabetical order
» Define mutually recursive subprograms
e Group subprograms in a package
Mutually recursive programs are programs that call each other directly or indirectly.

Introduction to Oracle9i: PL/SQL 13-7

Using Forward Declarations

CREATE OR REPLACE PACKAGE BODY forward_pack
IS
PROCEDURE (cal c_rating(. . .); -- forward decl aration
PROCEDURE awar d_bonus(. . .) _
IS -- subprograns defined
BEG N -- in al phabetical order
calc_rati ngK. .
END; |
PROCEDURE (cal c_rating(. . .)
IS
BEG N
END;,
END f orward_pack;
/
13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations (continued)
» The formal parameter list must appear in both the forward declaration and the subprogram body.

» The subprogram body can appear anywhere after the forward declaration, but both must appear in the
same program unit.

Forwar d Declar ations and Packages

Forward declarations typically let you group related subprograms in a package. The subprogram
specifications go in the package specification, and the subprogram bodies go in the package body, where
they are invisible to the applications. In this way, packages enable you to hide implementation details.

Introduction to Oracle9i: PL/SQL 13-8

Creating a One-Time-Only Procedure

CREATE OR REPLACE PACKAGE t axes

IS
t ax NUMBER,;
... =-- declare all public procedures/functions
END taxes;
/
CREATE OR REPLACE PACKAGE BODY t axes
IS
-- declare all private variables
... -- define public/private procedures/functions
BEG N
SELECT rate_val ue
| NTO t ax
FROM tax_rates
VWHERE rate_nane = ' TAX ;
END t axes;
/
13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Define an Automatic, One-Time-Only Procedure

A one-time-only procedure is executed only once, when the package is first invoked within the user session.
In the preceding dlide, the current value for TAXis set to the value in the TAX_RATES table thefirst time
the TAXES package is referenced.

Note: Initialize public or private variables with an automatic, one-time-only procedure when the derivation
istoo complex to embed within the variable declaration. In this case, do not initialize the variable in the
declaration, because the value is reset by the one-time-only procedure.

The keyword END is not used at the end of a one-time-only procedure. Observe that in the example in the
dide, thereis no END at the end of the one-time-only procedure.

Introduction to Oracle9i: PL/SQL 13-9

Restrictions on Package Functions
Used in SQL

A function called from:

* A query or DML statement may not end the current
transaction, create or roll back to a savepoint, or
ALTERthe system or session.

®* A query statement or a parallelized DML statement
may not execute a DML statement or modify the
database.

* A DML statement may not read or modify the
particular table being modified by that DML
statement.

Note: Calls to subprograms that break the above
restrictions are not allowed.

13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Side Effects

For the Oracle server to execute a SQL statement that calls a stored function, it must know the purity level
of astored functions, that is, whether the functions are free of side effects. Side effects are changesto
database tables or public packaged variables (those declared in a package specification). Side effects could
delay the execution of a query, yield order-dependent (therefore indeterminate) results, or require that the
package state variables be maintained across user sessions. Various side effects are not allowed when a
function is called from a SQL query or DML statement. Therefore, the following restrictions apply to stored
functions called from SQL expressions:
» A function called from a query or DML statement may not end the current transaction, create or roll
back to a savepoint, or alter the system or session
» A function called from a query statement or from a parallelized DML statement may not execute a
DML statement or otherwise modify the database
» A function called from a DML statement may not read or modify the particular table being modified
by that DML statement

Note: In releases prior to Oracle8he purity checking used to be performed during compilation time, by
including thePRAGVA RESTRI CT_ REFERENCES compiler directive in the package specification. But

from Oracle, a user-written function can be called from a SQL statement without any compile-time
checking of its purity. You can us$RAGVA RESTRI CT_REFERENCES to ask the PL/SQL compiler to

verify that a function has only the side effects that you expect. SQL statements, package variable accesses,
or calls to functions that violate the declared restrictions continue to raise PL/SQL compilation errors to help
you isolate the code that has unintended effects.

Note: The restrictions on functions discussed above are the same as those discussed in ti@xdagagn "

Functions."
Introduction to Oracle9i: PL/SQL 13-10

User Defined Package: t axes pack

CREATE OR REPLACE PACKAGE taxes_pack

IS
FUNCTI ON tax (p_val ue I'N NUMBER) RETURN NUVMBER;

END t axes_pack;
/

Faclkage created.

CREATE OR REPLACE PACKAGE BQODY t axes_pack

I'S
FUNCTI ON tax (p_value I'N NUVBER) RETURN NUVBER
IS
v_rate NUMBER : = 0.08;
BEA N
RETURN (p_value * v_rate);
END t ax;

END t axes_pack;
/

Package body created.

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Encapsulate the function TAX in the package TAXES PACK. The function is called from SQL statements
on remote databases.

Introduction to Oracle9i: PL/SQL 13-11

Invoking a User-Defined Package Function
from a SQL Statement

SELECT t axes_pack.tax(sal ary), salary, |ast_nane
FROM enpl oyees;

TAKES PACK TAXSAL AR SALARY LAST MAMI
1920 000 | i
1350 100 | Kachhss
1350 1A [Haan
2) | Heraid
420 B0 |Emid
x4 & | Austin

=) | Faishal>

1052 rowes selecied

13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Calling Package Functions
You cal PL/SQL functions the same way that you call built-in SQL functions.
Example
Call the TAX function (in the TAXES PACK package) from a SELECT statement.

Note: If you are using Oracle versions prior to 8i, you need to assert the purity level of the function in the
package specification by using PRAGVA RESTRI CT_REFERENCES. If thisis not specified, you get an
error message saying that the function TAX does not guarantee that it will not update the database while
invoking the package function in a query.

Introduction to Oracle9i: PL/SQL 13-12

Persistent State of Package

Variables: Example

CREATE OR REPLACE PACKAGE conm package IS
g_comm NUMBER : = 10; --initialized to 10
PROCEDURE reset _comm (p_comm |IN NUMBER);

END comm package;

/

CREATE OR REPLACE PACKAGE BODY comm package IS
FUNCTI ON validate_comm (p_conm |IN NUMBER)
RETURN BOOLEAN
'S v_max_comm NUMVBER,;
BEA N

-- validates commission to be less than maximum
-- commission in the table

END val i date_comm

PROCEDURE reset _comm (p_conm |IN NUVBER)

IS BEG N

C. -- calls validate_comm with specified value

END reset _comm
END comm package;
/

13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables

This sample package illustrates the persistent state of package variables. The VALI DATE _COMMfunction
validates commission to be no more than maximum currently earned. The RESET_COVMprocedure
invokesthe VALI DATE_COwMfunction. If you try to reset the commission to be higher than the
maximum, the exception RAI SE_APPLI CATI ON_ERROR israised. On the next page, the

RESET _COWMprocedure is used in the example.

Note: Refer to page 12-13 for the code of the VALI DATE_COMM(function and the RESET _COWM
procedure. In the VALI DATE_COVMfunction, maximum salary from the EMPLOYEES tableis selected
into the variable V_MAXSAL. Once the variable is assigned a value, the value persistsin the session until
it is modified again. The example in the following dide shows how the value of aglobal package variable
persists for a session.

Introduction to Oracle9i: PL/SQL 13-13

Persistent State of Package Variables

Time Scott Jones

9:00 EXECUTE
comm package. reset _conm

(0. 25)
max_com¥0.4 > 0.25 | NSERT | NTO enpl oyees
9:30 ||9_conm=0.25 (1 ast _nane, conm ssion_pct)
VALUES (' Madonna’, 0.8);
max_conm=0.8
9:35 EXECUTE
' comm package. reset _com 0. 5)
max_comm=0.8 > 0.5
10:00 | | EXEQUTE g_conm= 0.5
comm package. reset _comm
(0.6)
11:00 max_com0.4 < 0.6 INVALID ROLLBACK:
11:01 EXIT
. Logged In again. g_comm = 10,
11:45 max_conm=0.4
12:00 VALID EXECUTE

comm package. reset _com 0. 25)

‘ 13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Variable

Y ou can keep track of the state of a package variable or cursor, which persists throughout the user session, from
the time the user first references the variable or cursor to the time the user disconnects.

1. Initialize the variable within its declaration or within an automatic, one-time-only procedure.

2. Change the value of the variable by means of package procedures.

3. Thevaue of the variable is released when the user disconnects.
The sequence of stepsin the preceding dide shows how the state of a package variable persists.
9:00: When Scott invoked the procedure RESET _COMMwith a commission percentage value 0.25, the global
variable G_ COMMwas initialized to 10 in his session. The value 0.25 was validated with the maximum
commission percentage value 0.4 (obtained from the EMPLOYEES table). Because 0.25 is less than 0.4, the
global variable was set to 0.25. 9:30: Jones inserted a new row into EMPLOY EES table with commission
percentage value 0.8.
9:35: Jonesinvoked the procedure RESET _COVMwith a commission percentage value 0.5. The global variable
G_COWwasiinitialized to 10 in his session. The value 0.5 was vaidated with the maximum commission

percentage value 0.8 (because the new row has 0.8). Because 0.5 isless than 0.8, the global variable was set to
0.5.

10:00: Scott invoked the procedure with commission percentage value of 0.6. This value is more than the
maximum commission percentage 0.4 (Scott could not see new value because Jones did not complete the
transaction). Hence, it wasinvalid.

11:00 to 12:00: Jonesrolled back the transaction and exited the session. The global value was initialized to 10
when helogged in at 11:45. The procedure was successful because the new value 0.25 isless than the maximum
value 0.4. Introduction to Oracle9i: PL/SQL 13-14

Controlling the Persistent State of a
Package Cursor

Example:

CREATE OR REPLACE PACKACE pack_cur
IS
CURSOR c1 IS SELECT enpl oyee_id
FROM enpl oyees
ORDER BY enpl oyee i d DESC,
PROCEDURE procl_3rows;
PROCEDURE proc4_6r ows;
END pack_cur;
/

Package created.

‘ 13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Cursor
Example
Use the following steps to control a public cursor:
1. Declarethe public (global) cursor in the package specification.

2. Open the cursor and fetch successive rows from the cursor, using one (public) packaged procedure,
PROC1_3ROWS.

3. Continue to fetch successive rows from the cursor, and then close the cursor by using another
(public) packaged procedure, PROC4 6 ROVE.

The preceding dide shows the package specification for PACK _CUR.

Introduction to Oracle9i: PL/SQL 13-15

Controlling the Persistent State of a

Package Cursor

CREATE OR REPLACE PACKAGE BODY pack_cur IS
v_enpno NUMBER;
PROCEDURE procl 3rows IS
BEG N
OPEN c1;
LOOP
FETCH c1 | NTO v_enpno;
DBVS_OUTPUT. PUT_LI NE(’ I d " || (v_enpno));
EXI T WHEN c1%RONCOUNT >= 3;
END LOOP
END procl_ 3rows;
PROCEDURE proc4 _6rows | S
BEG N
LOOP
FETCH c1 | NTO v_enpno;
DBVS_OUTPUT. PUT_LI NE(’ | d " || (v_enpno));
EXI T WHEN c1%RONCOUNT >= 6;
END LOOP;
CLCSE c1,;
END proc4_6rows;
/END pack_cur;

‘ 13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Cursor (continued)
Example
The preceding dide shows the package body for PACK _CUR to support the package specification. In the
package body:

1. Open the cursor and fetch successive rows from the cursor by using one packaged procedure,
PROC1_3ROWS.

2. Continue to fetch successive rows from the cursor and close the cursor, using another packaged
procedure, PROCA_6ROVE.

Introduction to Oracle9i: PL/SQL 13-16

Executing PACK CUR

SET SERVERCOUTPUT ON
EXECUTE pack_cur. procl_3rows
EXECUTE pack_cur. proc4_6rows

[4 207
Td 205
T4 205

FLISOIL procedune facs essiully oomplensd
[d 30

PLAQL procedurs oo esstilly completsd

‘ 13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Result of Executing PACK_CUR

The state of a package variable or cursor persists across transactions within a session. The state does not
persist from session to session for the same user, nor doesiit persist from user to user.

Introduction to Oracle9i: PL/SQL 13-17

PL/SQL Tables
and Records in Packages

CREATE OR REPLACE PACKAGE enp_package IS
TYPE enp_table_type IS TABLE OF enpl oyees%ROMYPE
| NDEX BY BI NARY | NTECER;
PROCEDURE read_enp_tabl e
(p_enp_table OUT enp_table type);
END enp_package;
/

CREATE OR REPLACE PACKAGE BODY enp_package 1S
PROCEDURE read_enp_tabl e
_ perrptableClJTenptabletype) IS
i BI NARY | NTEGER :

BEG N
Eggperrp_r ecord IN (SELECT * FROM enpl oyees)
enp ta?l e(i) := enp_record,;
o= 0+
END LQOOP;

END read_enp_t abl e;
/END enp_package;

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Passing Tables of Records to Procedures or Functions inside a Package

Invoke the READ EMP_TABLE procedure from an anonymous PL/SQL block, using iSQL* Plus.
DECLARE
v_enp_tabl e enp_package. enp_t abl e_type;

BEG N
enp_package. read _enp_tabl e(v_enp_table);
DBMS _OUTPUT. PUT_LI NE(’' An exanple: '||v_enp_table(4).last_nane);
END;

/

An example: Ernst
PL/3QL procedure successfully completed.

To invoke the procedure READ_EMP_TABLE from another procedure or any PL/SQL block outside the
package, the actual parameter referring to the OUT parameter P_EMP_TABLE must be prefixed with its
package name. In the example above, the variable V_EMP_TABLE is declared of the EMP_TABLE_TYPE

type with the package name added as a prefix.

Introduction to Oracle9i: PL/SQL 13-18

Summary

In this lesson, you should have learned how to:

® Overload subprograms

® Use forward referencing

®* Use one-time-only procedures

® Describe the purity level of package functions

* |dentifiy the persistent state of packaged objects

‘ 13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Overloading is afeature that enables you to define different subprograms with the same name. It is
logical to give two subprograms the same name in situations when the processing in both the
subprograms is the same, but the parameters passed to them varies.

PL/SQL allowsfor a special subprogram declaration called aforward declaration. Forward
declaration enables you to define subprogramsin logical or aphabetical order, define mutually
recursive subprograms, and group subprograms in a package.

A one-time-only procedure is executed only when the package is first invoked within the other user
session. You can use this feature to initialize variables only once per session.

Y ou can keep track of the state of a package variable or cursor, which persists throughout the user
session, from the time the user first references the variable or cursor to the time that the user
disconnects.

Introduction to Oracle9i: PL/SQL 13-19

Practice 13 Overview

This practice covers the following topics:
®* Using overloaded subprograms
®* Creating a one-time-only procedure

‘ 13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

In this practice you create a package containing an overloaded function. Y ou aso create a one-time-only
procedure within a package to populate a PL/SQL table.

Introduction to Oracle9i: PL/SQL 13-20

Practice 13

1. Create apackage caled OVER_LOAD. Create two functionsin this package; name each function
PRI NT_I T. The function accepts a date or character string and prints a date or a number,
depending on how the function isinvoked.

Note:

* To print the date value, use DD-MON-YY as the input format, and FmMonth,dd yyyy as
the output format. Make sure you handle invalid input.

e To print out the number, use 999,999.00 as the input format.

a. Test the first version ¢RI NT_| T with the following set of commands:
VARI ABLE di spl ay_dat e VARCHAR2(20)

EXECUTE : di splay_date := over _load.print_it(’08-MAR-01")
PRI NT di spl ay_date

PL/EQL procedure successfully completed.

TODAYS_DATE
harch,g 2001

b. Testthe second versionRRI NT_I T with the following set of commands:
VARI ABLE g_enp_sal NUMBER

EXECUTE : g enp_sal := over load.print_it(’'33,600")

PRI NT g _enp_sal

FPL/SQL procedure successtully completed.

G_EMP_SAL
33600

2. Create a new package, cal@dECK PACK, to implement a new business rule.

a. Create a procedure calledK DEPT_JOBto verify whether a given combination of

department ID and job is a valid one. In this ozisl means that it must be a combination
that currently exists in theEMPLOYEES table.

Note:
* Use a PL/SQL table to store the valid department and job combination.
» The PL/SQL table needs to be populated only once.

* Raise an application error with an appropriate message if the combination is not
valid.

b. Test youlCHK DEPT_JOB package procedure by executing the following command:
EXECUTE check_pack. chk_dept _j ob(50,’ ST_CLERK')
What happens, and why?

c. TestyoutCHK DEPT_JOB package procedure by executing the following command:
EXECUTE check_pack. chk_dept job(20,’ ST CLERK)

What happens, and why?

Introduction to Oracle9i: PL/SQL 13-21

Introduction to Oracle9i: PL/SQL 13-22

Oracle Supplied Packages

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write dynamic SQL statements using DBMS_SQL
and EXECUTE | MVEDI ATE
®* Describe the use and application of some Oracle
server supplied packages:
— DBMS_DDL
— DBMS_JOB
— DBMS_OUTPUT
— UTL_FILE
— UTL_HTTPand UTL_TCP

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to use some of the Oracle server supplied packages and to take advantage of
their capabilities.

Introduction to Oracle9i: PL/SQL 14-2

Using Supplied Packages

Oracle-supplied packages:
* Are provided with the Oracle server
e Extend the functionality of the database

* Enable access to certain SQL features normally
restricted for PL/SQL

14-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Supplied Packages

Packages are provided with the Oracle server to allow either PL/SQL accessto certain SQL features, or to
extend the functionality of the database.

Y ou may take advantage of the functionality provided by these packages when creating your application,
or you may simply want to use these packages as ideas when you create your own stored procedures.

Most of the standard packages are created by running cat pr oc. sql .

Introduction to Oracle9i: PL/SQL 14-3

Using Native Dynamic SQL

Dynamic SQL.:

* |s a SQL statement that contains variables that
may change during run-time

* |s a SQL statement with placeholders and is stored
as a character string

* Enables general-purpose code to be written

* Enables data-definition and data-control or
session-control statements to be written and
executed from PL/SQL

® |s written using either DBMS_SQL or native dynamic
SQL

14-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Native Dynamic SQL (Dynamic SQL)
Y ou can write PL/SQL blocks that use dynamic SQL. Dynamic SQL statements are not embedded in
your source program but rather are stored in character stringsthat are input to, or built by, the program.
That is, the SQL statements can be created dynamically at run time by using variables. For example, you
use dynamic SQL to create a procedure that operates on a table whose name is not known until run time,
or to write and execute a data definition language (DDL) statement (such as CREATE TABLE), adata
control statement (such as GRANT), or a session control statement (such as ALTER SESSI ON). In
PL/SQL, such statements cannot be executed statically.

In Oracle8, and earlier, you have to use DBM5_SQL to write dynamic SQL.

In Oracle 8i, you can use DBMS_SQL or native dynamic SQL. The EXECUTE | MMEDI ATE statement
can perform dynamic single-row queries. Also, thisis used for functionality such as objects and
collections, which are not supported by DBMS_SQL. If the statement is a multirow SELECT statement,
you use OPEN- FOR, FETCH, and CLOSE statements.

Introduction to Oracle9i: PL/SQL 14-4

Execution Flow

SQL statements go through various stages:

* Parse

* Bind

* Execute
* Fetch

Note: Some stages may be skipped.

14-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Steps to Process SQL Statements
All SQL statements have to go through various stages. Some stages may be skipped.
Parse

Every SQL statement must be parsed. Parsing the statement includes checking the statement’s syntax and
validating the statement, ensuring that all references to objects are correct, and ensuring that the relevant
privileges to those objects exist.

Bind
After parsing, the Oracle server knows the meaning of the Oracle statement but till may not have enough

information to execute the statement. The Oracle server may need values for any bind variable in the
statement. The process of obtaining these valuesis called binding variables.

Execute
At this point, the Oracle server has al necessary information and resources, and the statement is executed.
Fetch

In the fetch stage, rows are selected and ordered (if requested by the query), and each successive fetch
retrieves another row of the result, until the last row has been fetched. Y ou can fetch queries, but not the
DML statements.

Introduction to Oracle9i: PL/SQL 14-5

Using the DBMS SQL Package

The DBM5S_SQL package is used to write dynamic SQL
in stored procedures and to parse DDL statements.
Some of the procedures and functions of the package
include:

— OPEN_CURSOR

— PARSE

— BI ND _VARI ABLE

— EXECUTE

— FETCH _ROWS

— CLOSE_CURSOR

14-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBV5S_SQL Package
Using DBMS_SQL, you can write stored procedures and anonymous PL/SQL blocks that use dynamic
SQL.
DBMS_SQL can issue data definition language statementsin PL/SQL. For example, you can choose to
issue a DROP TABLE statement from within a stored procedure.

The operations provided by this package are performed under the current user, not under the package
owner SYS. Therefore, if the caller is an anonymous PL/SQL block, the operations are performed
according to the privileges of the current user; if the caller is a stored procedure, the operations are
performed according to the owner of the stored procedure.

Using this package to execute DDL statements can result in a deadlock. The most likely reason for thisis
that the package is being used to drop a procedure that you are still using.

Introduction to Oracle9i: PL/SQL 14-6

Components of the DBM5_SQ. Package
The DBMS_SQL package uses dynamic SQL to access the database.

Function or Procedure

Description

OPEN_CURSOR

Opens a new cursor and assigns a cursor |D number

PARSE

Parses the DDL or DML statement: that is, checks the statement’s sy
and associates it with the opened cursor (DDL statements are immed
executed when parsed)

Bl ND_VARI ABLE

Binds the given value to the variable identified by its name in the pars
statement in the given cursor

EXECUTE

Executes the SQL statement and returns the number of rows proces:

FETCH_ROWS

Retrieves a row for the specified cursor (for multiple rows, call in a lo

CLOSE_CURSOR

Closes the specified cursor

Introduction to Oracle9i: PL/SQL 14-7

Using DBMS SQL

CREATE OR REPLACE PROCEDURE del ete all _rows
(p_tab_name I N VARCHAR2, p_rows_del OUT NUMBER)
S

cursor _name | NTEGER;
BEG N
cursor_nanme :=[DBM5_SQ.. OPEN_CURSCR, |
DBVS_SQL. PARSE(cur sor _nanme, ' DELETE FROM ' || p_t ab_nane,
‘ DBVS_SQL. NATI VE) ; ‘
p_rows_del :[= DBMS SQ.. EXECUTE (cursor_nhane)
|DBVB_SQL. CLOSE_CURSOR(cur sor _narne) ;
/END;

Use dynamic SQL to delete rows

VARI ABLE del et ed NUVBER
EXECUTE delete _all _rows(’ enpl oyees’, :deleted)
PRI NT del et ed

PL/BOL procedure successfully cornpleted.

[DELETED
[109

14-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a DBM5_SQ. Package

In the preceding dide, the table name is passed into the procedure DELETE_ALL ROWS by using
an | N parameter. The procedure uses dynamic SQL to delete rows from the specified table. The
number of rows deleted as a result of the successful execution of the dynamic SQL are passed to the
calling environment through an OUT parameter.

How to Process Dynamic DM L
1. Use OPEN_CURSORto establish an areain memory to process a SQL statement.
2. Use PARSE to establish the validity of the SQL statement.

3. Usethe EXECUTE function to run the SQL statement. This function returns the number of
row processed.
4. Use CLOSE CURSOR'to closethe cursor.

Introduction to Oracle9i: PL/SQL 14-8

Using the EXECUTE | MMVEDI ATE statement

Use the EXECUTE | MVEDI ATE for native dynamic SQL
with better performance.

EXECUTE | MVEDI ATE dynami c_string
[INTO { defi ne_vari abl e

[, define variable]l ... | record}]
[USING [I N QUT| I N QUT] bi nd_argunent
[, [INNOQUT|IN QUT] bind argunent] ...];

®* | NTOis used for single-row queries and specifies
the variables or records into which column values
are retrieved.

®* USI NGis used to hold all bind arguments. The
default parameter modeis | N.

14-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the EXECUTE | MVEDI ATE Statement
Syntax Definition

Parameter Description

dynam c_string A string expression that represents a dynamic SQL statement (without
terminator) or a PL/SQL block (with terminator)

define_variabl e | A variablethat stores the selected column value

record A user-defined or %ROWTY PE record that stores a selected row
bi nd_ar gument An expression whose value is passed to the dynamic SQL statement or
PL/SQL block

You can usethe | NTOclause for asingle-row query, but you must use OPEN- FOR, FETCH, and CLOSE
for amultirow query.

Note: The syntax shown in the dide is not complete. The other clauses of the statement are discussed in
the Advanced PL/SQL course.

Introduction to Oracle9i: PL/SQL 14-9

Using the EXECUTE | MVEDI ATE Statement (continued)
In the EXECUTE | MMEDI ATE statement:

Thel NTOclause specifies the variables or record into which column values are retrieved. It is

used only for single-row queries. For each value retrieved by the query, there must be a
corresponding, type-compatible variable or field inlthdFOclause.

TheRETURNI NG | NTOclause specifies the variables into which column values are returned. It
is used only for DML statements that hayeEe URNI NG clause (without 8ULK COLLECT

clause). For each value returned by the DML statement, there must be a corresponding, type-
compatible variable in thRETURNI NG | NTOclause.

The US| NGclause holds all bind arguments. The default parameter modie kor DML
statements that haveRETURNI NG clause, you can placdJT arguments in th@ETURNI NG

I NTOclause without specifying the parameter mode, which, by definiti@JTs If you use both
the USI NG clause and thBETURNI NG | NTOclause, théJSI NGclause can contain only IN
arguments.

At run time, bind arguments replace corresponding placeholders in the dynamic string. Thus, every
placeholder must be associated with a bind argument WShBG clause oRETURNI NG | NTO

clause. You can use numeric, character, and string literals as bind arguments, but you cannot use
Boolean literalsTRUE, FALSE, andNULL).

Dynamic SQL supports all the SQL data types. For example, define variables and bind arguments can be

collections, LOBs, instances of an object type, &ieF-s. As a rule, dynamic SQL does not support

PL/SQL-specific types. For example, define variables and bind arguments cannot be Booleans or index-

by tables. The only exception is that a PL/SQL record can appearliiNtitgclause.

You can execute a dynamic SQL statement repeatedly, using new values for the bind arguments.
However, you incur some overhead becdtsECUTE | MVEDI ATE reprepares the dynamic string
before every execution.

Introduction to Oracle9i: PL/SQL 14-10

Dynamic SQL Using EXECUTE | MMEDI ATE

CREATE PROCEDURE del rows
(p_table namre IN VARCHARZ2,
'S p_rows deld QUT NUMBER)
BEG N
\EXECUTE | MVEDI ATE " delete from’ || p_tabl e_nane;
p_rows _deld : = SQ.%RONCOUNT,;
END;
/
PL/EQL procedure successfully completed.

VARI ABLE del et ed NUVBER
EXECUTE del rows(’test _enpl oyees’, : del et ed)
PRI NT del et ed

| DELETED
| 109

‘ 14-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic SQL Using EXECUTE | MVEDI ATE

Thisisthe same dynamic SQL as seen with DBMS_SQL, using the Oracle8i statement EXECUTE
| MVEDI ATE. The EXECUTE | MVEDI ATE statement prepares (parses) and immediately executes the

dynamic SQL statement.

Introduction to Oracle9i: PL/SQL 14-11

Using the DBMs DDL Package

The DBMS_DDL Package:

* Provides access to some SQL DDL statements
from stored procedures

®* Includes some procedures:
— ALTER _COWPI LE (object_type, owner, object_name)

DBVS_DDL. ALTER_COWPI LE(' PROCEDURE' , ' A_USER ,’ QUERY_EMP')

— ANALYZE OBJECT (object_type, owner, name,
method)
DBVS_DDL. ANALYZE_OBJECT(’ TABLE' ,’ A USER ,' JOBS',’ COVPUTE')

Note: This package runs with the privileges of calling
user, rather than the package owner SYS.

14-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_DDL package
This package provides access to some SQL DDL statements, which you can use in PL/SQL programs.
DBVS_DDL is not alowed in triggers, in procedures called from Forms Builder, or in remote sessions. This
package runs with the privileges of calling user, rather than the package owner SYS.
Practical Uses
* You can recompile your modified PL/SQL program units by uBiByS DDL. ALTER COWPI LE.
The object type must be either procedure, function, package, package body, or trigger.

* You can analyze a single object, usD®VS DDL. ANALYZE OBJECT. (There is a way of
analyzing more than one object at a time, ugiByS_UTI LI TY.) The object type should be
TABLE, CLUSTER, or| NDEX. The method must lBOMPUTE, ESTI MATE, or DELETE.

» This package gives developers accegs {bER andANAL YZE SQL statements through PL/SQL
environments.

Introduction to Oracle9i: PL/SQL 14-12

Using DBMS JOB for Scheduling

DBMS JOB Enables the scheduling and execution of
PL/SQL programs:

® Submitting jobs

®* Executing jobs

* Changing execution parameters of jobs
* Removing jobs

®* Suspending Jobs

‘ 14-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Scheduling Jobs by Using DBVS_JOB

The package DBMS_JOB is used to schedule PL/SQL programs to run. Using DBMS_J OB, you can
submit PL/SQL programs for execution, execute PL/SQL programs on a schedule, identify when
PL/SQL programs should run, remove PL/SQL programs from the schedule, and suspend PL/SQL
programs from running.

It can be used to schedule batch jobs during nonpeak hours or to run maintenance programs during times
of low usage.

Introduction to Oracle9i: PL/SQL 14-13

DBVS JOB Subprograms

Available subprograms include:

e SUBM T

e REMOVE

e CHANGE

e \WWHAT

e NEXT_DATE
e | NTERVAL
e BROKEN

e RUN

‘ 14-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DBVS_JOB Subprograms

Subprogram Description

SUBM T Submits a job to the job queue

REMOVE Removes a specified job from the job queue

CHANGE Alters a specified job that has already been submitted to the

job queue (you can alter the job description, the time at
which the job will be run, or the interval between executions

of the job)
VHAT Alters the job description for a specified job
NEXT_DATE Alters the next execution time for a specified job
| NTERVAL Alters the interval between executions for a specified job
BROKEN Disables job execution (if ajob is marked as broken, the
Oracle server does not attempt to execute it)
RUN Forces a specified job to run

Introduction to Oracle9i: PL/SQL 14-14

Submitting Jobs

You can submit jobs by using DBMsS_JOB. SUBM T.
Available parameters include:

e JOB QUT BI NARY_I NTEGER

e WHAT | N VARCHAR2

* NEXT_DATE | N DATE DEFAULT SYSDATE

| NTERVAL | N VARCHAR2 DEFAULT ’ NULL'
NO_PARSE | N BOOLEAN DEFAULT FALSE

‘ 14-15 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_JOB. SUBM T Parameters

The DBMS_JOB. SUBM T procedure adds a new job to the job queue. It accepts five parameters and
returns the number of ajob submitted through the OQUT parameter JOB. The descriptions of the
parameters are listed below.

Parameter M ode | Description

JOB ouT Unique identifier of the job

WHAT I'N PL/SQL code to execute as a job

NEXT_DATE I'N N ext execution date of the job

| NTERVAL I'N Date function to compute the next execution date of ajob

NO_PARSE I'N Boolean flag that indicates whether to parse the job at job
submission (the default is false)

Note: An exception israised if theinterval does not evaluate to atime in the future.

Introduction to Oracle9i: PL/SQL 14-15

Submitting Jobs

Use DBMS _JOB. SUBM T to place a job to be executed
in the job queue.

VARI ABLE j obno NUMBER
BEG N
DBMS_JOB. SUBM T (
job => :jobno,
what => ' OVER_PACK. ADD _DEPT(’ ' EDUCATI ON' ', 2710) ;" ,
next date => TRUNC(SYSDATE + 1),
interval => ' TRUNC(SYSDATE + 1)’
);
COW T,;
END;
/
PRI NT j obno

PL/SQL procedure successfully completed.

| JOBNO
| 121

‘ 14-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The block of code in the preceding dide submits the ADD _DEPT procedure of the OVER_PACK
package to the job queue. The job number is returned through the J OB parameter. The WHAT parameter
must be enclosed in single quotation marks and must include a semicolon at the end of the text string.
Thisjob is submitted to run every day at midnight.

Note: In the example, the parameters are passed using named notation.

The transactions in the submitted job are not committed until either COMM T isissued, or
DBMS_JOB. RUNis executed to run the job. The COVM T in the dide commits the transaction.

Introduction to Oracle9i: PL/SQL 14-16

Changing Job Characteristics

e DBMS JOB. CHANGE: You can change the WHAT,
NEXT_DATE, and | NTERVAL parameters.

e DBMsS _JOB. | NTERVAL: You can change | NTERVAL
parameter.

e DBMS JOB. NEXT_DATE: You can change the next
execution date.

e DBMS JOB. WHAT: You can change the WHAT
parameter.

‘ 14-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Jobs After Being Submitted

The CHANGE, | NTERVAL, NEXT_DATE, and WHAT procedures enable you to modify job
characterigtics after ajob is submitted to the queue. Each of these procedures takes the JOB parameter as
an | N parameter indicating which job is to be changed.

Example

The following code changes job number 121 to execute on the following day at 6:00 am. and every four
hours after that.
BEG N

DBMS_JOB.CHANGE(121, NULL, TRUNC(SYSDATE+1)+6/24, 'SYSDATE+4/24";
END;
/
PL/SQL Procedure successfully completed.
Note: Each of these procedures can be executed on jobs owned by the username to which the session is
connected. If the parameter what , next_date , or interval isNULL, then the last values assigned
to those parameters are used.

Introduction to Oracle9i: PL/SQL 14-17

Running, Removing, and Breaking Jobs

e DBMS JOB. RUN: Runs a submitted job
immediately.

e DBMS_JOB. REMOVE: Removes a submitted job from
the job queue.

e DBMS JOB. BROKEN: Marks a submitted job as
broken, and a broken job will not run.

‘ 14-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Running, Removing, and Breaking Jobs

The DBMS_JOB. RUN procedure executes ajob immediately. Pass the job number that you want to run
immediately to the procedure.

EXECUTE DBMS_JOB. RUN(121)
The DBMS_JOB. REMOVE procedure removes a submitted job from the job queue. Pass the job number
that you want to remove from the queue to the procedure.

EXECUTE DBMS_JOB. REMOVE(121)
The DBMS_JOB. BROKEN marks a job as broken or not broken. Jobs are not broken by default. You
can change ajob to the broken status. A broken job will not run. There are three parametersfor this
procedure. The JOB parameter identifies the job to be marked as broken or not broken. The BROKEN
parameter is a Boolean parameter. Set this parameter to FALSE to indicate that ajob is not broken, and

set it to TRUE to indicate that it is broken. The NEXT _DATE parameter identifies the next execution date
of the jaob.

EXECUTE DBMS_JOB. BROKEN(121, TRUE)

Introduction to Oracle9i: PL/SQL 14-18

Viewing Information on Submitted Jobs

* Usethe DBA JOBS dictionary view to see the
status of submitted jobs.

SELECT job, |og_user, next_date, next_sec,
br oken, what
FROM DBA JOBS;

JOB [LOG_USER [NEXT_DATE [NEXT_SEC B | WHAT
121 [PLPU [09-MaR-01 [06:00:00 [N [OWER_PACK ADD_DEPT(EDUCATION' 2710);

* Usethe DBA JOBS RUNNI NGdictionary view to
display jobs that are currently running.

‘ 14-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Information on Submitted Jobs

The DBA JOBS and DBA_JOBS_RUNNI NGdictionary views display information about jobsin the
gueue and jobsthat have run. To be able to view the dictionary information, users should have the
SELECT privilegeon SYS. DBA_JOBS.

The query shown in the dide displays the job number, the user who submitted the job, the scheduled
date for thejob to run, the time for the job to run, and the PL/SQL block executed as ajob.

Use the USER _JOBS data dictionary view to display information about jobsin the queue for you. This
view has the same structure asthe DBA _JOBS view.

Introduction to Oracle9i: PL/SQL 14-19

Using the DBMs _OUTPUT Package

The DBM5S_OUTPUT Package enables you to output
messages from PL/SQL blocks.
Available procedures include:

e PUT

e NEW.LINE
e PUT LINE
e GET LINE
e GET_LINES

e ENABLE/ DI SABLE

14-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_QOUTPUT Package
The DBMS_OUTPUT package outputs values and messages from any PL/SQL block.

Function or Procedure Description

PUT Appends text from the procedure to the current line of the line
output buffer

NEW LI NE Placesan end_of _| i ne marker in the output buffer

PUT_LI NE Combines the action of PUT and NEW LI NE

GET_LI NE Retrieves the current line from the output buffer into the
procedure

GET_LI NES Retrieves an array of lines from the output buffer into the
procedure

ENABLE/ DI SABLE Enables or disables calls to the DBMS_OUTPUT procedures

Practical Uses

* You can output intermediary results to the window for debugging purposes.

« This package enables developers to closely follow the execution of a function or procedure by
sending messages and values to the output buffer.

Introduction to Oracle9i: PL/SQL 14-20

Interacting with Operating System Files

e UTL_FI LE Oracle-supplied package:
— Provides text file I/O capabilities
— Is available with version 7.3 and later
* The DBMS LOB Oracle-supplied package:
— Provides read-only operations on external BFI LES

— Is available with version 8 and later
— Enables read and write operations on internal LOBs

‘ 14-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Operating System Files
Two Oracle-supplied packages are provided. Y ou can use them to access operating system files.

With the Oracle-supplied UTL__FI LE package, you can read from and write to operating system files.
This package is available with database version 7.3 and later and the PL/SQL version 2.3 and later.
With the Oracle-supplied package DBMS_L OB, you can read from binary files on the operating system.

This package is available from the database version 8.0 and later. This package is discussed later in the
lesson “Manipulating Large Objects.”

Introduction to Oracle9i: PL/SQL 14-21

What Is the UTL_FI LE Package?

e Extends I/O to text files within PL/SQL

®* Provides security for directories on the server
through theinit. orafile

® |s similar to standard operating system I/O
— Open files
— Get text
— Put text
— Closefiles

— Use the exceptions specific to the UTL_FI LE
package

‘ 14-22 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_FI LE Package

The UTL_FI LE package providestext file 1/O from within PL/SQL. Client-side security
implementation uses normal operating system file permission checking. Server-side security is
implemented through restrictions on the directories that can be accessed. In thei ni t . or a file, the
initialization parameter UTL_FI LE_DI Ris set to the accessible directories desired.

UTL_FILE DIR = directory_ nane

For example, the following initiali zation setting indicates that the directory
/ usr/ ngreenbe/ ny_app isaccessibleto thef open function, assuming that the directory is
accessible to the database server processes. This parameter setting is case-sensitive on case-sensitive
operating systems.

UTL_FILE DI R = /user/ngreenbe/ ny_app

The directory should be on the same machine as the database server. Using the following setting turns
off database permissions and makes all directories that are accessible to the database server processes
also accessibleto the UTL_FI LE package.

UTL_FILE DIR = *
Using the procedures and functionsin the package, you can open files, get text from files, put text into

files, and closefiles. There are seven exceptions declared in the package to account for possible errors
raised during execution.

Introduction to Oracle9i: PL/SQL 14-22

File Processing Using the
UTL_FI LE Package

!

Get lines

—>| from the
text file ——>
Open the More Close
text file | lines to the
Put lines ,Rrocess? text file
—> into the
text file

‘ 14-23 Copyright © Oracle Corporation, 2001. All rights reserved.

File Processing Using the UTL_FI LE Package

Before using the UTL_FI LE package to read from or write to atext file you must first check whether
thetext fileis open by using the | S_OPEN function. If the fileis not open, you open the file with the
FOPEN function. Y ou then either read the file or write to the file until processing is done. At the end of
file processing, use the FCL OSE procedure to close the file.

Note: A summary of the procedures and functions within the UTL_FI LE packageislisted on the next
page.

Introduction to Oracle9i: PL/SQL 14-23

UTL_FI LE Procedures and Functions

* Function FOPEN

* Function | S_OPEN

* Procedure GET_LI NE

® Procedure PUT, PUT _LINE, PUTF
* Procedure NEW LI NE

® Procedure FFLUSH

* Procedure FCLOSE, FCLOSE ALL

‘ 14-24 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_FI LE Package: Procedures and Functions

Function or Procedure Description

FOPEN A function that opens afile for input or output and returns afile
handle used in subsequent I/O operations

I S_OPEN A function that returns a Boolean value whenever afile handle
refersto an openfile

GET_LI NE A procedure that reads a line of text from the opened file and

places the text in the output buffer parameter (the maximum size
of an input record is 1,023 bytes unless you specify alarger size
in the overloaded version of FOPEN)

PUT, PUT_LI NE A procedure that writes a text string stored in the buffer
parameter to the opened file (no line terminator is appended by
put ; usenew_ | i ne toterminatetheline, or use PUT_LI NE
to write a complete line with a terminator)

PUTF A formatted put procedure with two format specifiers: %s and
\ n (use s to substitute avalue into the output string. \ n isa
new line character)

NEW LI NE Procedure that terminates a line in an output file

FFLUSH Procedure that writes all data buffered in memory to afile
FCLOSE Procedure that closes an opened file

FCLOSE_ALL Procedure that closes all opened file handles for the session

Note: The maximum size of an input record is 1,023 bytes unless you specify alarger sizein the
overloaded version of FOPEN.

Introduction to Oracle9i: PL/SQL 14-24

Exceptions Specific to the UTL_FI LE

Package
* | NVALI D_PATH
* | NVALI D_MODE
* | NVALI D_FI LEHANDLE
* | NVALI D_OPERATI ON
* READ_ERRCR
* VR TE_ERRCR
| NTERNAL_ERROCR

‘ 14-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Exceptions to the UTL_FI LE Package

The UTL_FI LE package declares seven exceptions that are raised to indicate an error condition in the
operating system file processing.

Exception Name Description
I NVALI D_PATH Thefilelocation or filename wasinvalid.
I'NVALI D_MODE The OPEN_MODE parameter in FOPEN was invalid.

I NVALI D_FI LEHANDLE | The file handle was invalid.
I NVALI D_OPERATI ON | Thefile could not be opened or operated on as requested.

READ_ERROR An operating system error occurred during the read operation.
WRI TE_ERROR An operating system error occurred during the write operation.
| NTERNAL _ERROR An unspecified error occurred in PL/SQL.

Note: These exceptions must be prefaced with the package name.

UTL_FI LE procedures can also raise predefined PL/SQL exceptions such as NO_DATA _FOUND or
VALUE_ERROR.

Introduction to Oracle9i: PL/SQL 14-25

The FOPENand | S OPEN Functions

FUNCTI ON FOPEN

(location I N VARCHARZ,
filename I N VARCHARZ,
open_node | N VARCHAR?2)

RETURN UTL_FI LE. FI LE _TYPE;

FUNCTI ON | S_OPEN
(file_handle IN FI LE_TYPE)
RETURN BOCLEAN,

‘ 14-26 Copyright © Oracle Corporation, 2001. All rights reserved.

FOPEN Function Parameters
Syntax Definitilons

ocati on The operating-system-specific string that
specifies the directory or areain which to
open thefile
filenanme The name of thefile, including the extension,
without any pathing information
open_node A string that specifies how thefileisto be

opened; Supported values are:

r readtext (use GET_LINE)

‘w' writetext (PUT, PUT_LINE,
NEW_LINE PUTF
FFLUSH

‘a’ append text (PUT, PUT_LINE,
NEW_LINE PUTK
FFLUSH

Thereturn value isthe file handle that is passed to all subsequent routines that operate on the file.
| S OPEN Function

Thefunction | S_OPENtests afile handle to seeif it identifies an opened file. It returns a Boolean
value indicating whether the file has been opened but not yet closed.

Note: For the full syntax, refer to Oracle9i Supplied Packages PL/SQL Reference.
Introduction to Oracle9i: PL/SQL 14-26

Using UTL_FI LE

sal _status. sql

CREATE OR REPLACE PROCEDURE sal _status
(p_filedir IN VARCHAR2, p_filename I N VARCHAR2)
IS
v_fil ehandl e\ UTL_FI LE. FI LE_TYPE; ‘
CURSOR enp_info IS
SELECT | ast_nane, salary, departnent_id
FROM enpl oyees
ORDER BY departnment _id;
v_newdept no enpl oyees. depart nent _i d%YPE;
v_ol ddept no enpl oyees. departnent _i dW'YPE : = O;
BEG N
v_filehandl e : =] UTL_FILE FOPEN | (p_filedir, p_filename,'w);
[UTL_FILE PUTF | (v_filehandl e,’ SALARY REPORT: GENERATED ON
%\ n', SYSDATE);
[UTL_FILE NEWLINE |(v_filehandl e);
FOR v_enp_rec IN enp_info LOOP
v_newdeptno := v_enp_rec. department _id;

‘ 14-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Using UTL_FI LE
Example

The SAL_ STATUS procedure creates a report of employees for each department and their salaries. This
information is sent to atext file by using the UTL_FI LE procedures and functions.

Thevariablev_fi | ehandl e usesatype definedinthe UTL_FI LE package. This package defined
typeisarecord with afield caled | D of the Bl NARY _| NTECGER datatype.

TYPE file_type |'S RECORD (i d Bl NARY_| NTEGER);

Thecontentsof fi | e_t ype areprivate to the UTL_FI LE package. Users of the package should not
reference or change components of this record.

The names of the text file and the location for the text file are provided as parameters to the program.
EXECUTE sal _status(’ C:\UTLFILE , ' SAL_RPT. TXT")

Note: Thefile location shown in the above exampleis defined asvaue of UTL_FI LE DI Rin the
init.orafileasfollows. UTL_FILE DI R= C.\ UTLFI LE.

When reading a complete file in aloop, you need to exit the loop using the NO_DATA FOUND
exception. UTL_FI LE output is sent synchronousdly. DBMS_OUTPUT procedures do not produce output
until the procedure is compl eted.

Introduction to Oracle9i: PL/SQL 14-27

Using UTL_FI LE

sal status. sql

I F v_newdeptno <> v_ol ddept no THEN
‘ UTL_FI LE. PUTF Kv_fi | ehandl e, ' DEPARTMVENT: %s\n’,
v_enp_rec. departnent _id);

END I F;
|UTL_FILE PUTF |(v filehandle,’ EMPLOYEE: % earns: %s\n’,
v_enp_rec.last_nane, v_enp_rec.salary);
v_ol ddept no : = v_newdept no;
END LOOP;
[UTL_FILE PUT_LINE |(v_filehandle, '*** END OF REPORT ***');
| UTL_FILE. FCLOSE |(v_filehandl e);
EXCEPTI ON
wWieN UTL_FILE. T NVALI D_FI LEHANDLE fTHEN
RAI SE_APPL| CATI ON_ERROR (-20001, 'Invalid File.");
V\HEN UTL_FI LE. WRI TE_ERROR h'HEN

RAI SE_APPLI CATI ON_ERRCR (-20002, ’'Unable to wite to
file);

END sal _st at us;
/

‘ 14-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Using UTL_FI LE (continued)
The output for thisreportinthesal _rpt . t xt fileisasfollows:

SALARY REPORT: GENERATED ON 08- MAR-01

DEPARTMENT: 10
EMPLOYEE: Whal en earns: 4400
DEPARTMENT: 20
EMPLOYEE: Hartstein earns: 13000
EMPLOYEE: Fay earns: 6000
DEPARTMENT: 30
EMPLOYEE: Raphaely earns: 11000
EMPLOYEE: Khoo earns: 3100

DEPARTMENT: 100
EMPLOYEE: G eenberg earns: 12000

DEPARTMENT: 110
EMPLOYEE: Hi ggi ns earns: 12000
EMPLOYEE: G etz earns: 8300
EMPLOYEE: G ant earns: 7000
x END OF REPORT *

Introduction to Oracle9i: PL/SQL 14-28

UTL_HTTP Package

The UTL_HTTP Package:

* Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet

* Contains the functions REQUEST and
REQUEST _PI ECES which take the URL of a site as a
parameter, contact that site, and return the data
obtained from that site

®* Requires a proxy parameter to be specified in the
above functions, if the client is behind a firewall

* Raises | NI T_FAI LEDor REQUEST_FAI LED
exceptions if HTTP call fails

* Reports an HTML error message if specified URL
IS not accessible

‘ 14-29 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_HTTP Package

UTL_HTTP is apackage that alows you to make HT TP requests directly from the database. The
UTL_HTTP package makes hypertext transfer protocol (HTTP) callouts from PL/SQL and SQL. You can
use it to access data on the Internet or to call Oracle Web Server Cartridges. By coupling UTL_HTTP with
the DBMS_J OBS package, you can easily schedul e reoccurring requests be made from your database
server out to the Web.

This package contains two entry point functions; REQUEST and REQUEST_PI ECES. Both functions take
astring universal resource locator (URL) as a parameter, contact the site, and return the HTML data
obtained from the site. The REQUEST function returns up to the first 2000 bytes of dataretrieved from the
given URL. The REQUEST _PI ECES function returns a PL/SQL table of 2000-byte pieces of the data
retrieved from the given URL.

If the HTTP call fails, for areason such asthat the URL is not properly specified in the HTTP syntax then
the REQUEST _FAI LED exception israised. If initiaization of the HTTP-callout subsystem fails, for a
reason such as alack of available memory, thenthel NI T_FAI LED exceptionis raised.

If thereis no response from the specified URL, then aformatted HTML error message may be returned.

If REQUEST or REQUEST _PI ECES fails by returning either an exception or an error message, then verify
the URL with abrowser, to verify network availability from your machine. If you are behind afirewall,
then you need to specify proxy as a parameter, in addition to the URL.

This package is covered in more detail in the course Administering Oracle9i Application Server.
For more information, refer to Oracle9i Supplied PL/SQL Packages Reference.

Introduction to Oracle9i: PL/SQL 14-29

Using the UTL_HTTP Package

SELECT UTL_HTTP. REQUEST(’ http://ww. oracl e. coni ,
" edu- proxy. us.oracle.com)

FROM DUAL,

UTL_HTTP. REQUEST(’ HTTP: / / WAV ORACLE. COM , ' EDU- PROXY. US. ORACLE. COM)

<head>
<title>Oracle Corporation</title>

<meta http-equi v="Content-Type" content="text/htnl; charset=iso-
8859-1">

<met a nanme="description" content="COracle Corporation provides the

software that powers the Internet. For nore information about
Oracl e, please cal

| 650/506-7000. ">

<met a nanme="keywords" content="Oracle, Oracle Corporation, Oacle
Cor p,

Oracle8i, Oracle 9i, 8i, 9i">
</ head>

‘ 14-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_HTTP Package

The SELECT statement and the output in the preceding slide show how to use the REQUEST function of the
UTL_HTTP package to retrieve contents from the URL www. or acl e. com The second parameter to the
function indicates the proxy because the client being tested is behind afirewall.

Theretrieved output isin HTML format.

Y ou can use the functionin a PL/SQL block as shown below. The function retrieves up to 100 pieces of data,
each of a maximum 2000 bytes from the URL. The number of pieces and the total length of the data retrieved
are printed.
DECLARE

X UTL_HTTP. HTML_PI ECES;
BEG N

X = UTL_HTTP. REQUEST_PI ECES(' http://ww. oracl e.com’, 100,
"edu- proxy. us.oracle.com);

DBVS_OUTPUT. PUT_LI NE(x. COUNT || ' pieces were retrieved.’);
DBMS_OUTPUT. PUT_LINE('with total length ');

| F x. COUNT < 1 THEN DBMS_OUTPUT. PUT_LINE(' 0");

ELSE DBMS_OUTPUT. PUT_LI NE((2000* (x. COUNT - 1)) +LENGTH(x(x. COUNT)));
END | F;

END;

/ 9 pieces were retrieved.
with total length
16575

PLIZOL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 14-30

Using the UTL_TCP Package

The UTL_TCP Package:

* Enables PL/SQL applications to communicate with
external TCP/IP-based servers using TCP/IP

® Contains functions to open and close connections,
to read or write binary or text data to or from a
service on an open connection

* Requires remote host and port as well as local host
and port as arguments to its functions

®* Raises exceptions if the buffer size is too small,
when no more data is available to read from a
connection, when a generic network error occurs, or
when bad arguments are passed to a function call

‘ 14-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_TCP Package

The UTL_TCP package enables PL/SQL applications to communicate with external TCP/IP-based servers
using TCP/IP. Because many Internet application protocols are based on TCPF/IP, this package is useful to
PL/SQL applications that use Internet protocols.

The package contains functions such as:

OPEN_CONNECTI ON: This function opens a TCP/IP connection with the specified remote and local host
and port details. The remote host is the host providing the service. The remote port is the port number on
which the serviceislistening for connections. The local host and port numbers represent those of the host
providing the service. The function returns a connection of PL/SQL record type.

CLOSE_CONNECTI ON: This procedure closes an open TCP/IP connection. It takes the connection details
of aprevioudy opened connection as parameter. The procedure CLOSE_ALL_CONNECTI ONS closes all
open connections.

READ_BI NARY()/ TEXT()/ LI NE() : Thisfunction receives binary, text, or text line datafrom a service
0N an open connection.

WRI TE_BI NARY()/ TEXT()/ LI NE() : Thisfunction transmits binary, text, or text line messageto a
Sservice on an open connection.

Exceptions are raised when buffer size for the input is too small, when generic network error occurs, when
no more datais available to read from the connection, or when bad arguments are passed in afunction call.

This package is discussed in detail in the course Administering Oracle9i Application Server. For more
information, refer to Oracle 9i Supplied PL/SQL Packages Reference.

Introduction to Oracle9i: PL/SQL 14-31

e DBMS_ALERT

e DBMS_LOCK

Oracle-Supplied Packages

Other Oracle-supplied packages include:

e DBVS_APPLI CATION INFO ¢ DBMS_TRANSACTI ON
e DBMS_DESCRI BE e DBVS_UTILITY

e DBMS_SESSI ON

e DBMS_SHARED POOL

14-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Oracle-Supplied Packages

Package

Description

DBMS_ALERT

Provides notification of database events

DBMS_APPLI CATI ON_I NFO

Allows application tools and application developers to inform the
database of the high level of actions they are currently performing

DBMS_DESCRI BE

Returns a description of the arguments for a stored procedure

DBMS_LOCK

Requests, converts, and releases userlocks, which are managed by
the RDBM S lock management services

DBMS_SESSI ON

Provides access to SQL session information

DBMS_SHARED POOL

K eeps objects in shared memory

DBMS_TRANSACTI ON

Controls logical transactions and improves the performance of
short, nondistributed transactions

DBMS_UTI LI TY

Analyzes objects in a particular schema, checks whether the server
isrunning in parallel mode, and returns the time

Introduction to Oracle9i: PL/SQL 14-32

Oracle Supplied Packages

Thefollowing list summarizes and provides a brief description of the packages supplied with Oracle9i.

Built-in Name Description
cal endar Provides calendar maintenance functions
dbrs_al ert Supports asynchronous notification of database events

Messages or alerts are sent on a COMM T command
Message transmittal is one way, but one sender can alert
several receivers

dbrs_application_info

Is used to register an application name with the database
for auditing or performance tracking purposes

dbrs_aq

Provides message queuing as part of the Oracle server; is
used to add a message (of a predefined object type) onto a
gueue or dequeue a message

dbrms_agadm

Is used to perform administrative functions on a queue or
gueue table for messages of a predefined object type

dbns_ddl Is used to embed the equivalent of the SQL commands
ALTER COWVPI LE and ANALYZE within your PL/SQL
programs

dbms_debug A PL/SQL API to the PL/SQL debugger layer, Probe, in

the Oracle server

dbsm def er
dbrs_def er _query
dbrs_defer _sys

Is used to build and administer deferred remote procedure
calls (use of thisfeature requires the Replication Option)

dbrs_descri be

Is used to describe the arguments of a stored procedure

dbrs_distribruted
trust _admn

Is used to maintain the Trusted Serverslist, which is used
in conjunction with the list at the central authority to
determine whether a privileged database link from a
particular server can be accepted

dbrs_hs

Is used to administer heterogeneous services by
registering or dropping distributed external procedures,
remote libraries, and non-Oracle systems (you use
dbrs_hs to create or drop some initialization variables
for non-Oracle systems)

dbms_hs_ext proc

Enabl es heterogeneous services to establish security for
distributed external procedures

dbrms_hs_passt hr ough

Enabl es heterogeneous services to send pass-through SQL
statements to non-Oracle systems

dbns_i ot s used to schedule administrative procedures that you
want performed at periodic intervals; is also the interface
for the job queue

dbns_j ob I's used to schedule administrative procedures that you
want performed at periodic intervals

dbns_| ob Provides general purpose routines for operations on

Oracle large objects (LOBs) data types: BLOB, CLOB
(read only) and BFI LES (read-only)

Introduction to Oracle9i: PL/SQL 14-33

Oracle Supplied Packages (continued)

Built-in Name

Description

dbns_| ock

Is used to request, convert, and release locks through
Oracle Lock Management services

dbns_| ogmmr

Provides functionsto initialize and run the log reader

dbns_| ogmr _d

Queriesthe dictionary tables of the current database, and
creates atext based file containing their contents

dbns_offline_og

Provides public APIsfor offline instantiation of master
groups

dbrs_of f | i ne_snapshot

Provides public APIsfor offline instantiation of snapshots

dbrs_ol ap

Provides procedures for summaries, dimensions, and
query rewrites

dbns_oracl e _trace_
agent

Provides client callable interfaces to the Oracle TRACE
i nstrumentation within the Oracle7 server

dbns_oracl e _trace_
user

Provides public access to the Oracle7 rel ease server
Oracle TRACE instrumentation for the calling user

dbrs_out put

Accumulates information in abuffer so that it can be
retrieved out | ater

dbns_pcl xut i |

Provides intrapartition parallelism for creating partition-
wise local indexes

dbns_pi pe

Provides a DBMS pipe service that enables messages to
be sent between sessions

dbns_profiler

Provides a Probe Profiler API to profile existing PL/SQL
applications and identify performance bottlenecks

dbns_random

Provides a built-in random number generator

dbrms_rectifier diff

Provides APIs used to detect and resolve data
incons stencies between two replicated sites

dbns_refresh

Is used to create groups of snapshots that can be refreshed
together to atransactionally consistent point in time;
requires the Distributed option

dbrs_repair

Provides data corruption repair procedures

dbns_r epcat

Provides routines to administer and update the replication
catalog and environment; requires the Replication option

dbns_repcat _admn

Is used to create users with the privileges needed by the
symmetric replication facility; requires the Replication
option

dbns_repcat _
instatiate

Instantiates deployment templates; requiresthe
Replication option

dbns_repcat _rgt

Control s the maintenance and definition of refresh group
templates; requires the Replication option

dbrs_reputi |

Provides routines to generate shadow tables, triggers, and
packages for table replication

dbns_resource_
manager

Maintains plans, consumer groups, and plan directives; it
also provides semantics so that you may group together
changes to the plan schema

Introduction to Oracle9i: PL/SQL 14-34

Oracle Supplied Packages (continued)

Built-in Name

Description

dbns_resource_
nmanager _privs

Maintains privileges associated with resource consumer
groups

dons_rls

Provides row-level security administrative interface

dbns_row d

Is used to get information about RO Ds, including the
data block number, the object number, and other
components

dbns_sessi on

Enables programmatic use of the SQL ALTER SESSI ON
statement aswaell as other session-level commands

dbns_shar ed_pool

Is used to keep objects in shared memory, so that they are
not be aged out with the norma LRU mechanism

dbns_snapshot

Is used to refresh one or more snapshots that are not part
of the same refresh group and purge logs; use of this
feature requires the Distributed option

dbns_space

Provides segment space information not available through
standard views

dbns_space_adm n

Provides tablespace and segment space administration not
available through standard SQL

dsns_sql

Is used to write stored procedure and anonymous PL/SQL
blocks using dynamic SQL ; aso used to parse any DML
or DDL statement

dbns_st andard

Provides language fecilities that help your application
interact with the Oracle server

dbns_stats Provides amechanism for usersto view and modify
optimizer statistics gathered for database objects
dbns_trace Provides routines to start and stop PL/SQL tracing

dbns_transacti on

Provides procedures for a programmetic interface to
transaction management

dbns_tts

Checks whether if the transportable set is self-contained

dbns_utility

Provides functionality for managing procedures, reporting
errors, and other information

debug_ext proc

Is used to debug external procedures on platforms with
debuggers that can attach to arunning process

out | n_pkg Provides the interface for procedures and functions
associated with management of stored outlines

plithlm Handles index-tabl e operations

sdo_adm n Provides functions implementing spatial index creation
and maintenance for spatia objects

sdo_geom Provides functions implementing geometric operations on

spatia objects

sdo_mgrate

Provides functions for migrating spatial datafrom release
7.3.3and 7.3.4t08.1.X

sdo_tune

Provides functions for selecting parameters that determine
the behavior of the spatia indexing scheme used in the
Spatia Cartridge

Introduction to Oracle9i: PL/SQL 14-35

Oracle Supplied Packages (continued)

Built-in Name Description

st andard Declares types, exceptions, and subprograms that are
available automatically to every PL/SQL program

timeseries Provides functions that perform operations, such as
extraction, retrieval, arithmetic, and aggregation, on time
series data

timescal e Provides scale-up and scale-down functions

tstools Provides administrative tools procedures

utl _coll Enables PL/SQL programs to use collection locators to
guery and update

utl _file Enables your PL/SQL programs to read and write
operating system (OS) text files and provides a restricted
version of standard OS stream file 1/O

utl_http Enables HTTP callouts from PL/SQL and SQL to access
data on the Internet or to call Oracle Web Server
Cartridges

utl _pg Provides functions for converting COBOL numeric data
into Oracle numbers and Oracle numbers into COBOL
numeric data

utl _raw Provides SQL functions for RAWdata types that
concatenate, substr, and so on, to and from RAV

utl _ref Enables a PL/SQL program to access an object by
providing areference to the object

vir_pkg Provides analytical and conversion functions for visual
information retrieval

Introduction to Oracle9i: PL/SQL 14-36

Summary

In this lesson, you should have learned how to:

* Take advantage of a number of preconfigured
packages that are provided by Oracle

* C(Create packages by using the cat proc. sqgl script
* C(Create packages individually.

14-37 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS Packages and the Scripts to Execute Them

DBMS ALERT dbnsal rt. sql
DBMS_APPLI CATI ON_I NFO dbmsutil . sql
DBMS_DDL dbnmsutil . sql
DBMS_LOCK dbnsl ock. sql
DBMS_OUTPUT dbnsot pt . sql
DBMS_PI PE dbnspi pe. sql
DBMS_SESSI ON dbnsutil . sql
DBMS SHARED POOL dbnsspool . sql
DBMS_SQL dbnssql . sql
DBMS_TRANSACTI ON dbnmsutil . sql
DBMS_UTI LI TY dbmsutil . sql

Note: For more information about these packages and scripts, refer to Oracle9i Supplied PL/SQL Packages
Reference.

Introduction to Oracle9i: PL/SQL 14-37

Practice 14 Overview

This practice covers the following topics:

® Using DBM5S_SQL for dynamic SQL

* Using DBMS DDL to analyze a table

e Using DBM5 JOBto schedule a task

* Using UTL_FI LE to generate text reports

‘ 14-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 14 Overview

In this practice, you use DBVS_SQL to implement a procedure to drop atable. You also usethe
EXECUTE | MVEDI ATE command to drop atable. You use DBMS_DDL to analyze objectsin your
schema, and you can schedule the analyze procedure through DBMS_J OB.

In this practice, you also write a PL/SQL program that generates customer statuses into atext file.

Introduction to Oracle9i: PL/SQL 14-38

Practice 14
1 a

Create a procedure DROP_TABLE that drops the table specified in the input
parameter. Use the procedures and functions from the supplied DBMS_SQL
package.

To test the DROP_TABLE procedure, first create a new table called EMP_DUP as a
copy of the EMPLOYEES table.

Execute the DROP_TABLE procedure to drop the EMP_DUP table.

Create procedure called DROP_TABLE2 that drops the table specified in the input
parameter. Use the EXECUTE | MVEDI ATE statement.
Repeat the test outlined in steps 1b and 1c..

Create aprocedure called ANALYZE OBJECT that analyzes the given object that you
specifiedinthe input parameters. Use the DBMS_DDL package, and use the
COVPUTE method.

Test the procedure using the EMPLOYEES table. Confirm that the
ANALYZE_OBJECT procedure hasrun by querying the LAST_ANALYZED column
inthe USER_TABLES data dictionary view.
LAST ANAL
01-rAY-01

If you havetime:

4.

Schedule ANALYZE_OBJECT by using DBMS_JOB. Analyze the DEPARTVENTS
table, and schedule the job to run in five minutes time from now.

Confirm that the job has been scheduled by using USER_J OBS.

Create a procedure called CROSS_AVGSAL that generates atext file report of

employeeswho have exceeded the average salary of their department. The partia
codeisprovided for you in thefilel ab14_5. sqgl .

Y our program should accept two parameters. The first parameter identifies the output
directory. The second parameter identifies the text file name to which your procedure
writes.

Y our instructor will inform you of the directory location. When you invoke the
program, name the second parameter sal _r pt xx. t xt where xx stands for your
user number, such as 01, 15, and so on.

Add an exception handling section to handle errors that may be encountered from
using the UTL_FI LE package.

Sample output from thisfile follows:
EMPLOYEES OVER THE AVERAGE SALARY OF THEI R DEPARTMENT:
REPORT GENERATED ON 26- FEB- 01

Hart stein 20 $13, 000. 00
Raphael y 30 $11, 000. 00
Mar vi s 40 $6, 500. 00

% END OF REPORT *

Introduction to Oracle9i: PL/SQL 14-39

Introduction to Oracle9i: PL/SQL 14-40

Manipulating Large Objects

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

15-2

Compare and contrast LONGand large object (LOB)
data types

Create and maintain LOB data types
Differentiate between internal and external LOBs
Use the DBMS _LOB PL/SQL package
Describe the use of temporary LOBs

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Databases have long been used to store large objects. However, the mechanisms built into databases
have never been as useful as the new large object (LOB) datatypes provided in Oracle8. Thislesson
describes the characteristics of the new data types, comparing and contrasting them with earlier data
types. Examples, syntax, and issues regarding the LOB types are also presented.

Note: A LOB isadatatype and should not be confused with an object type.

Introduction to Oracle9i: PL/SQL 15-2

What Is a LOB?

LOBs are used to store large unstructured data such as
text, graphic images, films, and sound waveforms.

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,
conceived in LIBERTY, and dedicated
to the proposition that all men

are created equal.” MOV | e
Text Photo (BFI LE)
(CLOB) (BLOB)
15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

A LOBisadatatype that is used to store large, unstructured data such astext, graphic images, video clippings,
and so on. Structured data such as a customer record may be afew hundred bytes, but even small amounts of

multimedia data can be thousands of times larger. Also, multimedia data may reside on operating system (OS)
files, which may need to be accessed from a database.

There are four large object data types:

BLOB represents a binary large object, such as avideo clip.
CLOB represents a character large object.

NCLOBrepresents a multibyte character large object.

BFILE representsabinary file stored in an operating system binary file outside the database. The BFILE
column or attribute stores afile locator that points to the externd file.

LOBs are characterized in two ways, according to their interpretation by the Oracle server (binary or

character) and their storage aspects. LOBs can be stored internaly (inside the database) or in host files.
There are two categories of LOBs:

InternalLOBs (CLOB, NCLOB, BLOB) are stored in the database.
External files BFI LE) are stored outside the database.

The OracleBServer performs implicit conversion betwe@nOB andVARCHARZ2 data types. The other implicit
conversions betwedrOBs are not possible. For example, if the user creates a table T @itBBacolumn and

a tableS with aBLOB column, the data is not directly transferable between these two columns.

BFI LEs can be accessed only in read-only mode from an Oracle server.

Introduction to Oracle9i: PL/SQL 15-3

Contrasting LONGand LOB Data Types

LONGand LONG RAW LOB
Single LONGcolumn per table Multiple LOB columns per table
Up to 2 GB Up to 4 GB
SELECT returns data SELECT returns locator
Data stored in-line Data stored in-line or out-of-line
Sequential access to data Random access to data

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

LONGand LOB Data Types

LONG and LONG RAWdata types were previoudy used for unstructured data, such as binary images,
documents, or geographical information. These data types are superseded by the LOB data types. Oracle
9i provides a LONGto-LOB API to migrate from LONG columnsto LOB columns.

It is beneficial to discuss LOB functionality in comparison to the older types. In the bulleted list below,
LONGsrefersto LONGand LONG RAW and LOBs refersto all LOB datatypes:

* Atable can have multipleOB columns and object type attributes. A table can have only. OGNS
column.

» The maximum size dfONGs is 2 gigabyted; OBs can be up to 4 gigabytes.

* LOBsreturn the locator; LONG return the data.

» LOBsdorealocator in the table and the datain a different segment, unless the dataisless than
4,000 bytes; LONG store all datain the same data block. In addition, LOBs allow data to be stored
in a separate segment and tablespace, or in ahost file.

» LOBscan be object type attributes, LONG cannot.

LOB s support random piecewise access to the data through afile-like interface; LONG are
restricted to sequential piecewise access.

The TO_LOBfunction can be used to covert LONGand LONG RAWaluesin a column to LOBvalues.
You usethisinthe SELECTIist of asubguery in an INSERT statement.

Introduction to Oracle9i: PL/SQL 15-4

Anatomy of a LOB

The LOB column stores a locator to the LOB's value.

LOB locator EI

LOB val

LOB column OB value
of atable

15-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of a LOB
There are two distinct parts of a LOB:
« LOB value The datathat constitutes the real object being stored.
» LOB locator: A pointer to the location of the LOBvalue stored in the database.

Regardless of where the value of the LOBIs stored, alocator is stored in the row. Y ou can think of aLOB

locator as a pointer to the actua location of the LOBvalue.
A LOB column does not contain the data; it contains the locator of the LOBvalue.

When a user creates aninternal LOB the valueis stored in the LOB segment and alocator to the out-of -
line LOBvalueis placed in the LOBcolumn of the corresponding row in the table. External LOBs store the

data outside the database, so only alocator to the LOBvalueis stored in the table.

To access and manipulate LOBs without SQL DML, you must create a LOBlocator. Programmatic
interfaces operate on the LOBvalues, using these locators in a manner similar to operating system file

handles.

Introduction to Oracle9i: PL/SQL 15-5

Internal LOBs

The LOB value is stored in the database.

—

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,
conceived in LIBERTY, and dedicated
to the proposition that all men

are created equal.”

15-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Features of Internal LOBs

Theinternal LOB is stored inside the Oracle server. A BLOB, NCLOB, or CLOB can be one of the
following:

« An attribute of a user-defined type

e Acolumnin atable

e A bind or host variable

A PL/SQL variable, parameter, or result
InternalLOBs can take advantage of Oracle features such as:

e Concurrency mechanisms

« Redo logging and recovery mechanisms

» Transactions with commit or rollbacks
The BLOB data type is interpreted by the Oracle server as a bitstream, similaltONG&RAWdata type.
The CLOB data type is interpreted as a single-byte character stream.

TheNCLOB data type is interpreted as a multiple-byte character stream, based on the byte length of the
database national character set.

Introduction to Oracle9i: PL/SQL 15-6

Managing Internal LOBs

* To interact fully with LOB, file-like interfaces are
provided in:

— PL/SQL package DBMS _LOB
— Oracle Call Interface (OCI)

— Oracle Objects for object linking and embedding
(OLE)

— Pro*C/C++ and Pro*COBOL precompilers
— JDBC

® The Oracle server provides some support for LOB
management through SQL.

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Manage LOBs
Use the following method to manage an internal LOB:
1. Create and populate the table containing the LOB data type.
2. Declare andinitialize the LOB locator in the program.
3. Use SELECT FOR UPDATE to lock the row containing the LOB into the LOB locator.
4

Manipulate the LOB with DBMS_ L OB package procedures, OCI calls, Oracle Objectsfor OLE,
Oracle precompilers, or JIDBC using the LOB locator as areference to the LOB value.

Y ou can aso manage L OBs through SQL.
5. Usethe COMM T command to make any changes permanent.

Introduction to Oracle9i: PL/SQL 15-7

What Are BFI LES?

The BFI LE data type
supports an external or
file-based large object as:

* Attributes in an object type
® Column values in atable

Movie
(BFI LE)

15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

What Are BFI LEs?

BFI LEs are external large objects (LOBs) stored in operating system files outside of the database
tablespaces. The Oracle SQL data type to support these large objectsis BFI LE. The BFI LE datatype
stores alocator to the physical file. A BFI LE can bein G F, JPEG MPEG, MPER2, text, or other
formats. The External LOBs may be located on hard disks, CDROMSs, photo CDs, or any such device,
but asingle LOB cannot extend from one device to another.

The BFI LE datatypeis available so that database users can access the externa file system. The
Oracle9i server providesfor:

« Definition of BFI LE objects

» Association oBFI LE objects to corresponding external files

e Security forBFI LEs
The rest of the operations required to BE& LEs are possible through tlBBMS LOB package and the
Oracle Call Interface.

BFI LEs are read-only, so they do not participate in transactions. Any support for integrity and durability
must be provided by the operating system. The user must create the file and place it in the appropriate
directory, giving the Oracle process privileges to read the file. WharQBeés deleted, the Oracle

server does not delete the file. The administration of the actual files and the OS directory structures to
house the files is the responsibility of the database administrator (DBA), system administrator, or user.
The maximum size of an external large object is operating system dependent but cannot exceed four
gigabytes.

Note: BFI LEs are available in the Oracle8 database and in later releases.

Introduction to Oracle9i: PL/SQL 15-8

Securing BFI LEs

A €))Access
~ permissions
|

(@)

Movie
(BFI LE)

15-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Securing BFI LEs

Unauthenticated access to files on a server presents a security risk. The Oracle9i Server can act asa
security mechanism to shield the operating system from unsecured access while removing the need to
manage additiona user accounts on an enterprise computer system.

File Location and Access Privileges

The file must reside on the machine where the database exists. A time-out to read a nonexistent BFI LE
is based on the operating system value.

You can read a BFI LE in the same way as you read an internal LOB. However, there could be
restrictions related to thefile itself, such as:

* Access permissions

* File system space limits

¢ Non-Oracle manipulations of files
* OS maximum file size

The OracleBRDBMS does not provide transactional supporBbh LES. Any support for integrity and
durability must be provided by the underlying file system and the OS. Oracle backup and recovery
methods support only tHeOB locators, not the physicBFI LEs.

Introduction to Oracle9i: PL/SQL 15-9

A New Database Object: DI RECTORY

D

_ﬁ\/

User
DI RECTORY
LOB PATH=

"/oraclel/lob/’
>
Movie
(BFI LE)
15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

A New Database Object: DI RECTORY

A DI RECTORY is a honschema database object that provides for administration of access and usage of
BFI LEsin an Oracle9i Server.

A DI RECTORY specifies an dias for a directory on the file system of the server under which aBFI LE
islocated. By granting suitable privileges for these items to users, you can provide secure accessto files
in the corresponding directories on a user-by-user basis (certain directories can be made read-only,
inaccessible, and so on).

Further, these directory aliases can be used while referring to files (open, close, read, and so on) in
PL/SQL and OCI. This provides application abstraction from hard-coded path names, and gives
flexibility in portably managing file locations.

The DI RECTORY object isowned by SYS and created by the DBA (or auser with CREATE ANY

DI RECTORY privilege). Directory objects have object privileges, unlike any other nonschema object.
Privilegesto the DI RECTORY object can be granted and revoked. Logical path names are not supported.

The permissions for the actual directory are operating system dependent. They may differ from those
defined for the DI RECTORY object and could change after the creation of the DI RECTORY object.

Introduction to Oracle9i: PL/SQL 15-10

Guidelines for Creating DI RECTORY
Objects

* Do not create DI RECTORY objects on paths with
database files.

®* Limit the number of people who are given the
following system privileges:
— CREATE ANY DI RECTORY
— DROP ANY DI RECTORY

e All DI RECTORY objects are owned by SYS.

* Create directory paths and properly set
permissions before using the DI RECTORY object

so that the Oracle server can read the file.

‘ 15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Creating Di r ect ory Objects

To associate an operating system file to a BFI LE, you should first create a DI RECTORY object that is
an aiasfor the full pathname to the operating system file.
Create DI RECTORY abjects by using the following guidelines:
» Directories should point to paths that do not contain database files, because tampering with these

files could corrupt the database. Currently, onlyRBAD privilege can be given for a
DI RECTORY object.

e The system privilegeGREATE ANY DI RECTORY andDROP ANY DI RECTORY should be
used carefully and not granted to users indiscriminately.
» DIRECTORYobjects are not schema objects; all are owned by SYS

» Create the directory paths with appropriate permissions on the OS prior to creating the
DI RECTORY object. Oracle does not create the OS path.

If you migrate the database to a different operating system, you may need to change the path value of the
DI RECTORY object.

The DI RECTORY object information that you create by using @REATE DI RECTORY command is
stored in the data dictionary vieBA DI RECTORI ES andALL_DI RECTORI ES.

Introduction to Oracle9i: PL/SQL 15-11

Managing BFI LEs

®* Create an OS directory and supply files.

* Create an Oracle table with a column that holds
the BFI LE data type.

®* Create a DI RECTORY object.

* Grant privileges to read the DI RECTORY object to
users.

®* Insert rows into the table by using the BFI LENAMVE
function.

®* Declare and initialize a LOB locator in a program.
* Read the BFI LE.

‘ 15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Manage BFI LEs
Use the following method to manage the BFI LE and DI RECTORY objects:

1. Createthe OS directory (as an Oracle user) and set permissions so that the Oracle server can
read the contents of the OS directory. Load filesinto the the OS directory.

Create atable containing the BFI LE datatype in the Oracle server.
Create the DI RECTORY object.
Grant the READ privilegetoiit.

Insert rows into the table using the BFI LENAME function and associate the OS files with the
corresponding row and column intersection.

Declare and initialize the LOB locator in a program.
7. Select the row and column containing the BFI LE into the LOB locator.

8. Read the BFI LE with an OCI or aDBM5_ L OB function, using the locator as a reference to
thefile.

o~ 0D

o

Introduction to Oracle9i: PL/SQL 15-12

Preparing to Use BFI LEs

®* Create or modify an Oracle table with a column
that holds the BFI LE data type.

ALTER TABLE enpl oyees
ADD enp_vi deo BFI LE;

®* Create a DIl RECTORY object by using the CREATE
DI RECTORY command.

CREATE DI RECTORY di r_nane
AS o0s_pat h;

* Grant privileges to read the DI RECTORY object to
users.

GRANT READ ON DI RECTORY dir_nane TO
user| rol e| PUBLI C;

‘ 15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Preparing to Use BFI LEs

In order to use a BFI LE within an Oracle table, you need to have atable with a column of BFI LE type. For
the Oracle server to access an external file, the server needs to know the location of the file on the operating
system. The DI RECTORY object provides the means to specify the location of the BFI LEs. Use the
CREATE DI RECTORY command to specify the pointer to the location where your BFI LEs are stored. You
need the CREATE ANY DI RECTORY privilege.

Syntax Definition: CREATE DI RECTORY di r_nane AS os_pat h;
Where: di r_nane Name of the directory database object
0s_path Location of theBFI LEs
The following commands set up a pointer to BFI LEsin the system directory / $HOVE/ LOG_FI LES and
give users the privilege to read the BFI LEs from the directory.

DROP DI RECTORY |l og files
CREATE OR REPLACE DI RECTORY |l og files AS ’/$HOVE/ LOG FI LES ;
GRANT READ ON DI RECTORY | og_files TO PUBLI C;

Directory dropped.
Directory created.
Crant succeeded,

In a session, the number of BFI LEs that can be opened in one session is limited by the parameter
SESSI ON_ MAX_ OPEN_FI LES. This parameter issetinthei ni t. or a file. Itsdefault valueis 10.

Introduction to Oracle9i: PL/SQL 15-13

The BFI LENAME Function

Use the BFI LENAME function to initialize a BFI LE
column.

FUNCTI ON BFI LENAVE (directory _alias | N VARCHARZ,
fil enane 1 N VARCHAR2)

RETURN BFI LE;

‘ 15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The BFI LENAME Function

BFI LENAME is abuilt-in function that initializes a BFI LE column to point to an external file. Use the
BFI LENAME function as part of an | NSERT statement to initialize a BFI LE column by associating it
with aphysical filein the server file system. Y ou can use the UPDATE statement to change the reference
target of the BFI LE. A BFI LE can beinitialized to NULL and updated later by using the BFI LENAME
function.

Syntax Definitions
Wheree directory_alias Name of the DI RECTCRY database object

fil enane Name of the BFI LE to beread

Example
UPDATE enpl oyees
SET enp_video = BFI LENAME(' LOG FILES', 'King.avi’)
WHERE enpl oyee_id = 100;
Once physical files are associated with records using SQL DML, subsequent read operations on the

BFI LE can be performed using the PL/SQL DBMS_L OB package and OCI. However, these files are
read-only when accessed through BFI LES, and so they cannot be updated or deleted through BFI LEs.

Introduction to Oracle9i: PL/SQL 15-14

Loading BFI LEs

CREATE OR REPLACE PROCEDURE | oad_enp_bfile
(p_file_loc IN VARCHAR2) | S
v file BFI LE;
v_filename VARCHAR2(16);
CURSCR enp_cursor 1S
SELECT first_nanme FROM enpl oyees
WHERE departnent _id = 60 FOR UPDATE;

BEG N
FOR enp_record I N enp_cursor LOOP
v_filename := enp_record.first_nane || '.bnmp’;

v_file := BFILENAME |(p_file_loc, v_filenane);
| DBMS_LOB. FI LECPEN [(v_file);
UPDATE enpl oyees SET enp_video = v_file
VWHERE CURRENT OF enp_cursor;
DBMS_QOUTPUT. PUT_LI NE(’ LOADED FI LE: ' ||v_fil enane

|| * SIZE: * || [DBMS_LOB. GETLENGTH (v_file));

| DBMS_LOB. FI LECLOSE [(v_fiTe);
END LOOP;
END | oad_enp_bfil e;
/

‘ 15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Loading BFI LEs
Example
Load aBFI LE pointer to an image of each employee into the EMPLOYEES table by using the DBMS_LOB
package. Theimages are . bnp filesstoredinthe/ hone/ LOG_FI LES directory.
Executing the procedure yields the following results:
EXECUTE | oad_enp_bfile(’' LOG FILES)

LOADED FILE: Alexander bmp SIZE: 22358
LOADED FILE: Bruce bmp SIZE: 108052
LOADED FILE: Dawd bimp SIZE: 787326
LOADED FILE: Valh bmp SIZE: 78736
LOADED FILE: Diana bmp SIZE: 78736
PL/ZOL procedure successhilly completed.

Introduction to Oracle9i: PL/SQL 15-15

Loading BFI LEs

Use the DBMS _LOB. FI LEEXI STS function to vefiry

that the file exists in the operating system. The function
returns O if the file does not exist, and returns 1 if the
file does exist.

CREATE OR REPLACE PROCEDURE | oad_enp_bfile
(p_file_loc I N VARCHAR2)
IS
v_file BFI LE; v_fil ename VARCHAR2(16) ;
v_file_exists BOCLEAN
CURSCR enp_cursor 1S ...

BEG N
FOR enp_record I N enp_cursor LOOP
v_filenanme := enp_record.first_name || '.bnp’;

v_file := BFILENAME (p_file_loc, v_filenane);
v_file_exists := (|[DBVMS_LOB. FILEEXISTS (v_file) = 1);
IF v file exists THEN
DBMS_LOB. FI LEOPEN (v_file);

‘ 15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBVS_LOB. FI LEEXI STS

This function finds out whether a given BFI LE locator pointsto afile that actually exists on the server’s
file system. Thisisthe specification for the function:

Syntax Definitions
FUNCTI ON DBMS_LOB. FI LEEXI STS
(file_loc IN BFILE)
RETURN | NTECGER;

Where: file_loc Name of the BFI LE locator

RETURN | NTEGER Returns O if the physical file does not exist
Returns 1 if the physical file exists

If the FI LE_LOC parameter contains an invalid value, one of three exceptions may be raised.

In the example in the dide, the output of the DBMS_LOB. FI LEEXI STS function is compared with
value 1 and the result is returned to the BOOLEAN variable V_FI LE_EXI STS.

Exception Name Description
NOEXI ST_DI RECTORY | The directory does not exist.

NOPRI V_DI RECTORY Y ou do not have privileges for the directory.
I NVALI D_DI RECTORY | The directory wasinvalidated after the file was opened.
Introduction to Oracle9i: PL/SQL 15-16

Migrating from LONGto LOB

The Oracle9i server allows migration of LONGcolumns to
LOB columns.

* Data migration consists of the procedure to move
existing tables containing LONGcolumns to use LOBs.

ALTER TABLE [<schema>.] <tabl e _nane>
MODI FY (<l ong_col _name> {CLOB | BLOB | NCLOB}

* Application migration consists of changing existing LONG
applications for using LOBs.

15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating from LONGto-LOB
Oracle9i Server supportsthe LONG t o- LOB migration using API.

Data migration: Where existing tables that contain L ONG columns need to be moved to use LOB columns.
This can be done using the ALTER TABLE command. In Oracle8i, an operator named TO_LOB had to be
used to copy a LONGto aLOB. In Oracle9i, this operation can be performed using the syntax shown in the
dide.

Y ou can use the syntax shown to:
e Modify a LONG column to aCLOB or anNCLOB column
e Modify aLONG RAWcolumn to éBLOB column

The constraints of thieONG column (NULL andNOT- NULL are the only allowed constraints) are
maintained for the nelWOB columns. The default value specified for thH@NG column is also copied to
the newL OB column.

For example, if you had a table with the following definition:

CREATE TABLE Long tab (id NUMBER, |ong col LONG;

you can change tHeONG_CCOL column in tabld.ONG_TAB to theCLOB data type as follows:
ALTER TABLE Long_tab MODIFY (long_col CLOB);

For limitations on thé. ONG-to-L OB migration, refer t@racle9i Application Developer’s Guide - Large
Objects.
Application Migration: Where the existing L ONG applications change for using LOBs. Y ou can use SQL
and PL/SQL to access LONGs and LOBs. This APl is provided for both OCI and PL/SQL.

Introduction to Oracle9i: PL/SQL 15-17

Migrating From LONGto LOB

* Implicit conversion: LONG (LONG RAW or a
VARCHAR2(RAW variable to a CLOB (BLOB) variable, and
vice versa

* Explicit conversion:
— TO _CLOB() converts LONG VARCHARZ, and CHARto CLOB
— TO BLOB() converts LONG RAWand RAWto BLOB

®* Function and Procedure Parameter Passing:
— CLOBs and BLOBs as actual parameters

— VARCHAR2, LONG RAW and LONG RAWare formal
parameters, and vice versa

* LOBdatais acceptable in most of the SQL and PL/SQL
operators and built-in functions

15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating from LONGto LOB

With the new LONG-to-LOB API introduced in Oracle9i, datafrom CLOB and BLOB columns can be
referenced by regular SQL and PL/SQL statements.
Implicit assignment and parameter passing: The LONGto-LOB migration APl supports assigning a
CLOB (BLOB) variableto aLONG (LONG RAW or a VARCHARZ2 (RAW variable, and vice versa.
Explicit conversion functions: In PL/SQL, the following two new explicit conversion functions have
been added in Oracle9i to convert other data typesto CLOB and BLOB as part of LONG-to-LOB
migration:

e TO_CLOB() converts LONGVARCHARZand CHARo CLOB

e TO_BLOB() converts LONG RAWANd RAWo BLOB
TO_CHAR() is enabled to convert a CLOBto a CHARype.

Function and procedure parameter passing: This alows all the user-defined procedures and functions to
use CLOB and BLOBs as actual parameters where VARCHARZ2LONG RAWand LONG RAWfe formal
parameters, and vice versa.
Accessing in SQL and PL/SQL built-in functions and operators: A CLOBcan be passed to SQL and
PL/SQL VARCHARDuilt-in functions, behaving exactly like aVARCHAR20r the VARCHAR?2
variable can be passed into DBMS_LOB\PIs acting like a LOBlocator.
These details are discussed in detail later in this lesson.
For more information, refer to “Migrating frobfONGs toLOBs” in Oracle9i Application Developer’s
Guide - Large Objectd (OBs).

Introduction to Oracle9i: PL/SQL 15-18

The DBM5S _LOB Package

* Working with LOB often requires the use of the
Oracle-supplied package DBMS _LOB.

e DBMS LOB provides routines to access and
manipulate internal and external LOBs.

®* Oracle9i enables retrieving LOB data directly using
SQL, without using any special LOB API.

®* In PL/SQL you can define a VARCHAR2 for a CLOB
and a RAWfor BLOB.

‘ 15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The DBM5_LOB Package
In releases prior to Oraclei, you need to use the DBMS_ L OB package for retrieving data from LOBs.

To create the DBMS_LOB package, thedbnsl ob. sql and pr vt | ob. pl b scripts must be executed as
SYS. Thecat proc. sql script executes the scripts. Then users can be granted appropriate privilegesto
use the package.

The package does not support any concurrency control mechanism for BFI LE operations.
The user is responsible for locking the row containing the destination internal LOB before calling any

subprograms that involve writing to the LOB value. These DBMS_ L OB routines do not implicitly lock the
row containing the LOB.

Two constants are used in the specification of proceduresin this package: LOBMAXSI ZE and

FI LE_READONLY. These constants are used in the procedures and functions of DBMS_LOB; for
example, you can use them to achieve the maximum possible level of purity so that they can be used in
SQL expressions.

Using the DBMS_L OB Routines

Functions and proceduresin this package can be broadly classified into two types: mutators or observers.
Mutators can modify LOB values, whereas observers can only read LOB values.

» Mutators:APPEND, COPY, ERASE, TRI M WRI TE, FI LECLCSE, FI LECLOSEALL, and
FI LEOPEN

» ObserversCOVPARE, FI LEGETNAME, | NSTR, GETLENGTH, READ, SUBSTR, FI LEEXI STS,
andFI LEI SOPEN

Introduction to Oracle9i: PL/SQL 15-19

‘ 15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The DBMS _LOB Package

* Modify LOB values:

APPEND, COPY, ERASE, TRI M WRI TE, LOADFROVFI LE
* Read or examine LOB values:

GETLENGTH, | NSTR, READ, SUBSTR
* Specific to BFI LEs:

FI LECLOSE, FI LECLOSEALL, FI LEEXI STS,
FI LEGETNAME, FI LEI SOPEN, FI LEOPEN

The DBM5_LOB Package (continued)

APPEND Append the contents of the source LOB to the destination LOB
COoPY Copy all or part of the source LOB to the destination LOB
ERASE Erase all or part of aLOB

LOADFROWVFI LE |Load BFI LE datainto an internal LOB

TRIM Trim the LOB value to a specified shorter length

VRI TE Write data to the LOB from a specified offset

GETLENGTH Get the length of the LOB value

I NSTR Return the matching position of the nth occurrence of the pattern in the LOB
READ Read data from the LOB starting at the specified offset
SUBSTR Return part of the LOB value starting at the specified offset

FI LECLCSE Close thefile

FI LECLOSEALL |Close all previously opened files

FI LEEXI STS Check if the file exists on the server

FI LEGETNAME | Get the directory alias and file name

FI LElI SOPEN Check if the file was opened using the input BFI LE locators
FI LEOPEN Open afile

Introduction to Oracle9i: PL/SQL 15-20

The DBM5S _LOB Package

® NULL parameters get NULL returns.

e (Offsets:
— BLOB, BFI LE: Measured in bytes
— CLOB, NCLOB: Measured in characters

* There are no negative values for parameters.

‘ 15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_LOB Routines

All functionsin the DBMS L OB package return NULL if any input parameters are NULL . All mutator
proceduresin the DBVS_L OB package raise an exception if the destination LOB /BFI LE isinput as NULL.

Only positive, absolute offsets are alowed. They represent the number of bytes or characters from the
beginning of LOB data from which to start the operation. Negative offsets and ranges observed in SQL
string functions and operators are not allowed. Corresponding exceptions are raised upon violation. The
default value for an offset is 1, which indicates the first byte or character in the LOB value.

Similarly, only natural number values are allowed for the amount (BUFSI Z) parameter. Negative values
are not allowed.

Introduction to Oracle9i: PL/SQL 15-21

DBVS_LOB. READ and DBMS_LOB. WRI TE

PROCEDURE READ (
| obsrc | N BFI LE| BLOB| CLOB
anmount | N OUT Bl NARY_| NTEGER
of fset IN | NTEGER,
buf fer OUT RAW VARCHAR?)

PROCEDURE WRI TE (
| obdst I N OQUT BLOB| CLOB,
amount | N OUT BI NARY_I| NTEGER,
of fset I N INTEGER : = 1,
buffer IN RAWVARCHAR2) -- RAWfor BLOB

‘ 15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_LOB. READ
Call the READ procedure to read and return piecewise a specified AMOUNT of datafrom agiven LOB,
starting from OFFSET. An exception is raised when no more data remains to be read from the source
LOB. The value returned in AMOUNT will be less than the one specified, if the end of the LOB is reached
before the specified number of bytes or characters could be read. In the case of CLOBs, the character set of
datain BUFFER isthe same asthat in the LOB.
PL/SQL allows a maximum length of 32767 for RAWand VARCHAR2 parameters. Make sure the
allocated system resources are adequate to support these buffer sizes for the given number of user
sessions. Otherwise, the Oracle server raises the appropriate memory exceptions.
Note: BLOB and BFI LE return RAW the others return VARCHARZ.

DBVS_LOB. WRI TE

Call the WRI TE procedure to write piecewise a specified AMOUNT of datainto agiven LOB, from the
user-specified BUFFER, starting from an absolute OFFSET from the beginning of the LOB value.

Make sure (especially with multibyte characters) that the amount in bytes corresponds to the amount of
buffer data. WRI TE has no means of checking whether they match, and will write AMOUNT bytes of the
buffer contents into the LOB.

Introduction to Oracle9i: PL/SQL 15-22

Adding LOB Columns
to a Table

ALTER TABLE enpl oyees ADD
(resune CLOB,
pi cture BLOB) ;
Table altered.

‘ 15-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding LOB Columns to a Table

L OB columns are defined by way of SQL data definition language (DDL) asinthe ALTER TABLE
statement in the preceding slide. The contents of a LOB column is stored in the LOB segment, while the
column in the table contains only areference to that specific storage area, called the LOB locator. In
PL/SQL you can define avariable of type LOB, which contains only the value of the LOB locator.

Introduction to Oracle9i: PL/SQL 15-23

Populating LOB Columns

Insert arow into a table with LOB columns:

| NSERT | NTO enpl oyees (enployee id, first_nane,
| ast _nane, email, hire_date, job_id,
sal ary, resune, picture)
VALUES (405, 'Marvin', "Elis’, "MELLIS , SYSDATE,
" AD_ASST', 4000, EMPTY_CLOB(), NULL);

1 row created.

Initialize a LOB column using the EMPTY_BLOB() function:

UPDATE enpl oyees

SET resune = 'Date of Birth: 8 February 1951,
pi cture = EMPTY_BLOB()

WHERE enpl oyee_id = 405;

1 row updated.

‘ 15-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Populating LOB Columns

You can insert avalue directly into a LOB column by using host variablesin SQL or in PL/SQL,
3GL -embedded SQL, or OCI.

Y ou can use the specia functions EMPTY_BLOB and EMPTY_CLOB in | NSERT or UPDATE statements
of SQL DML toinitializeaNULL or non-NULL internal LOB to empty. These are available as specia
functionsin Oracle SQL DML, and are not part of the DBMS_L OB package.

Before you can start writing datato an internal LOB using OCI or the DBMVS_L OB package, the LOB
column must be made nonnull, that is, it must contain alocator that pointsto an empty or populated LOB
value. You can initidize a BLOB column’s value to empty by using the function EMPTY_BLOB in the
VALUES clause of an | NSERT statement. Similarly, a CLOB or NCLOB column’s value can be initiaized
by using the function EMPTY_CLOB.

Theresult of using the function EMPTY_CLOB() or EMPTY_BLOB() meansthat the LOB isinitialized,
but not populated with data. To populate the LOB column, you can use an update statement.
You can use an | NSERT statement to insert a new row and popul ate the LOB column at the same time.

When you create a LOB instance, the Oracle server creates and places alocator to the out-of-line LOB
valuein the LOB column of a particular row in the table. SQL, OCI, and other programmatic interfaces
operate on LOBs through these locators.

Introduction to Oracle9i: PL/SQL 15-24

Populating LOB Columns (continued)

The EMPTY_B/ CLOB() function can be used asa DEFAULT column constraint, asin the example
below. Thisinitializes the LOB columns with locators.

CREATE TABLE enp_hiredata
(enpl oyee_id NUMBER(6) ,
first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(25) ,
resumne CLOB DEFAULT EMPTY_CLOB(),
pi cture BLOB DEFAULT EMPTY _BLOB());

Tabl e creat ed.

Introduction to Oracle9i: PL/SQL 15-25

Updating LOB by Using SQL

UPDATE CLOB column

UPDATE enpl oyees
SET resune = 'Date of Birth: 1 June 1956’
WHERE enpl oyee_id = 170;

1 row updated.

‘ 15-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB by Using SQL

Y ou can update a LOB column by setting it to another LOB value, to NULL, or by using the empty
function appropriate for the LOB datatype (EMPTY_CLOB() or EMPTY_BLOB()). You can update
the LOB using a bind variable in embedded SQL, the value of which may be NULL, empty, or
populated. When you set one LOB equal to another, anew copy of the LOB valueis created. These
actions do not require a SELECT FOR UPDATE statement. Y ou must lock the row prior to the update
only when updating a piece of the LOB.

Introduction to Oracle9i: PL/SQL 15-26

Updating LOB by Using DBMS LOB in

PL/SQL
DECLARE
| obl oc CLOB; -- serves as the LOB | ocator
t ext VARCHAR2(32767) : =" Resi gned: 5 August 2000’ ;
amount NUMBER ; -- ampunt to be witten
of f set | NTECER; -- where to start witing
BEG N

SELECT resune | NTO | obl oc
FROM enpl oyees
WHERE enpl oyee id = 405 FOR UPDATE;

of fset :=|[DBMS_LOB. GETLENGTH || obl oc) + 2;

amount : = length(text);

| DBM5_LOB. WRI TE | (| obl oc, ampunt, offset, text);
t ext := ' Resigned: 30 Septenber 2000’ ;

SELECT resune | NTO | obl oc
FROM enpl oyees
WHERE enpl oyee id = 170 FOR UPDATE;

anount := length(text);
\ DBMS_LOB. VWRI TEAPPEND (I obl oc, anount, text);
COW T;

END;

‘ 15-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB\ by Using DBM5 _LOB in PL/SQL

In the example in the previous dide, the LOBLCOC variable serves as the LOB locator, and the AMOUNT
variableis set to the length of the text you want to add. The SELECT FOR UPDATE statement locks the
row and returns the LOB locator for the RESUVE LOB column. Finaly, the PL/SQL package procedure
VARl TE is called to write the text into the LOB value at the specified offset. WRI TEAPPEND appends to
the existing LOB value.

The exampl e shows how to fetch a CLOB column in releases before Oracle9i. In those releases, it was not
possibleto fetch a CLOB column directly into a character column. The column value needed to be bound
to aLOB locator, which is accessed by the DBVS_ L OB package. An example later in thislesson shows
that you can directly fetch a CLOB column by binding it to a character variable.

Note: In versions prior to Oracle9i, Oracle did not allow LOBs in the WHERE clause of UPDATE and
SELECT. Now SQL functions of LOBs are allowed in predicates of WHERE. An example is shown later in
this lesson.

Introduction to Oracle9i: PL/SQL 15-27

Selecting CLOB Values by Using SQL

SELECT enpl oyee_id, |ast_nanme , resune -- CLOB
FROM enpl oyees
WHERE enpl oyee id IN (405, 170);

[EMPLOYEE_ID [LAST MAME | RESUME
[170 |Fox [Date of Birth: 1 June 1956 Resigned = 30 Septernber 2000
[405 [Ellis |Date of Birth: 8 February 1951 Resigned = 5 August 2000

2 rows selected.

‘ 15-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using SQL

It is possible to see the datain a CLOB column by using a SELECT statement. It is not possible to
seethe datain a BLOB or BFI LE column by using a SELECT statement in iSQL*Plus. Y ou haveto
use atool that can display binary information for a BLOB, as well as the relevant software for a

BFI LE; for example, you can use Oracle Forms.

Introduction to Oracle9i: PL/SQL 15-28

Selecting CLOB Values by Using DBMS LOB

e DBMS LOB. SUBSTR(lob_column, no_of chars, starting)
e DBMS LOB. | NSTR (lob_column, pattern)

SELECT DBMS _LOB. SUBSTR (resune, 5, 18),
DBVMS_LOB. | NSTR (resune,’ =)

FROM enpl oyees

WHERE enpl oyee_id IN (170, 405);

DENS _LORSUBSTRRESIME 5, 18] DHMS LOB IHSTRRESUME, =
Jira : -]
by a0

2 s dlacied

‘ 15-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using SQL (continued)
DBMS_LOB. SUBSTR
Use DBMS_LOB. SUBSTRto display part of aLOB. It issimilar in functionality to the SQL function
SUBSTR.
DBMS_LOB. | NSTR
Use DBMS LOB. | NSTRto search for information within the LOB. This function returns the
numerical position of the information.
Note: Starting with Oracle9i, you can also use SQL functions SUBSTR and | NSTR to perform the
operations shown in the preceding slide.

Introduction to Oracle9i: PL/SQL 15-29

Selecting CLOB Values in PL/SQL

DECLARE
t ext VARCHAR2(4001);

BEG N

SELECT|resune I NTO text |

FROM enpl oyees

WHERE enpl oyee_id = 170;

DBMS_COUTPUT. PUT_LI NE(' text is: "|| text);
END;
/

textis: Date of Birth: 1 June 1956 Resigned: 20 September 2000 Resigned: 30
Eeptember 2000

15-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values in PL/SQL

The preceding dide shows the code for accessing CLOB values that can be implicitly converted to
VARCHAR? in Oracle9i. The value of the column RESUME, when selected into a VARCHARZ variable
TEXT, isimplicitly converted.

In prior releases, to access a CLOB column, first you need to retrieve the CLOB column valueinto a
CL OB variable and specify the amount and offset size. Then you use the DBVS_ L OB package to read the
selected value. The code using DBVS_LOB isasfollows:
DECLARE
rl ob cl ob;
t ext VARCHAR2(4001);
amt nunber : = 4001;
of fset nunmber := 1;
BEG N
SELECT resune INTO rlob
FROM enpl oyees
VWHERE enpl oyee_id = 170;
DBVS_LOB. READ(r | ob, amt, offset, text);
DBVS _OUTPUT. PUT_LINE('text is: || text);
END;
/

text is: Date of Birth: 1 June 1956 Eesigned = 30 September 2000
PLIZQL procedure successfully completed.

Introduction to Oracle9i: PL/SQL 15-30

Removing LOBs

Delete a row containing LOBs:

DELETE
FROM enpl oyees
VWHERE enpl oyee_id = 405;

1 rewr deleted

Disassociate a LOB value from arow:

UPDATE enpl oyees
SET resune = EMPTY_CLOB()
VWHERE enpl oyee id = 170;

1 s e dared]

‘ 15-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing LOBs

A LOB ingtance can be deleted (destroyed) using appropriate SQL DML statements. The SQL statement
DELETE deletes arow and its associated internal LOB value. To preserve the row and destroy only the
reference to the LOB, you must update the row, BY replacing the LOB column value with NULL or an
empty string, or by using the EMPTY_B/CLOB() function.

Note: Replacing a column value with NULL and using EMPTY_B/CLOB are not the same. Using NULL
setsthe value to null, using EMPTY _B/CL OB ensures there is nothing in the column.

A LOB is destroyed when the row containing the LOB column is deleted when the table is dropped or
truncated, or implicitly when al the LOB datais updated.

Y ou must explicitly remove the file associated with a BFI LE using operating system commands.
To erase part of aninterna LOB, you can use DBMS_LOB. ERASE.

Introduction to Oracle9i: PL/SQL 15-31

Temporary LOBs

® Temporary LOBs:
— Provide an interface to support creation of LOBs
that act like local variables
— Can be BLOBs, CLOBs, or NCLOBs

— Are not associated with a specific table

— Are created using DBVS_LOB. CREATETEMPORARY
procedure

— Use DBMS_LOBroutines
®* The lifetime of atemporary LOBis a session.

* Temporary LOBs are useful for transforming data
in permanent internal LOBs.

‘ 15-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Temporary LOBs
Temporary LOBs provide an interface to support the creation and deletion of LOBs that act like local
variables. Temporary LOBs can be BLOBs, CLOBs, or NCLOBs.
Features of temporary LOBs:
» Data is stored in your temporary tablespace, not in tables
» TemporaryLOBs are faster than persisten®Bs because they do not generate any redo or rollback
information

» TemporarnLOBs lookup is localized to each user’s own session; only the user who creates a
temporary.OB can access it, and all tempor&@Bs are deleted at the end of the session in
which they were created

* You can create a tempordrB usingDBMS_LOB. CREATETEMPORARY

TemporarnlOBs are useful when you want to perform some transformational operationGi) for
example, changing an image type from GIF to JPEG. A tempb@Bys empty when created and does
not support th&VPTY_B/ CLOB functions.

Use theDBMS L OB package to use and manipulate tempotadigs.

Introduction to Oracle9i: PL/SQL 15-32

Creating a Temporary LOB

PL/SQL procedure to create and test a temporary LOB:

CREATE OR REPLACE PROCEDURE | sTenpLOBOpen
(p_lob_loc IN QUT BLOB, p_retval OQUT | NTEGER)
IS
BEG N
-- create a tenporary LOB
DBVB_LOB. CREATETEMPORARY (p_l ob_l oc, TRUE);
-- see if the LOBis open: returns 1 if open

p_retval := DBVM5 _LOB.1SOPEN (p_lob _loc);
DBVS_QUTPUT. PUT_LINE (' The file returned a val ue
|| p_retval);

-- free the tenporary LOB
DBVS_LOB. FREETEMPORARY (p_l ob_| oc);
END;
/

Frooedre encabed

15-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Temporary LOB

The example in the preceding dlide shows a user-defined PL/SQL procedure, | sTenpLOBQOpen, that
creates atemporary LOB. This procedure accepts a LOB locator as input, creates atemporary LOB,
opensit, and tests whether the LOB is open.

Thel sTenpLOBOpen procedure uses the procedures and functions from the DBMS_ L OB package as
follows:

 TheCREATETEMPORARY procedure is used to create the tempokiig

» Thel SOPEN function is used to test whetheL @B is open: this function returns the value 1 if
theLOBis open

 TheFREETEMPORARY procedure is used to free the tempola®B; memory increases
incrementally as the number of tempora@Bs grows, and you can reuse tempota®B space
in your session by explicitly freeing temporar¢Bs

Introduction to Oracle9i: PL/SQL 15-33

Summary

In this lesson, you should have learned how to:

* |dentify four built-in types for large objects: BLOB,
CLOB, NCLOB, and BFI LE

®* Describe how LOBs replace LONGand LONG RAW

®* Describe two storage options for LOBs:
— The Oracle server (internal LOBs)
— External host files (external LOBs)

* Usethe DBMS LOB PL/SQL package to provide
routines for LOB management

® Usetemporary LOBs in a session

‘ 15-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
There are four LOB data types:
* ABLOBIis a binary large object
» A CLOBIis a character large object
* A NCLOB stores multibyte national character set data
» A BFI LEis a large object stored in a binary file outside the database
LOBs can be stored internally (in the database) or externally (in an operating system file).
You can managkeOBs by using thédBMS_LOB package and its procedures.

TemporaryOBs provide an interface to support the creation and deletib@®d that act like local
variables.

Introduction to Oracle9i: PL/SQL 15-34

Practice 15 Overview

This practice covers the following topics:

®* Creating object types, using the new data types
CLOB and BLOB

* Creating a table with LOB data types as columns

* Using the DBM5S_LOB package to populate and
interact with the LOB data

‘ 15-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 Overview

In this practice you create atable with both BLOB and CLOB columns. Then, you use the DBVS_LOB
package to populate the table and manipulate the data.

Introduction to Oracle9i: PL/SQL 15-35

Practice 15

1. Create atable called PERSONNEL by executing the script filel ab15_1. sql . Thetable contains
the following attributes and data types:

Column Name Datatype Length
I D NUVBER 6

| ast _nane VARCHAR2 35
review CLOB N/A

pi cture BLOB N/A

2. Insert two rowsinto the PERSONNEL table, one each for employees 2034 and 2035. Use the empty
function for the CLOB, and provide NULL asthe value for the BLOB.

3. Examine and executethe script | ab15 3. sql . The script creates atable named REVI EW TABLE.
This table contains annual review information for each employee. The script aso contains two
statements to insert review details for two employees.

4. Update the PERSONNEL table.

a. Populate the CLOB for the first record, using the following subquery in a SQL UPDATE
statement:
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2034,
b. Populate the CLOB for the second record, using PL/SQL and the DBMS L OB package. Use the
following SELECT statement to provide avalue.
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2035;

Introduction to Oracle9i: PL/SQL 15-36

Practice 15 (continued)
If you havetime...

5. Cresate aprocedure that adds alocator to abinary fileinto the Pl CTURE column in the COUNTRI ES
table. The binary fileis a picture of the country. The image files are named after the country IDs. You
need to load an image file locator into al rowsin Europe region (REA ON_| D= 1) inthe
COUNTRI ES table. The DI RECTORY object name that stores a pointer to the location of the binary
filesis called COUNTRY_PI C. This object is already created for you.

a. Usethe command below to add the image column to the COUNTRI ES table
ALTER TABLE countries ADD (picture BFILE);
b. CreateaPL/SQL procedurecalled| oad_count ry_i mage that reads alocator into

your picture column. Have the program test to seeif the file exists, using the function
DBVS _LOB. FI LEEXI STS. If thefileis not existing, your procedure should display a

message that the file can not be opened. Have your program report information about the
load to the screen.

c. Invoke the procedure by passing the name of the directory object COUNTRY_PI Cas
parameter. Note that you should pass the directory object in single quotation marks.

Sample output follows:

LOADI NG LOCATORS TO PI CTURES. . .

LOADED LOCATOR TO FILE: Be.tif SIZE: 24556
LOADED LOCATOR TO FILE: Ch.tif SIZE: 44744
LOADED LOCATOR TO FILE: De.tif SIZE: 9116

TOTAL FI LES UPDATED: 8

Introduction to Oracle9i: PL/SQL 15-37

Introduction to Oracle9i: PL/SQL 15-38

Creating Database Triggers

Copyright © Oracle Corporation, 2001. All rights reserved.

16-2

Objectives

After completing this lesson, you should be able to
do the following:

Describe different types of triggers
Describe database triggers and their use
Create database triggers

Describe database trigger firing rules
Remove database triggers

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to create and use database triggers.

Introduction to Oracle9i: PL/SQL 16-2

Types of Triggers

A trigger:

* |saPL/SQL block or a PL/SQL procedure
associated with a table, view, schema, or the
database

* Executes implicitly whenever a particular event
takes place

®* (Can be either:

— Application trigger: Fires whenever an event occurs
with a particular application

— Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Triggers

Application triggers execute implicitly whenever a particular data manipulation language (DML) event
occurs within an application. An example of an application that uses triggers extensively is one

devel oped with Oracle Forms Devel oper.

Database triggers execute implicitly when a data event such as DML on atable (an | NSERT, UPDATE,
or DELETE triggering statement), an | NSTEAD CF trigger on aview, or data definition language (DDL)
statements such as CREATE and ALTER are issued, no matter which user is connected or which
application is used. Database triggers a so execute implicitly when some user actions or database system
actions occur, for example, when a user logs on, or the DBA shut downs the database.

Note: Database triggers can be defined on tables and on views. If a DML operation isissued on a view,
the | NSTEAD OF trigger defines what actions take place. If these actions include DML operations on
tables, then any triggers on the base tables are fired.

Database triggers can be system triggers on a database or a schema. With a database, triggersfire for
each event for all users; with a schema, triggers fire for each event for that specific user.

This course covers creating database triggers. Creating database triggers based on system eventsis
discussed in the lesson “More Trigger Concepts.”

Introduction to Oracle9i: PL/SQL 16-3

Guidelines for Designing Triggers

* Design triggers to:

— Perform related actions

— Centralize global operations
* Do not design triggers:

— Where functionality is already built into the Oracle
server

— That duplicate other triggers

®* Create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy

®* The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications

16-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Designing Triggers

Use triggers to guarantee that when a specific operation is performed, related actions are performed.

Use database triggers only for centralized, global operations that should be fired for the triggering
statement, regardless of which user or application issues the statement.

Do not define triggers to duplicate or replace the functionality already built into the Oracle database.
For example do not define triggers to implement integrity rules that can be done by using declarative
constraints. An easy way to remember the design order for a business rule is to:

— Use built-in constraints in the Oracle server such as, primary key, foreign key and so on

— Develop database trigger or develop an application such as a servlet or Enterprise JavaBean
(EJB) on your middle tier
— If you cannot develop your business rule as mentioned above, it might be a presentation rule
and hence use the presentation interface such as Oracle Forms, dynamic HTML, Java
ServerPages (JSP) and so on
The excessive use of triggers can result in complex interdependencies, which may be difficult to
maintain in large applications. Only use triggers when necessary, and beware of recursive and
cascading effects.

If the logic for the trigger is very lengthy, create stored procedures with the logic and invoke them in
the trigger body.

Note that database triggers fire for every user each time the event occurs on which the trigger is
created.

Introduction to Oracle9i: PL/SQL 16-4

Database Trigger: Example

Application

I NSERT | NTO EMPLOYEES

EMPLOYEES table Y CHECK SAL trigger
EMPLOYEE_ID | LAST_MNAME JOE_ID SALARY
100 King AD_PRES 24000
101 Fochhar AD VP 1rong
%
102 De Haan AD VP 17000
103 Hunold IT_PROG a000
16-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a Database Trigger

In this example, the database trigger CHECK _SAL checks salary values whenever any application tries
toinsert arow into the EMPLOYEES table. Vauesthat are out of range according to the job category
can be rejected, or can be alowed and recorded in an audit table.

Introduction to Oracle9i: PL/SQL 16-5

Creating DML Triggers

A triggering statement contains:
* Trigger timing

— For table: BEFORE, AFTER

— For view: | NSTEAD OF

* Triggering event: | NSERT, UPDATE, or DELETE
®* Table name: On table, view

* Trigger type: Row or statement

* \WWHEN clause: Restricting condition

* Trigger body: PL/SQL block

16-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Trigger

Before coding the trigger body, decide on the values of the components of the trigger: the trigger timing,
the triggering event, and the trigger type.

Part Description Possible Values
Trigger timing When the trigger firesin relation to the BEFORE
triggering event AFTER
| NSTEAD OF

Triggering event Which data manipulation operation on the || NSERT
table or view causes the trigger to fire UPDATE

DELETE
Trigger type How many times the trigger body Statement
executes Row
Trigger body What action the trigger performs Complete PL/SQL block

If multiple triggers are defined for atable, be aware that the order in which multiple triggers of the same
typefireisarbitrary. To ensure that triggers of the same type are fired in a particular order, consolidate
the triggersinto one trigger that calls separate procedures in the desired order.

Introduction to Oracle9i: PL/SQL 16-6

DML Trigger Components

Trigger timing: When should the trigger fire?

e BEFORE: Execute the trigger body before the
triggering DML event on a table.

* AFTER: Execute the trigger body after the
triggering DML event on a table.

* | NSTEAD OF: Execute the trigger body instead of
the triggering statement. This is used for views
that are not otherwise modifiable.

16-7 Copyright © Oracle Corporation, 2001. All rights reserved.

BEFORE Triggers
Thistype of trigger is frequently used in the following situations:

» To determine whether that triggering statement should be allowed to complete. (This situation
enables you to eliminate unnecessary processing of the triggering statement and its eventual
rollback in cases where an exception is raised in the triggering action.)

* To derive column values before completing a triggeriNGERT or UPDATE statement.
» Toinitialize global variables or flags, and to validate complex business rules.

AFTERTriggers
This type of trigger is frequently used in the following situations:
» To complete the triggering statement before executing the triggering action.
» To perform different actions on the same triggering stateme®EFORE trigger is already
present.
| NSTEAD OF Triggers
This type of trigger is used to provide a transparent way of modifying views that cannot be modified
directly through SQL DML statements because the view is not inherently modifiable.
You can writel NSERT, UPDATE, andDELETE statements against the view. THRSTEAD OF
trigger works invisibly in the background performing the action coded in the trigger body directly on
the underlying tables.

Introduction to Oracle9i: PL/SQL 16-7

DML Trigger Components

Triggering user event: Which DML statement causes
the trigger to execute? You can use any of the

following:
e | NSERT
e UPDATE
e DELETE
16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The Triggering Event
Thetriggering event or statement can be an | NSERT, UPDATE, or DELETE statement on atable.

* When the triggering event is &fPDATE statement, you can include a column list to identify

which columns must be changed to fire the trigger. You cannot specify a column list for an
| NSERT or for aDELETE statement, because they always affect entire rows.

UPDATE OF sal ary .

* The triggering event can contain one, two, or all three of these DML operations.
| NSERT or UPDATE or DELETE

| NSERT or UPDATE OF job_id .

Introduction to Oracle9i: PL/SQL 16-8

DML Trigger Components

Trigger type: Should the trigger body execute for each
row the statement affects or only once?

e Statement: The trigger body executes once for the
triggering event. This is the default. A statement
trigger fires once, even if no rows are affected at all.

* Row: The trigger body executes once for each row
affected by the triggering event. A row trigger is not
executed if the triggering event affects no rows.

16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Statement Triggers and Row Triggers

Y ou can specify that the trigger will be executed once for every row affected by the triggering statement
(such as amultiple row UPDATE) or once for the triggering statement, no matter how many rows it
affects.

Statement Trigger
A statement trigger is fired once on behalf of the triggering event, even if no rows are affected at al.

Statement triggers are useful if the trigger action does not depend on the data from rows that are affected
or on data provided by the triggering event itsdlf: for example, atrigger that performs a complex security
check on the current user.

Row Trigger

A row trigger fires each time the table is affected by the triggering event. If the triggering event affects
Nno rows, arow trigger is not executed.

Row triggers are useful if the trigger action depends on data of rowsthat are affected or on data
provided by the triggering event itself.

Introduction to Oracle9i: PL/SQL 16-9

DML Trigger Components

Trigger body: What action should the trigger perform?

The trigger body is a PL/SQL block or a call to a
procedure.

16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Body

Thetrigger action defines what needs to be done when the triggering event isissued. The PL/SQL block
can contain SQL and PL/SQL statements, and can define PL/SQL constructs such as variables, cursors,
exceptions, and so on. You can aso call aPL/SQL procedure or a Java procedure.

Additionally, row triggers use correlation names to access the old and new column values of the row being
processed by the trigger.

Note: The size of atrigger cannot be morethan 32 K.

Introduction to Oracle9i: PL/SQL 16-10

Firing Sequence

Use the following firing sequence for a trigger on a
table, when a single row is manipulated:
DML statement

| NSERT | NTO departnents (departnent id,
departnment _nane, | ocation_id)
VALUES (400, ' CONSULTING , 2400);

1 row created.
Triggering action —> BEFORE statement trigger
DEPARTMENT_ID DEPARTMENT NAME LOCATION_ID
10 Administration 1700
20 Marketing 1300
30 Purchasing 1700
' ' —> BEFORE row trigger
400 COMELLTIMG 2400

» AFTERrow trigger
—> AFTER statement trigger

16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Row or Statement Triggers

Create a statement trigger or arow trigger based on the requirement that the trigger must fire once for
each row affected by the triggering statement, or just once for the triggering statement, regardless of the
number of rows affected.

When the triggering data manipulation statement affects a single row, both the statement trigger and the
row trigger fire exactly once.

Example

This SQL statement does not differentiate statement triggers from row triggers, because exactly one row
isinserted into the table using this syntax.

Introduction to Oracle9i: PL/SQL 16-11

Firing Sequence

Use the following firing sequence for a trigger on a
table, when many rows are manipulated:
UPDATE enpl oyees

SET salary = salary * 1.1
VWHERE departnent _id = 30;

6 rows updated.

——> BEFORE statement trigger
DEPARTMENT _ID

EMPLOYEE_ID LAST_NAME _
114 Raphaely 30——; BEFORE row trigger
115 \Khoo 30 AFTERTrow trigger

| |
: :
| 116 Baida | 3T BEFORE row trigger
| |
| |
| |

> .
117 Tobias 30 ,IO:IIZTER row trigger

118 Himuro 30 _

119 Colmenares 35> BEFORErow trigger
> AFTERrow trigger

—> AFTER statement trigger

16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Row or Statement Triggers (continued)

When the triggering data manipul ation statement affects many rows, the statement trigger fires exactly
once, and the row trigger fires once for every row affected by the statement.

Example

The SQL statement in the dide above causes arow-level trigger to fire a number of times equal to the
number of rowsthat satisfy the WHERE clause, that is, the number of employees reporting to department
30.

Introduction to Oracle9i: PL/SQL 16-12

Syntax for Creating
DML Statement Triggers

Syntax:

CREATE [OR REPLACE] TRI GGER trigger_nane
timng
eventl [OR event2 OR event 3|
ON tabl e_nane
trigger_ body

Note: Trigger names must be unique with respect to
other triggers in the same schema.

16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating a Statement Trigger

trigger nane Is the name of the trigger

timng Indicates the time when the trigger firesin relation to the

triggering event:
BEFORE
AFTER

event Identifies the data manipulation operation that causes the

trigger to fire:
| NSERT

UPDATE [OF col unm]
DELETE

t abl e/ vi ew_nane | Indicates the table associated with the trigger

trigger body Is the trigger body that defines the action performed by the
trigger, beginning with either DECLARE or BEGI N, ending
with END, or a call to a procedure

Trigger names must be unique with respect to other triggers in the same schema. Trigger names do not
need to be unique with respect to other schema objects, such astables, views, and procedures.

Using column names a ong with the UPDATE clause in the trigger improves performance, because the
trigger fires only when that particular column is updated and thus avoids unintended firing when any
other column is updated.

Introduction to Oracle9i: PL/SQL 16-13

Creating DML Statement Triggers

Example:

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT ON enpl oyees
BEG N
| F (TO CHAR(SYSDATE,’ DY) IN ("SAT,”SUN)) OR
(TO CHAR(SYSDATE, * HH24: M ")
NOT BETWEEN ' 08: 00’ AND ' 18:00')
THEN RAI SE_APPLI CATI ON_ERROR (-20500, ' You may
i nsert into EMPLOYEES table only
duri ng business hours.’);
END | F;
END,
/

Trigger created.

16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML Statement Triggers

Y ou can create a BEFORE statement trigger in order to prevent the triggering operation from succeeding
if acertain condition is violated.

For example, create atrigger to restrict inserts into the EMPLOYEES table to certain business hours,
Monday through Friday.

If auser attemptsto insert arow into the EMPLOYEES table on Saturday, the user sees the message, the

trigger fails, and the triggering statement is rolled back. Remember that the
RAI SE_APPLI CATI ON_ERRCRis aserver-side built-in procedure that returns an error to the user

and causes the PL/SQL block to fail.

When a database trigger fails, the triggering statement is automatically rolled back by the Oracle
server.

Introduction to Oracle9i: PL/SQL 16-14

Testing SECURE_EMP

| NSERT | NTO enpl oyees (enpl oyee id, |ast_nane,
first _nane, enmail, hire_date,
job_id, salary, departnent _id)
VALUES (300, "Smith’, "Rob’, 'RSM TH , SYSDATE,
"I T_PROG, 4500, 60);

INSERT INTO employees (employee id, last name, first name, ernail,
+

ERROF at line 1:

ORA-20500: You may only insert into EMPLOYEES during

business hours.

ORA-06512: at "MEWPL. SECTURE EMP", line 4

ORA-04088: error during execution of trigger NMEWFL.SECTURE EME!

16-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Insert arow into the EMPLOYEES table during nonbusiness hours.

Introduction to Oracle9i: PL/SQL 16-15

Using Conditional Predicates

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT OR UPDATE OR DELETE ON enpl oyees
BEG N
I F (TO_CHAR (SYSDATE, DY') IN (" SAT,”SUN)) OR
(TO_CHAR (SYSDATE, ’'HH24’) NOT BETWEEN ' 08 AND ' 18’)
THEN
IF | DELETI NG| THEN
RAI SE_APPLI CATI ON_ERROR (-20502,’ You nay delete from
EMPLOYEES t abl e only during business hours.’);
ELSI F [| NSERTI NG| THEN
RAI SE_APPLI CATI ON_ERRCR (-20500, ' You may insert into
EMPLOYEES t abl e only during business hours.’);
ELSI F [UPDATI NG (' SALARY')| THEN
RAI SE_APPLI CATI ON_ERROR (-20503,’ You nmay update
SALARY only during business hours.’);

ELSE
RAI SE_APPLI CATI ON_ERROR (-20504,’ You nmay update
EMPLOYEES table only during normal hours.’);
END | F;
END | F;
END;

16-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Combining Triggering Events

Y ou can combine severa triggering events into one by taking advantage of the specia conditional
predicates | NSERTI NG, UPDATI NG, and DELETI NGwithin the trigger body.

Example

Create one trigger to restrict al data manipulation events on the EMPLOYEES table to certain business
hours, Monday through Friday.

Introduction to Oracle9i: PL/SQL 16-16

Creating a DML Row Trigger

Syntax:

CREATE [OR REPLACE] TRI GGER trigger_nanme

timng

eventl [OR event2 OR event 3]
ON tabl e_nane

[REFERENCI NG OLD AS o/d | NEW AS new
FOR EACH ROW

[WHEN (condi tion)]
trigger_body

16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating a Row Trigger

trigger_nane Is the name of the trigger
timng Indicates the time when the trigger fires in relation to the triggering event:
BEFORE
AFTER
| NSTEAD OF
event Identifies the data manipulation operation that causes the trigger to fire:
| NSERT
UPDATE [OF col unmj
DELETE
t abl e_nane Indicates the table associated with the trigger
REFERENCI NG Specifies correlation names for the old and new values of the current row

(The default values are OLD and NEW
FOR EACH ROW | Designates that the trigger is arow trigger

VWHEN Specifies the trigger restriction (This conditional predicate must be
enclosed in parenthesis and is evaluated for each row to determine whether
or not the trigger body is executed)

trigger body Isthe trigger body that defines the action performed by the trigger,
beginning with either DECLARE or BEA N, ending with END, or acall to a
procedure

Introduction to Oracle9i: PL/SQL 16-17

Creating DML Row Triggers

CREATE OR REPLACE TRI GCGER restrict_sal ary
BEFORE | NSERT OR UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
BEG N
IF NOT (:NEWjob id IN ("AD PRES, "AD VP))
AND : NEW sal ary > 15000
THEN
RAI SE_APPLI CATI ON_ERROR (-20202, "’ Enpl oyee
cannot earn this anmount’);
END | F;
END;
/

Trigger created.

‘ 16-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Row Trigger

Y ou can create a BEFORE row trigger in order to prevent the triggering operation from succeeding if a
certain condition is violated.

Create atrigger to alow only certain employees to be able to earn a salary of more than 15,000.
If auser attempts to do this, the trigger raises an error.
UPDATE enpl oyees

SET salary = 15500
WHERE | ast _nane = 'Russell’;

TPDATE EMPLOYEES
%

ERROE at line 1:

OEA-Z020Z2: EMPLOYEE CANNOT EAERI THIS AMOTUNT
OFRA-06512: at "PLPTT RESTRICT SALARTY" line 5
OFA-04088: error during execution of trigger PLPTT RESTEICT SALARY'

Introduction to Oracle9i: PL/SQL 16-18

Using LD and NEWQualifiers

CREATE OR REPLACE TRI GGER audit _enp_val ues
AFTER DELETE OR I NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEG N
I NSERT | NTO audit_enp_table (user_nane, tinestanp,
id, old |ast _nane, new |ast _nane, old title,
new title, old_salary, new salary)
VALUES (USER, SYSDATE, {QOLD. enployee id
ast _nang|, |N I ast_narre‘, 1OLD.job_id
I NEWjob_id] [[OLD.salaryj } NEW sal ary‘);

END,
/

16-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEWQualifiers

Within a ROMrigger, reference the value of a column before and after the data change by prefixing it
with the OLD and NEWqualifier.

Data Operation Old Value New Value

| NSERT NUL L Inserted value
UPDATE V alue before update Value after update
DELETE Value before delete NUL L

* TheOLDandNEWqualifiers are available only iROMriggers.

« Prefix these qualifiers with a colon (%) in every SQL and PL/SQL statement.
* Thereis no colon (:) prefix if the qualifiers are referenced IV#HEN restricting condition.

Note: Row triggers can decrease the performance if you do a lot of updates on larger tables.

Introduction to Oracle9i: PL/SQL 16-19

Using LD and NEWQualifiers:
Example Using Audit Enp Tabl e

USER_MAME TIMESTAMP |D OLD_LAST N NEW_LAST_M OLD_TITLE MEWY_TITLE OLD_SALARY NEW_SALARY

PLPU CRMARD! | An amp SA_REP 1000
PLPU CLMARD! 299 An emp NewEmp SA REP SA MAN 1000 2000

‘ 16-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEWQualifiers: Example Using AUDI T_EMP_TABLE

Create atrigger on the EMPLOYEES table to add rowsto auser table, AUDI T_EMP_TABLE, logging a
user’s activity against theMPLOYEES table. The trigger records the values of several columns both
before and after the data changes by usin@ilizandNEWqualifiers with the respective column name.
There is additional colum@OMMENTS in the AUDI T_EMP_TABLE that is not shown in the preceding
slide.

Introduction to Oracle9i: PL/SQL 16-20

Restricting a Row Trigger

CREATE OR REPLACE TRI GGER derive_conm ssi on_pct
BEFORE | NSERT OR UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
VHEN KNEWj ob_id = ’SA_REP’)‘

BEG N
| F 1 NSERTI NG

THEN : NEW commi ssi on_pct : = 0;
ELSI F : OLD. comm ssion_pct IS NULL
THEN : NEW commi ssi on_pct : = 0;
ELSE
: NEW comm ssi on_pct : = : OLD. conm ssi on_pct + 0.05;
END | F;
END;
/

16-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
To redtrict the trigger action to those rows that satisfy a certain condition, provide a WHEN clause.

Create atrigger on the EMPLOYEES table to calculate an employee’s commission when a row is added
to theEMPLOYEES table, or when an employee’s salary is modified.

The NEWqualifier cannot be prefixed with a colon in thHEN clause because th#EN clause is
outside the PL/SQL blocks.

Introduction to Oracle9i: PL/SQL 16-21

| NSTEAD OF Triggers
Application
[| NSERT | NTO ny_vi ew]
% | NSERT
TABLE1
| NSTEAD OF >
Trigger
UPDATE
MY VI EW TABLEZ2
- >

‘ 16-22 Copyright © Oracle Corporation, 2001. All rights reserved.

| NSTEAD OF Triggers

Use| NSTEAD OF triggers to modify datain which the DML statement has been issued against an
inherently nonupdatable view. Thesetriggers are called | NSTEAD CF triggers, because unlike other
triggers, the Oracle server fires the trigger instead of executing the triggering statement. Thistrigger is
used to perform an | NSERT, UPDATE, or DELETE operation directly on the underlying tables.

Y ou can write | NSERT, UPDATE, or DELETE statements against aview, and the | NSTEAD OF trigger
works invisibly in the background to make the right actions take place.

Why Use | NSTEAD OF Triggers?

A view cannot be modified by normal DML statementsiif the view query contains set operators, group
functions, clauses such as GROUP BY, CONNECT BY, START, the DI STI NCT operator, or joins. For
example, if aview consists of more than one table, an insert to the view may entail an insertion into one
table and an update to another. So, you write an | NSTEAD OF trigger that fires when you write an insert
against the view. Instead of the original insertion, the trigger body executes, which resultsin an insertion
of datainto one table and an update to ancther table.

Note: If aview isinherently updatable and has | NSTEAD OF triggers, the triggers take precedence.
| NSTEAD OF triggers are row triggers.

The CHECK option for views is not enforced when insertions or updates to the view are performed by
using | NSTEAD OF triggers. The | NSTEAD OF trigger body must enforce the check.

Introduction to Oracle9i: PL/SQL 16-22

Creating an | NSTEAD OF Trigger

Syntax:

CREATE [OR REPLACE] TRI GGER tri gger_ nane
| NSTEAD OF
eventl [OR event2 OR event 3]
ON vi ew_nane
[REFERENCI NG OLD AS o/ d | NEW AS new
[FOR EACH ROW
trigger body

‘ 16-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating an | NSTEAD OF Trigger
trigger_name | |sthename of the trigger.

INSTEAD OF Indicates that the trigger belongs to aview
event Identifies the data manipulation operation that causes the trigger
to fire:
| NSERT
UPDATE [OF col um]
DELETE
vi ew_nane Indicates the view associated with trigger

REFERENCING | Specifies correlation names for the old and new values of the
current row (The defaults are OLD and NEW)

FOR EACH Designates the trigger to be arow trigger; | NSTEAD OF triggers
ROW can only be row triggers: if thisis omitted, the trigger is still
defined as a row trigger

trigger body | Isthetrigger body that defines the action performed by the
trigger, beginning with either DECLARE or BEGl N, and ending
with END or a call to a procedure

Note: | NSTEAD OF triggers can be written only for views. BEFORE and AFTER options are not valid.

Introduction to Oracle9i: PL/SQL 16-23

Creating an | NSTEAD OF Trigger

Example:

The following exampl e creates two new tables, NEW EMPS and NEW DEPTS, based on the
EMPLOYEES and DEPARTMENTS tables respectively. It also createsaview EMP_DETAI LS from the
EMPLOYEES and DEPARTMENTS tables. The example also creates an | NSTEAD OF trigger,

NEW EMP_DEPT. When arow isinserted into the EMP_DETAI LS view, instead of inserting the row
directly into the view, rows are added into the NEW EMPS and NEW DEPTS tables, based on the datain
the | NSERT statement. Similarly, when arow is modified or deleted through the EMP_DETAI LS view,
corresponding rows in the NEW EMPS and NEW _DEPTS tables are affected.

CREATE TABLE new _enps AS
SELECT enpl oyee_id, |ast_nane, salary, departnent_id,
email, job_id, hire_date

FROM enpl oyees;
CREATE TABLE new depts AS

SELECT d. departnent _id, d.departnment_nanme, d.location_id,
sun(e. sal ary) tot_dept_sal

FROM enpl oyees e, departnents d
WHERE e. departnment _id = d.departnent _id
GROUP BY d.departnment _id, d.departnment_nanme, d.location_id,

CREATE VI EW enp_details AS
SELECT e.enpl oyee_ id, e.last_nane, e.salary, e.departnent_id,
e.email, e.job_id, d.departnent_name, d.location_id

FROM enpl oyees e, departnents d
WHERE e. departnent _id = d. departnent _id;

CREATE OR REPLACE TRI GGER new_enp_dept
| NSTEAD OF | NSERT OR UPDATE OR DELETE ON enp_details
FOR EACH ROW
BEG N
| F I NSERTI NG THEN
I NSERT | NTO new_enps

VALUES (: NEW enpl oyee_id, :NEWI ast_nanme, :NEWsal ary,
:NEW departnent _id, :NEWenail, :New. job_id, SYSDATE);

UPDATE new_dept s
SET tot _dept _sal = tot _dept_sal + :NEWsalary
WHERE departnment _id = : NEW depart nent i d;
ELSI F DELETI NG THEN
DELETE FROM new_enps
WHERE enpl oyee id = : OLD. enpl oyee_i d;
UPDATE new depts
SET tot _dept _sal = tot _dept_sal - :OLD. salary
WHERE departnment _id = : OLD. departnent i d;

Introduction to Oracle9i: PL/SQL 16-24

Creating an | NSTEAD CF Trigger (continued)
Example:

ELSI F UPDATI NG ('sal ary’)

THEN
UPDATE new_enps
SET salary = : NEWsal ary
WHERE enpl oyee_id = : OLD. enpl oyee_i d;
UPDATE new_dept s
SET tot_dept_sal = tot_dept_sal + (:NEWsalary - :QO.D. sal ary)
WHERE departnent _id = : OLD. departnent _i d;

ELSI F UPDATI NG (' departnent _id’)

THEN
UPDATE new_enps
SET departnment _id = : NEW departnment _id
WHERE enpl oyee i d : OLD. enpl oyee_i d;
UPDATE new depts
SET tot _dept _sal = tot _dept_sal - :OLD. salary
WHERE departnment _id = : OLD. departnent i d;
UPDATE new depts
SET tot _dept _sal = tot _dept_sal + :NEWsalary
WHERE departnment _id = : NEW departnent _i d;

END | F;

END;
/

Note: This exampleis explained in the next page by using graphics.

Introduction to Oracle9i: PL/SQL 16-25

Creating an | NSTEAD OF Trigger

| NSERT into EMP_DETAI LS that is based on EMPLOYEES and
DEPARTMENTS tables

| NSERT | NTO enp_detai |l s(enpl oyee_id, ...)
VALUES(9001, ' ABBOTT' , 3000, 10, ' abbott. mail.conm ,’ HR_MAN);
| NSTEAD OF EMPLOYEE_ID LAST_MAME SALARY DEPARTMENT D EMAIL JOB_ID
. 100 King 24000 20 KNG AD_PRES
| NSERT into o o 10 WEETT IAC_Acan

EMP_DETAI LS™>

—— | EEla

210 [Zmifn RLE gl DASHITH 38 _REF

| NSERT into
NEW EMPS l UPDATE l
- NEW DEPTS
EMFLOYEE_ID LAST_MAME SALARY DEFARTRENT _ID EMI
100 Kirng 24000 30 Skpd> | DEPARTMENT_ID DEFARTEEMNT _H: JT_DEFT_SAL
101 Kochrer 17000 0 o || 10 | AdrineEab 7400
M7 Hame tnn o | ira e gg T e TaDnn
10 Smith LLLE] Bl [DASHRAT 30 |Punchasing) 273400
I 0 mBE0TT 3000 10 .1'.-.-\.illl - e

16-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NSTEAD OF Trigger
You can create an | NSTEAD OF trigger in order to maintain the base tables on which aview is based.

Assume that an employee name will be inserted using the view. Create atrigger that resultsin the
appropriate | NSERT and UPDATE to the base tables.

Introduction to Oracle9i: PL/SQL 16-26

Differentiating between Database Triggers
and Stored Procedures

Triggers Procedures

Defined with CREATE TRI GGER | Defined with CREATE PROCEDURE

Data dictionary contains source | Data dictionary contains source code

code in USER_TRI GGERS in USER_SOURCE

Implicitly invoked Explicitly invoked

COW T, SAVEPO NT, and COW T, SAVEPO NT, and ROLLBACK
ROLLBACK are not allowed are allowed

16-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Triggers and Stored Procedures
There are differences between database triggers and stored procedures:

Database Trigger Stored Procedure
Invoked implicitly Invoked explicitly
COW T, ROLLBACK, and COW T, ROLLBACK, and SAVEPOI NT

SAVEPO NT statements are not allowed statements are permitted within the procedure
within the trigger body. It is possible to body.

commit or rollback indirectly by calling a
procedure, but it is not recommended
because of side effects to transactions.

Triggers are fully compiled when the CREATE TRI GGER command isissued and the P code is stored
in the data dictionary.

If errors occur during the compilation of atrigger, thetrigger isstill created.

Introduction to Oracle9i: PL/SQL 16-27

Differentiating between Database Triggers
and Form Builder Triggers

[I NSERT | NTO EMPLOYEES]

EMPLOYEES table \% CHECK SAL trigger
EMPLOYEE ID | LAST_MAME JOE _ID SALARY
100 King AD_PRES 24000
101 Kochhar AD_VP 17000 T >
102 De Haan AD_\P 17000
103 Hunedd IT_PROG asooo BEFORE
e - . | NSERT
row

16-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Differences between a Database Trigger and a Form Builder Trigger
Database triggers are different from Form Builder triggers.

Database Trigger Form Builder Trigger

Executed by actions from any database tool | Executed only within a particular Form Builder

or application application

Alwaystriggered by a SQL DML, DDL, or a|Can be triggered by navigating from field to field, by
certain database action pressing a key, or by many other actions

Is distinguished as either a statement or row |Is distinguished as a statement or row trigger
trigger

Upon failure, causes the triggering statement | Upon failure, causes the cursor to freeze and may
to roll back cause the entire transaction to roll back

Firesindependently of, and in additionto, |Firesindependently of, and in addition to, database
Form Builder triggers triggers

Executes under the security domain of the | Executes under the security domain of the Form
author of the trigger Builder user

Introduction to Oracle9i: PL/SQL 16-28

Managing Triggers

Disable or reenable a database trigger:
'ALTER TRIGGER trigger_name DI SABLE | ENABLE |

Disable or reenable all triggers for a table:
\ALTER TABLE tabl e _name DI SABLE | ENABLE ALL TR GGERS \

Recompile a trigger for a table:
'ALTER TRI GGER tri gger_name COMPI LE |

‘ 16-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Modes: Enabled or Disabled
* When a trigger is first created, it is enabled automatically.

» The Oracle server checks integrity constraints for enabled triggers and guarantees that triggers
cannot compromise them. In addition, the Oracle server provides read-consistent views for queries
and constraints, manages the dependencies, and provides a two-phase commit process if a trigger
updates remote tables in a distributed database.

» Disable a specific trigger by using tAeTER TRI GGER syntax, or disablall triggers on a table
by using theALTER TABLE syntax.

« Disable a trigger to improve performance or to avoid data integrity checks when loading massive
amounts of data by using utilities such as SQL*Loader. You may also want to disable the trigger
when it references a database object that is currently unavailable, owing to a failed network
connection, disk crash, offline data file, or offline tablespace.

Compile a Trigger
» Use theALTER TRI GGER command to explicitly recompile a trigger that is invalid.

* When you issue aALTER TRI GGER statement with th€OWVPI LE option, the trigger
recompiles, regardless of whether it is valid or invalid.

Introduction to Oracle9i: PL/SQL 16-29

DROP TRI GGER Syntax

To remove a trigger from the database, use the DROP
TRI GCER syntax:

'DRCP TRI GGER tri gger_nane; |

Example:
DROP TRI GGER secur e_enp;

Trgaer didrpped

Note: All triggers on atable are dropped when the
table is dropped.

16-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Triggers
When atrigger is no longer required, you can use a SQL statement in iSQL*Plusto drop it.

Introduction to Oracle9i: PL/SQL 16-30

Trigger Test Cases

* Test each triggering data operation, as well as
nontriggering data operations.

* Test each case of the WHEN clause.

e Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure.

* Test the effect of the trigger upon other triggers.
* Test the effect of other triggers upon the trigger.

‘ 16-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Testing Triggers

Ensure that the trigger works properly by testing a number of cases separately.

Take advantage of tHeBM5 OUTPUT procedures to debug triggers. You can also use the
Procedure Builder debugging tool to debug triggers. Using Procedure Builder is discussed in
Appendix C, “Creating Program Units by Using Procedure Builder.”

Introduction to Oracle9i: PL/SQL 16-31

Trigger Execution Model
and Constraint Checking

1. Execute all BEFORE STATEMENT triggers.
2. Loop for each row affected:

a. Execute all BEFORE ROWtriggers.

b. Execute all AFTER ROWtriggers.

3. Execute the DML statement and perform integrity
constraint checking.

4. Execute all AFTER STATEMENT triggers.

16-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model

A single DML statement can potentialy fire up to four types of triggers: BEFORE and AFTER statement
and row triggers. A triggering event or a statement within the trigger can cause one or more integrity
constraints to be checked. Triggers can also cause other triggers to fire (cascading triggers).

All actions and checks done as aresult of a SQL statement must succeed. If an exception israised within
atrigger and the exception is not explicitly handled, all actions performed because of the original SQL
statement are rolled back. Thisincludes actions performed by firing triggers. This guarantees that
integrity constraints can never be compromised by triggers.

When atrigger fires, the tables referenced in the trigger action may undergo changes by other users
transactions. In al cases, aread-consistent image is guaranteed for modified values the trigger needsto
read (query) or write (update).

Introduction to Oracle9i: PL/SQL 16-32

Trigger Execution Model and Constraint
Checking: Example

UPDATE enpl oyees SET departnent _id = 999
WHERE enpl oyee id = 170;
-- Integrity constraint violation error

CREATE OR REPLACE TRI GGER constr_enp_trig
AFTER UPDATE ON enpl oyees

FOR EACH ROW
BEG N

I NSERT | NTO departnents

VALUES (999, 'dept999’', 140, 2400);

END;
/

UPDATE enpl oyees SET departnent _id = 999
WHERE enpl oyee_id = 170;
-- Successful after trigger is fired

16-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model and Constraint Checking: Example

The example in the dide explains a situation in which the integrity constraint can be taken care of by
using atrigger. Table EMPLOYEES has aforeign key constraint on the DEPARTMENT _ I D column of
the DEPARTMENTS table.

In the first SQL statement, the DEPARTMENT _I D of the employee with EMPLOYEE | D170is
modified to 999.

Because such a department does not exist in the DEPARTVENTS table, the statement raises the
exception -2292 for the integrity constraint violation.

A trigger CONSTR_EMP_TRI Gis created that inserts a new department 999 into the DEPARTMENT S
table.

When the UPDATE statement that modifies the department of employee 170 to 999 isissued, the trigger

fires. Then, the foreign key constraint is checked. Because the trigger inserted the department 999 into
the DEPARTMENTS table, the foreign key constraint check is successful and there is no exception.

This process works with Oracle8i and later releases. The example described in the preceding dide
produces arun-time error with in releases prior to Oracle8i.

Introduction to Oracle9i: PL/SQL 16-33

A Sample Demonstration for Triggers
Using Package Constructs

DML into AUDI T_EMP_TRI G VAR PACK
EMPLOYEES table FOR EACH ROV package
Increment variables)
L= =2 2= =5
—> — =
AUDI T_EMP_TAB
AFTER STATEMENT
Copy and then reset
variables
@—) —)
>
AUDI T_TABLE

‘ 16-34 Copyright © Oracle Corporation, 2001. All rights reserved.

A Sample Demonstration

The following pages of PL/SQL subprograms are an example of the interaction of triggers, packaged
procedures, functions, and global variables.
The sequence of events:

1. Issue an | NSERT, UPDATE, or DELETE command that can manipulate one or many rows.

2. AUDI T_EMP_TRI G the AFTER ROWtrigger, calls the packaged procedure to increment the

globa variables in the package VAR _PACK. Because thisisarow trigger, the trigger fires once for
each row that you updated.

3. When the statement has finished, AUDI T_EMP_TAB, the AFTER STATEMENT trigger, calsthe
procedure AUDI T_EMP.

4. This procedure assigns the values of the global variablesinto loca variables using the packaged
functions, updatesthe AUDI T_TABLE, and then resets the global variables.

Introduction to Oracle9i: PL/SQL 16-34

After Row and After Statement Triggers

CREATE OR REPLACE TRI GGER audit_enp_trig
AFTER UPDATE or | NSERT or DELETE on EMPLOYEES
FOR EACH ROW
BEG N
| F DELETI NG THEN var _pack. set _g del (1);
ELSI F | NSERTI NG THEN var_pack.set_g_ins(1l);
ELSIF UPDATI NG (’ SALARY")
THEN var_pack.set g _up_sal (1);
ELSE var _pack.set g upd(1);
END | F;
END audit _enp _trig;

CREATE OR REPLACE TRI GGER audit_enp_tab
AFTER UPDATE or | NSERT or DELETE on enpl oyees
BEG N
audi t _enp;
END audit _enp_t ab;

‘ 16-35 Copyright © Oracle Corporation, 2001. All rights reserved.

AFTER Statement and AFTER Row Triggers

Thetrigger AUDI T_EMP_TRI Gisarow trigger that fires after every row manipulated. Thistrigger
invokes the package procedures depending on the type of DML performed. For example, if the DML
updates salary of an employee, then the trigger invokes the procedure SET_G_UP_SAL. This package
procedure inturn invokes the function G_UP_SAL. This function increments the package variable
GV_UP_SAL that keeps account of the number of rows being changed due to update of the salary.

Thetrigger AUDI T_EMP_TAB will fire after the statement has finished. Thistrigger invokes the
procedure AUDI T_EMP, which is on the following pages. The AUDI T_EMP procedure updates the
AUDI T_TABLE table. An entry is made into the AUDI T_TABLE table with the information such as the
user who performed the DML, the table on which DML is performed, and the total number of such data
mani pulations performed so far on the table (indicated by the value of the corresponding column in the
AUDI T_TABLE table). At the end, the AUDI T_EMP procedure resets the package variablesto 0.

Introduction to Oracle9i: PL/SQL 16-35

Demonstration: VAR PACK Package
Specification

var pack. sql

CREATE OR REPLACE PACKAGE var _pack
IS
-- these functions are used to return the
-- val ues of package vari abl es
FUNCTI ON g_del RETURN NUMBER,
FUNCTI ON g_i ns RETURN NUMBER,
FUNCTI ON g_upd RETURN NUMBER,
FUNCTI ON g_up_sal RETURN NUMBER
-- these procedures are used to nodify the
-- values of the package vari abl es
PROCEDURE set _g_del (p_val I N NUMBER);
PROCEDURE set _g_ins (p_val I N NUMBER);
PROCEDURE set g _upd (p_val I N NUMBER);
PROCEDURE set _g up_sal (p_val I N NUMBER);
END var _pack;

‘ 16-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Demonstration: VAR _PACK Package Body
var _pack_body. sql
CREATE OR REPLACE PACKAGE BODY var_pack 1S

gv_del NUMBER := 0; gv_ins NUMBER : = O;
gv_upd NUMBER := 0; gv_up_sal NUMBER := O
FUNCTI ON g_del RETURN NUMBER | S
BEG N
RETURN gv_del
END;
FUNCTI ON g_ins RETURN NUMBER | S
BEG N
RETURN gv_i ns;
END;
FUNCTI ON g_upd RETURN NUMBER | S
BEG N
RETURN gv_upd;
END;
FUNCTI ON g_up_sal RETURN NUMBER | S
BEG N
RETURN gv_up_sal
END;

(continued on the next page)

Introduction to Oracle9i: PL/SQL 16-36

VAR _PACK Package Body (continued)

PROCEDURE set g del (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN
gv_del := p_val;
ELSE gv_del := gv_del +1;
END | F;
END set g del;
PROCEDURE set _g ins (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN
gv_ins := p_val;
ELSE gv_ins := gv_ins +1;
END | F;
END set g ins;
PROCEDURE set g upd (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN
gv_upd : = p_val;
ELSE gv_upd := gv_upd +1;
END | F;
END set g upd;
PROCEDURE set g up_sal (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN

gv_up_sal := p_val;
ELSE gv_up_sal := gv_up_sal +1;
END | F;

END set g up_sal;
END var pack;
/

Introduction to Oracle9i: PL/SQL 16-37

Demonstration: Using the
AUDI T_EMP Procedure

CREATE OR REPLACE PROCEDURE audit_enp IS

v_del NUMBER = var _pack. g_del ;

v_ins NUVBER = var _pack. g_i ns;

v_upd NUVBER = var _pack. g_upd;

v_up_sal NUMBER = var_pack. g_up_sal;
BEG N

<

IF v_del + v_ins + v_upd '!'= 0 THEN
UPDATE audit _table SET
del = del + v_del, ins = ins + v_ins,
upd = upd + v_upd
VWHERE user _name=USER AND t abl enane=" EMPLOYEES'
AND colum_nanme |'S NULL;
END | F;
IF v_up_sal '=20 THEN
UPDATE audit_table SET upd = upd + v_up_sal
VWHERE user nane=USER AND t abl enanme=" EMPLOYEES
AND columm_nane = ' SALARY ;
END | F;

-- resetting gl obal variables in package VAR PACK
var _pack.set_g del (0); var_pack.set_g_ins (0);
var _pack.set _g upd (0); var_pack.set_g_up_sal (0);

END audit _enp;

‘ 16-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating the AUDI T_TABLE with the AUDI T_EMP Procedure

The AUDI T_EMP procedure updates the AUDI T_TABLE and calls the functions in the package
VAR_PACK that reset the package variables, ready for the next DML statement.

Introduction to Oracle9i: PL/SQL 16-38

Summary

Procedure Package Trigger
XXXXXXXXX XXX XXX XXX (\
[]
VVVVVVVVVVVVVVVVVV
XXXXXXXXXXXXXXXXXX Proced u re A
VVVVVVVVVVVVVVVVVV .
XXXXXX XXX XXX XXX XXX d eC I ar atl O n
XXXXXXXXXXXX XXX XXX \)
VVVVVVVVVVVVVVVVVV
XXXXXXXXXXXX XXX XXX / l
VVVVVVVVVVVVVVVVVV
XXXXXXXXXXXXXXXXXX P r 0 C ed u re B

definition

Procedure A

definition

Local
\ variable

‘ 16-39 Copyright © Oracle Corporation, 2001. All rights reserved.

Develop different types of procedural database constructs depending on their usage.

Construct Usage

Procedure PL/SQL programming block that is stored in the database for repeated
execution

Package Group of related procedures, functions, variables, cursors, constants, and
exceptions

Trigger PL/SQL programming block that is executed implicitly by a data manipulation
Statement

Introduction to Oracle9i: PL/SQL 16-39

Practice 16 Overview

This practice covers the following topics:
* Creating statement and row triggers

* Creating advanced triggers to add to the
capabilities of the Oracle database

16-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 16 Overview

Y ou create statement and row triggersin this practice. Y ou create procedures that will be invoked
from the triggers.

Introduction to Oracle9i: PL/SQL 16-40

Practice 16

1. Changesto dataare alowed on tables only during normal office hours of 8:45a.m. until 5:30
p.m., Monday through Friday.

Create a stored procedure called SECURE DM that preventsthe DML statement from
executing outside of normal office hours, returning the message “You may only make changes
during normal office hours.”

«a. Create a statement trigger oni@BS table that calls the above procedure.

b.Test the proc edure by temporarily modifying the hours in the procedure and attempting to
insert a new record into tlHKOBS table. After testing, reset the procedure hours as specified in
step 1.
If you havetime:
3. Employees should receive an automatic increase in salary if the minimum salary for a job is
increased. Implement this requirement through a trigger oh@B8 table.

a. Create a stored procedure natde EMP_SAL to update the salary amount. This
procedure accepts two parameters: the job ID for which salary has to be updated, and the new
minimum salary for this job ID. This procedure is executed from the trigger drOBetable.

b. Create a row trigger namefPDATE_EMP_SALARY on theJ OBS table that invokes the
procedurdJPD_EMP_SAL, when the minimum salary in tl3€BS table is updated for a
specified job ID.

c. Query the EMPLOYEES table to see the current salary for employees who are programmers.

| LAST_NAME | FIRST_NAME | SALARY

Hunold Alexander | 3000
|Ern5t |Eiruc:e | w000
Austin |Dravid | 4800
Patahalla Wl | 4800
|L|:|rentz |Diana | 4200

d. Increase the minimum salary for the Programmer job from 4,000 to 5,000.

e. Employee Lorentz (employee ID 107) had a salary of less than 4,500. Verify that her salary
has been increased to the new minimum of 5,000.

| LAST_NAME | FIRST_NAME | SALARY
|L|:|rentz |Diana | S000

Introduction to Oracle9i: PL/SQL 16-41

Introduction to Oracle9i: PL/SQL 16-42

More Trigger Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* C(Create additional database triggers
* Explain the rules governing triggers
* Implement triggers

17-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to create more database triggers and learn the rules governing triggers.
Y ou aso learn many applications of triggers.

Introduction to Oracle9i: PL/SQL 17-2

Creating Database Triggers

* Triggering user event:
— CREATE, ALTER, or DROP
— Logging on or off
* Triggering database or system event:
— Shutting down or starting up the database
— A specific error (or any error) being raised

17-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Database Triggers
Before coding the trigger body, decide on the components of the trigger.

Triggers on system events can be defined at the database or schemalevel. For example, a database
shutdown trigger is defined at the database level. Triggers on data definition language (DDL)
statements, or a user logging on or off, can also be defined at either the database level or schemalevel.

Triggers on DML statements are defined on a specific table or aview.

A trigger defined at the database levd fires for al users, and atrigger defined at the schema or table

level fires only when the triggering event involves that schema or table.
Triggering events that can cause atrigger to fire:
« A data definition statement on an object in the database or schema
» A specific user (or any user) logging on or off
e A database shutdown or startup
» A specific or any error that occurs

Introduction to Oracle9i: PL/SQL 17-3

Creating Triggers on DDL Statements

Syntax:

CREATE [OR REPLACE] TRI GGER tri gger namne
timng
[ddl _eventl [OR ddl _event2 OR ...]]
ON { DATABASE| SCHENA}
trigger_body

17-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Create Trigger Syntax

DDL_Event Possible Values

CREATE Causes the Oracle server to fire the trigger whenever a CREATE statement
adds a new database object to the dictionary

ALTER Causes the Oracle server to fire the trigger whenever an ALTER statement
modifies a database object in the data dictionary

DROP Causes the Oracle server to fire the trigger whenever a DROP statement
removes a database object in the data dictionary

Thetrigger body represents a complete PL/SQL block.

Y ou can create triggers for these events on DATABASE or SCHEMA. Y ou also specify BEFORE or
AFTER for thetiming of the trigger.

DDL triggersfire only if the object being created is a cluster, function, index, package, procedure, role,
seguence, synonym, table, tablespace, trigger, type, view, or user.

Introduction to Oracle9i: PL/SQL 17-4

Creating Triggers on System Events

CREATE [OR REPLACE] TRI GCGER trigger_nane
timng
[dat abase_event 1 [OR dat abase _event2 OR ...]]

trigger_

ON { DATABASE| SCHENA}
body

17-5

Copyright © Oracle Corporation, 2001. All rights reserved.

Create Trigger Syntax

Database event

Possible Values

AFTER Causes the Oracle server to fire the trigger whenever a server error message is
SERVERERROR logged
AFTER LOGON Causes the Oracle server to fire the trigger whenever a user logs on to the

database

BEFORE LOGOFF

Causes the Oracle server to fire the trigger whenever a user logs off the database

AFTER STARTUP

Causes the Oracle server to fire the trigger whenever the database is opened

BEFORE
SHUTDOWN

Causes the Oracle server to fire the trigger whenever the database is shut down

Y ou can create triggers for these events on DATABASE or SCHEMA except SHUTDOWN and STARTUP,
which apply only to the DATABASE.

Introduction to Oracle9i: PL/SQL 17-5

LOGON and LOGOFF Trigger Example

CREATE OR REPLACE TRI GGER logon_trig

AFTER LOGON ON SCHENA

BEGA N
I NSERT INTO |l og trig_table(user_id, |og date, action)
VALUES (USER, SYSDATE, ’'Logging on’');

END,

/

CREATE OR REPLACE TRI GGER | ogoff _trig

BEFORE LOGOFF ON SCHENA

BEG N
I NSERT INTO |l og _trig_table(user_id, |og _date, action)
VALUES (USER, SYSDATE, 'Logging off’);

END;

/

17-6 Copyright © Oracle Corporation, 2001. All rights reserved.

LOGON and LOGOFF Trigger Example

Y ou can create thistrigger to monitor how often you log on and off, or you may want to write areport
that monitors the length of time for which you are logged on. When you specify ON SCHEMA, the
trigger firesfor the specific user. If you specify ON DATABASE, thetrigger firesfor al users.

Introduction to Oracle9i: PL/SQL 17-6

CALL Statement

CREATE [OR REPLACE] TRI GCGER trigger_nane

timng

event1l [OR event2 OR event 3]
ON t abl e_nane

[REFERENCI NG OLD AS o/d | NEW AS new
[FOR EACH RON

[WHEN condi ti on]
CALL procedure_nane,

CREATE OR REPLACE TRI GGER | og_enpl oyee
BEFORE | NSERT ON EMPLOYEES

CALL | og_execution
/

17-7 Copyright © Oracle Corporation, 2001. All rights reserved.

CALL Statement

A CALL statement enables you to call a stored procedure, rather than coding the PL/SQL body in the
trigger itself. The procedure can be implemented in PL/SQL, C, or Java.

The call can reference the trigger attributes :NEWand :OLD as parameters as in the following example:
CREATE TRI GGER sal ary_check

BEFORE UPDATE OF salary, job_id ON enpl oyees
FOR EACH ROW
VWHEN (NEW job_id <> ' AD PRES')
CALL check_sal (: NEWjob_id, :NEWsalary)
/
Note: Thereisno semicolon at the end of the CALL statement.

In the example above, the trigger calls aprocedure check_sal . The procedure compares the new
salary with the salary range for the new job ID from the J OBS table.

Introduction to Oracle9i: PL/SQL 17-7

Reading Data
from a Mutating Table

UPDATE enpl oyees
SET salary = 3400
WHERE | ast _nane = ' Stiles’;

. CHECK SALARY
Fail —
EMPLOYEES table l trigger
EMPI D| LAST NAME| JOB ID SAL === =—=-==- >
138| Stiles ST _CLERK | 2480
139| Seo ST_CLERK 2700
—
140| Pat el ST_CLERK %
H_/'/—/\\.
— BEFORE
Triggered table/ UPDATE

mutating table

’ | Trigger event row

17-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules Governing Triggers
Reading and writing data using triggers is subject to certain rules. The restrictions apply only to row
triggers, unless a statement trigger isfired asaresult of ON DELETE CASCADE.

Mutating Table
A mutating tableis atable that is currently being modified by an UPDATE, DELETE, or | NSERT

statement, or atable that might need to be updated by the effects of a declarative DELETE CASCADE

referential integrity action. A tableis not considered mutating for STATEMENT triggers.

Thetriggered table itself isa mutating table, as well asany table referencing it with the FOREI GN KEY

congtraint. Thisrestriction prevents arow trigger from seeing an inconsistent set of data.

Introduction to Oracle9i: PL/SQL 17-8

Mutating Table: Example

CREATE OR REPLACE TRI GCER check_sal ary
BEFORE | NSERT OR UPDATE OF salary, job_id
ON enpl oyees
FOR EACH ROW
VWHEN (NEW job_id <> ' AD PRES)
DECLARE
v_minsal ary enpl oyees. sal ar y% YPE;
v_naxsal ary enpl oyees. sal ar y% YPE;
BEG N
SELECT M N(sal ary), MAX(sal ary)
I NTO v _ninsalary, v_maxsal ary
FROM enpl oyees
WHERE job id = : NEWjob_ id;
IF :NEWsalary < v_ninsalary OR
: NEW sal ary > v_maxsal ary THEN
RAI SE_APPLI CATI ON_ERROR(- 20505, ' Qut of range’);
END | F;
END;
/

17-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: Example
The CHECK _SALARY trigger in the example, attempts to guarantee that whenever a new employeeis
added to the EMPLOYEES table or whenever an existing employee’s salary or job ID is changed, the
employee’s salary falls within the established salary range for the employee’s job.
When an employee record is updated,GHECK_SALARY trigger is fired for each row that is updated.
The trigger code queries the same table that is being updated. Hence, it is saidENRit BEEES
table is mutating table.

Introduction to Oracle9i: PL/SQL 17-9

Mutating Table: Example

UPDATE enpl oyees
SET salary = 3400
WHERE | ast _nane = ' Stiles’;

UPDATE employeas

EEROR at L 1:

ORA-009]: table PLPU.EMPLOYEES & runtating, trigger funetion may not see ot
ORA0G512: ot "PLPU.CHECE, SALARY™, line 5

OFA-RFEE: eror durmg exeaution of mpger PLPU.CHECE_SALARY'

17-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: Example (continued)
Try to read from a mutating table.

If you restrict the salary within a range between the minimum existing value and the maximum existing
value you get arun-time error. The EMPLOYEES table is mutating, or in a state of change; therefore,
the trigger cannot read from it.

Remember that functions can also cause a mutating table error when they are invoked ina DML
Sstatement.

Introduction to Oracle9i: PL/SQL 17-10

Implementating Triggers

You can use trigger for:

® Security

* Auditing

e Dataintegrity

* Referential integrity

®* Table replication

e Computing derived data automatically
* Eventlogging

17-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Implementing Triggers

Develop database triggers in order to enhance features that cannot otherwise be implemented by the
Oracle server or as dternatives to those provided by the Oracle server.

Feature Enhancement

Security The Oracle server allows table access to users or roles. Triggers allow
table access according to data values.

Auditing The Oracle server tracks data operations on tables. Triggers track
values for data operations on tables.

Data integrity The Oracle server enforces integrity constraints. Triggers implement
complex integrity rules.

Referential integrity The Oracle server enforces standard referential integrity rules. Triggers
implement nonstandard functionality.

Table replication The Oracle server copies tables asynchronously into snapshots.
Triggers copy tables synchronously into replicas.

Derived data The Oracle server computes derived data values manually. Triggers
compute derived data values automatically.

Event logging The Oracle server logs events explicitly. Triggers log events
transparently.

Introduction to Oracle9i: PL/SQL 17-11

Controlling Security within
the Server

GRANT SELECT, | NSERT, UPDATE, DELETE

ON enpl oyees

TO clerk; -- dat abase role
GRANT clerk TO scott;

17-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Security Within the Server

Devel op schemas and roles within the Oracle server to control the security of data operations on tables
according to the identity of the user.

« Base privileges upon the username supplied when the user connects to the database.
« Determine access to tables, views, synonyms, and sequences.
« Determine query, data manipulation, and data definition privileges.

Introduction to Oracle9i: PL/SQL 17-12

Controlling Security
with a Database Trigger

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT OR UPDATE OR DELETE ON enpl oyees
DECLARE
v_dummy VARCHAR2(1);
BEG N
| F (TO CHAR (SYSDATE, 'DY') IN (' SAT',’ SUN))
THEN RAI SE_APPLI CATI ON_ERROR (-20506, ' You may only
change data during normal business hours.’);
END | F;
SELECT COUNT(*) I NTO v_dumy FROM hol i day
VWHERE hol i day_date = TRUNC (SYSDATE) ;
| F v_dummy > 0 THEN RAI SE_APPLI CATI ON_ERROR(- 20507,
"You may not change data on a holiday.’);
END | F;
END;
/

17-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Security With a Database Trigger
Develop triggers to handle more complex security requirements.
« Base privileges on any database values, such as the time of day, the day of the week, and so on.

» Determine access to tables only.
» Determine data manipulation privileges only.

Introduction to Oracle9i: PL/SQL 17-13

Using the Server Facility to
Audit Data Operations

AUDI T | NSERT, UPDATE, DELETE
ON departnents
BY ACCESS

VWHENEVER SUCCESSFUL;

The Oracle server stores the audit information in a
data dictionary table or operating system file.

17-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Auditing Data Operations

Y ou can audit data operations within the Oracle server. Database auditing is used to monitor and gather
data about specific database activities. The DBA can gather statistics about which tables are being
updated, how many 1/Os are performed, how many concurrent users connect at peak time, and so on.

Audit users, statements, or objects.

Audit data retrieval, data manipulation, and data definition statements.
Write the audit trail to a centralized audit table.

Generate audit records once per session or once per access attempt.
Capture successful attempts, unsuccessful attempts, or both.

Enable and disable dynamically.

Executing SQL through PL/SQL program units may generate several audit records because the program
units may refer to other database objects.

Introduction to Oracle9i: PL/SQL 17-14

Auditing by Using a Trigger

CREATE OR REPLACE TRI GGER audit_enp_val ues
AFTER DELETE OR | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEG N
| F (audit_enp_package. g reason |I'S NULL) THEN
RAI SE_APPL| CATI ON_ERROR (-20059, ’'Specify a reason
for the data operation through the procedure SET_REASON
of the AUDI T_EMP_PACKAGE before proceeding.’);
ELSE
| NSERT | NTO audit_enp_table (user_nane, tinestanp, id,
old | ast _nane, new |ast nane, old title, newtitle,
ol d_sal ary, new sal ary, conments)
VALUES (USER, SYSDATE, :OLD.enployee_id, :QOLD.Iast_narme,
:NEW 1 ast _nane, :O.D.job_id, :NEWjob_id, :QOLD. sal ary,
:NEW sal ary, audit_enp_package. g reason);
END | F;
END;

CREATE OR REPLACE TRI GCGER cl eanup_audit _enp
AFTER | NSERT OR UPDATE OR DELETE ON enpl oyees
BEG N

audit _enp_package. g _reason : = NULL;
END;

17-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Audit Data Values
Audit actual data values with triggers.
Y ou can:

* Audit data manipulation statements only
* Write the audit trail to a user-defined audit table
* Generate audit records once for the statement or once for each row
« Capture successful attempts only
« Enable and disable dynamically
Using the Oracle server, you can perform database auditing. Database auditing cannot record changes to

specific column values. If the changes to the table columns need to be tracked and column values need to be

stored for each change, use application auditing. Application auditing can be done either through stored
procedures or database triggers, as shown in the example in the slide.

Introduction to Oracle9i: PL/SQL 17-15

Enforcing Data Integrity
within the Server

ALTER TABLE enpl oyees ADD
CONSTRAI NT ck_sal ary CHECK (sal ary >= 500);

17-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Enforcing Data Integrity within the Server

Y ou can enforce data integrity within the Oracle server and develop triggers to handle more complex
dataintegrity rules.

The standard dataintegrity rules are not null, unigue, primary key, and foreign key.
Use these rules to:
* Provide constant default values
» Enforce static constraints
* Enable and disable dynamically
Example
The code sample in the slide ensures that the salary is at least $500.

Introduction to Oracle9i: PL/SQL 17-16

Protecting Data Integrity
with a Trigger

CREATE OR REPLACE TRI GGER check_sal ary
BEFORE UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
VWHEN (NEW sal ary < COLD. sal ary)

BEG N
RAI SE_APPLI CATI ON_ERROR (- 20508,

Do not decrease salary.’);
END;
/

17-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Protecting Data Integrity with a Trigger
Protect dataintegrity with atrigger and enforce nonstandard data integrity checks.
e Provide variable default values.

* Enforce dynamic constraints.
« Enable and disable dynamically.

» Incorporate declarative constraints within the definition of a table to protect data integrity.
Example

The code sample in the slide ensures that the salary is never decreased.

Introduction to Oracle9i: PL/SQL 17-17

Enforcing Referential Integrity
within the Server

ALTER TABLE enpl oyees
ADD CONSTRAI NT enp_deptno_fk
FOREI GN KEY (departnent _id)
REFERENCES depart nment s(departnent _i d)
ON DELETE CASCADE;

17-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Enforcing Referential Integrity within the Server

Incorporate referential integrity constraints within the definition of atable to prevent dataincons stency
and enforce referential integrity within the server.

« Restrict updates and deletes.

» Cascade deletes.

« Enable and disable dynamically.
Example

When a department is removed from BEPARTVENTS parent table, cascade the deletion to the
corresponding rows in tHeEVPLOYEES child table.

Introduction to Oracle9i: PL/SQL 17-18

Protecting Referential Integrity
with a Trigger

CREATE OR REPLACE TRI GGER cascade_updat es
AFTER UPDATE OF departnent _id ON departnents
FOR EACH ROW
BEG N
UPDATE enpl oyees
SET enpl oyees. depart nent _i d=: NEW departnent _i d
WHERE enpl oyees. departnent _i d=: OLD. depart nent _i d;
UPDATE j ob_hi story
SET departnent _i d=: NEW departnent _id
WHERE departnent _i d=: OLD. departnent _i d;
END;
/

17-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Protecting Referential Integrity with a Trigger

Develop triggers to implement referential integrity rulesthat are not supported by declarative
congraints.

« Cascade updates.
e Set toNULL for updates and deletions.
* Set to a default value on updates and deletions.
« Enforce referential integrity in a distributed system.
« Enable and disable dynamically.
Example

Enforce referential integrity with a trigger. When the valuBEPARTMENT _| D changes in the
DEPARTMENTS parent table, cascade the update to the corresponding rowsslRh&YEES child
table.

For a complete referential integrity solution using triggers, a single trigger is not enough.

Introduction to Oracle9i: PL/SQL 17-19

Replicating a Table
within the Server

CREATE SNAPSHOT enp_copy AS
SELECT * FROM enpl oyees@y;

17-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Snapshot

A snapshot isalocal copy of atable datathat originates from one or more remote master tables. An
application can query the datain aread-only table snapshot, but cannot insert, update, or delete rowsin
the snapshot. To keep a snapshot’s data current with the data of its master, the Oracle server must
periodically refresh the snapshot.

When this statement is used in SQL, replication is performed implicitly by the Oracle server by using
internal triggers. This has better performance over using user-defined PL/SQL triggers for replication.

Copying Tables with Server Snapshots
Copy atable with a snapshot.
« Copy tables asynchronously, at user-defined intervals.
* Base snapshots on multiple master tables.
* Read from snapshots only.
« Improve the performance of data manipulation on the master table, particularly if the network fails.
Alternatively, you can replicate tables using triggers.
Example
In San Francisco, create a snapshot of the reEl?e OYEES table in New York.

Introduction to Oracle9i: PL/SQL 17-20

Replicating a Table with a Trigger

CREATE OR REPLACE TRI GGER enp_replica
BEFORE | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEG N /*Only proceed if user initiates a data operati on,
NOT t hrough the cascading trigger.*/
I F I NSERTI NG THEN
IF :NEWflag IS NULL THEN
I NSERT | NTO enpl oyees @&f

VALUES(: new. enpl oyee_id, :new. last_nane,..., "B);
:NEWflag := "A';
END | F;

ELSE /* Updating. */
IF :NEWflag = : OLD.fl ag THEN
UPDATE enpl oyees &f
SET enane = : NEWI ast_name, ...,
flag = : NEWfl ag
WHERE enpl oyee_id = : NEW enpl oyee_i d;

END | F;

IF :O.D.flag = "A THEN : NEWflag := 'B';
ELSE : NEWflag := "A;

END | F;

END | F;

END;

17-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Replicating a Table with a Trigger
Replicate atable with atrigger.

* Copy tables synchronously, in real time.

» Base replicas on a single master table.

* Read from replicas, as well as write to them.

« Impair the performance of data manipulation on the master table, particularly if the network fails.
Maintain copies of tables automatically with snapshots, particularly on remote nodes.
Example
In New York, replicate the loc&IMPLOYEES table to San Francisco.

Introduction to Oracle9i: PL/SQL 17-21

Computing Derived Data within the Server

UPDATE departnents
SET total _sal =(SELECT SUM sal ary)
FROM enpl oyees
WHERE enpl oyees. departnent _id =
depart nents. departnment i d);

17-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Data within the Server
Compute derived valuesin abatch job.

e Compute derived column values asynchronously, at user-defined intervals.
« Store derived values only within database tables.
* Modify data in one pass to the database and calculate derived data in a second pass.

Alternatively, you can use triggers to keep running computations of derived data.
Example

Keep the salary total for each department within a sp€CIBAL_ SALARY column of the
DEPARTMENTS table.

Introduction to Oracle9i: PL/SQL 17-22

Computing Derived Values with a Trigger

CREATE OR REPLACE PROCEDURE i ncrenent _sal ary

(p_id I N depart nents. depart nent _i d%I YPE,
p_salary IN departnents.total sal %YPE)
IS
BEG N

UPDATE depart ments
SET total _sal = NVL (total _sal, 0)+ p_salary
VWHERE department_id = p_id;

END i ncrenent _sal ary;

CREATE OR REPLACE TRI GGER conput e_sal ary
AFTER | NSERT OR UPDATE OF sal ary OR DELETE ON enpl oyees
FOR EACH ROW
BEG N
| F DELETI NG THEN
i ncrenent _sal ary(: OLD. departnent _id, (-1*: OLD. sal ary));
ELSI F UPDATI NG THEN
i ncrement _sal ary(: NEW departnent _id, (: NEW sal ary-: OLD. sal ary))
ELSE i ncrenent _sal ary(: NEW departnent i d, : NEW sal ary) ; - -1 NSERT
END | F;
END;

17-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Data Values with a Trigger
Compute derived values with atrigger.

e Compute derived columns synchronously, in real time

» Store derived values within database tables or within package global variables

« Modify data and calculate derived data in a single pass to the database
Example

Keep a running total of the salary for each department within the sp&iAL_ SALARY column of
the DEPARTMENTS table.

Introduction to Oracle9i: PL/SQL 17-23

Logging Events with a Trigger

CREATE OR REPLACE TRIGGER notify reorder_rep
BEFORE UPDATE OF quantity_on_hand, reorder_point
ON i nventories FOR EACH ROWNV
DECLARE
v_descrip product _descriptions. product _descri pti on%lYPE;
v_nsg_text VARCHAR2(2000);
stat_send nunber(1);
BEG N
IF :NEWquantity_on_hand <= : NEWreorder_point THEN
SELECT product _description INTO v_descrip
FROM product _descri ptions
WHERE product id = : NEW product i d;

v_nmeg_text :="'ALERT: | NVENTORY LOW ORDER: ' || CHR(10)| |

... Yours,’” ||CHR(10) ||user || ".’|] CHR(10)|| CHR(10);
ELSI F

: OLD. quantity on_hand < : NEWquantity on_hand THEN NULL;
ELSE

v_meg_text := 'Product #||... CHR(10);
END | F;

DBVS_PI PE. PACK_MESSACGE(Vv_nsg_text);
stat_send := DBMS Pl PE. SEND MESSAGE(' I NV_PI PE');
END;

17-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging Events with a Trigger

Within the server, you can log events by querying data and performing operations manually. This sends
amessage using a pipe when the inventory for a particular product has fallen below the acceptable
limit. Thistrigger uses the Oracle-supplied package DBVS_PI PE to send the message.

L ogging Events within the Server
e Query data explicitly to determine whether an operation is necessary.
* In a second step, perform the operation, such as sending a message.
Using Triggersto Log Events
« Perform operations implicitly, such as firing off an automatic electronic memo.
* Modify data and perform its dependent operation in a single step.
» Log events automatically as data is changing.

Introduction to Oracle9i: PL/SQL 17-24

Logging Events with a Trigger (continued)
L ogging Events Transparently
In the trigger code:
e CHR(10) isacarriagereturn
* Reorder_point isnot null
* Another transaction can receive and read the message in the pipe

Example
CREATE OR REPLACE TRI GGER notify reorder _rep
BEFORE UPDATE OF anount i n_stock, reorder point
ON i nventory FOR EACH ROW
DECLARE
v_descrip product. descri p%l YPE;
v_nmeg_text VARCHAR2(2000);
stat_send nunber(1);
BEG N
I F :NEWanount in_stock <= : NEWreorder_point THEN
SELECT descrip INTO v_descrip
FROM PRODUCT WHERE prodid = : NEW product _i d;
v_msg_text := "ALERT: | NVENTORY LOW ORDER:’ || CHR(10) |

"It has cone to ny personal attention that, due to recent’
| | CHR(10) || ' transactions, our inventory for product # ||

TO CHAR(: NEW product _id) ||’ -- "||v_descrip |

" -- has fallen bel ow acceptable levels.’ || CHR(10)

"Yours,’ ||CHR(10) |]user || '.'|| CHR(10)|| CHR(10);
ELSI F

: OLD. anpbunt _i n_stock<: NEW anmpunt i n_stock THEN NULL;
ELSE

v_nsg_text := 'Product # || TO_CHAR(: NEW product _id)

||’ ordered. || CHR(10)|| CHR(10); END | F;

DBMS_PI PE. PACK_MESSAGE(V_nsg_t ext) ;
stat_send := DBMS_PI PE. SEND_MESSAGE(’ | NV_PI PE’);
END;

Introduction to Oracle9i: PL/SQL 17-25

Benefits of Database Triggers

* Improved data security:

— Provide enhanced and complex security
checks

— Provide enhanced and complex auditing

* Improved data integrity:
— Enforce dynamic data integrity constraints

— Enforce complex referential integrity
constraints

— Ensure that related operations are performed
together implicitly

17-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Database Triggers
Y ou can use database triggers:
* As alternatives to features provided by the Oracle server
e If your requirements are more complex or more simple than those provided by the Oracle server

» If your requirements are not provided by the Oracle server at all

Introduction to Oracle9i: PL/SQL 17-26

Managing Triggers

The following system privileges are required to

manage triggers:

* The CREATE/ ALTER/ DROP (ANY) TRI GGER
privilege enables you to create a trigger in any
schema

* The ADM NI STER DATABASE TRI GGER privilege
enables you to create a trigger on DATABASE

* The EXECUTE privilege (if your triggers refers to
any objects that are not in your schema)

Note: Statements in the trigger body operate under
the privilege of the trigger owner, not the trigger user.

‘ 17-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Triggers

In order to create atrigger in your schema, you need the CREATE TRI GGER system privilege, and
you must either own the table specified in the triggering statement, have the ALTER privilege for
thetable in the triggering statement, or have the ALTER ANY TABLE system privilege. You can
ater or drop your triggers without any further privileges being required.

If the ANY keyword is used, you can create, alter, or drop your own triggers and those in another
schema and can be associated with any user’s table.

You do not need any privileges to invoke a trigger in your schema. A trigger is invoked by DML

statements that you issue. But if your trigger refers to any objects that are not in your schema, the

user creating the trigger must have EXMECUTE privilege on the referenced procedures, functions,
or packages, and not through roles. As with stored procedures, the statement in the trigger body
operates under the privilege domain of the trigger’s owner, not that of the user issuing the
triggering statement.

To create a trigger 0DATABASE, you must have thaDM NI STER DATABASE TRI GGER
privilege. If this privilege is later revoked, you can drop the trigger, but you cannot alter it.

Introduction to Oracle9i: PL/SQL 17-27

Viewing Trigger Information

You can view the following trigger information:

e USER OBJECTS data dictionary view: Object
information

* USER TRI GGERS data dictionary view: The text of
the trigger

* USER ERRORS data dictionary view: PL/SQL syntax
errors (compilation errors) of the trigger

‘ 17-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Trigger Information
The preceding dide shows the data dictionary views that you can access to get information
regarding the triggers.
The USER_OBJECTS view contains the name and status of the trigger and the date and time when
the trigger was created.
The USER_ERRORS view contains the details of the compilation errorsthat occurred while a
trigger was compiling. The contents of these views are similar to those for subprograms.
The USER_TRI GGERS view contains details such as name, type, triggering event, the table on
which the trigger is created, and the body of the trigger.

The statement SELECT User name FROM USER_USERS; gives the name of the owner of the
trigger, not the name of the user who is updating the table.

Introduction to Oracle9i: PL/SQL 17-28

Using USER TRI GGERS

Column Column Description

TRI GGER_NAME Name of the trigger

TRI GGER_TYPE The type is BEFORE, AFTER, | NSTEAD OF
TRI GGERI NG_EVENT The DML operation firing the trigger
TABLE _NAME Name of the database table

REFERENCI NG _NANMES Name used for : QLD and : NEW

VWHEN_CLAUSE The when_clause used
STATUS The status of the trigger
TRI GGER_BODY The action to take

* Abridged column list

‘ 17-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Using USER_TRI GGERS

If the source fileis unavailable, you can use iSQL* Plus to regenerate it from USER_TRI GCGERS.
You can aso examinethe ALL_TRI GGERS and DBA_TRI GGERS views, each of which contains the
additiona column OANER, for the owner of the object.

Introduction to Oracle9i: PL/SQL 17-29

Listing the Code of Triggers

SELECT trigger _name, trigger _type, triggering event,
t abl e_name, referencing_nanes,
status, trigger_body

FROM user _triggers

WHERE trigger_nane = ' RESTRI CT_SALARY ;

TRBGGER HAHE TRIGGER TYPE TRMGGERING EWENT TABLE WAME REFERENCIRG RARMES |STATUS TRIGEER BN

BEGH IF MOT
CHEW.JOE_D

pieT oa) apy BEFORE EALH | cenr 1 AT . REFERENLING NEW R Tl Al BDE ¢
RESTRICT_SALARY - NEERT OR UPDATE EMPLOYEES |- or e o p [FNABLED !_a_u-_:ﬁ_l_IF'E‘E_

HE W 54l

‘ 17-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Usethe USER TRI GGERS data dictionary view to display information about the RESTRI CT_SAL
trigger.

Introduction to Oracle9i: PL/SQL 17-30

Summary

In this lesson, you should have learned how to:

* Use advanced database triggers

* List mutating and constraining rules for triggers
®* Describe the real-world application of triggers

* Manage triggers

* View trigger information

17-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i: PL/SQL 17-31

Practice 17 Overview

This practice covers creating advanced triggers to
add to the capabilities of the Oracle database.

17-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 17 Overview

In this practice you decide how to implement a number of business rules. Y ou will create triggers for
those rules that should be implemented astriggers. The triggers will execute procedures that you
have placed in a package.

Introduction to Oracle9i: PL/SQL 17-32

Practice 17

1. A number of businessrules that apply to the EMPLOYEES and DEPARTMENTS tables are listed
below.

Decide how to implement each of these business rules, by means of declarative constraints or by
using triggers.

Which congtraints or triggers are needed and are there any problems to be expected?

Implement the business rules by defining the triggers or constraints that you decided to cresate.

A partia packageisprovidedinfilel ab17 1. sqgl towhich you should add any necessary

procedures or functions that are to be called from triggers that you may create for the following

rules.

(The triggers should execute procedures or functions that you have defined in the package.)
Business Rules

Rule 1. Sales managers and sal es representatives should always receive commission. Employees
who are not sales managers or sales representatives should never receive acommission.
Ensure that this restriction does not validate the existing records of the EMPLOYEES
table. It should be effective only for the subsequent inserts and updates on the table.

Rule 2. The EMPLOYEES table should contain exactly one president.

Test your answer by inserting an employee record with the following details: employee
ID 400, last nameHarri s, first name Al i ce, email ID AHARRI S, job ID AD_PRES,
hire date SYSDATE , salary 10000, and department ID 20.

Note: Y ou do not need to implement arule for case sengitivity; instead you need to test
for the number of people with the job title of President.

Rule 3. An employee should never be a manager of more than 15 employees.

Test your answer by inserting the following records into the EMPLOYEES table (perform
aquery to count the number of employees currently working for manager 100 before
inserting these rows):
i. Employee ID 401, last name Johnson, first name Br i an, e-mail ID
BJOHNSON, job ID SA_MAN, hire date SYSDATE, sadlary 11000, manager
ID 100, and department ID 80. (Thisinsertion should be successful, because
there are only 14 employees working for manager 100 so far.)

ii. Employee ID 402, last name Kel | ogg, first name Tony, e-mail ID
TKELLGOG job ID ST_MAN, hire date SYSDATE , salary 7500, manager
ID 100, and department 1D 50. (Thisinsertion should be unsuccessful, b
because there are already 15 employees working for manager 100.)
Rule 4. Saaries can only be increased, never decreased.

The present salary of employee 105 is 5000. Test your answer by decreasing the salary of
employee 105 to 4500.

Introduction to Oracle9i: PL/SQL 17-33

Practice 17 (continued)

Rule 5. If adepartment moves to ancther location, each employee of that department
automatically receives a salary raise of 2 percent.

View the current salaries of employeesin department 90.

| LAST _NAME | SALARY | DEPARTMENT _ID

[King | 24000 | a0
[Kochhar | 17000 | a0
\De Haan | 17000 | a0

Test your answer by moving department 90 to location 1600. Query the new salaries of
employees of department 90.

| LAST_NAME | SALARY | DEPARTMENT_ID

King | 24480 | a0
Kaochhar | 17340 | a0
\De Haan | 17340 | a0

Introduction to Oracle9i: PL/SQL 17-34

Managing Dependencies

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Track procedural dependencies

* Predict the effect of changing a database object
upon stored procedures and functions

®* Manage procedural dependencies

18-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Thislesson introduces you to object dependencies and implicit and explicit recompilation of invalid
objects.

Introduction to Oracle9i: PL/SQL 18-2

18-3

Understanding Dependencies

Dependent Objects

Table

View

Database Trigger
Procedure

Function

Package Body
Package Specification

User-Defined Object
and Collection Types

Referenced Objects

Function

Package Specification
Procedure

Sequence

Synonym

Table

View

User-Defined Object
and Collection Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Dependent and Referenced Objects

Some objects reference other objects as part of their definition. For example, a stored procedure
could contain a SELECT statement that selects columns from atable. For this reason, the stored

procedureis called a dependent object, whereasthe table is called areferenced object.
Dependency | ssues

If you alter the definition of areferenced object, dependent objects may or may not continue to
work properly. For example, if the table definition is changed, the procedure may or may not

continue to work without error.

The Oracle server automatically records dependencies among objects. To manage dependencies, all
schema objects have a status (valid or invalid) that is recorded in the data dictionary, and you can

view the status in the USER_OBJECTS data dictionary view.

Status Significance

VALI D The schema object has been compiled and can be immediately used when
referenced.

| NVALI D The schema object must be compiled before it can be used.

Introduction to Oracle9i: PL/SQL 18-3

Dependencies

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

Procedure procedure Table
e | Direct Direct
T |_OlEPENDENCY dependency
VVVVVVVVVVVVVV > ./_/ >
XXXXXXXX XXX XXX \/\/

........................... o

View or \

Referenced

dependent /

18-4

Dependent Indirect Referenced
dependency

o

/

Copyright © Oracle Corporation, 2001. All rights reserved.

Dependent and Referenced Objects (continued)

A procedure or afunction can directly or indirectly (through an intermediate view,
procedure, function, or packaged procedure or function) reference the following objects:

Tables

Views

Sequences

Procedures

Functions

Packaged procedures or functions

Introduction to Oracle9i: PL/SQL 18-4

Local Dependencies

/ Procedure Procedure View] Table \
:\’;\’;\’;\’;:x:\’x:x VVVVVVVVVVVVVY %
oo 7
VVVVVVVVVVVVVV VVVVVVVVVVVVVY L~ '-/-/
| NVALI D | NVALI D | NVALI D

_ Local references %
— I
Direct local Definition
dependency change

The Oracle server implicitly recompiles any | NVALI D
object when the object is next called.

18-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Local Dependencies

In the case of local dependencies, the objects are on the same node in the same database. The Oracle

server automatically manages al local dependencies, using the database’s internal “depends-on”

table. When a referenced object is modified, the dependent objects are invalidated. The next time an
invalidated object is called, the Oracle server automatically recompiles it.

Assume that the structure of the table on which a view is based is modified. When you describe the
view by using SQL*PlusDESCRI BE command, you get an error message that states that the object
is invalid to describe. This is because the command is not a SQL command and, at this stage, the
view is invalid because the structure of its base table is changed. If you query the view now, the
view is recompiled automatically and you can see the result if it is successfully recompiled.

Introduction to Oracle9i: PL/SQL 18-5

A Scenario of Local Dependencies

ADD EMP EMP_VWview
procedure
EMPLOYEE_ID LAST_MNAME SALARY DEFARTMEMNT_ID DE
XXXXXXXXXXXXXXXXXXXXX 100 irg 24000 ol Ewr
VVVVVVVVVVVVVVVV VYV Y - -
VVVVVVVVVVVVVVVVY 107 FHohher 17000 B0 E
VVVVVVVVVVVVVVVVVVVVY —~= —
R e 102 D Hear 17000 B0 E
VVVVVVXXXXXXXXXXXXXXX 02 Huncld GO A
XXXXXXXXXXXXXXXXXXXXX B .
VVVVVVVVVVVVVVVVVVVVV 1 =rret N1 i1}]
QUERY_EMP EMPLOYEES table
procedure
EMFLOYEE_ID LAST_MAMIE HIRE_DATE H0E_Io
XXXXXXXXXXXXXXXXXXXXX 00 i L=} 17-J0-ET ’:":'_mES
VVVVVVVVVVVVVVVVVVVVY 101 K esRhar M-CEP. An WP
VVVVVVVVVVVVVVVVY . - . : =
VVVVVVVVVVVVVVVVVVVVV 10 Da Hesan 13- M- 13 oy W
VVVVVVVVVVVVVVVVVVVVY > - - : =
VVVVVVXXXXXXXXXXXXXXX 03 Hunold [G5- a5 TP
XXXXXXXXXXXXXXXXXXXXX —
VVVVVVVVVVVVVVVVVVVVY

18-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The QUERY_EMP procedure directly references the EMPLOYEES table. The ADD_EMP procedure
updates the EMPLOYEES table indirectly, by way of the EMP_VWview.

In each of the following cases, will the ADD_EMP procedure be invalidated, and will it
successfully recompile?

1. Theinterna logic of the QUERY_EMP procedure is modified.
2. A new column is added to the EMPLOYEES table.
3. The EMP_VWWiew is dropped.

Introduction to Oracle9i: PL/SQL 18-6

Displaying Direct Dependencies by Using
USER DEPENDENCI ES

SELECT nane, type, referenced nane, referenced type
FROM user _dependenci es
WHERE referenced nanme IN (' EMPLOYEES , ' EMP_VW);

MHAME TYPE REFERENCED_MAME REFEREMCED_T
MR CORNETRAINTS PG Ir;,;i Al EWMFLOYEES TAELE
LIC 1 e . Ve _E5 TADL.
GERYT_ENF FROCEDIREE EMFLUYEES TABELE
EWP_wwy VIEWY EMPLOYEES TAELE
AL EMEF FROCEDURE EWE_Y WIEWY
18-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Display Direct Dependencies by Using USER DEPENDENCI ES

Determine which database objects to recompile manualy by displaying direct dependencies from
the USER DEPENDENCI ES datadictionary view.

Examine the ALL_DEPENDENCI ES and DBA DEPENDENCI ES views, each of which contains
the additiona column OWNER, that reference the owner of the object.

Column Column Description

NAME The name of the dependent object

TYPE The type of the dependent object (PROCEDURE, FUNCTI ON,
PACKAGE, PACKAGE BODY, TRI GGER, or VI EW

REFERENCED OWNER The schema of the referenced object

REFERENCED_ NAME The name of the referenced object

REFERENCED_TYPE The type of the referenced object

REFERENCED LI NK_NAME The database link used to access the referenced object

Introduction to Oracle9i: PL/SQL 18-7

Displaying Direct and Indirect
Dependencies

1. Runthe scriptutl dtree. sqgl that creates the
objects that enable you to display the direct and
indirect dependencies.

2. Execute the DEPTREE_FI LL procedure.

EXECUTE deptree fill (' TABLE , 'SCOIT, 'EMPLOYEES)

FLAQL procedure suseessbully completed

18-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Direct and Indirect Dependencies by Using Views Provided by Oracle
Display direct and indirect dependencies from additional user views called DEPTREE and
| DEPTREE; these view are provided by Oracle.

Example
1. Makesuretheut | dt ree. sql script has been executed. This script islocated in the
$ORACLE_HOVE/ r dbrrs/ admi n folder. (This script is supplied in the | ab folder of
your classfiles.)

2. Populate the DEPTREE_TEMPTAB table with information for a particular referenced object
by invoking the DEPTREE_FI LL procedure. There are three parameters for this procedure:

obj ect _type Is the type of the referenced object
obj ect _owner Is the schema of the referenced object
obj ect _nane Is the name of the referenced object

Introduction to Oracle9i: PL/SQL 18-8

Displaying Dependencies

DEPTREE View

SELECT nested | evel, type, nane
FROM deptree
ORDER BY seq#;

NESTED_LEVEL TYPE HAME
0 TAELE ENMPLCYEES
1 |PROCEDURE MEW_ERF
. ——— BT L ol P
1 WIEW EMF_DETALS VEW
1 PROCECURE AUERY _ENF
1 WIEWY =
£ PrUCEDIRE ALL_EkE

18-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Display atabular representation of al dependent objects by querying the DEPTREE view.

Display an indented representation of the same information by querying the | DEPTREE view, which
consists of asingle column named DEPENDENCI ES.

For example,
SELECT *
FROM i deptree;

provides a single column of indented output of the dependenciesin a hierarchical structure.

Introduction to Oracle9i: PL/SQL 18-9

Another Scenario of Local Dependencies

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
REDUCE_SAL [
- VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVY
p r O C ed u re VVVVVVXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
p ro C ed u re XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV
ENPL OYEES b I VVVVVVVVVVVVVVVVVVVVV
ta e VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX
EMPLOYEE_ID LAST_MNAME JOB_ID SALARY | oomoomooaomoomoo
— — — VVVVVVVVVVVVVVVVVVVVV
100 King AD PRES 24000
101 Kochhar AD VP 170D
102 De Haan AD_VP 17000

103 Hunold IT_PRCHG Q000

e

18-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Predicting the Effects of Changes on Dependent Objects

Example 1

Predict the effect that a change in the definition of a procedure has on the recompilation of a
dependent procedure.

Suppose that the RAI SE_SAL procedure updates the EMPLOYEES table directly, and that the
REDUCE_SAL procedure updates the EMPLOYEES table indirectly by way of RAI SE_SAL.

In each of the following cases, will the REDUCE_SAL procedure successfully recompile?
1. Theinterna logic of the RAI SE_SAL procedure is modified.
2. One of the formal parametersto the RAI SE_SAL procedureis eliminated.

Introduction to Oracle9i: PL/SQL 18-10

A Scenario of Local Naming
Dependencies
QUERY_EMP EMPLOYEES public synonym
procedure
EMPLOYEE_ID LAST_MNAME JOB_ID SALARY
VVVVVVVVVVVVVVVVVVVVY 100 H."'IQ FLD_FHEE 24000
AWy % 101 Kochhar AD_VP 17000
0000000000000 102 De Haan AD_VP 17000
AR 103 Hunald IT_PROG 3000
EMPLOYEES
table
EMPLOYEE_ID LAST_MNAME JOB_ID SALARY
100 King AD_PRES 24000
101 Kochhar AD WP 1T DD
102 De Haan AD_VP 17000
103 Hunold IT_PROG 2000

18-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Predicting Effects of Changes on Dependent Objects (continued)

Example 2

Be aware of the subtle case in which the creation of atable, view, or synonym may unexpectedly
invalidate a dependent object because it interferes with the Oracle server hierarchy for resolving
name references.

Predict the effect that the name of a new object has upon a dependent procedure.

Suppose that your QUERY _EMP procedure originally referenced a public synonym called
EMPLOYEES. However, you have just created a new table called EMPLOYEES within your own
schema. Will this change invalidate the procedure? Which of the two EMPLOYEES aobjects will
QUERY_EMP reference when the procedure recompiles?

Now suppose that you drop your private EMPLOYEES table. Will thisinvalidate the procedure?
What will happen when the procedure recompiles?

Y ou can track security dependencies within the USER_TAB_PRI VS data dictionary view.

Introduction to Oracle9i: PL/SQL 18-11

Understanding Remote Dependencies
ﬁ:’rocedure Procedure View Table\

Z

XXXXXXXXXXXXXX

VVVVVVVVVVVVVV VVVVVVVVVVVVVV
XXXXXXXXXXXXXX

XXXKXXRXXXKXXX | g
VVVVVVVVVVVVVV N> VVVVVVVVVVVVVY
XXXXXXXXXXXXXX XXXXXXXXXXXXXX

VVVVVVVVVVVVVV N etW O r k VVVVVVVVVVVVVV

ARARRR |~
VALI D | NVALI D | NVALI D
K Local and remote references /
— N> 0
Direct local Direct remote Definition
dependency dependency change

18-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Understanding Remote Dependencies

In the case of remote dependencies, the objects are on separate nodes. The Oracle server does not
manage dependencies among remote schema objects other than local -procedure-to-remote-
procedure dependencies (including functions, packages, and triggers). The local stored procedure
and all of its dependent objects will be invalidated but will not automatically recompile when called
for the first time.

Recompilation of Dependent Objects. Local and Remote

» Verify successful explicit recompilation of the dependent remote procedures and implicit
recompilation of the dependent local procedures by checking the status of these procedures
within the USER_OBJECTS view.

« If an automatic implicit recompilation of the dependent local procedures fails, the status
remains invalid and the Oracle server issues a run-time error. Therefore, to avoid disrupting
production, it is strongly recommended that you recompile local dependent objects manually,
rather than relying on an automatic mechanism.

Introduction to Oracle9i: PL/SQL 18-12

Concepts of Remote Dependencies

Remote dependencies are governed by the mode
chosen by the user:

e TI MESTAMP checking
* S| GNATURE checking

18-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Tl MESTAMP Checking

Each PL/SQL program unit carries atime stamp that is set when it is created or recompiled.
Whenever you alter a PL/SQL program unit or arelevant schema object, al of its dependent
program units are marked as invalid and must be recompiled before they can execute. The actua
time stamp comparison occurs when a statement in the body of alocal procedure calls aremote
procedure.

SI GNATURE Checking

For each PL/SQL program unit, both the time stamp and the signature are recorded. The signature
of aPL/SQL construct contains information about the following:

« The name of the construct (procedure, function, or package)
e The base types of the parameters of the construct

e The modes of the parameterd\(OUT, or| N OUT)

e The number of the parameters

The recorded time stamp in the calling program unit is compared with the current time stamp in the
called remote program unit. If the time stamps match, the call proceeds normally. If they do not
match, the Remote Procedure Calls (RPC) layer performs a simple test to compare the signature to
determine whether the call is safe or not. If the signature has not been changed in an incompatible
manner, execution continues; otherwise, an error status is returned.

Introduction to Oracle9i: PL/SQL 18-13

REMOTE_DEPENDENCI ES_MODE Parameter

Setting REMOTE_DEPENDENCI ES MODE:
* Asaninit.oraparameter
REMOTE_DEPENDENCI ES MODE = val ue

* Atthe system level

ALTER SYSTEM SET
REMOTE_DEPENDENCI ES_MODE = val ue

* Atthe session level

ALTER SESSI ON SET
REMOTE_DEPENDENCI ES_MODE = val ue

18-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Setting the REMOTE_DEPENDENCI ES_MODE

val ue TI MESTAMP
SI GNATURE

Specify the value of the REMOTE_DEPENDENCI ES MODE parameter, using one of the three
methods described in the preceding dide.

Note: The caling site determines the dependency model.

Introduction to Oracle9i: PL/SQL 18-14

Remote Dependencies and
Time stamp Mode

//brocedure

_/\/.9 VWYY

XXXXXXXXXXXXXX

VVVVVVVVVVVVVV

etwor k] XXXXKXXXXKXXXX

VVVVVVVVVVVVVV

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

| NVALI D

18-15 Copyright © Oracle Corporation, 2001. All rights reserved.

View

o

| NVALI D

TaMe‘\\
%

/

/'Procedure
XXXXXXXXX XX XXX
VVVVVVVVVVVVVV
XXXXX XXX XXX XXX
VVVVVVVVVVVVVV —
XXXXX XXX XXX XXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX [Pd
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

VALI D
N)

\
\
\

Definition
change

Using Time stamp Mode for Automatic Recompilation of Local and Remote Objects

If time stamps are used to handle dependencies among PL/SQL program units then, whenever you
ater aprogram unit or arelevant schema object, al of its dependent units are marked asinvalid and

must be recompiled before they can be run.

* When remote objects change, it is strongly recommended that you recompile local dependent

objects manually in order to avoid disrupting production.

» The remote dependency mechanism is different from the automatic local dependency
mechanism already discussed. The first time a recompiled remote subprogram is invoked by a
local subprogram, you get an execution error and the local subprogram is invalidated; the

second time it is invoked, implicit automatic recompilation takes place.

Introduction to Oracle9i: PL/SQL 18-15

Remote Procedure B Compiles
at 8:00 a.m.

Remote procedure B

Compiles
Valid

18-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Procedures Referencing Remote Procedures

A locd procedure that references aremote procedure isinvalidated by the Oracle server if the
remote procedure is recompiled after the local procedure is compiled.

Automatic Remote Dependency Mechanism

When a procedure compiles, the Oracle server records the time stamp of that compilation within
the P code of the procedure.

In the preceding dide, when the remote procedure B was successfully compiled at 8 am., thistime
was recorded asitstime stamp

Introduction to Oracle9i: PL/SQL 18-16

Local Procedure A Compiles

at 9:00 a.m.
Local procedure A Remote procedure B
1/ >
Time stamp Record Time stamp
of A Time stamp of B
of B
Valid Valid
18-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Automatic Remote Dependency Mechanism

When aloca procedure referencing aremote procedure compiles, the Oracle server aso
records the time stamp of the remote procedure into the P code of the local procedure.

In the preceding dide, local procedure A which is dependent on remote procedure B is

compiled at 9:00 am. The time stamps of both procedure A and remote procedure B are
recorded in the P code of procedure A.

Introduction to Oracle9i: PL/SQL 18-17

Execute Procedure A

Local procedure A Remote procedure B

1/>

Time stamp
comparison

Time stamp Time stamp Time stamp
of A of B of B
Execute B
| |
Valid Valid
18-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Automatic Remote Dependency

When the local procedure isinvoked, at run time the Oracle server compares the two time stamps
of the referenced remote procedure.

If the time stamps are equal (indicating that the remote procedure has not recompiled), the Oracle
server executes the local procedure.

In the example in the dide, the time stamp recorded with P code of remote procedure B isthe same
as that recorded with local procedure A. Hence, local procedure A isvalid.

Introduction to Oracle9i: PL/SQL 18-18

Remote Procedure B Recompiled
at 11:00 a.m.

Remote procedure B

Compiles
Valid

18-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Procedures Referencing Remote Procedures

Assume that the remote procedure B is successfully recompiled at 11a.m. The new time stamp is
recorded along with its P code.

Introduction to Oracle9i: PL/SQL 18-19

Execute Procedure A

Local procedure A Remote procedure B
1/ >
Time stamp
comparisgn
Time stamp Time stamp Time stamp
of A of B of B
ERROR
Wd Invalid Valid
18-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Automatic Remote Dependency

If the time stamps are not equa (indicating that the remote procedure has recompiled), the Oracle
server invalidates the local procedure and returns a runtime error.

If the local procedure, which is now tagged asinvalid, isinvoked a second time, the Oracle server
recompilesit before executing, in accordance with the automatic local dependency mechanism.

Note: If alocal procedure returns arun-time error thefirst timethat it is invoked, indicating that the
remote procedure’s time stamp has changed, you should develop a strategy to reinvoke the local
procedure.

In the preceding slide, remote procedureis recompiled at 11a.m. and thistime isrecorded asitstime
stamp in the P code. The P code of local procedure A il has 8 am. as time stamp for the remote
procedure B.

Because the time stamp recorded with P code of local procedure A is different from that recorded
with remote procedure B, the local procedure is marked invalid. When the local procedureis
invoked for the second time, it may be successfully compiled and marked valid.

Disadvantage of time ssamp mode: A disadvantage of the time stamp mode isthat it is
unnecessarily restrictive. Recompilation of dependent objects across the network are often
performed when not strictly necessary, leading to performance degradation.

Introduction to Oracle9i: PL/SQL 18-20

Signature Mode

®* The signature of a procedure is:
— The name of the procedure
— The datatypes of the parameters
— The modes of the parameters

* The signature of the remote procedure is saved in
the local procedure.

* When executing a dependent procedure, the
signature of the referenced remote procedure is
compared.

18-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Signatures

To alleviate some of the problems with the time stamp-only dependency model, you can use the
signature model. This allows the remote procedure to be recompiled without affecting the local
procedures. Thisisimportant if the database is distributed.

The signature of a subprogram contains the following information:

The name of the subprogram

The datatypes of the parameters

The modes of the parameters

The number of parameters

The datatype of the return value for a function

If a remote program is changed and recompiled but the signature does not change, then the local
procedure can execute the remote procedure. With the time stamp method, an error would have been
raised because the time stamps would not have matched.

Introduction to Oracle9i: PL/SQL 18-21

Recompiling a PL/SQL
Program Unit

Recompilation:

* Is handled automatically through implicit run-time
recompilation.

* |s handled through explicit recompilation with the
ALTER statement.

ALTER PROCEDURE [SCHEMA.] procedure_nane COWVPI LE;

ALTER FUNCTI ON [SCHEMA.] function_nanme COVPI LE;

ALTER PACKAGE [SCHEMA. | package name COWVPI LE [PACKAGE] ;
ALTER PACKAGE [SCHEMA. | package _name COVPI LE BODY;

ALTER TRI GGER tri gger_name [COVPI LE[DEBUG | ;

18-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompiling PL/SQL Objects
If the recompilation is successful, the object becomes valid. If not, the Oracle server returns an error
and the object remainsinvalid.
When you recompile a PL/SQL object, the Oracle server first recompiles any invalid objects on which
it depends.
Procedure
Any local objectsthat depend on a procedure (such as procedures that call the recompiled procedure or
package bodies that define the procedures that call the recompiled procedure) are also invalidated.
Packages
The COVPI LE PACKAGE option recompiles both the package specification and the body, regardless of
whether it isinvalid. The COMPI LE BODY option recompiles only the package body.
Recompiling a package specification invalidates any local objects that depend on the specification, such
as procedures that call procedures or functionsin the package. Note that the body of a package also
depends on its specification.
Triggers
Explicit recompilation eliminates the need for implicit run-time recompilation and prevents associated
run-time compilation errors and performance overhead.
The DEBUG option instructs the PL/SQL compiler to generate and store the code for use by the
PL/SQL debugger.

Introduction to Oracle9i: PL/SQL 18-22

Unsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:

* Thereferenced object is dropped or renamed
* The datatype of the referenced column is changed
* Thereferenced columnis dropped

* Areferenced view is replaced by a view with
different columns

®* The parameter list of a referenced procedure is
modified

18-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Unsuccessful Recompilation

Sometimes arecompilation of dependent procedures is unsuccessful, for example, when a referenced
table is dropped or renamed.

The success of any recompilation is based on the exact dependency. If areferenced view isrecreated,
any object that is dependent on the view needs to be recompiled. The success of the recompilation
depends on the columns that the view now contains, as well as the columns that the dependent objects
require for their execution. If the required columns are not part of the new view, the object remains
invalid.

Introduction to Oracle9i: PL/SQL 18-23

Successful Recompilation

Recompiling dependent procedures and functions is
successful if:

* Thereferenced table has new columns

* The datatype of referenced columns has not
changed

* A private table is dropped, but a public table,
having the same name and structure, exists

* The PL/SQL body of a referenced procedure has
been modified and recompiled successfully

18-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Successful Recompilation

The recompilation of dependent objectsis successful if:
* New columns are added to a referenced table
e All I NSERT statements include a column list
e No new column is defined &OT NULL

When a private table is referenced by a dependent procedure, and the private table is dropped, the
status of the dependent procedure becomes invalid. When the procedure is recompiled, either
explicitly or implicitly, and a public table exists, the procedure can recompile successfully but is now
dependent on the public table. The recompilation is successful only if the public table contains the
columns that the procedure requires; otherwise, the status of the procedure remains invalid.

Introduction to Oracle9i: PL/SQL 18-24

Recompilation of Procedures

Minimize dependency failures by:

* Declaring records by using the “ROMYPE attribute
®* Declaring variables with the %I'YPE attribute

®* Querying with the SELECT * notation

* Including a column list with | NSERT statements

18-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompilation of Procedures
Y ou can minimize recompilation failure by following the guidelines in the preceding slide.

Introduction to Oracle9i: PL/SQL 18-25

Packages and Dependencies
[|

Package specification

Stand-aloner ;
Procedure A Va“d

procedure declaration

Valid s | | ~

Package body

Procedure A
definition

_ Definition changed J

18-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Dependencies
Y ou can greatly simplify dependency management with packages when referencing a package
procedure or function from a stand-alone procedure or function.
» If the package body changes and the package specification does not change, the stand-alone
procedure referencing a package construct remains valid.
» If the package specification changes, the outside procedure referencing a package construct is
invalidated, as is the package body.

Introduction to Oracle9i: PL/SQL 18-26

Packages and Dependencies

e N
Package specification .
Valid
Procedure A
declaration
- | | y
Package body Invalid
Stand-alone Procedure A
procedure |« definition
Definition _ J
changed | |

18-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Dependencies (continued)

If a stand-alone procedure referenced within the package changes, the entire package body is
invalidated, but the package specification remains valid. Therefore, it is recommended that you bring
the procedure into the package.

Introduction to Oracle9i: PL/SQL 18-27

Summary

In this lesson, you should have learned how to:
e Keep track of dependent procedures

®* Recompile procedures manually as soon as
possible after the definition of a database object
changes

18-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Summary

Avoid disrupting production by keeping track of dependent procedures and recompiling them
manually as soon as possible after the definition of a database object changes.

Situation Automatic Recompilation

Procedure depends on alocal object Yes, at first re-execution

Procedure depends on aremote procedure | Yes, but at second re-execution; use manual
recompilation for first re-execution, or reinvoke it
second time

Procedure depends on a remote object other |No
than a procedure

Introduction to Oracle9i: PL/SQL 18-28

Practice 18 Overview

This practice covers the following topics:

* Using DEPTREE FI LL and | DEPTREE to view
dependencies

* Recompiling procedures, functions, and packages

‘ 18-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 18 Overview

In this practice you use the DEPTREE_FI LL procedure and the | DEPTREE view to investigate
dependenciesin your schema.

In addition, you recompile invalid procedures, functions, packages, and views.

Introduction to Oracle9i: PL/SQL 18-29

Practice 18

1. Answer thefollowing questions.

a Canatable or asynonym beinvalid?
b. Assuming the following scenario, isthe stand-alone procedure MY_PROC invalidated?

The stand-alone procedure MY_PRCOC depends on the packaged procedure

MY_PROC_PACK.

The MY_PROC_PACK procedure’s definition is changed by recompiling the package
body.

TheMY_PROC_PACK procedure’s declaration is not altered in the package specification.

2. Execute theit | dtr ee. sql script. This script is available in yougab folder. Print a tree
structure showing all dependencies involving yidEYW EMP procedure and your
VALI D_DEPTI D function.

DEPENDENCIES

FROCEDURE PLPLLNEYY _EMP

Query thd DEPTREE view to see your resultaNEW EMP andVALI D_DEPTI Dwere created in
lesson 10, "Creating Functions". You can run the solution scripts for the practice if you need to

create the procedure and function.)

DEPENDENCIES

FLUNCTION PLPUMWALID_DEPTID
FROCEDLURE PLFLLMEW EMP

If you havetime:
3. Dynamically validate invalid objects.

a.

b
c.
d

Make a copy of yolEMPLOYEES table, calledceEMP_COP.

Alter yourEMPLOYEES table and add the colunTfOTSAL with data typeNUMBER(9, 2) .
Create a script file to print the name, type, and status of all objects that are invalid.
Create a procedure calleédVvPl LE_OBJ that recompiles all invalid procedures, functions,
packages and views in your schema.

Make use of thé<ER COWVPI LE procedure in th®BMs_DDL package.

Execute theCOMPI LE_OBJ procedure.
Run the script file that you created in question 3c again and check the status column value.

Do you still havd NVALI D objects? If you do, why are théyWVALI D?

Introduction to Oracle9i: PL/SQL 18-30

A

Practice Solutions

Practice 1 Solutions

1. Evauate each of the following declarations. Determine which of them are not legal and explain
why.
a. DECLARE
v_id NUVBER(4) ;

Legal

b. DECLARE
V_X, V_y, v_z VARCHAR2(10);

Illegal because only oneidentifier per declaration isallowed.

c. DECLARE
v_birthdate DATE NOT NULL;

Illegal becausethe NOT NULL variable must beinitialized.

d. DECLARE
v_in_stock BOOLEAN : = 1;

Illegal because 1isnot a Boolean expression.
PL/SQL returnsthefollowingerror:
PLS- 00382: expression is of wong type

Introduction to Oracle9i: PL/SQL A-2

Practice 1 Solutions (continued)

2.

In each of the following assignments, indicate whether the statement is valid and what the valid data
type of the result will be.

a v_days_to_go := v_due_date - SYSDATE;

Valid; Number

v_sender = USER || ': ' || TO_CHAR(v_dept no);
Valid; Character string

v_sum := $100, 000 + $250, 000;
Illegal; PL/SQL cannot convert special symbolsfrom VARCHAR2to NUMBER.

v_flag : = TRUE;
Valid; Boolean

v_nl :=v.n2 > (2 * v_n3l;
Valid; Boolean

v_val ue = NULL;
Valid; Any scalar datatype

3. Create an anonymous block to output the phrase “My PL/SQL Block Works” to the screen.

VARI ABLE g nmessage VARCHAR2(30)

BEG N
:g_nessage := "My PL/SQ Bl ock Wrks’;
END;
/
PRI NT g_nessage

Alter nate Solution:

SET SERVEROUTPUT ON

BEG N

DBMS_OUTPUT. PUT_LI NE(" My PL/ SQL Bl ock Works’);

END;
/

Introduction to Oracle9i: PL/SQL A-3

Practice 1 Solutions (continued)
If you have time, complete the following exercise:

4. Createablock that declares two variables. Assign the value of these PL/SQL variablesto
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in afilenamed p1q4. sql , by clicking the Save
Scri pt button. Remember to save the script witha. sql extension.

V_CHAR Character (variable |ength)
V_NUM Nunber
Assign values to these variables as follows:

Vari abl e Val ue
V_CHAR The literal 42 is the answer’
V_NUM The first two characters from V_CHAR

VARI ABLE g_char VARCHAR2(30)
VARI ABLE g_num NUMVBER
DECLARE
v_char VARCHAR2(30);
v_num NUMBER(11, 2);

BEG N
v_char :='42 is the answer’;
v_num := TO NUMBER(SUBSTR(v_char, 1, 2));
:g_char := v_char;
:g_nhum := v_num
END;
/
PRI NT g_char
PRI NT g_num

Introduction to Oracle9i: PL/SQL A-4

Practice 2 Solutions

DECLARE
v_wei ght NUMBER(3) : = 600;
v_nessage VARCHAR2(255) := 'Product 10012’
BEG N
/ * SUBBL OCK* /
DECLARE
v_wei ght NUVBER(3) : = 1;
v_nessage VARCHAR2(255) := 'Product 11001’ ;
v_new_| ocn VARCHAR2(50) := 'Europe’;
BEG N
v_weight := v_weight + 1,
@ v_new_locn := "Western ' || v_new_|locn;
END;
v_weight := v_weight + 1,
v_nessage := v_nessage || ' is in stock’;
v_new_ locn := "Western ' || v_new_|locn;

@ END; >

1. Evauatethe PL/SQL block on the previous page and determine the data type and value of each of
the following variables according to the rules of scoping.

a Thevaueof V_WEI GHT at position 1 is:
2
The data type is NUVBER.

b. Thevaueof V_NEW LOCNat position 1is:
Western Europe
The data typeis VARCHARZ.

c. Thevadueof V_VEI GHT at position 2is:
601
The data typeis NUVBER.

d. Thevaueof V_MESSAGE at position 2is:
Product 10012 isin stock
The data typeis VARCHARZ.

e. Thevaueof V_NEW LOCN at position2is:
Illegal becausev_new | ocn isnot visible outside the subblock.

Introduction to Oracle9i: PL/SQL A-5

Practice 2 Solutions (continued)

Scope Example
DECLARE
V_cust oner VARCHAR2(50) := 'Wbnansport’
v_credit _rating VARCHAR2(50) := " EXCELLENT ;
BEG N
DECLARE
v_customer NUMBER(7) := 201,
v_name VARCHAR2(25) := ’Unisports’;
BEG N L
.~ V_cust oner, AUEURS "\f'c_r_e—d—l t ra_tTn‘g"
EI\IB; ______ Tm---- L E T L
:—v_gyisE?[r?[_t) ‘ \—/—naFn% Y ¢ v:‘cF edit_rat fﬁ@ h)
END;

Introduction to Oracle9i: PL/SQL A-6

Practice 2 Solutions (continued)

2. Suppose you embed a subblock within a block, as shown on the previous page. Y ou declare two
variables, V_CUSTOMER and V_CREDI T_RATI NG, in the main block. Y ou also declare two
variables, V_CUSTOMER and V_NANME, in the subblock. Determine the values and data types for
each of the following cases.

a. Thevaueof V_CUSTOVERin the subblock is:
201
The data type is NUMBER.
b. Thevaueof V_NAME inthe subblock is:
Unisports and
The data typeis VARCHARZ.
c. Thevaueof V_CREDI T_RATI NGin the subblock is:
EXCELLENT
The data typeis VARCHARZ2.
d. Thevaueof V_CUSTOVERinthe main block is:
Womansport
The data typeis VARCHARZ.
e. Thevaueof V_NAME inthemainblock is:
V_NAME isnot visiblein the main block and you would seean error.
f. Thevalueof V_CREDI T_RATI NGin the main block is:
EXCELLENT
The data typeis VARCHARZ.

Introduction to Oracle9i: PL/SQL A-7

Practice 2 Solutions (continued)

3. Create and execute a PL/SQL block that accepts two numbers through i SQL* Plus substitution
variables. Use the DEFI NE command to provide the two values. Pass these two valuesto the
PL/SQL block through i SQL* Plus substitution variables. The first number should be divided by the
second number and have the second number added to the result. The result should be stored in a
PL/SQL variable and printed on the screen.

Note SET VERI FY OFF inthe PL/SQL block.

SET ECHO OFF

SET VERI FY OFF

SET SERVEROUTPUT ON

DEFI NE p_numl=2 -- exanple
DEFI NE p_nunk=4 -- exanpl e
DECLARE

v_numl NUMBER(9, 2) : = &p_numi;
v_nun® NUMBER(9, 2) : = &p_nunt;
v_result NUMBER(Y9, 2) ;

BEG N
v result := (v_nunl/v_nunR) + v_nung;

/* Printing the PL/SQL variable */
DBVMS OUTPUT. PUT_LINE (v_result);
END;
/
SET SERVEROQUTPUT OFF
SET VERI FY ON
SET ECHO ON

Introduction to Oracle9i: PL/SQL A-8

Practice 2 Solutions (continued)

4. BuildaPL/SQL block that computes the total compensation for one year. The annua salary and
the annual bonus percentage values are defined using the DEFI NE command and are passed to
the PL/SQL block through i SQL* Plus substitution variables. The bonus must be converted from a
whole number to adecimal (for example, 15t0 .15). If the salary isnul | , set it to zero before
computing the total compensation. Execute the PL/SQL block. Reminder: Use the NVL function
to handlenul | values.

a When aniSQL*Plus variableis used:

SET VERI FY OFF

VARI ABLE g _total NUMBER
DEFI NE p_sal ar y=50000
DEFI NE p_bonus=10
DECLARE

v_salary NUMBER := &p_sal ary;

v_bonus NUMBER : = &p_bonus;
BEG N

;g total := NVL(v_salary, 0) * (1 + NVL(v_bonus, 0) / 100);
END;

/
PRI NT g_total
SET VERI FY ON

Alternate Solution:
b. When a PL/SQL variable is used:

SET VERI FY OFF
SET SERVEROUTPUT ON

DEFI NE p_sal ar y=50000
DEFI NE p_bonus=10
DECLARE

v_sal ary NUMBER :

v_bonus NUMBER :
BEG N

dbrs_out put. put _1ine(TO CHAR(NVL(v_sal ary, 0) *

(1 + NVL(v_bonus, 0) / 100)));

&p sal ary;
&p_bonus;

END,

/

SET VERI FY ON

SET SERVEROQUTPUT OFF

Introduction to Oracle9i: PL/SQL A-9

Practice 3 Solutions

1. CreateaPL/SQL block that selects the maximum department number in the DEPARTMENTS table and
storesit in aniSQL*Plus variable. Print the results to the screen. Save your PL/SQL block in afile
named p3ql. sql by clickingthe Save Scri pt button. Savethe script witha. sql extension.

VARI ABLE g nmax_dept no NUVBER
DECLARE
v_max_dept no NUMBER;
BEG N
SELECT max(departnent _id)
I NTO v_max_dept no
FROM depart nment s;
:g_max_deptno : = v_max_dept no;
END;
/
PRI NT g nmax_dept no

Alternate Solution:

SET SERVEROUTPUT ON

DECLARE
v_max_dept no NUVBER;

BEG N
SELECT MAX(departnent _id) |INTO v_max_deptno FROMdepartnents;
dbrs_out put. put _|ine(v_nmax_dept no);

END;
/

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the DEPARTMENTS
table. Save the PL/SQL block in afile named p3g2. sqgl by clicking the Save Script button. Save the
script witha. sgl extension.

a Rather than printing the department number retrieved from exercise 1, add 10 to it and useit as
the department number for the new department.

b. Usethe DEFI NE command to provide the department name. Name the new department
Educat i on. Passthe vaue to the PL/SQL block through aiSQL* Plus substitution variable.

L eave the location number as null for now.
Execute the PL/SQL block.
Display the new department that you created.

® oo

Introduction to Oracle9i: PL/SQL A-10

Practice 3 Solutions (continued)
SET ECHO OFF
SET VERI FY OFF
DEFI NE p_dnanme = Educati on
DECLARE
v_max_deptno departnents. departnment _i d%YPE;
BEG N
SELECT MAX(departnent _id) + 10
I NTO v_max_deptno
FROM departnents;
| NSERT | NTO departnents (departnent id, departnent_nane,
| ocation_id)
VALUES (v_nmax_deptno, '&p_dnanme’, NULL);
COW T;
END;
/
SET VERI FY ON
SET ECHO ON

d. Executethe PL/SQL block.
e. Display the new department that you created.
SELECT *
FROM departments
WHERE departnent _nanme = ' Education’;
3. Create a PL/SQL block that updates the location ID for the new department that you added in the

previous practice. Save your PL/SQL block in afile named p3qg3. sql by clicking the Save
Scri pt button. Savethe script witha. sql extension.

a. UseaniSQL*Plus variable for the department ID number that you added in the previous practice.

b. Usethe DEFI NE command to provide the location ID. Name the new location ID 1700.
Pass the value to the PL/SQL block through a i SQL* Plus substitution variable.
c. Testthe PL/SQL block.
SET VERI FY OFF
DEFI NE p_deptno = 280
DEFINE p_loc = 1700
BEG N
UPDATE departments
SET location_id = &u_Iloc
VHERE departnent _id = &p_dept no;
COW T;
END;
/
SET VERI FY ON
SET VERI FY ON
d. Display the department that you updated.
SELECT * FROM departnents
WHERE departnent _id = &p_dept no;

Introduction to Oracle9i: PL/SQL A-11

Practice 3 Solutions (continued)

4. Create a PL/SQL block that deletes the department that you created in exercise 2. Save the PL/SQL
block inafilenamed p3g4. sql by clickingthe Save Scri pt button. Save the script witha. sql

extension.
a. Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL block
through ai SQL* Plus substitution variable.

b. Print to the screen the number of rows affected.
c. Testthe PL/SQL block.
SET VERI FY OFF
VARI ABLE g result VARCHAR2(40)
DEFI NE p_deptno = 280

DECLARE

v_result NUMBER(2);
BEG N

DELETE

FROM departments

VWHERE department __id = &p_deptno;
v_result := SQL¥RONCOUNT;
cg_result := (TOCHAR(v_ result) || ' rowms) deleted.”);
COW T;
END;
/
PRI NT g_result
SET VERI FY ON

d. Confirm that the department has been del eted.

SELECT *
FROM departnments
VHERE departnment _id = 280;

Introduction to Oracle9i: PL/SQL A-12

Practice 4 Solutions

1. Executethe commandinthefilel ab04_1. sql to create the MESSAGES table. Write a PL/SQL
block to insert numbers into the MESSAGES table.

CREATE TABLE nessages (results VARCHAR2 (60));
a. Insert the numbers 1 to 10, excluding 6 and 8.

b. Commit before the end of the block.
BEG N
FORi IN1..10 LOOP
IFi =6 or i =8 THEN
nul | ;
ELSE
I NSERT | NTO nessages(results)
VALUES (i);
END | F;
COW T;
END LOOP;
END;
/

Note: i isbeing implicitly converted. A better way to code would be to explicitly convert the NUVBER
to VARCHAR2.

c. Select from the MESSAGES table to verify that your PL/SQL block worked.
SELECT *
FROM nessages;

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee’s salary.

a. Use théEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through aiSQL*Plus substitution variable.

b. If the employee’s salary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

c. If the employee’s salary is between $5,000 and $10,000, display the bonus amount for the
employee as 15% of the salary.

d. If the employee’s salary exceeds $10,000, display the bonus amount for the employee as
20% of the salary.

e. If the employee’s salary MULL, display the bonus amount for the employee as 0.

f. Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: IncludeSET VERI FY OFF in your solution.

Introduction to Oracle9i: PL/SQL A-13

Practice 4 Solutions (continued)

SET SERVEROUTPUT ON
SET VERI FY OFF
DEFI NE p_enpno = 100

DECLARE
v_enpno enpl oyees. enpl oyee_i dYWIYPE : = &p_enpno;
v_sal enpl oyees. sal ar y%d YPE
v_bonus_per NUMBER(7, 2) ;
v_bonus NUMBER(7, 2) ;
BEG N
SELECT sal ary
I NTO v_sa

FROM enpl oyees
WHERE enpl oyee_id = v_enpno;
I F v_sal < 5000 THEN

v_bonus_per := .10;
ELSI F v_sal BETWEEN 5000 and 10000 THEN
v_bonus_per := .15;
ELSIF v_sal > 10000 THEN
v_bonus_per := .20;
ELSE
v_bonus_per := 0;
END | F;
v_bonus := v_sal * v_bonus_per;
DBVMS OUTPUT. PUT_LINE (' The bonus for the enployee with enployee id
|| v_enmpno || ' and salary ' || v_sal || ' is ' || v_bonus);
END;
/
Employee Number Salary Resulting Bonus
100 2000 200
149 875 875
178 583.33 58.33

Introduction to Oracle9i: PL/SQL A-14

Practice 4 Solutions (continued)
If you have time, complete the following exercises:
3. Create an EMP table that is areplica of the EMPLOYEES table. Y ou can do this by executing
the script| ab04_3. sgl . Add anew column, STARS, of VARCHARZ data type and length 50 to
the EMP tablefor storing asterisk (*).
ALTER TABLE enp
ADD st ars VARCHAR2(50) ;

4. CreateaPL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee’s salary. Save your PL/SQL block in a file called
p4g4. sql by clicking on theSave Scri pt button. Remember to save the script withsa|

extension.

a. Use thédEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through aiSQL*Plus substitution variable.

b. Initialize av_ast er i sk variable that containsULL..

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if the
employee has a salary amount of $8000, the string of asterisks should contain eight asterisks.
If the employee has a salary amount of $12500, the string of asterisks should contain 13
asterisks.

d. Update th&TARS column for the employee with the string of asterisks.
e. Commit.
f. Test the block for the following values:

DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

Employee Number Salary Resulting Bonus
100 24000 4800
149 10500 2100
178 7000 1050

Note: SET VERI FY OFF in the PL/SQL block

Introduction to Oracle9i: PL/SQL A-15

Practice 4 Solutions (continued)

SET VERI FY OFF
DEFI NE p_enpno = 104

DECLARE
v_enpno enp. enpl oyee_i dWYPE : = TO_NUVBER(& _enpno) ;
v_asterisk enp. stars%YPE : = NULL;
v_sal enp. sal ar y%l'YPE;
BEG N
SELECT NVL(ROUND(sal ary/ 1000), 0)
| NTO v_sal
FROM enmp

VWHERE enpl oyee_id = v_enpno;
FORi IN 1. .v_sal LOOP
v_asterisk := v_asterisk ||’*";
END LOOP;
UPDATE enp
SET stars = v_asterisk
WHERE enpl oyee_id = v_enpno;
COW T;

END;

/

SET VERI FY ON

g. Display the rowsfrom the EMP table to verify whether your PL/SQL block has executed
successfully.

SELECT enpl oyee_id, salary, stars
FROM enmp
WHERE enpl oyee id IN (104, 174,176);

Introduction to Oracle9i: PL/SQL A-16

Practice 5 Solutions
*Write a PL/SQL block to print information about a given country.
a. Declare a PL/SQL record based on the structure @IQOBTRI ES table.

Use theDEFI NE command to provide the country ID. Pass the value to the PL/SQL block
through aiSQL*Plus substitution variable.

UseDBMS_OUTPUT. PUT_LI NE to print selected information about the country. A sample
output is shown below.

SET SERVEROUTPUT ON
SET VERI FY OFF
DEFINE p_countryid = CA

DECLARE

country_record countri es¥ROMYPE;
BEG N

SELECT *

| NTO country_record
FROM countries
WHERE country id = UPPER(’ & countryid’);

DBMS_QOUTPUT. PUT_LINE (' Country Id: ' || country_record.country_id
N
" Country Nane: ' || country_record.country_ nane
|| * Region: ' || country_record.region_id);
END;

/
SET SERVEROUTPUT OFF

d. Execute and test the PL/SQL block for the countries with th€4DBE, UK, US

Introduction to Oracle9i: PL/SQL A-17

Practice 5 Solutions (continued)

2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table
and print each department name on the screen, incorporating an | NDEX BY table. Savethe codein a
filecaled p5qg2. sql by clicking the Save Script button. Save the script with a
. sql extension.

— Declare ant NDEX BY table,My DEPT_ TABLE, to temporarily store the name of the
departments.

— Using a loop, retrieve the name of all departments currently DBRARTMENTS table
and store them in tHeNDEX BY table. Use the following table to assign the value for
DEPARTMENT _| Dbased on the value of the counter used in the loop.

COUNTER DEPARTMENT_I D

10
20
50
60
80
90

110

N OO WIN| P

— Using another loop, retrieve the department names from the PL/SQL table and print them to the
screen, usin@BMS_OUTPUT. PUT_LI NE.

SET SERVEROUTPUT ON

DECLARE
TYPE DEPT_TABLE TYPE is table of departnents. departnment name%l YPE
| NDEX BY BI NARY_| NTECER;
nmy_dept table dept tabl e_type;

v_count NUMBER (2);
v_dept no departnents. departnment i d%YPE;
BEG N

SELECT CQUNT(*) INTO v_count FROM departnents;
FORi IN 1..v_count
LOOP
IFi =1 THEN
v_deptno : = 10;
ELSIF i = 2 THEN
v_deptno : = 20;
ELSIF i = 3 THEN
v_deptno : = 50;
ELSIF i =4 THEN
v_deptno : = 60;

Introduction to Oracle9i: PL/SQL A-18

Practice 5 Solutions (continued)

ELSIF i =5 THEN
v_deptno : = 80;
ELSIF i =6 THEN
v_deptno := 90;
ELSIF i =7 THEN
v_deptno := 110;
END | F;

SELECT departnent_name | NTO my_dept _table(i) FROM departnents
WHERE departnment _id = v_deptno;

END LOOP;
FORi IN 1..v_count
LOOP
DBMS_QUTPUT. PUT_LINE (ny_dept table(i));
END LOOP;
END;

/
SET SERVEROUTPUT OFF

If you have time, complete the following exercise.

3. Maodify the block you created in practice 2 to retrieve all information about each department from
the DEPARTMENT'S table and print the information to the screen, incorporating an | NDEX BY

table of records.

a Declarean| NDEX BY table, MY_DEPT_TABLE, to temporarily store the number, name, and
location of all the departments.

b. Using aloop, retrieve al department information currently in the DEPARTMENTS table and
storeit in the PL/SQL table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop. Exit the loop when
the count er reachesthevalue7.

CQUNTER DEPARTMENT_I D

10
20
50
60
80
90

110

N OO WN

¢. Using another loop, retrieve the department information from the PL/SQL table and print it
to the screen, using DBMS_QUTPUT. PUT_LI NE.

Introduction to Oracle9i: PL/SQL A-19

Practice 5 Solutions (continued)
SET SERVEROUTPUT ON
DECLARE
TYPE dept _table_type is table of departnent s¥ROMYPE
| NDEX BY BI NARY_I NTEGER
nmy_dept table dept table type;
v_deptno departnents. departnment i d%YPE
v_count NUMBER : = 7;
BEG N
FOR i IN 1..v_count
LOOP
IFi =1 THEN
v_deptno : = 10;
ELSIF i = 2 THEN
v_deptno : = 20;
ELSIF i = 3 THEN
v_deptno : = 50;
ELSIF i =4 THEN
v_deptno : = 60;
ELSIF i =5 THEN
v_deptno : = 80;
ELSIF i =6 THEN
v_deptno : = 90;
ELSIF i =7 THEN
v_deptno := 110;
END | F;
SELECT *
| NTO nmy_dept _table(i)
FROM departnment s
WHERE departnment _id = v_deptno;

END LOOP
FORi IN 1..v_count
LOOP

DBVMS_QOUTPUT. PUT_LI NE (' Departnment Nunber: ' ||
my_dept _table(i).departnment _id

|| ' Departrment Nane: ' || ny_dept_table(i).departnent_name
|| ' Manager Id: "|| ny_dept _table(i).mnager _id
|| ' Location Id: ' || my_dept _table(i).location_id);

END LOOP

END,
/

Introduction to Oracle9i: PL/SQL A-20

Practice 6 Solutions
1. Runthecommand inthescript| ab06_1.sql to create a new table for storing employees and salaries.
CREATE TABLE t op_dogs
(name VARCHAR2(25) ,
salary NUMBER(S, 2));
2. Createa PL/SQL block that determines the top employees with respect to salaries.

a. Accept anumber n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view the top five earners, enter 5.
Note: Use the DEFI NE command to provide the value for n. Pass the value to the
PL/SQL block through aiSQL* Plus substitution variable.
b. In aloop use the iSQL* Plus substitution parameter created in step 1 and gather the salaries of the
top n people from the EMPLOYEES table. There should be no duplication in the salaries. If two
employees earn the same salary, the salary should be picked up only once.

c. Storethe salariesin the TOP_DOGS table.

d. Test avariety of special cases, such asn = 0 or where nis greater than the number of employeesin the
EMPLOYEES table. Empty the TOP_DOGS table after each test. The output shown represents the five
highest salariesin the EMPLOYEES table.

DELETE FROM top_dogs;
DEFI NE p_num = 5

DECLARE
v_num NUMBER(3) := &p_num
v_sal enpl oyees. sal ar yWd YPE;
CURSOR enp_cursor IS
SELECT distinct salary
FROM enpl oyees
ORDER BY sal ary DESC;
BEG N

OPEN enp_cursor;
FETCH enp_cursor INTO v_sal;
VWHI LE enp_cur sor “RONCOUNT <= v_num AND enp_cur sor %4-OUND LOOP
| NSERT | NTO top_dogs (sal ary)
VALUES (v_sal);
FETCH enp_cursor | NTO v_sal;
END LOOP;
CLOSE enp_cursor;
COW T,
END;
/
SELECT * FROM t op_dogs;

Introduction to Oracle9i: PL/SQL A-21

Practice 6 Solutions (continued)

3. Createa PL/SQL block that does the following:

a. Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

b. InaPL/SQL block, retrieve the last name, salary and MANAGER | D of the employees working
in that department.

c. If the salary of the employeeislessthan 5000 and if the manager ID is either 101 or 124,
display the message<<| ast _nane>> Due for a rai se. Otherwise, display a
message <<| ast _nane>> Not due for a raise.

Note SET ECHO OFF to avoid displaying the PL/SQL code everytime you execute the script
d. Test the PL/SQL block for the following cases:

Department ID Message

10 Whal en Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 VWi ss Not Due for a raise

Fripp Due for a raise

Kaufling Due for a raise
Vol | man Due for a raise
Mourgas Due for a raise

80 Russel Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Canbrault Not Due for a raise

Introduction to Oracle9i: PL/SQL A-22

Practice 6 Solutions (continued)
SET SERVEROUTPUT ON

SET ECHO OFF

DEFI NE p_dept _no = 10

DECLARE
v_deptno NUMBER(4) := &p_dept_no;
v_enanme enpl oyees. | ast _nanme% YPE;
v_sal enpl oyees. sal ar y% YPE;
v_manager enpl oyees. manager _i d%'YPE;
CURSOR enp_cursor 1S

SELECT | ast _nane, sal ary, manager _i d
FROM enpl oyees
WHERE department _id = v_deptno;

BEG N

OPEN enp_cur sor;
FETCH enp_cursor | NTO v_enane, v_sal,v_manager;
VWHI LE enp_cur sor %4-OUND LOCP

I F v_sal < 5000 AND (v_manager = 101 OR v_manager = 124) THEN

DBVS_QUTPUT. PUT_LINE (v_enane || ' Due for a raise’);
ELSE

DBVS_QUTPUT. PUT_LINE (v_ename || ' Not Due for a raise’);
END | F;

FETCH enp_cursor | NTO v_enane, v_sal,v_manager;
END LOOP;
CLOSE enp_cursor;
END;
/
SET SERVEROUTPUT OFF

Introduction to Oracle9i: PL/SQL A-23

Practice 7 Solutions

1. Inaloop, use acursor to retrieve the department number and the department name from the
DEPARTMENTS table for those departments whose DEPARTMENT _| Dislessthan 100. Passthe
department number to another cursor to retrieve from the EMPLOYEES table the detail s of
employee last name, job, hire date, and salary of those employeeswhose EMPLOYEE_| Disless
than 120 and who work in that department.

SET SERVEROUTPUT ON
DECLARE
CURSOR dept _cursor IS
SELECT departnent i d, departnment _name
FROM departnents
WHERE departnent _id < 100
ORDER BY departnent _id;
CURSOR enp_cursor (v_deptno NUMBER) | S
SELECT | ast_nane, job_id, hire_date, sal ary
FROM enpl oyees
VWHERE departnment _id = v_deptno
AND enpl oyee_id < 120;
v_current _deptno departnents. departnent i d%YPE
v_current _dname departnents. departnment _nane%l YPE
v_ename enpl oyees. | ast _nanme%l YPE
v_j ob enpl oyees.job_i d%I'YPE
v_hiredate enpl oyees. hire_dat e%d YPE
v_sal enpl oyees. sal ar y%d'YPE;
v_line varchar2(100);
BEG N
v line :=

OPEN dept _cursor;
LOOP

FETCH dept _cursor | NTO
v_current _deptno,v_current _dnane;

EXIT WHEN dept _cur sor %NOTFOUND;

DBVS _OUTPUT. PUT LI NE (' Departnment Nunber : ' ||
v_current _deptno || ' Departnent Nanme : ' || v_current_dnane);

Introduction to Oracle9i: PL/SQL A-24

Practice 7 Solutions (continued)

DBVS_OUTPUT. PUT_LINE(V_line);
| F enp_cursor % SOPEN THEN
CLOSE enp_cursor;
END I F;
OPEN enp_cursor (v_current_deptno);
LOOP

FETCH enp_cursor | NTO
v_enane, v_job,v_hiredate, v_sal;

EXIT WHEN enp_cur sor ¥%NOTFOUND;

DBMS OQUTPUT. PUT_LINE (v_ename || 1] wv_job |] "’
|| v_hiredate || "]| wv_sal);
END LOOP;

| F enp_cursor % SOPEN THEN
CLOSE enp_cursor;
END | F;
DBVS_OUTPUT. PUT_LI NE(Vv_Iine);
END LOOP;
| F enp_cursor % SOPEN THEN
CLOSE enp_cursor;
END | F;
CLCSE dept _cursor;
END;
/
SET SERVEROQUTPUT OFF

Alternative Solution:

SET SERVEROUTPUT ON
DECLARE

CURSOR DEPT_CUR IS

SELECT DEPARTMENT | D DEPTNO, DEPARTMENT NAME DNANE

FROM DEPARTNMENTS

WHERE DEPARTMENT | D < 100;

CURSOR EMP_CUR (P_DEPTNO NUMBER) | S

SELECT * FROM EMPLOYEES

WHERE DEPARTMENT | D = P_DEPTNO AND EMPLOYEE | D < 120;

Introduction to Oracle9i: PL/SQL A-25

Practice 7 Solutions (continued)

BEG N
FOR DEPT_REC | N DEPT_CUR LOOP
DBVS_OUTPUT. PUT_LI NE
(’ DEPARTMENT NUMBER ' || DEPT_REC. DEPTNO ||’
DEPARTMENT NAME: ' || DEPT_REC. DNAVE) ;
FOR EMP_REC | N EMP_CUR(DEPT_REC. DEPTNO) LOOP
DBVS_OUTPUT. PUT_LI NE

(EMP_REC. LAST_NAME ||’ ' || EMP_REC.JOB ID||’
' | | EMP_REC. Hl RE_DATE| |’ | | EMP_REC. SALARY) ;
END LOOP;
DBMVS_OUTPUT. PUT_LI NE(CHR(10)) ;
END LOOP;
END;

/

Introduction to Oracle9i: PL/SQL A-26

Practice 7 Solutions (continued)

2. Maodify the codeinsol 04_4. sql toincorporate a cursor using the FOR UPDATE and WHERE
CURRENT OF functionality in cursor processing.

SET VERI FY OFF
DEFI NE p_enpno = 104
DECLARE
v_enpno enp. enpl oyee_i dWYPE : = &p_enpno;
v_asterisk enp.stars%YPE : = NULL;
CURSOR enp_cursor | S
SELECT enployee_id, NVL(ROUND sal ary/1000), 0) sal
FROMemp
WHERE enpl oyee id = v_enpno
FOR UPDATE;
BEG N
FOR enp_record I N enp_cursor LOOP
FORi IN 1..enp_record.sal LOOP

v_asterisk := v_asterisk ||'*";
DBVS_OUTPUT. PUT LI NE(v_asteri sk);
END LOOP;
UPDATE enp

SET stars = v_asterisk
VWHERE CURRENT OF enp_cursor;
v_asterisk := NULL;
END LOOP;
COW T;
END;
/
SET VERI FY ON

Execute the following command to check if your PL/SQL block has worked successfully:
SELECT enpl oyee id, salary, stars

FROM EMP
WHERE enpl oyee id I N (176, 174, 104) ;

Introduction to Oracle9i: PL/SQL A-27

Practice 8 Solutions
1. Writea PL/SQL block to select the name of the employee with a given sdary value.

a. Usethe DEFI NE command to provide the salary. Pass the value to the PL/SQL block

through a iSQL*Plus substitution variable. If the salary entered returns more than one row,
handle the exception with an appropriate exception handler and insert into the MESSAGES
table the message “More than one employee with a salaialef y>.”

b. If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into MESSAGES table the message “No employee with a
salary of salary>.”

c. If the salary entered returns only one row, insert intdvE®&SAGES table the employee’s
name and the salary amount.

d. Handle any other exception with an appropriate exception handler and insert into the
MESSAGES table the message “Some other error occurred.”

e. Test the block for a variety of test cases. Display the rows froMEBEAGES table to check
whether the PL/SQL block has executed successfully

SET VERI FY OFF
DEFI NE p_sal = 6000

DECLARE

v_ename enpl oyees. | ast _nanme% YPE;

v_sal enpl oyees. sal ary%d'YPE : = &p_sal ;
BEG N

SELECT | ast _nane

| NTO V_enane

FROM enpl oyees

VWHERE salary = v_sal;

I NSERT | NTO nessages (results)

VALUES (v_enane || ' - ' || v_sal);
EXCEPTI ON

WHEN no_data_found THEN
I NSERT | NTO nessages (results)
VALUES (' No enpl oyee with a salary of '|| TO CHAR(v_sal));
VWHEN t oo_many_rows THEN
I NSERT | NTO nessages (results)
VALUES (' More than one enployee with a salary of ||
TO CHAR(v_sal));
WHEN ot hers THEN
I NSERT | NTO nessages (results)
VALUES (' Sonme other error occurred.’);
END;
/
SET VERI FY ON
Introduction to Oracle9i: PL/SQL A-28

Practice 8 Solutions (continued)
2. Modify the codein p3g3. sqgl to add an exception handler.

a. Usethe DEFI NE command to provide the department 1D and department location. Pass the

valuestothe PL/SQL block through a iSQL* Plus substitution variables.

b. Write an exception handler for the error to pass a message to the user that the specified

department does not exist. Use a bind variable to pass the message to the user.
c. Executethe PL/SQL block by entering a department that does not exist.

SET VERI FY OFF
VARI ABLE g nessage VARCHAR2(100)
DEFI NE p_deptno = 200
DEFI NE p_l oc = 1400
DECLARE
e_invalid_dept EXCEPTI ON;

v_dept no departments. departnment _i dX'YPE : = &p_dept no;

BEG N
UPDATE departnents
SET location_id = & _|oc
WHERE departnent _id = &p_deptno;
COW T;
| F SQLYNOTFOUND THEN
rai se e_invalid_dept;
END | F;
EXCEPTI ON
WHEN e _invalid _dept THEN

:g_message := 'Departnment '|| TO CHAR(v_deptno) ||’
invalid departnent’;

END;

/

SET VERI FY ON
PRI NT g_nessage

Introduction to Oracle9i: PL/SQL A-29

Practice 8 Solutions (continued)

3. WriteaPL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an iSQL* Plus substitution variable. Use the DEFI NE command to
provide the salary value. Pass the value to the PL/SQL block through a iSQL* Plus substitution
variable.

a. If thereis no employee within that salary range, print a message to the user indicating
that isthe case. Use an exception for this case.

b. If there are one or more employees within that range, the message should indicate
how many employees arein that salary range.

¢. Handle any other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

VARI ABLE g_nessage VARCHAR2(100)
SET VERI FY OFF
DEFI NE p_sal = 7000

DECLARE
v_sal enpl oyees. sal aryWYPE : = &p_sal;
v_| ow_sal enpl oyees. sal ary%YPE : = v_sal - 100;
v_hi gh_sal enpl oyees. sal arydYPE : = v_sal + 100;
v_no_enp NUVBER(7) ;

e_no_enp_returned EXCEPTI ON;
e _nore_than_one_enp EXCEPTI ON,

BEG N
SELECT count (| ast _nane)
INTO v_no_enp
FROM enpl oyees
wher e sal ary between v_| ow sal and v_high_sal;

IF v.no enp = 0 THEN

RAI SE e_no_enp_returned,;
ELSIF v_no_enp > 0 THEN

RAI SE e_nore_t han_one_enp;
END I F;

Introduction to Oracle9i: PL/SQL A-30

Practice 8 Solutions (continued)

EXCEPTI ON
WHEN e no_enp_returned THEN
:g_nessage := 'There is no enployee salary between ||

TO CHAR(v_low sal) || ' and ||
TO_CHAR(v_hi gh_sal);
WHEN e_nore_t han_one_enp THEN
:g_nessage := 'There is/are '|| TO CHAR(v_no_enp) ||
" enployee(s) with a salary between ||
TO CHAR(v_low sal) || ' and ||
TO _CHAR(v_hi gh_sal);
WHEN ot her s THEN
:g_message := 'Sonme other error occurred.’;
END;
/
SET VERI FY ON
PRI NT g_nessage

Introduction to Oracle9i: PL/SQL A-31

Practice 9 Solutions
Note: Save your subprogramsas. sql files, usingthe Save Scri pt button.
Remember to set the SERVEROUTPUT on if you set it off previoudly.
*Create and invoke th&DD J OB procedure and consider the results.

a. Create a procedure callaBD JOB to insert a new job into theOBS table. Provide the ID and
title of the job, using two parameters.

CREATE OR REPLACE PROCEDURE add_j ob
(p_jobid IN jobs.job id%WYPE,
p_jobtitle IN jobs.job title%dYPE)
IS
BEG N
| NSERT I NTO jobs (job_id, job_title)
VALUES (p_jobid, p_jobtitle);
COW T;
END add_j ob;

b. Compile the code, and invoke the procedure WEhDBA as job ID anddat abase
Adm ni st rat or as job title. Query th@OBS table to view the results.

IniSQL*Plus, load and run the script file created in question 1a above.
Procedur e creat ed.
EXECUTE add _job ('IT_DBA , 'Database Administrator’)
SELECT * FROM jobs WHERE job_id = 'IT_DBA ;
FLIZOQL procedure successfully completed.

JOB_ID JOB_TITLE MIN_SALARY |[MAX SALARY
IT_DBA |Database Administrator

c. Invoke your procedure again, passing a job ISDfMAN and a job title ofst ock
Manager . What happens and why?

EXECUTE add _job (' ST_MAN, 'Stock Manager’)
BEGIN add job ('ST MAN' 'Stock Manager'y, END,
%

ERROR at line 1

OFA-000OT: uruque constraint (PLPUJOB I PED wiolated
OFA-06512; at "PLPTT ADD JOBR" line 6

ORA-D6512: at line 1

Thereisaprimary key integrity constraint on the JOB_| D column.

Introduction to Oracle9i: PL/SQL A-32

Practice 9 Solutions (continued)
*Create a procedure callef?D_J OB to modify a job in the) OBS table.

a. Create a procedure callgdBD_JOB to update the job title. Provide the job ID and a new
title, using two parameters. Include the necessary exception handling if no update occurs.

CREATE OR REPLACE PROCEDURE upd_j ob
(p_jobid IN jobs.job id¥%YPE,
p_jobtitle IN jobs.job title%lYPE)

IS

BEG N

UPDATE j obs

SET job_ title = p_jobtitle

WHERE job id = p_jobid,

| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR(- 20202, No j ob updated.’);
END | F;

END upd_j ob;

b. Compile the code; invoke the procedure to change the job title of the |ob IDBA to
Dat a Admi ni strat or. Query theJ OBS table to view the results. Also check the

exception handling by trying to update a job that does not exist (you can use job ID
| T_WEB and job titleWeb Mast er).

IniSQL*Plus, load and run the script file created in the above question.
Procedure created.
EXECUTE upd_job ("I T_DBA, 'Data Adm nistrator’)
SELECT * FROM jobs WHERE job_id = "I T_DBA;
PLIZQL procedure successfully completed.

JOB_ID JOB_TITLE MIN_SALARY | MAX_ SALARY
IT_DBA |Data Administratar

EXECUTE upd job ('IT_WEB', 'Wb Master’)
BEGIN upd_job (IT_WEBE', "Web Master; END;
ERROR atling 1:

ORA-20202 No job updated.

DORA-06212; at "PLPLLUPD_JOB", line 10
DRA-06212: &t line 1

Introduction to Oracle9i: PL/SQL A-33

Practice 9 Solutions (continued)
*Create a procedure call&EL_JOB to delete a job from th&OBS table.

a. Create a procedure callBEL_JOB to delete a job from th&O0BS table. Include the
necessary exception handling if no job is deleted.

CREATE OR REPLACE PROCEDURE del _j ob
(p_jobid IN jobs.job_ i dWYPE)
IS
BEG N
DELETE FROM j obs
VWHERE job_id = p_jobid;
| F SQLYNOTFOUND THEN
RAI SE_APPLI CATI ON_ERROR(-20203," No jobs deleted.’);
END | F;
END DEL_JOB;

b. Compile the code; invoke the procedure using jobTDDBA. Query thel OBS table to
view the results.

IniSQL*Plus, load and run the script file created in the above question.
Procedure created.
EXECUTE del job (1T _DBA')
SELECT * FROM j obs WHERE job id = '|T_DBA ;
FLIZOL procedure successtully completed.

no rows selected

Also, check the exception handling by trying to delete a job that does not exist (use job ID
| T_VEEB). You should get the message you used in the exception-handling section of the
procedure as output.

EXECUTE del _job (' 1T_WEB')
BEGIN del_job (1T _WEB"); END;

ERROR at line 1.

ORA-20203: No jobs deleted.
ORA-06512) at "PLPU.DEL_JOB", line 8
ORA-06512: at line 1

Introduction to Oracle9i: PL/SQL A-34

Practice 9 Solutions (continued)

4. Create aprocedure called QUERY _EMP to query the EMPLOYEES table, retrieving the salary and
job ID for an employee when provided with the employee number.

a. Create a procedure that returns avalue from the SALARY and JOB_| D columnsfor a
specified employee ID.

Use host variables for the two OUT parameters salary and job ID.
CREATE OR REPLACE PROCEDURE query_enp
(p_empid IN enpl oyees. enpl oyee i d% YPE,
p_sal QUT enpl oyees. sal ar y%lYPE,
p_job QUT enpl oyees. j ob_i d%YPE)
| S
BEG N
SELECT salary, job_id
I NTO p_sal, p_job
FROM enpl oyees
WHERE enpl oyee id = p_enpid;
END query_enp;

b. Compilethe code, invoke the procedure to display the salary and job ID for employee ID
120.

IniSQL*Plus, load and run the script file created in the above question.
Procedure created.

VARI ABLE g_sal NUMBER

VARI ABLE g_job VARCHARZ2(15)

EXECUTE query_enp (120, :g_sal, :g_job)
PRI NT g_sal

PRI NT g _job

PL/EQL procedure successfully completed.

| G_SAL
| 2000

| G_JOB
ST_MAN

Introduction to Oracle9i: PL/SQL A-35

Practice 9 Solutions (continued)

c. Invoke the procedure again, passing an EMPLOYEE_| D of 300. What happens and why?
EXECUTE query_enp (300, :g_sal, :g_job)

BEGIN query emp (300, ;g sal, g job), END;
+

EEROR at line 1:

OFA-01403: no data found

ORA-DA512: at "PLPTT.OTTERY EMP', line 7
OFA-06512: at line 1

Thereisno employeein the EMPLOYEES table with an EMPLOYEE | D of 300. The SELECT

statement retrieved no data from the database, resulting in afatal PL/SQL error,
NO_DATA FOUND.

Introduction to Oracle9i: PL/SQL A-36

Practice 10 Solutions
1. Create and invoke the Q_JOB function to return ajob title.
a. Createafunction called Q JOBto return ajob title to a host variable.
CREATE OR REPLACE FUNCTION q_j ob
(p_jobid IN jobs.job_ id%YPE)
RETURN VARCHAR2
IS
v_jobtitle jobs.job_titl e% YPE;
BEG N
SELECT job_title
| NTO v_jobtitle
FROM j obs
WHERE job_ id = p_jobid;
RETURN (v_jobtitle);
END g_j ob;

b. Compilethe code; create ahost variable G_TI TLE and invoke the function with job ID
SA _REP. Query the host variable to view the result.

IniSQL*Plus, load and run the script file created in the above question.
Function creat ed.

VARI ABLE g title VARCHAR2(30)
EXECUTE :g_title := g _job (' SA REFP)
PRINT g title

FPLISQL procedure successtully completed.

G_TITLE
males Representative

Introduction to Oracle9i: PL/SQL A-37

Practice 10 Solutions (continued)

2. Create afunction called ANNUAL _COWVP to return the annua salary by accepting two parameters:
an employee’s monthly salary and commission. The function should adiitelss/alues.

a. Create and invoke the functi8hiNUAL_COWP, passing in values for monthly salary and
commission. Either or both values passed canUhd_, but the function should still
return an annual salary, which is iMiLL. The annual salary is defined by the basic
formula:

(sal *12) + (conmi ssion_pct*sal ary*12)

CREATE OR REPLACE FUNCTI ON annual _comp
(p_sal I N enpl oyees. sal ar y%d'YPE,
p_comm | N enpl oyees. commi ssi on_pct %' YPE)
RETURN NUVBER
IS
BEG N
RETURN (NVL(p_sal,0) * 12 + (NVL(p_comm 0)* p_sal * 12));
END annual _conp;
/

b. Use the function in 8ELECT statement against tii#VPL OYEES table for department
80.

SELECT enpl oyee i d, |ast_nane,

annual _conp(sal ary, comm ssi on_pct) "Annual Conpensation”
FROM enpl oyees
WHERE depart nment i d=80;

148 0w

-

| EMPLOYEEID | LAST _NAME | Annual Compensation

| 145 |Russell | 235200
| 146 |Partrers | 210600
| 147 |Errazuriz | 187200
| [

| 177 |Livingstan B | 20960
|

| 179 |Johnson 81840

34 rows selected.

Introduction to Oracle9i: PL/SQL A-38

Practice 10 Solutions (continued)

3. Create a procedure, NEW EMP, to insert a new employee into the EMPLOYEES table. The
procedure should contain acal to the VALI D_DEPTI D function to check whether the
department 1D specified for the new employee existsin the DEPARTMVENTS table.

a Createafunction VALI D_DEPTI Dto validate a specified department ID. The function
should return a BOOLEAN value.
CREATE OR REPLACE FUNCTION val id_deptid
(p_deptid I N departnents. departnment i d%I'YPE)
RETURN BOOLEAN

IS

v_dumy VARCHAR2(1);
BEG N

SELECT ' x’

| NTO v_dumry
FROM departnments
WHERE departnent _id = p_deptid;
RETURN (TRUE) ;
EXCEPTI ON
VWHEN NO DATA FOUND THEN
RETURN (FALSE) ;
END val i d_depti d;

Introduction to Oracle9i: PL/SQL A-39

Practice 10 Solutions (continued)

b. Createthe procedure NEW EMP to add an employee to the EMPLOYEES table. A new row
should be added to EMPLOYEES if the function returns TRUE. If the function returns FAL SE,
the procedure should aert the user with an appropriate message.

Define DEFAULT values for most parameters. The default commission is 0, the default salary
is1000, the default department ID is 30, the default job is SA_REP and the default manager
number is 145. For the employee’s ID number, use the sequEMROYEES _SEQ
Provide the last name, first name and e-mail for the employee.
CREATE OR REPLACE PROCEDURE new_enp
(p_Il name enpl oyees. | ast _nane%l YPE,

p_f nane enpl oyees. first_nane%l YPE,

p_email enpl oyees. emai | 9T YPE,

p_job enpl oyees. j ob_i d%YPE DEFAULT ' SA REP,
p_ngr enpl oyees. manager _i d%l'YPE DEFAULT 145,
p_sal enpl oyees. sal ar y%d YPE DEFAULT 1000,

p_comm enpl oyees. commi ssi on_pct % YPE DEFAULT O,
p_deptid enployees. departnent i d¥%YPE DEFAULT 30)
IS
BEG N
| F valid_deptid(p_deptid) THEN

I NSERT | NTO enpl oyees(enpl oyee_id, |ast_nane, first_nane,
emai |, job_id, nmanager _id, hire_date,
sal ary, conmmi ssion_pct, departnent _id)

VALUES (enpl oyees_seq. NEXTVAL, p_lnane, p_fnane, p_emil,
p_job, p_nmgr, TRUNC (SYSDATE, 'DD), p_sal,
p_comm p_deptid);
ELSE
RAI SE_APPLI CATI ON_ERROR (-20204,
"Invalid departnent ID. Try again.’);
END I F;
END new_enp;
/

Introduction to Oracle9i: PL/SQL A-40

Practice 10 Solutions (continued)

c. Test your NEW EMP procedure by adding a new employee named Jane Harris to department
15. Allow al other parameters to default. What was the result?

EXECUTE new _enp(p_I| name=>"Harris’, p_fnane=>' Jane’,
p_email=>"JAHARRI S, p_deptid => 15)

BEGI new_emp(p_lname=>"Harns', p_fhame=>"Tane', p_emal=>'TAHARRIS',
p_deptid=>15), END,
B

EEROE at line 1:

OEA-20204: Invalid department ID. Try again.
OFA-06512: at "PLPTU NEW _EWMP" line 18
OFA-06512: at line 1

d. Test your NEW EMP procedure by adding a new employee named Joe Harris to department
80. Allow dll other parametersto default. What was the result?

EXECUTE new _enp(p_I| name=>"Harris’, p_f name=>' Joe’,
p_email =>" JOHARRI S’ , p_deptno => 80)

PL/ SQL procedure successfully conpl et ed.

Introduction to Oracle9i: PL/SQL A-41

Practice 11 Solutions

Suppose you have lost the code for the NEW EMP procedure and the VALI D_DEPTNOfunction
that you created in lesson 17. (If you did not complete the practicesin lesson 17, you can run the
solution scripts to create the procedure and function.)

Create ai SQL* Plus spool file to query the appropriate data dictionary view to regenerate the

code.

Hint:
SET -- options ON CFF
SELECT -- statenment(s) to extract the code
SET -- reset options ON OFF

To spoal the output of thefiletoa. sql filefromiSQL*Plus, select the Save option for the
Qut put and execute the code.

SET ECHO OFF HEADI NG OFF FEEDBACK OFF VERI FY OFF
COLUMN LI NE NOPRI NT
SET PAGESI ZE 0

SELECT ' CREATE OR REPLACE ', 0 line

FROM DUAL

UNI ON

SELECT text, |ine

FROM USER SOURCE

VWHERE nane IN (' NEWEMP , ’'VALID DEPTNO)
ORDER BY i ne;

SELECT '/’
FROM DUAL,

SET PAGESI ZE 24

COLUWN LINE CLEAR
SET FEEDBACK ON VERI FY ON HEADI NG ON ECHO ON

Introduction to Oracle9i: PL/SQL A-42

Practice 12 Solutions

1. Create apackage specification and body called JOB_PACK. (Y ou can save the package body
and specification in two separate files.) This package contains your ADD_J OB, UPD_J OB, and
DEL_JOB procedures, as well asyour Q_JOB function.

Note: Use the code in your previously saved script files when creating the package.
a. Make al the constructs public.
Note: Consider whether you still need the stand-alone procedures and functions you just
packaged.
CREATE OR REPLACE PACKAGE job_pack IS
PROCEDURE add_j ob
(p_jobid INjobs.job_ id%YPE,
p_jobtitle IN jobs.job titl e¥YPE);
PROCEDURE upd_j ob
(p_jobid IN jobs.job_id%WYPE,
p_jobtitle IN jobs.job_titl e YPE);
PROCEDURE del _j ob
(p_jobid IN jobs.job id%YPE);
FUNCTI ON g_j ob
(p_jobid IN jobs.job_idWYPE)
RETURN VARCHARZ;
END j ob_pack;
/
Package Created.

Introduction to Oracle9i: PL/SQL A-43

Practice 12 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY job_pack IS
PROCEDURE add_j ob

(p_jobid I N j obs.job_i dYWYPE,
p_jobtitle IN jobs.job title%l YPE)
IS
BEG N
I NSERT I NTO jobs (job_id, job_title)
VALUES (p_jobid, p_jobtitle);
END add_j ob;
PROCEDURE upd_j ob
(p_jobid I N j obs.job_i dWYPE,
p_jobtitle IN jobs.job_title%l YPE)
IS
BEG N
UPDATE j obs
SET job_ title = p_jobtitle

WHERE job_id = p_j obi d;
| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR(- 20202, No j ob updated.’);

END | F;
END upd_j ob;

PROCEDURE del _j ob

(p_jobid IN jobs.job_id¥YPE)
IS
BEG N

DELETE FROM j obs

VWHERE job_id = p_jobid,

| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR (-20203,’ No j ob del eted.’

END | F;
END del _j ob;

FUNCTI ON g_j ob
(p_jobid IN jobs.job_id%lYPE)
RETURN VARCHAR2
IS
v_jobtitle jobs.job_titl e%l YPE;
BEG N
SELECT job title
| NTO v_jobtitle
FROM j obs
WHERE job_id = p_jobid;
RETURN (v_jobtitle);
END q_j ob;
END j ob_pack;
/

Package Body Created.

Introduction to Oracle9i: PL/SQL A-44

Practice 12 Solutions (continued)

b. Invoke your ADD JOB procedure by passing values| T_SYSAN and SYSTENMS
ANALYST as parameters.

EXECUTE j ob_pack. add_j ob(’ I T_SYSAN , ' Systens Anal yst’)
PL/ SQL procedure successfully conpl et ed.
c. Query the JOBS tableto see the result.
SELECT * FROM j obs

WHERE job_id = ' I T_SYSAN ;
| JoB ID | JOB_TITLE | MIN_SALARY | MAX_SALARY
IT_S¥SAN \Systems Analyst | |

1 row selected.

2. Create and invoke a package that contains private and public constructs.
a. Create a package specification and package body called EMP_PACK that contains your
NEW EMP procedure as a public construct, and your VALI D_DEPTI Dfunctionasa
private construct. (Y ou can save the specification and body into separate files.)

CREATE OR REPLACE PACKAGE enp _pack IS
PRCCEDURE new_enp
(p_Il name enpl oyees. | ast _nane%l YPE,
p_f name enpl oyees. first_nanme%l YPE,

p_email enpl oyees. emai | % YPE,

p_job enpl oyees. j ob_i d%YPE DEFAULT ' SA REP,
p_ngr enpl oyees. manager _i d9%'YPE DEFAULT 145,

p_sal enpl oyees. sal ar y%'YPE DEFAULT 1000,

p_conmm enpl oyees. comm ssi on_pct %9 YPE DEFAULT O,
p_deptid enployees. departnent i d¥WYPE DEFAULT 80);
END enp_pack;
/

Package Created.

Introduction to Oracle9i: PL/SQL A-45

Practice 12 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY enp_pack 1S

FUNCTI ON val i d_deptid

(p_deptid I N departnents. depart nent _i d%I'YPE)
RETURN BOOLEAN
IS

v_dumry VARCHAR2(1);
BEG N

SELECT ’ x’

INTO v_dummy

FROM departnents

WHERE departnment _id = p_depti d;

RETURN (TRUE) ;
EXCEPTI ON

VHEN NO _DATA FOUND THEN

RETURN(FALSE) ;

END val i d_depti d;
PROCEDURE new_enp

(p_I name enpl oyees. | ast _nane%l YPE

p_f name enpl oyees. first_name%l YPE

p_email enpl oyees. enni | YYPE

p_job enpl oyees. j ob_i dWYPE DEFAULT ' SA REP,
p_ngr enpl oyees. manager _i d%'YPE DEFAULT 145,
p_sal enpl oyees. sal ar y%d YPE DEFAULT 1000,

p_comm enpl oyees. comm ssi on_pct %9 YPE DEFAULT O,
p_deptid enployees. departnment i dXYPE DEFAULT 80)
IS
BEG N
I F valid_deptid(p_deptid) THEN
I NSERT | NTO enpl oyees (enpl oyee_id, |ast_name, first_nane,
email, job_id, manager _id, hire date, salary, conm ssion_pct,
departnment _id)

VALUES (enpl oyees_seq. NEXTVAL, p_lname, p_fnane, p_emil,
p_job, p_ngr, TRUNC (SYSDATE, 'DD), p_sal, p_comm
p_deptid);

ELSE
RAI SE_APPLI CATI ON_ERROR (- 20205,
"Invalid department nunber. Try again.’);
END | F;
END new_enp;
END enp_pack;
/

Package Body Created.

Introduction to Oracle9i: PL/SQL A-46

Practice 12 Solutions (continued)

b. Invokethe NEW EMP procedure, using 15 as a department number. Asthe department ID 15
does not exist in the DEPARTMENTS table, you should get an error message as specified in
the exception handler of your procedure.

EXECUTE enp_pack. new_enp(p_I nane=>" Harri s’ , p_f nane=>’ Jane’,

p_email =>"JAHARRI S', p_deptid => 15)

BEGIN emp packnew emp(p lname=>Harris'p fhame=>'Tane',
p_emall=>'"TAHARRIZ, p_deptid=> 15}, END,
ER

ERROR at line 1:

OFRA-20205: Invalid department number. Try again.
OFA-06512; at "PLPU EMP PACE" line 36
ORA-06512: at line 1

c. Invoke the NEW EMP procedure, using an exising department I1D 80.

EXECUTE enp_pack. new enp(p_|I nane =>"Snith’, p_fname=> David’,
p_emai |l =>" DASM TH , p_depti d=>80)

PL/ SQL procedure successfully conpl et ed.

If you havetime:

3. a Create apackage called CHK PACK that contains the procedures CHK _HI REDATE and
CHK_DEPT_MGR. Make both constructs public. (Y ou can save the specification and body into
Separate files.)

The procedure CHK_HI REDATE checks whether an employee’s hire date is within
the following range:$YSDATE - 50 yearsSYSDATE + 3 months].
Note:
» If the date is invalid, you should raise an application error with an appropriate message
indicating why the date value is not acceptable.
» Make sure the time component in the date value is ignored.
» Use a constant to refer to the 50 years boundary.
* A null value for the hire date should be treated as an invalid hire date.
The procedur€HK DEPT _MGR checks the department and manager combination for a given
employee. Th€HK DEPT_ MGR procedure accepts an employee number and a manager
number. The procedure checks that the manager and employee work in the same department.
The procedure also checks that the job title of the manager number proW#&&NSER.
Note: If the department number and manager combination is invalid, you should raise an
application error with an appropriate message.
CREATE OR REPLACE PACKAGE chk_pack IS
PROCEDURE chk_hiredate
(p_date in enployees. hire_date% ype);
PROCEDURE chk_dept _ngr
(p_enpid i n enpl oyees. enpl oyee_i d% ype,
p_ngr i n enpl oyees. manager _i d% ype) ;
END chk_pack;
/

Package Created.
Introduction to Oracle9i: PL/SQL A-47

Practice 12 Solutions (continued)
CREATE OR REPLACE PACKACGE BODY chk_pack IS

PROCEDURE chk_hiredate(p_date in enpl oyees. hire_dat e YPE)

1'S
v_low date := ADD MONTHS (SYSDATE, - (50 * 12));
v_high date : = ADD MONTHS (SYSDATE, 3);

BEG N

| F TRUNC(p_date) NOT BETWEEN v_I| ow AND v_hi gh
OR p_date I'S NULL THEN
RAI SE_APPLI CATI ON_ERROR(-20200, " Not a valid hiredate’');
END | F;
END chk_hi redat e;

PROCEDURE chk_dept _ngr(p_enpid i n enpl oyees. enpl oyee i d%I YPE,
p_ngr I n enpl oyees. manager _i d%'YPE)
IS
v_enmpnr enpl oyees. enpl oyee_i d%'YPE;
v_deptid enpl oyees. depart nment i d%I'YPE;
BEG N
BEA N
SELECT departnent _id
| NTO v_deptid
FROM enpl oyees
WHERE enpl oyee_id = p_enpid;
EXCEPTI ON
VHEN NO _DATA FOUND
THEN RAI SE_APPLI CATI ON_ERROR(- 20000, 'Not a valid enmp id);

END;
BEA N
SELECT enpl oyee_i d /*check valid conbination
deptno/ mgr for given enpl oyee */
| NTO v_enpnr

FROM enpl oyees

WHERE departnent_id = v_deptid
AND enmpl oyee_id = p_nyr

AND job_id like " %AN ;

EXCEPTI ON
VHEN NO _DATA FOUND
THEN RAI SE_APPLI CATI ON_ERROR (-20000,
"Not a valid manager for this departnent’);
END;
END chk_dept _ngr;

END chk_pack;
/
Package Body Created.

Introduction to Oracle9i: PL/SQL A-48

Practice 12 Solutions (continued)
b. Test the CHK_HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hiredate(’ 01- JAN-47")
What happens, and why?

BEGIN chlt paclechlc hiredate('01-JAN-47"; END;,
%

ERROR at line 1:

OEA-20200: Mot a valid hiredate
ORA-06512: at "PLPU.CHE. PACEK", line 10
OFRA-06512: at line 1

c. Testthe CHK_HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hi redat e(NULL)
What happens, and why?

BEGIN chk pack chit hiredate(NTLL);, END,
*

ERROR at line 1:
ORA-202000 Mot a valid hiredate

OFA-06512: at "PLPU.CHE PACE, line 10
OFEA-0A512: at line 1

d. Test the CHK_DEPT_MGR procedure with the following command:
EXECUTE chk_pack. chk_dept ngr (117, 100)
What happens, and why?

BEGIN chk packchk dept megr(117,100), END,
%

ERROR at line 1
OFA-20000: Mot a valid manager for this department

ORA-06512: at "PLPU.CHE. PACEK", lina 38
ORA-0A512: at line 1

Introduction to Oracle9i: PL/SQL A-49

Practice 13 Solutions

1. Create apackage called OVER_LQOAD. Create two functionsin this package, name each function
PRI NT_I T. The function accepts adate or a character string and prints a date or a number,
depending on how the function isinvoked.

Note:

* To print the date value, u&#®- MON- YY as the input format, and
FmMonth,dd yyyy as the output format. Make sure you handle invalid input.

e To print out the number, use 999,999.00 as the input format.

The package specification:
CREATE OR REPLACE PACKACGE over load IS
FUNCTION print _it(p_arg I N DATE)
RETURN VARCHARZ2;
FUNCTION print _it(p_arg IN VARCHAR2)
RETURN NUMBER;
END over | oad,;
/
Package Created.

The package body:
CREATE OR REPLACE PACKAGE BODY over _| oad
IS
FUNCTION print _it(p_arg |IN DATE)
RETURN VARCHAR2
IS
BEG N
RETURN to_char (p_arg, 'Fnionth,dd yyyy’');
END print_it;

FUNCTION print _it(p_arg IN VARCHAR2)
RETURN NUVBER
IS
BEG N
RETURN TO NUMBER(p_arg, '999,999.00);
-- or use the NLS characters for grands and decinmal s
-- RETURN TO NUMBER(p_arg, ’'999(99D00");
END print _it;
END over | oad;
/
Package Body Created.

Introduction to Oracle9i: PL/SQL A-50

Practice 13 Solutions (continued)
a Test thefirst version of PRI NT_| T with the following set of commands:
VARI ABLE di spl ay_dat e VARCHAR2(20)
EXECUTE : di splay_date := over |l oad. print_it(’ 08-MAR-01")
PRI NT di spl ay_dat e

PL/EQL procedure successtully completed.

| TODAYS_DATE
IMarch,g 2001

b. Test the second version of PRI NT_I T with the following set of commands:
VARI ABLE g_enp_sal nunber
EXECUTE :g_enp_sal := over_load.print_it(’ 33,600")
PRI NT g_enp_sal

PL/EQL procedure successtully completed.

| G_EMP_SAL
| 33600

2. Create anew package, called CHECK_PACK, to implement a new businessrule.

a. Cresate a procedure called CHK_DEPT_JOB to verify whether a given combination of
department number and job isavalid one. In this case valid meansthat it must be a
combination that currently existsin the EMPLOYEES table.

Note:
* Use a PL/SQL table to store the valid department and job combination.
» The PL/SQL table needs to be populated only once.
» Raise an application error with an appropriate message if the combination is not valid.

CREATE OR REPLACE PACKACGE check pack IS
PROCEDURE chk_dept j ob
(p_deptid I N enpl oyees. depart nment _i d% YPE,
p_job I N enpl oyees. j ob_i d%IYPE) ;
END check_pack;
/
Package Created.

Introduction to Oracle9i: PL/SQL A-51

Practice 13 Solutions (continued)
CREATE OR REPLACE PACKAGE BODY check pack
IS
i NUMBER : = O;
CURSOR emp_cur IS
SELECT departnent _id, job_id
FROM enpl oyees;
TYPE enp_table type IS TABLE OF enp_cur ¥ROMYPE
| NDEX BY Bl NARY_| NTEGER;
deptid _job enp_table type;

PROCEDURE chk_dept j ob
(p_deptid in enpl oyees. depart ment i d% YPE,
p_job i n enpl oyees. job_i d%'YPE)
IS
BEG N
FOR k I N deptid_job. FIRST .. deptid_job. LAST LOOP
| F p_deptid = deptid_job(k).departnent _id
AND p job = deptid job(k).job id THEN
RETURN;
END | F;
END LOOP;
RAI SE_APPLI CATI ON_ERROR
(-20500, "Not a valid job for this dept’);
END chk_dept _j ob;

BEG N -- one-tine-only-procedure
FOR enp_rec IN enmp_cur LOOP
deptid job(i) := enp_rec;
i =0+ 1;
END LOOP;
END check_pack;
/
Package Body Created.

Introduction to Oracle9i: PL/SQL A-52

Practice 13 Solutions (continued)
b. Test your CHK _DEPT_JOB package procedure by executing the following command:
EXECUTE check_pack. chk_dept _j ob(50," ST_CLERK)
What happens, and why?
PL/ SQL procedure successfully conpl et ed.

c. Testyour CHK DEPT JOB package procedure by executing the following command:
EXECUTE check_pack. chk_dept _j ob(20,’ ST_CLERK')
What happens, and why?

BEGIN checlt pack chlz dept job(20'3T CLERR"); END,
*

ERROE at line 1:

OFRA-20500: Not a valid job for this dept
ORA-06512: at "PLEPTT CHECE. PACE", line 21
OFRA-06512: at line 1

Introduction to Oracle9i: PL/SQL A-53

Practice 14 Solutions

1 a. Create a procedure DROP_TABLE that drops the table specified in the input parameter. Use
the procedures and functions from the supplied DBMS_SQL package.

CREATE OR REPLACE PROCEDURE drop_tabl e
(p_tabl e_nane I N VARCHAR2)
IS
dyn_cur NUMBER,
dyn_err VARCHAR2(255);
BEG N
dyn_cur := DBMS_SQ.. OPEN_CURSOR;
DBMS_SQ.. PARSE(dyn_cur, ' DROP TABLE ' ||
p_tabl e nane, DBMS_SQ.. NATI VE) ;
DBMS_SQ.. CLOSE_CURSOR(dyn_cur);
EXCEPTI ON
VWHEN OTHERS THEN dyn_err : = SQLERRM
DBMS_SQ.. CLOSE_CURSOR(dyn_cur);
RAI SE_APPLI CATI ON_ERRCR(- 20600, dyn_err);
END drop_tabl e;
/
Procedure created.

b. To test the DROP_TABLE procedure, first create anew table called EMP_DUP as a copy of
the EMPLOYEES table.

CREATE TABLE enp_dup AS
SELECT * FROM enpl oyees;
Tabl e creat ed.

¢. Execute the DROP_TABLE procedure to drop the EMP_DUP table.
EXECUTE drop_tabl e(’ enp_dup’)
SELECT * FROM enp_dup;

PLIZQL procedure successfully completed.
SELECT * FEOM emp dup
=
EEE.OE. at line 1:
OFA-00242: table or wiew does not exist

Introduction to Oracle9i: PL/SQL A-54

Practice 14 Solutions (continued)
2a. Create aprocedure called DROP_TABLE2 that drops the table specified in the input
parameter. Use the EXECUTE | MVEDI ATE statement.
CREATE PROCEDURE DROP_TABLE2
(p_table_nane IN VARCHAR2)
IS
BEG N
EXECUTE | MVEDI ATE ' DROP TABLE ' || p_tabl e_nane;
END;
/
Procedure created.

b. Repest the test outlined in steps 1b and 1c.
CREATE TABLE enp_dup AS
SELECT * FROM enpl oyees;

Tabl e creat ed.

EXECUTE drop_tabl e2(’ enp_dup’)
SELECT * FROM enp_dup;

PLIZQL procedure successfully completed.
SELECT * FEOM emp dup
=
EEE.OE. at line 1:
OFA-00242: table or wiew does not exist

Introduction to Oracle9i: PL/SQL A-55

Practice 14 Solutions (continued)

3a. Create aprocedure called ANALYZE OBJECT that analyzes the given object that you
specified in the input parameters. Use the DBMS_DDL package, and use the COVPUTE method.

CREATE OR REPLACE procedure anal yze obj ect
(p_obj type IN VARCHARZ,
p_obj _name IN VARCHAR2)

IS
BEG N
DBVS_DDL. ANALYZE_OBJECT(
p_obj _type,
USER,
UPPER(p_obj nan®e),
" COWPUTE') ;
END;

/
Procedur e creat ed.

b. Test the procedure using the table EMPLOYEES.

Confirm that the ANALYZE OBJECT procedure has run by querying the LAST _ANALYZED
column in the USER_TABLES data dictionary view.

EXECUTE ANALYZE OBJECT (' TABLE , ' EMPLOYEES')
SELECT LAST_ANALYZED FROM USER TABLES
WHERE TABLE_NAME = ' EMPLOYEES' ;

PLSOL procedure successfully completed.

LAST_ANAL
01-hAY-01

1 row selected.

Introduction to Oracle9i: PL/SQL A-56

Practice 14 Solutions (continued)
If you have time:

4a. Schedule ANALYZE OBJECT by using DBMS_JOB. Analyze the DEPARTMVENTS table, and
schedule the job to run in five minutes time from now. (To start the job in five minutes from
now, set the parameter NEXT _DATE = 5/(24*60) = 1/288.)

VARl ABLE j obno NUMBER

EXECUTE DBMS_JOB. SUBM T(: j obno,
" ANALYZE_OBJECT ('’ TABLE ', '’ DEPARTMENTS ');’,
SYSDATE + 1/288)
PRI NT j obno

PLIZOQL procedure successfiilly completed.

| JOBNO
| 122

b. Confirm that the job has been scheduled by using USER_JOBS.

SELECT JOB, NEXT_DATE, NEXT_SEC, WHAT FROM USER _JGCBS;

|JOB |NEXT_DATE |NEXT_SEC | WHAT
| 121 03-MAR-01 060000 |OWER_PACKADD_DEPT{EDUCATION'2710);
| 122 [D8-MAR-D1T [13:31:54 ANALYZE_OBJECT (TABLE' 'DEPARTMENTSY,

2 rows selected.

Introduction to Oracle9i: PL/SQL A-57

Practice 14 Solutions (continued)

5. Create aprocedure called CROSS_AVGSAL that generates atext file report of employees who have

exceeded the average salary of their department. The partial codeis provided for you in thefile
l abl4_5. sql .

a. Your program should accept two parameters. The first parameter identifies the output
directory. The second parameter identifies the text file name to which your procedure
writes.

CREATE OR REPLACE PROCEDURE cross_avgsal
(p_filedir INVARCHAR2, p_filenanmel I N VARCHAR2)
IS
v_fh_1 UTL_FILE. FI LE_TYPE;
CURSOR cross_avg IS
SELECT | ast _nane, departnent _id, salary
FROM enpl oyees out er
WHERE sal ary > (SELECT AV sal ary)
FROM enpl oyees i nner
GROUP BY outer. departnent _i d)
ORDER BY departnent _id;
BEG N
v fh 1 := UL_FILE FOPEN(p filedir, p_filenanmel, 'w);
UTL_FILE. PUTF(v_fh_1," Enpl oyees with nore than average salary:\n’);
UTL_FI LE. PUTF(v_fh_1, ' REPORT GENERATED ON 9%\ n\n', SYSDATE);
FOR v_enmp_info IN cross_avg

LOOP
UTL_FI LE. PUTF(v_fh_1, ' % % \n',
RPAD(v_enp_info.last_nane, 30, ' '),
LPAD(TO CHAR(v_enp_i nfo.sal ary, ’$99,999.00"), 12, ' '));
END LOOP;

UTL_FI LE. NEW LI NE(v_fh_1);
UTL_FILE. PUT_LINE(v_fh_1, "*** END OF REPORT ***');
UTL_FI LE. FCLOSE(v_fh_1);

END cross_avgsal ;

/

Introduction to Oracle9i: PL/SQL A-58

Practice 14 Solutions (continued)

b. Your instructor will inform you of the directory location. When you invoke the program,
name the second parameter sal _r pt xx. t xt where xx stands for your user number,

such as 01, 15, and so on.

EXECUTE cross_avgsal (' $HOVE/ Ut | _File’, ’'sal _rptxx.txt’)
(Replace $HOVE with the path to the directory Ut | _Fi | e and ## with your user number)

c. Add an exception handling section to handle errors that may be encountered from using

the UTL_FI LE package.
Sampl e output from thisfile follows:

EMPLOYEES OVER THE AVERAGE SALARY OF THEI R DEPARTMENT:

REPORT GENERATED ON 26- FEB- 01

Hart stein 20
Raphael y 30
Mar vi s 40
Wei ss 50

*** END OF REPORT ***

Note: The solution apperson the next page.

Introduction to Oracle9i: PL/SQL A-59

$13, 000. 00
$11, 000. 00
$6, 500. 00
$8, 000. 00

Practice 14 Solutions (continued)

CREATE OR REPLACE PROCEDURE cross_avgsal
(p_filedir INVARCHAR2, p_filenanel | N VARCHAR2)
IS
v_fh_1 UTL_FILE. FI LE_TYPE;
CURSOR cross_avg IS
SELECT | ast _name, departnent _id, salary
FROM enpl oyees outer
WHERE sal ary > (SELECT AV@ sal ary)
FROM enpl oyees i nner
GROUP BY outer. departnment _id)
ORDER BY departnent _id;
BEG N
v_fh_1 := UTL_FILE FOPEN(p_filedir, p_filenanel, 'w);
UTL_FI LE. PUTF(v_f h_1," Enpl oyees with nore than average salary:\n’);
UTL_FI LE. PUTF(v_fh_1, ' REPORT GENERATED ON %s\n\n’, SYSDATE);
FOR v_enmp_info IN cross_avg

LOOP

UTL_FILE. PUTF(v_fh_1, "% % \n',

RPAD(v_enp_i nfo.last_nanme, 30, ' '),

LPAD(TO CHAR(v_enp_i nfo.salary, ’$99,999.00"), 12, ' ’));
END LOOP;

UTL_FI LE. NEW LI NE(v_fh_1);
UTL_FILE. PUT_LINE(v_fh_1, ’*** END OF REPORT ***’):
UTL_FI LE. FCLOSE(v_fh_1);

EXCEPTI ON
VWHEN UTL_FI LE. | NVALI D_FI LEHANDLE THEN
RAI SE_APPL| CATI ON_ERROR (-20001, 'Invalid File.");
UTL_FI LE. FCLOSE_ALL;
WHEN UTL_FI LE. WRI TE_ERROR THEN
RAI SE_APPLI CATI ON_ERROR (-20002,
"Unable to wite to file');
UTL_FI LE. FCLOSE_ALL;
END cross_avgsal ;
/

Introduction to Oracle9i: PL/SQL A-60

Practice 15 Solutions

1

2.

Create atable called PERSONNEL by executing the script filel ab15_1. sql . Thetable contains
the following attributes and data types.

Column Name | Data Type Length
I D NUVBER 6

| ast _nane VARCHAR2 35
revi ew CLOB N/A

pi cture BLOB N/A

CREATE TABLE per sonnel
(id NUMBER(6) constraint personnel id pk PRI MARY KEY,
| ast _name VARCHAR2(35),
revi ew CLOB,
pi cture BLOB);

Insert two rows into the PERSONNEL table, one each for employees 2034 and 2035. Use the empty
function for the CLOB, and provide NULL asthe value for the BLOB.

| NSERT | NTO personnel
VALUES(2034, 'Allen’, EMPTY_CLOB(), NULL);

| NSERT | NTO personnel
VALUES(2035, ’'Bond’, EMPTY_CLOB(), NULL);

Executethe script | ab15_3. sql . The script creates atable named REVI EW TABLE. Thistable
contains annual review information for each employee. The script also contains two statements to
insert review details for two employees.

CREATE TABLE review table
(enpl oyee_i d nunber,
ann_r evi ew VARCHAR2(2000));

I NSERT | NTO revi ew table

VALUES(2034, ' Very good performance this year. Recomnmended to
i ncrease salary by $500');

| NSERT | NTO revi ew table

VALUES(2035, ' Excel | ent performance this year. Reconmended to
i ncrease sal ary by $1000’);

COW T;

Introduction to Oracle9i: PL/SQL A-61

Practice 15 Solutions (continued)
4. Update the PERSONNEL table.
a. Populate the CLOB for the first row, using the following query in a SQL UPDATE statement:
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2034;
UPDATE per sonnel
SET review = (SELECT ann_revi ew
FROM review table
WHERE enpl oyee_id = 2034)
WHERE | ast_name = 'Allen’;

b. Populate the CLOB for the second row, using PL/SQL and the DBMS_L OB package.

Usethe following SELECT statement to provide a value:
SELECT ann_revi ew
FROM review table
VWHERE enpl oyee_id = 2035;

DECLARE
| obl oc CLOB;
t ext VARCHAR2(2000);
amount NUMBER ;
of fset | NTEGER
BEG N
SELECT ann_revi ew | NTO t ext
FROM revi ew t abl e
WHERE enpl oyee id =2035;
SELECT revi ew | NTO | obl oc
FROM per sonnel
WHERE | ast _nane = 'Bond’ FOR UPDATE;

offset := 1;

anmount := length(text);

DBVS_LOB. WRI TE (| obl oc, anobunt, offset, text);
END;

Introduction to Oracle9i: PL/SQL A-62

Practice 15 Solutions (continued)
If you havetime...

5. Create a procedure that adds alocator to a binary file into the PI CTURE column in the
COUNTRI ES table. The binary fileisa picture of the country. The image files are named after
the country IDs. Y ou need to load an image file locator into al rowsin Europe region
(REG ON_I D=1) inthe COUNTRI ES table. The DI RECTORY object name that stores a pointer
to the location of the binary filesis called COUNTRY_PI C. This object is already created for you.

a. Use the command below to add the image column to the COUNTRI ES table.
ALTER TABLE countries ADD (picture BFILE);

b. Create a PL/SQL procedure cdled | oad_count ry_i nmage that reads alocator into your

picture column. Have the program test to seeif the file exists, using the function
DBVS_LOB. FI LEEXI STS. If thefileis not existing, your procedure should display a

message that the file can not be opened. Have your program report information about the load
to the screen.

Note: The solution appear s on the next page.

c. Invoke the procedure by passing the name of the directory object COUNTRY _PI Casthe
parameter. Note that you should pass the directory object in single quotation marks.

EXECUTE | oad_country_i mage(’ COUNTRY_PI C)

Introduction to Oracle9i: PL/SQL A-63

Practice 15 Solutions (continued)

CREATE OR REPLACE PROCEDURE | oad_country_i mage
(p_file_loc I N VARCHAR2)

IS
v file BFI LE;
v_filenane VARCHAR2(40) ;

v_record_nunmber NUMBER,
v file exists BOOLEAN,;
CURSCR country_pic_cursor IS
SELECT country_id
FROM countri es
VWHERE region_id = 1
FOR UPDATE;
BEG N
DBMS_QOUTPUT. PUT_LI NE(’ LOADI NG LOCATORS TO | MAGES. . .");
FOR country record I N country_pic_cursor

LOCP
v_filenanme := country_record.country_id || ".tif’;
v_file := bfilename(p_file_loc, v_filenane);

v_file_exists := (DBVMS_LOB. FI LEEXI STS(v_file) = 1);
IF v _file_exists THEN
DBVS LOB. FI LECPEN(v_file);
UPDATE countri es
SET picture = bfilenanme(p_file_loc, v_filenamne)
WHERE CURRENT OF country_pic_cursor;

DBVS_OUTPUT. PUT_LI NE(’ LOADED LOCATOR TO FILE: ' ||v_filename
T * SIZE * || DBMS_LOB. GETLENGTH(V file));

DBVS LOB. FI LECLOSE(v _file);
v_record_nunber := country_pic_cursor ¥RONCOUNT;
ELSE
DBMS_QOUTPUT. PUT_LI NE(® Can not open the file '||v_filenane);
END | F;
END LOOP;
DBVS_OUTPUT. PUT_LI NE(’ TOTAL FI LES UPDATED: '|]|v_record_nunber);
EXCEPTI ON
VWHEN OTHERS THEN
DBVS _LOB. FI LECLOSE(Vv_file);
DBMS_QOUTPUT. PUT_LI NE(’ Program Error Occurr ed:
|| to_char(SQ.CODE) || SQLERRM;

END | oad_country_i nage;
/

Introduction to Oracle9i: PL/SQL A-64

Practice 16 Solutions

1. Changesto data are allowed on tables only during normal office hours of 8:45 am. until 5:30 p.m.,
Monday through Friday.

Create astored procedure called SECURE DM that prevents the DML statement from executing
outside of normal office hours, returning the message: “You may make changes only during normal

office hours.”
CREATE OR REPLACE PROCEDURE secure_dm
IS
BEG N
| F TO CHAR (SYSDATE, 'HH24: M’) NOT BETVEEN ' 08: 45 AND
'17: 30’

OR TO CHAR (SYSDATE, 'DY') IN ('SAT', 'SUN)
THEN RAI SE_APPLI CATI ON_ERROR (- 20205,
"You may make changes only during normal office hours’);
END | F;
END secure_dmi ;

2. a. Create a statement trigger onifBS table that calls the above procedure.

CREATE OR REPLACE TRI GGER secure_prod
BEFORE | NSERT OR UPDATE OR DELETE ON j obs
BEG N

secure_dm ;
END secure_prod;

b.Test the procedure by temporarily modifying the hours in the procedure and attempting to insert
a new record into th@OBS table. After testing, reset the procedure hours as specified in step 1.

I NSERT I NTO jobs (job_id, job title)
VALUES (' HR_MAN , ' Human Resources Manager’);

INBERT INTC jobs (Job_id, job_title)
*

ERRCE at line 1:

ORA-20205: Tou may only make changes during normal office hours
ORA-06512: at "PLEU SECTURE DML, line &

OFA-06512: at "PLPU BECUEE PROD', line 2

OFA-04088: error during execution of trigger PLPU.SECUEE PROD!

Introduction to Oracle9i: PL/SQL A-65

Practice 16 Solutions (continued)

3. Employees should receive an automatic increasein salary if the minimum salary for ajobis
increased. Implement this requirement through atrigger on the JOBS table.
a. Create a stored procedure named UPD_EMP_SAL to update the salary amount. This procedure

accepts two parameters: the job |D for which salary hasto be updated, and the new minimum
salary for thisjob ID. This procedure is executed from the trigger on the JOBS table.

CREATE OR REPLACE PROCEDURE upd_enp_sal
(p_jobid IN enployees.job_i dWYPE,
p_m nsal | N enpl oyees. sal ar y%d YPE)
IS
BEG N
UPDATE enpl oyees
SET salary = p_ninsal
WHERE job_id = p_jobid
AND SALARY < p_m nsal;
END upd_enp_sal ;
/

b. Create arow trigger named UPDATE _EMP_SALARY on the JOBS table that invokes the
procedure UPD_EMP_SAL when the minimum salary in the JOBS tableis updated for a
specified job ID.

CREATE OR REPLACE TRI GGER update_enp_sal ary
AFTER UPDATE OF mi n_salary ON jobs

FOR EACH ROW
BEG N

upd_enp_sal (: NEWjob_id, :NEWnN n_salary);
END;
/

c. Query the EMPLOYEES table to see the current salary for employees who are programmers.
SELECT | ast _name, first_name, salary
FROM enpl oyees

WHERE job_id = ' I T_PROG ;

| LAST_NAME | FIRST_NAME | SALARY
Hunald \Mesander | 9000
|Ernst |Eir|_||:e | BOO0
Austin |Dravid | 4800
Patahalla Mall | 4800
|L|:|rentz |Diana | 4200

Introduction to Oracle9i: PL/SQL A-66

Practice 16 Solutions (continued)
d. Increase the minimum salary for the programmer job from 4,000 to 5,000.

UPDATE j obs
SET min_salary = 5000
VWHERE job_id = 'IT_PROG ;

e. Employee Lorentz (employee ID 107) had asalary of lessthan 4,500. Verify that her salary
has been increased to the new minimum of 5,000.
SELECT | ast_nanme, first_nanme, salary
FROM enpl oyees
WHERE enpl oyee id = 107;

| LAST_NAME | FIRST_NAME | SALARY
|L|:|rentz |Diana | &000

Introduction to Oracle9i: PL/SQL A-67

Practice 17 Solutions

1. A number of business rulesthat apply to the EMPLOYEES and DEPARTMENTS tables are listed
below.

Decide how to implement each of these business rules, by means of declarative constraints or by using
triggers.

Which congtraints or triggers are needed and are there any problems to be expected?
Implement the business rules by defining the triggers or constraints that you decided to cresate.

A partia packageisprovidedinfilel ab17_1. sql . Add to this any necessary procedures or
functions called from triggers that you may create for the following rules.

(The triggers should execute procedures or functions that you have defined in the package.)

Thefollowing codeisfromthel ab17_1. sql file
REM Package specification with sanple procedure specifications
CREATE OR REPLACE PACKACE ngr_constrai nts_pkg
IS
PROCEDURE check_presi dent;
PROCEDURE check_nyr;

PROCEDURE new | ocation(p_deptid I N departnents. department i d%'YPE) ;
new_ngr enpl oyees. manager _i d%'YPE : = NULL;

END ngr _constrai nts_pkg;

/

REM Package Body - fill in the code for the procedures
CREATE OR REPLACE PACKAGE BODY ngr_constrai nts_pkg

IS

PROCEDURE check_president IS

END check_presi dent;
PROCEDURE check nmgr IS

END check_nyr;
PROCEDURE new_| ocati on(p_deptid I N departnents. departnment _i d%'YPE)
IS

END new_| ocati on;

END ngr _constrai nts_pkg;
/

Introduction to Oracle9i: PL/SQL A-68

Practice 17 Solutions (continued)
The following code is the complete solution for the package specification.
CREATE OR REPLACE PACKACE ngr_constrai nts_pkg
IS
PROCEDURE check_presi dent;
PROCEDURE check_ngr;
PROCEDURE new | ocati on
(p_deptid IN departnents.departnment i d%YPE);
new _ngr enpl oyees. manager i d%YPE : = NULL;
END ngr_constrai nts_pkg;

Introduction to Oracle9i: PL/SQL A-69

Practice 17 Solutions (continued)

The following codeis the solution for the package body.
CREATE OR REPLACE PACKACE BODY ngr_constrai nts_pkg
IS
PROCEDURE check_presi dent
IS
v_dumry CHAR(1);
BEG N
SELECT ‘X’
INTO v_dummy
FROM employees
WHERE job_id ='AD_PRES
EXCEPTION
WHEN NO_DATA_FOUND THEN
NULL;
WHEN TOO_MANY_ROWS THEN
RAISE_APPLICATION_ERROR(-20001,'President title
already exists");
END check_president;
PROCEDURE check_mgr

IS
count_emps NUMBER :=0;
BEGIN
IF new_mgr IS NOT NULL
THEN

-- count the number of people
-- working for the mgr
SELECT count(*)
INTO count_emps
FROM employees
WHERE manager_id = new_mgr;
END IF;
-- if there are now more than 15,
-- raise an error
IF count_emps > 15
THEN RAISE_APPLICATION_ERROR (-20202,

'Max number of emps exceeded for '|| TO_CHAR(new_mgr));
END IF;

END check_mgr;

Introduction to Oracle9i: PL/SQL A-70

Practice 17 Solutions (continued)
PROCEDURE new_| ocati on
(p_deptid IN departnents. departnent i d%d'YPE)
IS
v_sal enpl oyees. sal ar y% YPE;
BEG N
UPDATE enpl oyees
SET salary = salary*1.02
WHERE departnment _id = p_depti d;
END new | ocati on;
END ngr _constrai nts_pkg;
/

Introduction to Oracle9i: PL/SQL A-71

Practice 17 Solutions (continued)
Business Rules

Rule 1. Sales managers and sal es representatives should always receive commission. Employees
who are not sales managers or sales representatives should never receive acommission.
Ensure that this restriction does not validate the existing records of the EMPLOYEES
table. It should be effective only for the subsequent inserts and updates on the table.

Implement rule 1 with a constraint.

ALTER TABLE enpl oyees
ADD CONSTRAI NT enp_conmm chk
CHECK ((job_id = '"SA REP' and conmi ssion_pct>0) OR
(job_id = "SA MAN and comm ssion_pct>0) OR
(job_id !'="SA REP and conmm ssion_pct=0))
NOVALI DATE;

Rule 2. The EMPLOYEES table should contain exactly one president.

Test your answer by inserting an employee record with the following details: employee ID
400, last nameHarri s, first name Al i ce, eemail ID AHARRI S, job ID AD_PRES, hire
date SYSDATE , salary 20000, and department ID 20.

Note: You do not need to implement arule for case sensitivity; instead, you need to test
for the number of people with thejob title of President.
Implement rule 2 with atrigger.

CREATE OR REPLACE TRI GGER check _pres title
AFTER | NSERT OR UPDATE OF job_id ON enpl oyees
BEG N
ngr_constrai nts_pkg. check _presi dent;
END check pres title;

Trigger created.

I NSERT | NTO enpl oyees
(enpl oyee_id, last_nane, first_name, email, job_id,
hire_date, salary, departnent _id)
VALUES (400, ' Harris’,”Alice’, "AHARRIS , 'AD PRES',
SYSDATE, 20000, 20);

IME=EET INTO etnplovess
E 4

EEER.CE. at ine 1.

OFA-20001: President title already exists

OEA-06512: at "PLPTT MGE,_ CONESTEATNTSE PEG", line 15
OFEA-06512: at "PLPTT CHECE,_PEEX TTTLE", line 2

CEA-04088; error duning execulion of tngeer TLPU CHECE PRES TITLE

Introduction to Oracle9i: PL/SQL A-72

Practice 17 Solutions (continued)
Rule 3. An employee should never be a manager of more than 15 empl oyees.

Test your answer by inserting the following records into the EMPLOYEES table (perform a
query to count the number of employees currently working for manager 100 before inserting
these rows):

i. EmployeeID 401, last name Johnson, first name Br i an, email ID BJOHNSON, job ID
SA_MAN, hire date SYSDATE , salary 11000, manager ID 100, and department ID
80. (Thisinsertion should be successful, because there are only 14 employees
working for manager 100 so far.)

ii. Employee ID 402, last name Kel | ogg, first name Tony, e-mail ID TKELLGOG, job ID
ST_MAN, hire date SYSDATE , salary 7500, manager ID 100, and department ID 50.
(Thisinsertion should be unsuccessful, because there are already 15 empl oyees working for
manager 100.)

Implement rule 3with atrigger.

CREATE OR REPLACE TRI GGER set _ngr
AFTER | NSERT or UPDATE of manager id on enpl oyees
FOR EACH ROW

BEG N
-- To get round MJTATI NG TABLE ERROR
ngr_constrai nts_pkg. new_ngr := : NEW nmanager _i d;
END set ngr;

CREATE OR REPLACE TRI GGER chk_enps
AFTER | NSERT or UPDATE of manager id on enpl oyees
BEG N
ngr_constrai nts_pkg. check_nygr;
-- if for sone reason, SET _MGR is disabl ed,
-- the global variable is set to null
-- to stop the SELECT COUNT runni ng
ngr_constrai nts_pkg. new _ngr := NULL;
END chk_enps;

I NSERT | NTO enpl oyees
(enpl oyee_id, |ast_nane, first_nanme, email, job_id,
hire_date, salary, manager_id, departnent _id)
VALUES (401, Johnson’,’ Brian’, "BJOHNSON , 'SA MAN ,
SYSDATE, 11000, 100, 80);
1 row created.

Introduction to Oracle9i: PL/SQL A-73

Practice 17 Solutions (continued)
SELECT count (*)
FROM enpl oyees
VWHERE manager _id = 100;

COUNT()
15
| NSERT | NTO enpl oyees
(enpl oyee_id, l|ast_nane, first_nanme, email, job_id,
hire_date, salary, manager_id, departnent _id)
VALUES (402, Kellogg’,’ Tony’, 'TKELLOGG , ’'ST_MAN ,
SYSDATE, 7500, 100, 50);

INSERT INTO employees

ERROR at line 1:

ORAZDA0Z: Max number of emps exceeded for 100
ORAOB512: at "HR.MGR_CONSTRAINTS FKG", line 34
ORAOBS12: at "HR.CHE_EMPS", line 2

QORA-04088: error during execution of trigger 'HRE.CHEK_EMP S’

Introduction to Oracle9i: PL/SQL A-74

Practice 17 Solutions (continued)
Rule 4. Saariescan only be increased, never decreased.

The present salary of employee 105 is 5000. Test your answer by decreasing the salary of
employee 105 to 4500.

Implement rule 4 with atrigger.

CREATE OR REPLACE TRI GGER check_sal
BEFORE UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
WHEN (NEW sal ary < OLD. sal ary)
BEG N
RAI SE_APPLI CATI ON_ERROR(- 20002, Sal ary may not be reduced’);
END check_sal ;
Trigger Created.

UPDATE enpl oyees
SET sal ary = 4500
WHERE enpl oyee id = 105;

TPDATE employees

*

EEEOE at line 1:

OEA-20002: Salary may not be reduced

OFA-06512: at "HE. CHECE_SAL", line 2

DEA-0408E: error during execution of thgeer HE CHECE SAT/

Introduction to Oracle9i: PL/SQL A-75

Practice 17 Solutions (continued)
Rule5. If adepartment moves to another location, each employee of that department

automatically receives a saary raise of 2 percent.
View the current salaries of employeesin department 90.

Test your answer by moving department 90 to location 1600. Query the new

salaries of employees of department 90.
Implement rule 5 with atrigger.
CREATE OR REPLACE TRI GGER change_| ocati on
BEFORE UPDATE OF | ocation_id ON departnents
FOR EACH ROW
BEG N
nmgr_constrai nts_pkg. new | ocati on(: OLD. departnent _id);
END change_| ocati on;
Trigger created.

SELECT | ast _nane, salary, departnent _id
FROM enpl oyees
WHERE departnent _id = 90;

| LAST_NAME | SALARY | DEPARTMENT _ID

King | 24000 | a0
\Kochhar | 17000 | a0
D& Haan | 17000 | a0

UPDATE departnments
SET | ocation_id = 1600
WHERE departnent _id = 90;
1 row updat ed.
SELECT | ast _name, sal ary, departnment_id
FROM enpl oyees
WHERE departnent_id = 90;

| LAST_NAME | SALARY | DEPARTMENT _ID

King | 24480 | a0
\Kochhar | 17340 | a0
\De Haan | 17340 | a0

Introduction to Oracle9i: PL/SQL A-76

Practice 18 Solutions
1. Answer the following questions.
a Can atable or asynonym be invalid?
A table or a synonym can never beinvalidated; however, dependent objects can be
invalidated.
b. Assuming the following scenario, is the stand-alone procedure My _ PROC invalidated?
e The stand-alone procedudy_PRCOC depends on the packaged procedure
MY_PROC_PACK.
« TheMY_PROC_PACK procedure’s definition is changed by recompiling the
package body.
« TheMY_PROC_PACK procedure’s declaration is not altered in the package
specification.

Although the package body is recompiled, the stand-alone procedure MY_PRCOCthat depends
on the packaged procedure MY_PROC_PACK is not invalidated because the package
specification isnot altered

2. Execute theit | dtree. sql script. Print a tree structure showing all dependencies involving
your NEW EMP procedure and yoowfALI D_DEPTI D function. Query thé dept r ee view to
see your resultsNEW EMP andVALI D_DEPTI Dwere created in lesson 10, “Creating
Functions.” You can run the solution scripts for the practice if you need to create the procedure
and function.)

Replace 'your USERNAME' with your user name in the following statements.
EXECUTE deptree fill (' PROCEDURE , ' your USERNAME , ' NEW EMP')
PL/ SQL procedure successfully conpl et ed.
SELECT * FROM i deptree;
DEPENDENCIES
PROCEDURE PLPLLMNEW EMP

EXECUTE deptree fill (' FUNCTION , ' your USERNAME ,
"VALI D_DEPTID)

PL/ SQL procedure successfully conpl et ed.
SELECT * FROM i deptree;
DEPENDENCIES
FUMCTION PLPUMNALID DEPTID
FPROCEDURE PLPULNEW EMP

Introduction to Oracle9i: PL/SQL A-77

Practice 18 Solutions (continued)
If you havetime:
3. Dynamically validate invalid objects.
a. Makeacopy of your EMPLOYEES table, called EMP_COP.
CREATE TABLE enp_cop AS
SELECT * FROM enpl oyees;

b. Alter your EMPLOYEES table and add the column TOTSAL with data type
NUMBER(9, 2) .

ALTER TABLE enpl oyees

ADD (totsal NUMBER(9, 2));

c. Create ascript fileto print the name, type, and status of all objects that areinvalid.
Thisisthe codethat your script file should contain:

SELECT obj ect _nane, object _type, status

FROM user obj ects

VWHERE status = ' | NVALI D ;

| OBJECT_NAME | OBJECT_TYPE | STATUS
ANNUAL_COMP IFUNCTION INWALID
AUDIT_EMP_TAB TRIGGER INWALID
AUDIT_EMP_TRIG TRIGGER INALID
AUDIT_EMP_VALUES TRIGGER IM4ALID
\CHECK_PACK IPACKAGE INALID
\CHECK_PACK IPACKAGE BODY IM4ALID
\CHECK_PRES_TITLE TRIGGER IMALID
(CHECK_SALARY TRIGGER INWALID
\CHK_EMPS TRIGGER IMALID
= . = —
iSAL_éﬂT“US IPROCEDURE INVALID
\SECURE_EMP TRIGGER INWALID
\SECURE_EMPLOYEES TRIGGER INWALID
|SET_MGR TRIGGER INWALID
IUPDATE_EMP_SALARY TRIGGER INWALID
\UPDATE_JOB_HISTORY TRIGGER IM4ALID

| OBJECT_NAME | OBJECT_TYPE | STATUS
\UPD_EMP_SAL IPROCEDURE IM4ALID

Introduction to Oracle9i: PL/SQL A-78

Practice 18 Solutions (continued)

d. Create a procedure called COVPI LE_OBJ that recompiles all invalid procedures,
functions, packages and views in your schema

Make use of the ALTER_CQOVPI LE procedure in the DBMS_DDL package.

CREATE OR REPLACE PROCEDURE conpi |l e_obj
IS
CURSOR obj _cur IS
SELECT obj ect _type, object_nane
FROM user obj ects
WHERE status = "I NVALI D
AND obj ect _type IN (’ PROCEDURE , ' FUNCTI ON , ' PACKAGE ,
" PACKAGE BODY', 'VIEW)
ORDER BY obj ect _type;
BEG N
FOR obj _rec IN obj _cur LOOP
DBVS_DDL. ALTER_COWPI LE(obj _rec. obj ect _type, user,
obj rec. object _nane);
END LOOP;
END conpi |l e_obj ;
/
Execute the COVPI LE_OBJ procedure.
EXECUTE conpi | e_obj

e. Run the script file that you created in question 3c again and check the status column
value.

Do you still have | NVALI D objects? If you do, why are they | NVALI D?
SELECT obj ect _name, object_type, status
FROM user _obj ects
VWHERE status = "I NVALID ;

You may still have invalid objects because the procedur e does not take into account
obj ect dependencies.

Introduction to Oracle9i: PL/SQL A-79

Introduction to Oracle9i: PL/SQL A-80

B

Table Descriptions
and Data

ENTITY RELATIONSHIP DIAGRAM

HR

JOB_HISTORY
employee_id
start_date
end date
joo_id
depanment_id

J
[
1

JOBS
job_id
jok_title
min_salary
max_salary

Introduction to Oracle9i: PL/SQL B-2

DEPARTMENTS
department_id
department_nams
manage”_id
location id

h

EMPLOYEES
employee_id
first_name
last_name
email
phone_numnber
hire date
job_id
Salary
commission_pct
manage” id

department_id

LOCATIONS
location_id
street address
postal_code
City
State province
country id

g

COUNTRIES
country_id
country_name
region _id

4

REGIONS
region_id
redion_name

Tables in the Schema

SELECT * FROM t ab;

| TNAME | TABTYPE | CLUSTERID
ICOUNTRIES TABLE |
IDEPARTMENTS TABLE |
[EMPLOYEES TABLE |
[EMP_DETAILS_WIEW WIEW |
JoBS TABLE |
JOB_HISTORY TABLE |
ILOCATIONS TABLE |
IREGIONS TABLE |

3 rows selected.

Introduction to Oracle9i: PL/SQL B-3

REG ONS Table

DESCRI BE r egi ons

| Name | Mull? | Type

IREGION_ID INOT MULL MUMBER

IREGION_MNAME | WARCHARZ(25)

SELECT * FROM regi ons;

REGION_ID | REGION_NAME

1 |E|_|r|:|pe

3 |asia

|
|
| 2 |Ameri|:aa
|
|

4 |Middle East and Africa

Introduction to Oracle9i: PL/SQL B-4

COUNTRI ES Table

DESCRI BE countri es

| Name | Mull? | Type
(COUNTRY_ID INOT MULL ICHAR(Z)
(COUNTRY_MNAME | WARCHARZ(40)
IREGION_ID | INUMBER

SELECT * FROM countri es;
| co | COUNTRY_NAME | REGION_ID
|AF£ |Argentina | 2
Iy \ustralia | 3
BE Belgium | 1
BR Brazil | 2
| (Canada | 2
ICH Switzerland | 1
(oY China | 3
|DE |German3,f | 1
|le< |Denmark | 1
EG [Egypt | 4
|FR |Fran|:e | 1
|HP< |H|:|ngl<|:|ng | 3
m llsrael | 4
1M lIndia | 3
| co | COUNTRY_NAME | REGION_ID
T Italy | 1
|.JF' |Japan | 3
kwy Kuwait | 4
Ml IMexico | 2
MG Migeria | 4
ML INetherlands | 1
|SG |Singapnre | 3
UK \United Kingdorm | 1
|LJS |United States of America | 2
2 Zambia | 4
T |Zimbatwe | 4

25 rowes selected.

Introduction to Oracle9i: PL/SQL B-5

LOCATI ONS Table
DESCRI BE | ocati ons;

| Hame Null? | Type

ILOCATION_ID IMOT MULL INUMBER{4)

|STREET_ADDRESS WARCHARZ(40)

IPOSTAL_CODE WARCHARZ(12)

cITY INOT NULL WARCHARZ(30)

|STATE_PROVINGE WARCHARZ(25)

(COUNTRY_ID \CHAR(Z)

SELECT * FROM | ocati ons;
LOCATION_ID | STREET_ADDRESS |POSTAL_CODE | CITY [STATE_PROVINCE |CO
| 1000 |1287 Via Cola di Rie (00383 \Roma | T
| 1100 33081 Calle della Testa 10934 Wenice | s
| 1200 |2017 Shinjuku-ku 11689 Tokyo Tokyo Prefecture P
| 1300 |9450 Kamiya-cho 5823 Hiroshima | P
| 1400 |2014 Jabberwocky Rd 26192 \Southlake |Texas W
1500 |2011 Interiors Blvd 99236 Souh San - caitornia us
1600 |2007 Zagora St 50090 oo |[Newdersey us

| 1700 |2004 Charade Rd 138199 Seattle Washington VE
| 1800 |147 Spadina Ave Mgy 217 Toronto |Ontario cA
| 1800 |6082 Bowwood St YSWY OT2 ‘hiteharse [Yukon ca
| 2000 |40-5-12 Laogianggen 190518 Beijing | ICM
| 2100 |1288 Vileparle (E) 480231 \Bornbay \Maharashtra M
| 2200 |12-88 Victoria Street 2301 |Sydney [Mew South Wales AU
| 2300 |198 Clementi Morth 5401398 \Singapore | 3G
LOCATION_ID | STREET_ADDRESS |POSTAL_CODE | CITY [STATE_PROVINCE |CO
| 2400 |3204 Arthur St | \Londan | UK
‘ 2500 |agdaien centre, fhe ‘oxg az8 ‘O}a‘fﬂrd |0m‘urd UK
| 2600 |3702 Chester Road (09629850293 |Stretford IManchester UK
| 2700 |Schwanthalerstr. 7031 80925 IMunich |Bavaria DE
| 2800 |RuaFrei Caneca 1360 |01307-002 |SaoPaulo |Sao Paulo BR
| 24900 |2EI Rue des Corps-Saints |1 730 |Geneva |Geneve |CH
| 3000 |Murtenstrasse 921 3095 \Postfach |Beme ICH
| 3100 |Pieter Breughelstraat 837 3029 \Utrecht 3K ML
| 3200 |Mariano Escobedo 8931 |11932 \Mexico City | Distrito Federal, M

23 rows selected.

Introduction to Oracle9i: PL/SQL B-6

DEPARTMENTS Table

DESCRI BE departnents

| Name | Null? | Type
\DEPARTMENT _ID INOT MULL INUMBER(4)
[DEPARTMENT_NAME IMOT MULL WARCHARZ(3D)
IMANAGER_ID | NUMBER(E)
LOCATION_ID | IMUMBER(4)

SELECT * FROM departnments;
| DEPARTMENT_ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID
| 10 |[administration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 30 |Purchasing | 114 | 1700
| 40 |Human Resources | 203 | 2400
| 50 [Shipping | 121 | 1500
| 60 [IT | 103 | 1400
| 70 |Public Relations | 204 | 2700
| 80 [Sales | 145 | 2500
| a0 |Executive | 100 | 1700
| 100 [Finance | 108 | 1700
| 110 |Accounting | 205 | 1700
| 120 |Treasury | | 1700
| 130 |Corporate Tax | | 1700
| 140 |Control And Credit | | 1700
| DEPARTMENT_ID | DEPARTMENT_NAME | MANAGERID | LOCATION_ID
| 150 |Shareholder Services | | 1700
| 160 |Benefits | | 1700
| 170 |Manufacturing | | 1700
| 180 |Canstruction | | 1700
| 180 |Contracting | | 1700
| 200 |Operations | | 1700
| 210 |IT Suppaort | | 1700
| 220 |NOC | | 1700
| 230 |IT Helpdesk | | 1700
| 240 |Gnvernmentﬁalea | | 1700
| 250 |Retail Sales | | 1700
| 260 |Recruiting | | 1700
| 270 |Payroll | | 1700

27 rowes selected.

Introduction to Oracle9i: PL/SQL B-7

JOBS Table

DESCRI BE | obs

| Name | Mull? | Type
JOB_ID INOT MULL WARCHARZ(10)
JOB_TITLE INOT MULL WARCHAR2(35)
IIN_SALARY | NUMBER(E)
IMAK_SALARY | INUMBER(E)

SELECT * FROM j obs;
| JOB_ID | JOB_TITLE | MIN_SALARY | MAX_SALARY
A0_PRES President | 20000 | 40000
BD_\P \dministration Yice President | 15000 | 30000
‘AD_ASST ‘dministration Assistant | 3000 | 6000
FI_MGR Finance Manager | 3200 | 16000
FI_ACCOUNT |Accountant | 4200 | 3000
\AC_MGR \ccounting Manager | 8200 | 16000
AC_ACCOUNT |Public Accountant | 4200 | 3000
| MAN \Sales Manager | 10000 | 20000
\SA_REP \Sales Representative | 6000 | 12000
PLI_MAN [Purchasing Manager | 3000 | 15000
IPU_CLERK IPurchasing Clerk | 2500 | 5500
ST_MAN Stock Manager | 5500 | 8500
\ST_CLERK \Stock Clerk | 2000 | 5000
\SH_CLERK Shipping Clerk | 2500 | 5500
| JOBID | JOB_TITLE | MIN_SALARY | MAX_SALARY
IT_PROG Programmer | 4000 | 10000
W _MAN IMarketing Manager | 3000 | 15000
Mi<_REP IMarketing Representative | 4000 | 3000
|HR_REF' |Human Resources Representative | 4000 | 8000
\PR_REP [Public Relations Representative | 4500 | 10500

19 rowes selected.

Introduction to Oracle9i: PL/SQL B-8

EMPLOYEES Table

DESCRI BE enpl oyees

| MName | MHull | Type
|EMFLOVEE_ID |NOT HULL |NUMEBERE)
[FIRST_MAME | [WARCHARZ(ZO)
|LAST_MAME |NOT HULL [WARCHARZ(ZS)
|EMAIL |NOT HULL [WARCHARZ(ZE)
|FHOME_NUMBER | [WARCHARZ(ZO)
|HIRE_DATE |NOT HULL [pATE

[JoB_ID [NOT NULL [WARCHARZ(10)
|sAaLARY | |NUMBER(E,2)
|COMMISSION_FCT | |NUMBER(z,2)
|MANAGER_ID | |NUMBER(E)
|DEPARTMENT_ID | |NUMBER{4)

Introduction to Oracle9i: PL/SQL B-9

EMPLOYEES Table

The headings for columns COMM SSI ON_PCT, MANAGER | D, and DEPARTMVENT _| Dare set to
COvM MGRI D, and DEPTI Din the following screenshot, to fit the table values across the page.

SELECT * FROM enpl oyees;

[EMPLOVEE_ID [FIRST_MAME [LAST_MOME | EMAIL |[FHOME_HMUMEER [HIRE_DOTE | JOE_ID [SALARY [COMM [MGRID [DEFTID

| 100 [Stewen |King [skING [515.123 4567 [17-JUN-87 |AD_FRES | 24000 | | [o
| 101 |Neena |Kochhar [NKOCHHAR |515.123.4568 |21-3EP-39 |AD_wP | 17000 | | 1o | a0
| 102 [Lex |De Haan [LDEHASN [515.123.4560 [13-08N-02 |aD_wP [17000 | [oo | o
| 103 [Mexander [Hunold [AHUNOLD [590.423 4567 [p3-JaM-90 |IT_PROG | oo | [1oz | 60
| 104 |Bruce |Emst |BERNST |580.423 4568 [21-Mex-21 |IT_PROG | 6000 | | 1wz | 60
| 105 |Dawid |2ustin [DaUsTIN - [580.423 4560 [25-JUN-27 |IT_PROG | 4g00 | [o3| 60
| 106 [vali |Pataballa [WPATABAL |590.423 4560 |ps-FEB-22 |IT_PROG | 4e00 | [13| 60
| 107 | Diana |Lerertz |DLORENTZ |590.423 5567 [p7-FEB-29 |IT_PROG | 4200 | | 103 | &0
| 103 |Nancy |Greenbery |NGREENBE |515.124.4569 [17-AUG-84 |FI_MGR | 12000 | | 101 | oo
| 109 |Daniel |Faviet [DFAIET [515.124.4160 [16-20G-94 |FILACCOUNT | goo00 | [o2 | 1o
| 10 [John |chen [JCHEN [515.124.4269 [28-5EP-97 |FILACCOUNT | s200 | [tos | 1o
| 11 [lsmael |Ssiarma [IsCleRRA |515.124.4360 |20-3EP-97 |FI_ACCOUNT | 7700 | | 1oz | o0
| 112 [Jose Manuel |Urman [JMURMAN [515.124.4460 [p7-M2R-02 [FILACCOUNT | 7a00 | [102 | 1o
| 13 [Luis |Popp |LropP [515.124.4567 [p7-DEC-99 [FI_ACCOUNT | 6900 | [tos | 1o
[EMPLOYEE_ID [FIRST_MOME [LAST_MAME | EMAIL |[FHONE_WUMEER |[HIRE_DATE | JOE_ID [SALARY [COMM [MGRID [DEFTID
| 114 |Den |Raphasly |DRAPHEAL |515.127 4561 [p7-DEC-94 |PU_MaN [11000 | [oo | o
| 115 [Mexander |khoo [akHOD [515.127 4562 [ta-bey-98 |FU_CLERK | 3100 | I
| 16 | Shell |Baida |sRaIDA |515.127 4563 [240EC97 |FU_CLERK | 2900 | [14| oo
| 17 |igal [Tobias |sTOBlAS |515.127 4564 [p4JuUL87 |PU_CLERK | 2200 | | 14| a0
| 12 [Guy [Himure [GHIMURO [515.127 4565 [15-NOWOs |FU_CLERK | 2600 | [14| a0
| 119 [Karen |Colmenares [KCOLMENA [515.127 4566 [l0-20G-99 |FU_CLERK | 2800 | [14| a0
| 120 |Matthen [izis= WtEISs |650.123.1234 [13-JUL-86 |5T_MaN T | 1o | 0
| 121 |Adam |Fripp [4FRIFP [650.123 2234 [10-2PR-07 [5T_MaN T [oo | #0
| 122 |Payam [Kaufling [PRALFLIN [650.123.3234 [o1-hey-g5 5T MaN T [oo | s0
| 123 |sharta [ollman |SWOLLMAN [650.123.4234 [10-0CT-97 |5T_MaN | 6500 | | 1o | 0
| 124 [Kewin [rdourges [KMOURGOS 650,123 5234 [16-HOw99 5T _han T [oo | so
| 125 [Juliz [Naer [IMAYER [650.124.1214 [16-JUL97 |ST_CLERK | 3200 | [120 | s0
| 126 |Irene [ikkilineni [IMIKKILI [650.124.1224 |22-sEP-92 |ST_CLERK | 2700 | | 120 | s0
| | |

127 |James |Landry |JLANDRY |650.124.1334 [14J20-99 |ST_CLERK 2400 | 10 | 40

Introduction to Oracle9i: PL/SQL B-10

EMPLOYEES Table (continued)

[EMPLOYEE_ID [FIRST_MOME [LAST_HAME | EMaIL

[PHOME_MUMEER |HIRE_DATE | JOE_ID

[saLARY [COMM [MGRID [DEPTID

| 128 [Stewen [hdaricte [SMARKLE [650.124.1434 [pe-mep0n [ST_CLERK | 2200 | [120 | #0
| 120 [Laura |Bissat [LBlssOT [6S0.124.5234 [20-80G-97 [ST_CLERK | 3300 | [1z | #n
| 120 |Mozhe |Athinson [MATKINSO [B50.124.6234 [s0-0CT-87 [ST_CLERK | 2300 | [1z | #n
| 131 |James |htartu [depiRLOW |650.124.7234 [16-FEB-97 |ST_CLERK | 2500 | | 12| s0
| 132 [Td |Disan [TuoLsoN |650.124.5234 [10-APR-99 |ST_CLERK | 2100 | | 12| s0
| 123 [Jasen [halin [JMALLIN - [650.127.1934 [14-JUN-9E [ST_CLERK | 3300 | [122 | #0
| 124 |Michael |Rogers |MROGERS [B50.127.1834 [26-20G-08 [ST_CLERK | 2900 | [1z | #0
| 135 [k |Gee |KGEE 650,127 1734 [12-DEC-99 [ST_CLERK | 2400 | [1z | #0
| 136 |Hazel |Phittanker [HPHILTAN [650.127 1634 |pé-FEB-O0 |ST_CLERK | 2200 | | 12z | s0
| 137 |Renske | Laduwig |RLemwiG |650.121.1234 [14JuLes |sT_CLERK | 3600 | | 12| s0
| 128 [Stephen |stite= [ssTILES [650.121.2034 [26-0CT-97 [ST_CLERK | 3200 | [1z | #0
| 129 [John |50 [JsED |650.121.2019 [12-FEB-98 [ST_CLERK | 2700 | [1z | s
| 140 [Joshua |Patel [JPATEL [6S0.121.1834 |pe-2FR-82 [ST_CLERK | 2800 | [1z | s
| 141 [Trenna |Rajs [TRats |550.121.3009 [17-0CT-95 |sT_CLERK | 3500 | | 124 | s0
[EMPLOYEE_ID [FIRST_MAME [LAST_MAME | EMAIL |[FHONE_MUMEER |[HIRE_DATE | JOE_ID [SALARY [COMM [MGRID [DEFTID
| 142 |Curtiz |Davies |cOEs [B50.121.2994 [20-J8M-97 [ST_CLERK | 2100 | [1z4 | #0
| 143 |Randall [rtos |RMeaTOs [BS0.121.2874 [15-MeR-98 [ST_CLERK | 2600 | [1z4 | #n
| 144 |Peter [argas |PeRGAS [650.121.2004 [pg-JUL9s |ST_CLERK | 2800 | | 1z4 | #0
| 145 |Jahn |Russell [JRUSSEL |011.44.1344.429268 01-0CT-96 |54 hAN | 14000 | 40 | 100 | &0
| 146 |Karen |Partriers |[KPARTNER [011.44.1344 467268 |05-JAN-97 |54 WAN | 13800 | 30 | t00 | &0
| 147 | Aberto |Emezuriz [AERRAZUR [011.44.1344.420278 [10-MAR-OT |54 MAN [1z000 [20 [100 [0
| 148 |Gerald [Cambrautt [GCAMBRAL [011.44.1344.619268 [15-0CT-99 [SA MAN [100 [30 [00 [a0
| 149 | Beni [Rothey |EZLOTKEY |[011.44.1344.420018 |20-JAN-00 |54 MAN [10800 | 2o | 00 | g0
| 150 |Peter [Tucker |FTUCKER |011.44.1344.129268 30-JAN-97 |5A_REP | toooo | 30 | 148 | a0
| 151 | Dawid |Bemstein |DBERNSTE [011.44.1344.345268 |24MAR-87 |54 REP | 9800 | 25| 145 | a0
| 152 |Peter [Hal [PHALL [011.44.1394 472068 [20-205-97 |54 _RER [eooo | 28 [148 | a0
| 153 [Christopher |Olsen [COLSEN [011.44.1344.493713 [30-M2R-93 |54 RER [sooo | 2o [148 [a0
| 154 |Nanette |Cambrautt |[MCAMBRAL [011.44.1344.987662 09-DEC-93 |54 REP | 7800 | zo | 148 | 80
| 155 | Dlivver [Tuwautt |OTLSARULT [011.44.1344 436503 |23-N0WE9 |54 REP | 7fooo | s | 148 | a0
[EMPLOYEE_ID [FIRST_MAME [LAST_MAME | EMAIL |[FHOME_WUMEER [HIRE_DATE | JOE_ID [SALOGRY [COMM [MGRID [DEFTID
| 156 | Janette [King [JKING [011.44.1345 420368 [30-JAN-96 |54 RER [toooo | 28 [146 | 0
| 157 |Patrick [ully [PEULLY [011.44.1245 920262 [04-MAR-95 |54 RER [om0 [38 [146 | e
| 158 | llan [McEwen [AMCEWEN [011.44.1345 820268 |01-AUG-96 |SA_REP [oooo | 38 [146 [e
| 150 |Lindsey [smith [LSMITH [011.44.1245 720268 [10-MAR-97 |54 RER [sooo | 30 [146 [0
| 160 |Louize [Doran [LOORAN [011.44.1245 629268 [15-DEC-97 |54 RER [7500 [30 [146 [e
| 161 [Sarath [semal [S5EMALL [011.44.1245 520268 [03-NOMWO2 |54 RER [7oo0 [28 [146 | e
| 162 |Clara [Mshney [CWISHMEY |011.44.1346.120268 [11-NOWOT |SA_REP [10500 | 28 [147 [D
| 163 |Danielle [Greene |[DGREEME |[011.44.1346.220268 [10-MAR-03 |SA_REP [om0 [a8 [147 [&
| 164 |Mattea [arvins WAASRMNS [011.44.1346 329268 |24-0AN-00 |54 REP | 700 | a0 | 147 | @
| 165 |Dawid |Lee |DLEE 011.44.1346 529368 [23-FER-00 |SA_RER [sso0 | o [147 [D
| 166 | $undar |#nde [SANDE [011.44.1346 629268 [24MAR-00 |54 REP | sa00 | 0| 147 | &0
| 167 |Amit |Banda |eBANDA |011.44.1346.729268 |21-APR-00 |5A_REP | 6zo0 | a0 | 147 | a0
| 162 |Lisa | Dzer |LozZER [011.44.1243 920268 [11-M2aR-07 |54 RER [1100 [28 [148 [e
| 169 |Hamizon [Bloom [HBLOOM [011.44.1343.829268 [23-MAR-02 |54 REP [toooo | zo [148 [a0

Introduction to Oracle9i: PL/SQL B-11

EMPLOYEES Table (continued)

[EMPLOYEE_ID [FIRST_MAME [LAST_MAME | EMAIL |FHONE_NWUMEER |[HIRE_DATE | JOE_ID [SALARY [COMM [MGRID [DEFTID
| 170 [Tayler |Fox |TFox [D11.44.1343 729268 |2404N-98 |5A_REP | egoo | 20| 148 | a0
| 171 [william, |Smith [MrSMITH |011.44.1343 629268 |23-FEB-99 |54 _REP | 7400 | a8 | 142 | a0
| 172 |Bizabeth |Bates |EBATES |D11.44.1343.529268 |24MAR-99 |54 _REP | 700 | a5 | 148 | a0
| 173 |Sundita |Kurmar [SKUMAR [011.44.1343.320268 [21-2FR-00 |54 _RER | sto0 | 0| 148 | a0
| 174 |Blen |2l |EABEL 01144, 1644 429267 |11-h4Y-05 | 5A_REP | tooo | 30 | 148 | a0
| 175 |Ayssa |Hutton |AHUTTON |011.44.1644.429266 |19-MAR-97 |5A_REP | sso0 | 25| 148 | a0
| 176 |Jonathor |Taylor |JTAYLOR |011.44.1644 420265 |24MAR-02 |54 REP | =800 | 20 | 148 | #0
| 177 |Jack |vingston |JLWNGS [011.44.1644.429264 |23-APR-98 |54 _REP | s400 | 20| 148 | a0
| 178 |Kimberely | Grant [KGRANT [011.44.1644 420263 [24-MaY-00 |54 RER | 7ooo | s | 149 |

| 179 |Charles [ohrson |CJOHNSON [011.44.1644 429262 |04-JAN-00 |54 REP | &zo0 | 0 | 148 | a0
| 130 [Winston |Taylor [wTayLOR |650.507 9576 [24upN-98 |SH_CLERK | 3200 | | 12| 0
| 121 |Jean |Fleaur |JFLEAUR |68 .507 9277 |z2-FEB-82 |SH_CLERK | 2100 | | 1| 0
| 132 |Martha |sullivan MSULLIA |650.507 9575 [z1-JuN-99 |SH_CLERK | 2500 | | 12| 0
| 183 |Girard | Geoni [GGEQMI 650,507 0370 [03-FEB-00 |SH_CLERK | 2800 | | 1z | &0
[EMPLOVEE_ID [FIRST_MAME [LAST_MOME | EMAIL |[FHOME_HMUMEER |[HIRE_DSTE | JOE_ID [SALERY [COMM [MGRID [DEFTID
| 124 |MNandita |sarchand [NSARCHAN [650.509.1276 [z7-02N-08 |3H_CLERK | 4200 | | 121 | a0
| 125 | Mexis |t |ABULL 650 509 2576 [z0-FEB-97 |3H_CLERK | 4100 | | 1z | o
| 126 |Julia |Dellinger |JOELLING |650.509.3876 [zuun-9s |sH_CLERK | 3400 | | 1z | a0
| 127 |Anthony |Cabrio [ACABRIO [650.509 4476 [07-FEB-99 |[SH_CLERK | 3000 | [121 | Ao
| 128 [Kelly |Chung [KCHUNG [650.505.1876 [t4Jun-97 [sH_CLERK | 3z00 | [1zz [o
| 129 |Jenrifer |Dilly |OILLY |650.A505. 2876 [t2-sUG-97 |3H_CLERK | 2600 | | 122 | a0
| 190 |Timottry | Bates [TGATES |650.505.3576 [1aul-gs |sH_clErk | 2900 | | 12z | a0
| 191 |Randall |Periins |RPERKINS [650.505.4576 [19-DEC-99 |3H_CLERK | 2800 | | 12z | a0
| 192 |Sarah |Bel |SBELL |650.501. 1876 [04-FEB-96 |SH_CLERK | 4000 | [1z3 | Ao
| 193 |Britney |Bverstt |BEVERETT [650.501.2876 [02-Mep-97 |SH_CLERK | 2900 | | 122 | a0
| 194 |Samuel [:Cain |SMCCAIN - [650.501.3876 [m1-aul-g9z |sH_CLERK | 3200 | | 1z | A
| 195 [vance |Jones [WIONES |650.501.4876 [17-Mer-99 |sH_CLERK | 2800 | | 12| a0
| 196 |Aana [wiatsh |siniaLsH |650.507 8811 [z4-2PR-93 |SH_CLERK | 3100 | | 124 | a0
| 197 [Kewin |Feeney |KFEENEY |550.507 9822 [z3mer02 [SH_CLERK | 3000 | [1z4 [o
[EMPLOVEE_ID [FIRST_MAME [LAST_MOME | EMAIL |[FHOME_HMUMEER |[HIRE_DSTE | JOE_ID [SALERY [COMM [MGRID [DEFTID
| 192 |Donald |OCornell |DOCOMMEL [650.507 2832 [z1-gun-99 |sH_CLERK | 2600 | | 124 | a0
| 199 |Douglas | Grant |DGRANT |650.507 9344 [tz-gan-00 |sH_CLERK | 2600 | | 124 | a0
| 00 |Jennifer [halen [WHALEN [515.123.4444 [17-3EP87 |aD_assT | 4400 | | 11| 1o
| 201 |Michael |Hartstein |MHARTSTE |515.123 5555 [17-FEB-96 |MK_MaN | 13000 | [1o | 30
| 02 |Pat |Fay |PFay [602.122 Be6E [17-20G-07 |MK_REP | 6000 | [201 [20
| 03 |Susan murris [sMaRIS |515.123.7777 [o7-Jun-94 |HR_RER | &S00 | | 11| 4
| 04 |Hermann |Baer |HBAER |515.123 8888 [o7-gun-94 |PR_REP | 10000 | | 101 | 70
| 05 |Shelley |Higgins ~ |SHIGGINS |515.123.8030 [o7-Jun-94 |AC_MGR | 12000 | | 101 | 1o
| 206 [Wfiliam | Gietz [WGIETZ [515.123.8181 [07-JUN-34 [AC_ACCOUNT | 8300 | [208 | 110

107 rows selacted.

Introduction to Oracle9i: PL/SQL B-12

JOB_HI STORY Table

DESCRI BE j ob_hi story

| Name | Null? | Type
[EMPLOYEE_ID IMOT MULL IMUMBER(5)
\START_DATE IMOT MULL DATE

[END_DATE INOT MULL \DATE

JOB_ID IMOT MULL WARCHARZ(10)
\DEPARTMENT_ID | INUMBER(4)

SELECT * FROM j ob_hi story;

| EMPLOYEE_ID | START_DAT | END_DATE | JOB_ID | DEPTID

| 102 [13-JAN-33 24-JUL-38 IT_PROG | B0
| 101 |[21-SEP-89 27-0CT-93 AC_ACCOUNT | 110
| 101 [28-0CT-23 15-MAR-G7 AC_MGR | 110
| 201 17-FEB-9 119-DEC-99 IMK_REP | 20
| 114 |24-MAR-98 3-DEC-29 |ST_CLERK | 50
| 122 |01-JAN-99 31-DEC-29 |ST_CLERK | 500
| 200 17-5EP-87 17-JUN-33 AD_ASST | a0
| 176 |[24-MAR-58 3-DEC-98 54 _REP | a0
| 176 |01-JAN-99 31-DEC-29 S8 MAN | a0
| 200 |01-JUL-94 31-DEC-98 AC_ACCOUNT | a0

10 rowes selected.

Introduction to Oracle9i: PL/SQL B-13

Introduction to Oracle9i: PL/SQL B-14

Creating Program Units by Using
Procedure Builder

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:

C-2

Describe the features of Oracle Procedure Builder
Manage program units using the Object Navigator

Create and compile program units using the
Program Unit Editor

Invoke program units using the PL/SQL Interpreter
Debug subprograms using the debugger

Control execution of an interrupted PL/SQL
program unit

Test possible solutions at run time

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Y ou can use different development environments to create PL/SQL program units. In thislesson you
learn to use Oracle Procedure Builder as one of the development environments to create and debug
different types of program units. Y ou also learn about the features of the Procedure Builder tool and
how they can be used to create, compile, and invoke subprograms.

Introduction to Oracle9i: PL/SQL C-2

PL/SQL Program Constructs

Stored
AnObr;ymKOUS procedure or
ocC (L DECL ARE function
‘ 0o o I
T BEGQ N Application
Application
pteigger — 000 | procedure or
function

EXCEPTI ON

‘OOO I

 —
Database END;
) (| t L Package
trigger

Object type

C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

The diagram in the preceding slide displays a variety of different PL/SQL program constructs using the
basic PL/SQL block. In general, ablock is either an anonymous block or a named block (subprogram).

PL/SQL Block Structure

Every PL/SQL construct is made from one or more blocks. These blocks can either be entirely separate
or nested one within another. Therefore, one block can represent a small part of another block, whichin
turn can be part of the whole unit of code.

Y ou can create both application program units and stored program units using Oracle Procedure Builder.
Application program units are used in graphical user environment tools such as Oracle Forms. Stored
program units are stored on the database server and can be shared by multiple applications.

Introduction to Oracle9i: PL/SQL C-3

Development Environments

®* iSQL*Plus uses the PL/SQL engine in the Oracle
Server

® Oracle Procedure Builder uses the PL/SQL engine
in the client tool or in the Oracle Server. It
includes:

— A GUI development environment for PL/SQL code
— Built-in editors
— The ability to compile, test, and debug code

— Application partitioning that allows drag-and-drop
of program units between client and server

C-4 Copyright © Oracle Corporation, 2001. All rights reserved.

iSQL*Plus and Oracle Procedure Builder

PL/SQL isnot an Oracle product in its own right. It is atechnology employed by the Oracle Server
and by certain Oracle development tools. Blocks of PL/SQL are passed to, and processed by, a PL/SQL
engine. That engine may reside within thetool or within the Oracle Server.

There are two main development environments for PL/SQL: iSQL* Plus and Oracle Procedure Builder.
This course covers creating program units using i SQL*Plus.

About Procedure Builder

Oracle Procedure Builder isatool you can useto create, execute, and debug PL/SQL programs used in
your application tools, such as aform or report, or on the Oracle server through its graphical interface.

Integrated PL/SQL Development Environment

Procedure Builder's development environment contains a build-in editor for you to create or edit
subprograms. Y ou can compile, test, and debug your code.

Unified Client-Server PL/SQL Development

Application partitioning through Procedure Builder is available to assist you with distribution of logic
between client and server. Users can drag and drop a PL/SQL program unit between the client and the
server.

Introduction to Oracle9i: PL/SQL C-4

Developing Procedures and Functions
Using iISQL*Plus

Brewse... | Lead o |

REATE OF REFLACE PROCEDALUE bop_awa @ ulion
BEGH

HEERTHNTD bp_tstls uesr_id, g st

WALLIER AIBER, §VEDATEL
ExD hap_ssacubian

Esatiie ipet: [Dispiny = it B fsiy B Scripl |

C-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using iSQL*Plus

Use atext editor to create a script to define your procedure or function. Browse and upload the script
into the iSQL* Plus input window. Execute the script by clicking the EXECUTE button.

The example in the preceding slide creates a stored procedure without any parameters. The
procedure records the username and current date in a database table.

Introduction to Oracle9i: PL/SQL C-5

Developing Procedures and Functions Using
Oracle Procedure Builder

it - LG EEECIITEIH
Al Ry I Hem I Onlsln |
Haws [L0G_ EECUTIOR [Procedss Bads|]

FLATL Lilvisins FRECEFURE Loy _gescurica I#
Aitnsked Libisiss EETH

4 Wk Peck sy INSERT THTO Log cabisrussr id, Log decs|
:h“_ At TALUES (umsz , mysdace| :
= Dalabaar Obpectc IND Log mxEcetion;

HEEERC=RE

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Start Procedure Builder from Windows

Procedure Builder contains object navigator where you can see al the program units that you created.
Y ou can open, edit, compile, debug, and save the program units by using a graphical editor.

Introduction to Oracle9i: PL/SQL C-6

Components of
Procedure Builder

Component Function

Object Navigator Manages PL/SQL constructs;
performs debug actions

PL/SQL Interpreter Debugs PL/SQL code; evaluates
PL/SQL code in real time

Program Unit Editor Creates and edits PL/SQL source
code

Stored Program Creates and edits server-side

Unit Editor PL/SQL source code

Database Trigger Editor Creates and edits database triggers

C-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of Procedure Builder

Procedure Builder is an integrated development environment. It enables you to edit, compile, test, and
debug client-side and server-side PL/SQL program units within asingle tool.

The Object Navigator

The Object Navigator provides an outline-style interface to browse objects, view the relationships
between them, and edit their properties.

Thelnterpreter Pane

The Interpreter paneis the central debugging workspace of the Oracle Procedure Builder. It is awindow
with two regions where you display, debug, and run PL/SQL program units. It aso interactively
supports the evaluation of PL/SQL constructs, SQL commands, and Procedure Builder commands.

The Program Unit Editor

The easiest and most common place to enter PL/SQL source code isin the Program Unit Editor. You
can use it to edit, compile, and browse warning and error messages during application development. The
Stored Program Unit Editor is a GUI environment for editing server-side packages and subprograms.
The compile operation submits the source text to the server-side PL/SQL compiler.

The Database Trigger Editor

The Database Trigger Editor isa GUI environment for editing database triggers. The compile operation
submits the source text to the server-side PL/SQL compiler.

Introduction to Oracle9i: PL/SQL C-7

Developing Program Units
and Stored Programs Units

Procedure
Builder

Client-side il 4] Server-side
code ﬂ code
\D/‘\/
\/

Program units Stored program units
in a PL/SQL library in the Oracle server
C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Program Units and Stored Program Units

Use Procedure Builder to develop PL/SQL subprograms that can be used by client and server
applications.

Program units are client-side PL/SQL subprograms that you use with client applications, such as Oracle
Developer. Stored program units are server-side PL/SQL subprograms that you use with all
applications, client or server.

Developing PL/SQL Code
Client-side code:

» Create program units by using the Program Unit Editor

» Drag a server-side subprogram to the client by using the Object Navigator
Server-side code:

» Create stored programs by using the Stored Program Unit Editor

» Drag a client-side program unit to the server by using the Object Navigator

Introduction to Oracle9i: PL/SQL C-8

Procedure Builder Components:
The Object Navigator

i Object Navigator

Program Units

=] Find: |

Bl Program Units|

- [LEAVE_EMF [Procedure Body)

; - LOG_E=ECUTION:

=~ References

¢ A_USER.LOG_TABLE [Table)
= Referenced By

e LEAWE_EMP [Procedure Body)
[~ PL/SAL Libraries

1 Attached Libraries

- Built-in Packages

[~ Debug Actions

[+ Stack

[+ Database Objects

h LOG_EXECUTION [Procedure Body]
; 5 Specification ﬁ

Copyright © Oracle Corporation, 2001. All rights reserved.

Components of the Object Navigator
The following descriptions correspond to the numbered components on the dlide:
1. Locationindicator: Shows your current location in the hierarchy.

2.

4,
5.

Object Navigator

The Object Navigator is Procedure Builder’s browser for locating and working with both client and

server program units, libraries, and triggers.

The Object Navigator allows you to expand and collapse nodes, cut and paste, search for an object, and

drag PL/SQL program units between the client and the server side.

Introduction to Oracle9i: PL/SQL C-9

Subobject indicator: Allows you to expand and collapse nodes to view or hide object information.
Different icons represent different classes of objects.

Typeicon: Indicates the type of object, followed by the name of the object. In the example, the
icon indicatesthat LOG_EXECUTI ONisaPL/SQL block. If you double-click the icon, Procedure
Builder opensthe Program Unit Editor and displays the code of that object.

Object name: Shows you the names of the objects.
Find field: Allows you to search for objects.

Procedure Builder Components:
The Object Navigator

-I 08 et Muvagaler S imiipreicr

|r|.-|.|:r RALARY |'¢| [|

| — Progem Unks i a L PR
*QW SENE w arw salary IN HOMIER

— Eparificabion
RAGE, SALAFY (WP I M AREER VLW
- Hefmercer

C-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of the Object Navigator: Vertical Button Bar

The vertical button bar on the Object Navigator provides convenient access for many of the actions

frequently performed from the File, Edit, and Navigator menus.
1. Open: Opensalibrary from the file system or from the Oracle server.
Save: Saves alibrary in the file system or on the Oracle server.

2. Cut: Cutsthe sdlected object and storesiit in the clipboard. Cutting an object also cuts any objects

owned by that object.

Copy: Makes a copy of the selected object and stored it in the clipboard. Copying an object also

copies any objects owned by that object.

Paste: Pastes the cut or copied module into the selected location. Note that objects must be copied

to avalid location in the object hierarchy.
3. Create: Creates anew instance of the currently selected object.
Delete: Deletes the selected object with confirmation.

4. Expand, Collapse, Expand All, and Collapse All: Expands or collapses one or all levels of
subobjects of the currently selected object.

Introduction to Oracle9i: PL/SQL C-10

Procedure Builder Components:
Objects of the Navigator

®* Program Units

— Specification

— References

— Referenced By
®* Libraries
* Attached Libraries
® Built-in Packages
* Debug Actions
* Stack
* Database Objects

C-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Objects of the Object Navigator

By using the Object Navigator, you can display a hierarchical listing of al objects you have accessto
during your session.

Object Nodes Description

Program Units | PL/SQL constructs that can be independently recognized and processed by the
PL/SQL compiler.
Program Units: | Name, parameter, and return type (functions only) of the program unit.
Specification
Program Units. | Procedures, functions, anonymous blocks, and tables that the program unit
References references.
Program Units; | Procedures, functions, anonymous blocks, and tables that reference the
Referenced By | program unit.

Libraries Collection of PL/SQL packages, procedures, and functions stored in the
database or the file system.

Attached Referenced libraries stored in the database or the file system.

Libraries

Built-in PL/SQL constructs that can be referenced while debugging program units.

Packages

Debug Actions | Actions that enable you to monitor or interrupt the execution of PL/SQL
program units.

Stack Chain of subprogram calls, from the initial entry point down to the currently
executing subprogram.

Database Collection of server-side stored program units, libraries, tables, and views.

Objects

Introduction to Oracle9i: PL/SQL C-11

Developing Stored Procedures

4)
Oracle [Code }
Procedure
Builder
\Compile and Save]
-
4 N

Oracle‘ Source code J

[P code]

_ /
Execute

C-12 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop Stored Program Units
Use the following steps to develop a stored program unit:
1. Enter the syntax in the Program Unit editor.
2. Click the Save button to compile and save the code.
The source code is compiled into P code.

Introduction to Oracle9i: PL/SQL C-12

Procedure Builder Components:
The Program Unit Editor

E ascke Pinceduin Quddes - 5 uosiEad eclsli

B ER Popss wisiow Help

. et Banpata B Proegam Ueit - FUATISE SRLARY

[P _sAiaiy (1=] Pt |

T F Papipam Uit Hewe |FAISE_ SALAHY [Piggeceie Hode|

ki ::“ PROCELTEL caiss salacy [« snpno s
¥ 4l _ . - =
[;:1:;?" w_zay_@ml werxhec

k v alearcad Ny Ls

- PLISHL Libnmiea BEGIH

Afached Limiea UFBATE swp

_r' = [Ewil-n l"'-l'\-‘hl!.l'l-"l SET mnl w_nsu_mml

+ E:.I k'uhlm "H::-:”) ETpE T OV EDRIe

x STTTLITT END Taise_anlary)

Lo i

Ll Vs Hoiired Euriby o]

C-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Program Unit Editor
The following descriptions correspond to the numbered components on the dlide:
1. Compile, Apply, Revert, New, Delete, Close, and Help buttons
2. Name drop-down list
3. Sourcetext pane
Program Unit Editor

Use the Program Unit Editor to edit, compile, and browse warning and error messages during
development of client-side PL/SQL subprograms.

To bring a subprogram into the source text pane, select an option from the Name drop-down list. Use the
buttons to decide which action to take once you are in the Program Unit Editor.

Introduction to Oracle9i: PL/SQL C-13

Procedure Builder Components:
The Stored Program Unit Editor

 Quacis Proceduin Budden - 5_ s sl
Bt El Pumpwe Wiedes Help]
m B Siomsd Progasm Ursi - & USE L TAM HF||:]
[Tz Fuse =] Foe | % Hew - fevs | prow | e
LT = Papgpam Unii D [A_USER =] Hura | 1408 [Fuschion| =
rUSOL L
ki Sachad Limsrias FURCTION Lan
= |[Bwill-n Packsgea v _salacy HUESER
Iy [ey Bectiarm EETUEH HUNLEE
- Stk

1=
N ansbosies Nhigetia EECIN
& o b _LEER FETURH v salacy
= Ghowesdd Pioags sim Lrdis EHE; n
s L rid
- £ PLASEL Lebigiri
o Taldss
LA
v Twpaz
H-Ji HOTS
AR OADEYS
LR i
= J& FrETEH
- TREWEL

[+] | e
| 1| W=t Mcoied 3 uccarzullp Corplsd

C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The Stored Program Unit Editor
Use the Stored Program Unit Editor to edit server-side PL/SQL constructs. The Save operation submits
the source text to the server-side PL/SQL compiler.

Introduction to Oracle9i: PL/SQL C-14

Creating a Client-Side
Program Unit

E Masrde Pinceduis Nl - 5 s aclisli
B L@ Meipda Dagee Windew Hep]
[Object Mavipatss | e Progoss Uinid - RAISE_SALAFTY

[Frogem tin =] Frt | WA Coppie | Apely | Beven | Hew. | ebes
@* - [T Fsra: |FUAISE_SKLARY™ [Pascaduss Body) =
- PLASOL L B saiea
ki Amachad Libassias FRCCEDURE false_salacy r
I — NN HITHEER,
- Dty Secliom v e mnl MIRREE
Stph 1]
B = Dastsboase Dhiscl S
= BE
AET an ' Teew gl
* ku.ui UNERE amgno ¥ arEpan !
= Hame: |- iy ::".HIT.-

s et T [T " it b s el
fEroc Ot b 3. coburn 1

Ty EHD:
@H & Proceduws L1 |
" Funchisn Hisca 3171 o b 1 ccbarns
.I

5 isaardnd grea el

© Packags Eady
£ Tups hipes
" Twper Bindp
514 Lancel
| 8 '
C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Client-Side Program Unit

1

Select the Program Units object or subobject.
Click the Create button. The New Program Unit dialog box appears.

Enter the name of your subprogram, select the subprogram type, and click the OK button to accept
the entries.

The Program Unit editor is displayed. It contains the skeleton for your PL/SQL construct. The
cursor is automatically positioned on the line beneath the BEGA N keyword. Y ou can now write the
code.

When you finish writing the code, click Compile in the Program Unit Editor.

Error messages generated during compilation are displayed in the compil ation message panein the
Program Unit window. When you select an error message, the cursor moves to the location of the
error in the program screen.

When your PL/SQL codeis error free, the compilation message disappears, and the Successfully
Compiled message appears in the status line of the Program Unit Editor.

Note: Program unitsthat reside in the Program Units node are lost when you exit Procedure Builder.
Y ou must export them to afile, save themin aPL/SQL library, or store them in the database.

Introduction to Oracle9i: PL/SQL C-15

Creating a Server-Side
Program Unit

E Masrde Pinceduis Nl - 5 s aclisli
e E@ Mavige Pagen Windew Help

o Ugmel Wasigats

[Sromed Fue =] Fest |
LT 5 Paggram e i 2] @
o mUsol |It:u-- fana: [A_USER ®] Heme [TAX ifunchion] =]
= Bull-m Plﬂ?hqll FIRCTION bax "=
3 Dty Secliom alaey BUH ! [: >

: . A J WOATS Topes
2 - -
R S * J
i i K SrTEH £l
. -
K TRAVE ~

lﬂ. |t

0K |1-| | hl
| Hax Ml et Fucoesshil Conpled
C-16 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Server-Side Program Unit

1

Select the Database Objects node in the Object Navigator, expand the schema name, and click Stored
Program Units.

Click Create.

In the New Program Unit window, enter the name of the subprogram, select the subprogram type,
and click OK to accept the entries.

The Stored Program Unit editor is displayed. It contains the skeleton for your PL/SQL construct. The
cursor is automatically positioned on the line beneath the BEG N keyword. Y ou can now write the

code.
When you finish writing the code, click Save in the Stored Program Unit Editor.

Error messages generated during compilation are displayed in a compilation message at the bottom
of the window. Click an error message to move to the location of the error.

When the PL/SQL codeis error-free, the compilation message does not appear. The Successfully
Compiled message appears in the status line at the bottom of the Stored Program Unit Editor
window.

Introduction to Oracle9i: PL/SQL C-16

Transferring Program Units Between
Client and Server

% Muscke Procedus Budds - 5 ussibisiaclsli

N ITETE N CPIE

|FosirsE_sawant =] First |

V. 4| ?

Blares | RAISE_SHLARY [Procodiss Bady] =

= |z P-l-j;_a-l.lﬂt
2| ! FROCEDUORE raias mslary —
E&.}mﬂ. e HUREEE, =
h‘_" 1 (Bl -n 1 ek agea _nEw _sal HUHBEE
[imug Achano i
] Slack ETGIH
_m = Datalase Dipecis TPOATE anp
=& & LGER SET =al = v_new_sal
* = ‘i'u'-éll_iurﬂ-ir:l VEEPE chipmo = ¥ emipand
L. CORHTITE
a £ FLAGL Libsarmr s
£ Talkes
 Wiemi
1 Typee
- L ElEYS
i K OAOSYS
-5
- SYSTEH
i B TRAEL

C-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Application Partitioning

Using Procedure Builder you can create PL/SQL program units on both the client and the server. You
can also use Procedure Builder to copy program units created on the client into stored program units on
the server (or vice versa). Y ou can do this by a dragging the program unit to the destination Stored
Program Units node in the appropriate schema.

PL/SQL codethat is stored in the server is processed by the server-side PL/SQL engine; therefore, any
SQL statements contai ned within the program unit do not have to be transferred between a client
application and the server.

Program units on the server are potentially accessibleto all applications (subject to user security
privileges).

Introduction to Oracle9i: PL/SQL C-17

Procedure Builder Components:
The PL/SQL Interpreter

B PLISTEL Indsipawien H=E

P X P R ==z
L2 Cherl Pogram Uiz RAISE_SALAAY [Precedaie Body)
JOCL FROCEDTRI caise salacy
i I%_empho EIESER,
LN E] v_reaw _pal FUERER)
o m e | Is
OO AEGIE

e Ll

- [RAKSE_SaLART Fupius B
FLAGEL Labwarme
Allached Lilvamn

= Bisle-wn Pack sy

[L T

Slach

Thialwhany Tlhanrde

L

FiL A, [a15e S6LA0Y | Faad, L] &
FLYAgl.> SELICT ®* FROR =mp
+> WHERE =mpres = TI6E;

IEFHD EMAAE saul.] N=FE HIREDATE SAL CORAA TIFTHO

e

Tas8 HHITH CLEFF T 17-DEC-E0 LODD, 00 &0

1 cow mmlactad.
Fis ek |

C-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of the PL/SQL Interpreter
1. Source pane: Displaysthe PL/SQL code of your program.

2. Navigator pane: Displays the same information as the Object Navigator, but within the PL/SQL
Interpreter.

3. Interpreter pane: Allows you to execute subprograms, Procedure Builder commands, and SQL
statements.

To execute subprograms, enter the name of your PL/SQL program at the PL/SQL prompt, provide any
parameters, and terminate with a semicolon.

PL/ SQL> construct _nane [paraneterl| paraneter?2,...];

To execute SQL statements, enter your SQL statement and terminate with a semicolon.
PL/SQL> SELECT *

+> FROM departments;

Introduction to Oracle9i: PL/SQL C-18

Creating Client-Side Program Units

o
Mamer: e resiied
Fwra: | B_ME S SALE [Piocaden Hody| =
[t " PROCEDUE
FROCEDURED oy seSsage "=
ﬁ v fessage WARCHARZ
I Pk sge Spec ;E'-I:'I
7 Packagn Hodp TEXT_I0.PUT_LINE (v_message):
o Tpan dper EHls
~
0K | Camcel | e |
4] | Ll
Nzt Moot Sxscrariuly Carpled
C-19 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Client-Side Program Units
1. Select the Program Units node in the Object Navigator.
2. Click Create. The New Program Unit dialog box appears.

3. Enter aname for the procedure. Note that the default program unit type is Procedure. Click OK to
accept these entries. The program unit name appearsin the Object Navigator.

— The Program Unit editor appears, containing the procedure narh&aBEG N, andEND
statements.

— The cursor is automatically positioned on the line beneatBE&EN keyword.
4. Enter the source code.

5. Click Compile. Error messages generated during compilation are displayed in the compilation
message pane (the lower half of the window).

6. Select an error message to go to the location of the error in the source text pane.

When successfully compiled, a message is displayed in the lower right hand corner of the Program
Unit Editor window.

7. Save the source code in a file (M) File > Export.

Note: The keywordsSCREATE, andCREATE OR REPLACE and the forward slash are invalid in
Procedure Builder.

Introduction to Oracle9i: PL/SQL C-19

Creating Server-Side Program Units

Ehe Edt Puogran 'wivdie Hel]
B, Shared Pagram Ui - i USLILLTAWE I
| LEavE_EMP ¥ 2] Fnd | ¥4 How | Hovw | oo | Dep | Cheas
=1 Progeem Urdls Operae | 5_LFSER '-'| Hira: |LEAVE _EMIP [Procea =)

-
. Bl _" Ty bk
ki - 12 R FALAREY Pacsdue | PROCENURE Leave_smp =
PLASTHL Libwasurs) ™ = wHi % TTPE
TP — FLE] AP Sty 1T
B0 k- Mechagae 13
Dwbug Achone BEGIN
Gk DELETE FRCH exp
= Dwabase Digeot VHERE empphn = ¥ idi
-1 & a4 UEER Ly o=l om i E: LGl

Creat» = Seeind Lty END lswwrs mwp
%h _
Delete'» W LOB_EME CLIT 06 [Precedurs

N 1A Furein |

-

o+ 5

& PLIBOL Lbisries
¥ lablsa

5 Types
5 B HDEYS
H- B ORDSYS
B 5 —
H & STHTEN |.|| I _.r

Cooraplaxd

- rnaary

L

C-20 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Server-Side Program Units

Select File > Connect. Then enter your username, password, and database connect string.
Expand the Database Objects node in the Object Navigator.

Expand your schema name.

Click the Stored Program Units node under that schema.

Click Create in the Object Navigator.

Enter the name for the procedure in the New Program Unit dialog box.

Click OK to accept.

8. Enter the source code and click save.

Note: The keywords CREATE, and CREATE OR REPLACE and the forward dash areinvalidiin
Procedure Builder.

No g b~ wDdhPRE

Introduction to Oracle9i: PL/SQL C-20

The DESCRI BE Command in
Procedure Builder

B Ede Mea |

1" Br PLAU L Inderpisten
[FORMAT_F =] Fret | |I| --- 717 [(x[F]
= Posgram Urils i I Uhsit FIFMAT_PISIRE Pracaduss llods)

FRICEDUEE ﬂn:—:_.-h.uu =
z (v_phone_re IR OTT VARCHARZ]
] I

F'l-l'ﬁ! Librarm s

Afached Librasc
= Bwill-i» PFackaga:

04 BEGIM
E::..ﬁmml 05 v _phone_poo=' || |BUBETIOY phane e 1,311 1
% Dotsbase Dbjests o004 1Y) | SUBBTR OV plore 4,311 |

007 t=1] | AUBATH (v _phode 5, T)
00008 EHD format phoxes)
[FL/OCL> DESCRTNE FROCIBTEE FORRAT FIKRE %
— Froceducs Body: FORRAT FEONE
Facaracecs:
w_phone_no 1B OUT WARCHART
. Campiled: TES
=] ipeEnl MU
| BeferEnnes|
Fankape Bp=o STANRAED
Eefereno=d oys
FLsachs |

C-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Describing Procedures and Functions

To display a procedure or function, its parameter list, and other information, use the. DESCRI BE
command in Procedure Builder.

Example
Display information about the FORMAT_PHONE procedure.

Introduction to Oracle9i: PL/SQL C-21

Listing Code of Stored Program Units

ADD_DEPT x| Fied |

-

T | Fograw Usits

Hi PLAFOL LB ges Uit - & USERADD 0 MEE
fbiached L i aries
Stored o Mgl an 1" sck mge Haw I Sawe | rern ! Do
- [Der [5 USER 7| Hawe [ADD_DEPT Py =]
procedure . - gl T =
. frym— am haitn v nawe TH dapr . drasssi TTFE DEFAT
Icon ; Eh v _loc TH dept.loci TEFE DEFAULT
! G OVER_Pock Peckagesaoenl | o
E']IE?RE: 'T,'"'*”'B“" INSERT INTO dept
N A (T VALUER [depl_deptas HEXTVAL.V &
Expand > # PLISAL Linaies il M_ML__'* e e
') 4 Vi
and o TEpsa
§ X &
Collapse : & YSTEN
buttons
vl
: i
Ll | H ot Mt ©rmomitiuly Lorpaed
— B 1
C-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code of a Stored Procedure

1. Select File> Connect and enter your username, password, and database.
Select Database Objects and click the Expand button.
Select the schema of the procedure owner and click the Expand button.
Select Stored Program Units and click the Expand button.

Double-click the icon of the stored procedure. The Stored Program Unit editor appearsin the
window and contains the code of the procedure.
The ADD_DEPT Procedure Code

The exampl e above shows the PL/SQL Program Unit editor with the code for the ADD_DEPT
procedure.

a > wD

The code can now be saved to afile.
1. Select File> Export and enter the name of your filein the Open diaog box.
2. Click OK. A file containing your stored proceduretext (. p/ s extension) is created.

Introduction to Oracle9i: PL/SQL C-22

Navigating Compilation Errors
in Procedure Builder

Compie | dpply | Bevwt | Mew. | Dol | Dl | i

Fhame: | A0 0_EMP |Procedein Bady] =]
FROCEDURE &34 emp LY r—
EEGIH ‘ml

[HAERT THTO =mp (Ewpins, =raes, depcno
WALIOES | ¥, 'HEHDE" .]

END:

Vicchbd Comgiad mh o

C-23 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Resolve Compilation Errors
1. Click Compile.

2. Select an error message.
The cursor moves to the location of the error in the source pane.

3. Resolve the syntax error and click Compile.

Introduction to Oracle9i: PL/SQL C-23

Procedure Builder Built-in Package:
TEXT IO

* The TEXT_| Opackage:

— Contains a procedure PUT_LINE, which writes
information to the PL/SQL Interpreter window

— Is used for client-side program units
* The TEXT_I O PUT_LI NE accepts one parameter

PL/ SQL> TEXT_| O PUT_LI NE(1);
‘ 1 I

C-24 Copyright © Oracle Corporation, 2001. All rights reserved.

TEXT_I OBuilt-in Package

You can use TEXT_| Opackaged proceduresto output values and messages from a client-side
procedure or function to the PL/SQL Interpreter window.

TEXT_I Oisabuilt-in package that is part of Procedure Builder.

Use the Oracle supplied package DBM5_OUTPUT to debug server-side procedures, and the Procedure
Builder built-in, TEXT_| O, to debug client-side procedures.

Note:

* You cannot us&@EXT_| Oto debug server-side procedures. The program will fail to compile
successfully becauddEXT_| Ois not stored in the database.

+ DBMS_OUTPUToes not display messages in the PL/SQL Interpreter window if you execute a
procedure from Procedure Builder.

Introduction to Oracle9i: PL/SQL C-24

Executing Functions in
Procedure Builder: Example

Calling environment TAX function

1000 v_val ue

RETURN (computed value)

Display the tax based on a specified value.

PL/ SQL> . CREATE NUMBER x PRECI SI ON 4
PL/ SQ.> :x := tax(1000);

PL/ SQL> TEXT_ | O PUT_LINE (TO CHAR(: X)) ;
80

C-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Execute the TAX function from Procedure Builder:

1. Create ahost variable to hold the value returned from the function. Usethe . CREATE syntax at
the Interpreter prompt.

2. Create a PL/SQL expression to invoke the function TAX, passing a numeric value to the function.
Note the use of the colon (:) to reference a host variable.

3. View theresult of the function call by using the PUT _LI NE procedurein the TEXT | Opackage.

Introduction to Oracle9i: PL/SQL C-25

Creating Statement Triggers

rﬂ'{? E| [:: é E:Iﬂm (1 3

Triggeting Ep— 0¥ Columrss
= el I IPDATE

Al = [RSERT

k! I~ ELETE

T I ach

" Spatemmnt 7 [flow

ey DLIE A | HEW s |

WS |
Triggm Bady:
FIGIH
Lr TO CHAR(SYSDATE, 'O¥') IM |'ZAT', 'SIEY|
R TO_CHER(STIDATE, 'ENZ4') NOT BITWEEN "O05' AND '18
THEH
BATHE AFFLICATTOM ERRIE (=-:0600.
You reay only inesrt tnco che EHF zahles during busineme boore. ')
IHD IF:
14 H

Hew | S | Aot | ew | [] Hein |

C-26 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Statement Trigger When Using Procedure Builder

Y ou can aso create the same BEFORE statement trigger in Procedure Builder.
Connect to the database.
Click the Database Objects node in the Object Navigator.
Select the Database Trigger editor from the Program menu.
Select atable owner and atable from the Table owner and Table drop-down lists.
Click New to start creating the trigger.
Select one of the Triggering option buttons to choose the timing component.
Select Statement to choose the event component.
In the Trigger Body region, enter the trigger code.

Click Save. Y our trigger code will now be compiled by the PL/SQL engine in the server. Once
successfully compiled, your trigger is stored in the database and automatically enabled.

Note: If thetrigger has compilation errors, the error message appearsin a separate window.

© o N oA~ LN

Introduction to Oracle9i: PL/SQL C-26

Creating Row Triggers

Table [wrar [Fabie: =l
PRTEAT ERETE =| |DERSE_COHMISSI0N_PLT -
Toguning Llalmparnl 0l Copbumne
@ [Ealom & WPOATE ERPRC -
FRUALE
- = INSERT i
it ™ BELETE ."ff W
5al =
Fim Each
™ Glatemesl =~ How
Palmarecmg [H 11 Aa ['” Fll ' T
FMOT [iNEW,J08 IN | EANAOGER® . 'FRESIDENT ||
D cHEE, SAL > OO0
THEN
RATSE_RFFLICATION EFFOR
(=20202, 'EAPLOYEE CANNOT EARN THIH AROUNT')
EHD IF:
THD :
C-27 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Row Trigger When Using Procedure Builder
Y ou can aso create the same BEFORE row trigger in Procedure Builder.
Connect to the database.
Click the Database Objects node in the Object Navigator.
Select the Database Trigger Editor from the Program menu.
Select atable owner and a table from the corresponding drop-down lists.
Click New to start creating the trigger.
Select the Triggering option button to choose the timing component.
Select the appropriate Statement check boxes to choose the events component.
In the For Each region, select the Row option button to designate the trigger as arow trigger.

Complete the Referencing OLD as and NEWas fields if you want to modify the correlation names.
In the When field, enter a WHEN condition to restrict the execution of the trigger. These fields are
optional and are available only with row triggers.

© o N ook~ wDdPRE

10. Enter thetrigger code.

11. Click Save. Thetrigger code is now compiled by the PL/SQL enginein the server. Once
successfully compiled, the trigger is stored in the database and automatically enabled.

Introduction to Oracle9i: PL/SQL C-27

Removing Server-Side Program Units

Using Procedure Builder:

Connect to the database.

Expand the Database Objects node.

Expand the schema of the owner of the program unit.
Expand the Stored Program Units node.

Click the program unit that you want to drop.

Click Delete in the Object Navigator.

Click Yes to confirm.

N o ok~ owbdRE

C-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Server-Side Program Unit
When you decide to delete a stored program unit, an alert box displays with the following message:
"Do you redly want to drop stored program unit <program unit name>?"'. Click Yesto drop the unit.
In the Stored Program Units Editor, you can also click DROP to remove the procedure from the server.

Introduction to Oracle9i: PL/SQL C-28

Using Procedure Builder:
1.

2.
3.
4

C-29

Removing Client-Side
Program Units

Expand the Program Units node.

Click the program unit that you want to remove.
Click Delete in the Object Navigator.

Click Yes to confirm.

Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Client-Side Program Unit
Follow the steps in the preceding dlide to remove a procedure from Procedure Builder.

If you have exported the code that built your procedure to atext file and you want to delete that file from
the client, you must use the appropriate operating system command.

Introduction to Oracle9i: PL/SQL C-29

Debugging Subprograms by Using
Procedure Builder

Fla Edt Miew Hevgelr Pegram el Seckes Help

=
e] Dl [| LRI e EI) e 2a]
= [Paggpam Linsta - #_ (e
Sy 04 BEGIM =
PLAHL Librasme 05 2o I in 1..m loop
Afached I b armze os cim o4l
I :""‘:;;"" (011 eext_do.put_lioe('kimes throwgh the loop :° | |to_ckazqil)):
5:::' . 08 end loops -
= Dstshase Olyets §
o P
= Semrd Progeam Lirsiz
= e ([rbaictrimiend
— M CHTEET [Przcadurs| i Husitan Packagea
=]) THECK_PE_CUST (P ||| 6 Dby Actiora
1EK] N GET_PRODUCT i Stack
T 6 M FUNE Furion] - Dralabars Olseela

W MY _PFROC Prassdae
o FLASOL L annc
v Tablex
*- Wi FLOACL> Dresi
i ii"‘s‘ reakpoine #1 inetallsd ac line 7 of CHTEAT
1 SralEN

LiagLs

C-30

Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging Subprograms by Using Procedure Builder

Y ou can perform debug actions on a server-side or client-side subprogram using Procedure Builder.
Use the following steps to |oad the subprogram:

1. Fromthe Object Navigator, select Program > PL/SQL Interpreter.

2. Inthe menu, select View > Navigator Pane.

3. Fromthe Navigator pane, expand either the Program Units or the Database objects node.
4. Locate the program unit that you want to debug and click it.

Introduction to Oracle9i: PL/SQL C-30

Listing Code in the Source Pane

iy FRECEMBE my pesanps +
i Iv_meazage WAFCHARL|

i

wiai BEGIH

rioi TEXT_IO.FUT_LIHNE (v_mezasge):

‘
%ﬁ

D atabase Olisils L]
. !. I
FiLf By TrEAK *
Prmnkpoint #1 tnztelled st lise 3 of AT _HALSSAGE E
Pl om0
|:
—

C-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code in the Source Pane
Performing Debug Actionsin the I nter preter

Y ou can use the Object Navigator to examine and modify parametersin an interrupted program. By
invoking the Object Navigator within the Interpreter, you can perform debugging actions entirely within
the Interpreter window. Alternatively, you can interact with the Object Navigator and Interpreter
windows separately.

1. Invoking the Object Navigator Pane

— Select PL/SQL Interpreter from the Tools menu to open the Interpreter if it is not already
open.

— Select Navigator Pane from the View menu.
— The Navigator pane is inserted between the Source and the Interpreter panes.
— Drag the split bars to adjust the size of each pane.

2.Listing Source Text in the Sour ce Pane
— Click the Program Units node in the Navigator pane to expand the list.

The list of program units is displayed.

— Click the object icon of the program unit to be listed.

3. Thesource codeislisted in the Sour ce pane of the I nterpreter.

Introduction to Oracle9i: PL/SQL C-31

Setting a Breakpoint

X S |
L7 1] [ae] 7
0200l FROCIDURTL cocac laopr *
LW ILIF: 1w coumt 1W WURSER|
poCaI0r I3
L8 HIL] AE IR
o0 s FOR L in l..v_count LOOF
R Eal L FUT LEHE FTile=A TArGoyn 1oap IR CRAS RS
el Iy 2= P s -
e B
r
LiS0OLs Break "
reskpsine @ dzacslled ac lins & of COURT LOOEID
L BIL
&
C-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Setting a Breakpoint

If you encounter errors while compiling or running your application, you should test the code and
determine the cause for the error. To determine the cause of the error effectively, review the code, line
by line. Eventually, you should identify the exact line of code causing the error. Y ou can use a
breakpoint to halt execution at any given point and to permit you to examine the status of the code on a
line-by-line basis.
Setting a Breakpoint
1. Double click the executable line of code on which to break. A "B(n)" is placed in the line where
the break is set.
2. Themessage Br eakpoi nt #n installed at line i of naneisshowninthe
Interpreter pane.
Note: Breakpoints also can be set using debugger commands in the Interpreter pane. Test breakpoints by
entering the program unit name at the Interpreter PL/SQL prompt.
Monitoring Debug Actions

Debug actions, like breakpoints, can be viewed in the Object Navigator under the heading Debug
Actions. Double-click the Debug Actions icon to view a description of the breakpoint. Remove
breakpoints by double-clicking the breakpoint line number

Introduction to Oracle9i: PL/SQL C-32

C-33

Debug Commands

Copyright © Oracle Corporation, 2001. All rights reserved.

Debug Commands

Reviewing Code

When a breakpoint is reached, you can use a set of commands to step through the code. Y ou can
execute these commands by clicking the command buttons on the Interpreter toolbar or by entering
the command at the Interpreter prompt.

Commandsfor Stepping through Code

Command | Description

Step Into Advances execution into the next executable line of code

Step Over | Bypasses the next executable line of code and advances to the
subsequent line

Step Out Resumes to the end of the current level of code, such asthe
subprogram

Go Resumes execution until either the program unit endsor is
interrupted again by adebug action

Reset Aborts the execution at the current levels of debugging

Introduction to Oracle9i: PL/SQL C-33

Stepping through Code

ML mberpreder

a0z FROCEMERE aoosr_Locps
a il b 1% _idipl 1IN HBER
jooon 18
o004 BECIN
WL Fol 4 im 1-.¥ dows (e]
Einz = TEET_IC.FUT_LIME I'Timesr thxough Joop: ' 1ITO
g END LOdF:

ol THIg

| W

CHRFE(LIT:

[

rP'..'--\,-\'_. coent Locpm (%)@

Exferingy Brenkpoink #7 Llime & of COTHT_LOOPE
|dmEeg 13 FLASOL

i

el L]

C-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Stepping Through Code
Deter mining the Cause of Error

Once the breakpoint is found at run time, you can begin stepping through the code. An arrow (=>)
indicates the next line of code to execute.

1. Click the Step Into button.

2. Asingleline of codeis executed. The arrow movesto the next line of code.

3. Repeat step 1 as hecessary until the line causing the error is found.
The arrow continues to move forward until the erroneous line of codeis found. At that time, PL/SQL
displays an error message.

Introduction to Oracle9i: PL/SQL C-34

Changing a Value

Deacle Praceduie Bailder

FUURE count_Lloopa
it DM FUNEER)

4 o COUNT_LOOPS Preoshas Bk
o B_MES SARE Pocadae Bads
& o FU_ILS Lrorgnces: Hiock) oIS FOR & i L..w_couse LOOP

+Liadiag . B &= TEXT 10, PUT LIME (" Times Thioegh Lddpi
+ bmached Litnsinn I 7 ERI: LOWOF;
+ Bl i Panlk e

0F EHD:

o Uebeg dchent
— Faaik
- Hch

FlLABOL® count looga 114
1 TG = 3
B Y_CIUNT PUMEER]= 4 Entezing Bceakpoint B2 Jine 4 pf COUMT LOGTS
+ Dabaliseie Diperis idsbiug 83 PLAGGL debimy. BeT T¢, % -

Idebug L) PLASCOL

C-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing a Value
Examining Local Variables

Using Procedure Builder, you can examine and modify local variables and parametersin an interrupted
program. Use the Stack node in the Navigator pane to view and change the values of local variables and
parameters associated with the current program unit located in the call stack. When debugging code,
check for the absence of values as well asincorrect values.

Examining Values and Testing the Possible Solution
1. Click the Stack node in the Object Navigator or Navigator pane to expand it.
2. Clock the value of the variable to edit. For example, select variable 1.
The value 1 becomes an editable field.

3. Enter the new value and click anywhere in the Navigator pane to end the variable editing, for
example, enter 3.

The following statement is displayed in the Interpreter pane:
(debugl) PL/SQ.> debug.seti (1", 3);
4 Click the Go button to resume execution through the end of the program unit.

Note: Variables and parameters can also be changed by using commands at the Interpreter PL/SQL
prompt.

Introduction to Oracle9i: PL/SQL C-35

Summary

In this appendix, you should have learned how to:
®* Use Procedure Builder:
— Application partitioning
— Built-in editors
— GUI execution environment
®* Describe the components of Procedure Builder
— Object Navigator
— Program Unit Editors
— PL/SQL Interpreter
— Debugger

Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i: PL/SQL C-36

REF Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor Variables

® Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself

* In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a

class of objects
®* A cursor variable has the data type REF CURSOR
®* A cursor is static, but a cursor variable is dynamic
®* Cursor variables give you more flexibility

D-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor Variables

Cursor variables are like C or Pascal pointers, which hold the memory location (address) of some item
instead of the item itself. Thus, declaring a cursor variable creates a pointer, not an item. In PL/SQL, a
pointer has the datatype REF X, where REF is short for REFERENCE and X standsfor a class of objects. A
cursor variable has datatype REF CURSOR.

Like a cursor, acursor variable points to the current row in the result set of a multirow query. However,
cursors differ from cursor variables the way constants differ from variables. A cursor is static, but a cursor
variable is dynamic because it is not tied to a specific query. Y ou can open a cursor variable for any type-
compatible query. This gives you more flexibility.

Cursor variables are available to every PL/SQL client. For example, you can declare a cursor variablein a
PL/SQL host environment such as an OCI or Pro* C program, and then passiit as an input host variable (bind
variable) to PL/SQL. Moreover, application devel opment tools such as Oracle Forms and Oracle Reports,
which have a PL/SQL engine, can use cursor variables entirely on the client side. The Oracle server aso has
aPL/SQL engine. Y ou can pass cursor variables back and forth between an application and server through
remote procedure calls (RPCs).

Introduction to Oracle9i: PL/SQL D-2

Why Use Cursor Variables?

® You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

® PL/SQL can share a pointer to the query work area
in which the result set is stored.

®* You can pass the value of a cursor variable freely
from one scope to another.

®* You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

D-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Why Use Cursor Variables?

Y ou use cursor variables to pass query result sets between PL/SQL stored subprograms and various clients.
Neither PL/SQL nor any of its clients owns aresult set; they simply share a pointer to the query work areain
which the result set is stored. For example, an OCI client, an Oracle Forms application, and the Oracle server
can al refer to the same work area.

A gquery work arearemains accessible aslong as any cursor variable pointsto it. Therefore, you can pass the
value of a cursor variable freely from one scope to another. For example, if you pass a host cursor variable to
aPL/SQL block that is embedded in a Pro* C program, the work area to which the cursor variable points
remains accessible after the block compl etes.

If you have a PL/SQL engine on the client side, calls from client to server impose no restrictions. For
example, you can declare a cursor variable on the client side, open and fetch from it on the server side, then
continue to fetch from it back on the client side. Also, you can reduce network traffic by having a PL/SQL
block open (or close) several host cursor variablesin asingle round trip.

A cursor variable holds a reference to the cursor work areain the PGA instead of addressing it with a static
name. Because you address this area by areference, you gain the flexibility of avariable.

Introduction to Oracle9i: PL/SQL D-3

Defining REF CURSCR Types

* Define a REF CURSORtype.

Define a REF CURSOR type
TYPE ref _type nanme IS REF CURSOR [RETURN return_type];

®* Declare a cursor variable of that type.

ref _cv ref _type_nane;

e Example:

DECLARE

TYPE Dept Cur Typ | S REF CURSOR RETURN
depar t nent s¥ROMYPE;

dept _cv Dept Cur Typ;

D-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining REF CURSOR Types

To defineaREF CURSOR, you perform two steps. First, you definea REF CURSCR type, and then you
declare cursor variables of that type. Y ou can define REF CURSOR typesin any PL/SQL block,
subprogram, or package using the following syntax:

TYPE ref _type nanme |'S REF CURSOR [RETURN return_type];

in which:
ref _type_nane isatype specifier used in subsequent declarations of cursor variables
return_type representsarecord or arow in a database table

In the following example, you specify areturn type that represents arow in the database table
DEPARTMENT.

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next example shows, a
strong REF CURSOR type definition specifies areturn type, but aweak definition does not:

DECLARE
TYPE EnpCur Typ | S REF CURSOR RETURN enpl oyees%ROMYPE, -- strong
TYPE GenericCurTyp IS REF CURSOR, -- weak

Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you associate a strongly
typed cursor variable only with type-compatible queries. However, weak REF CURSOR types are more
flexible because the compiler lets you associate aweakly typed cursor variable with any query.

Introduction to Oracle9i: PL/SQL D-4

Defining REF CURSOR Types (continued)
Declaring Cursor Variables

After you define aREF CURSOR type, you can declare cursor variables of that type in any PL/SQL block or
subprogram. In the following example, you declare the cursor variable DEPT_CV:

DECLARE
TYPE Dept Cur Typ | S REF CURSOR RETURN depart nent sURON YPE;
dept _cv Dept Cur Typ; ~-- declare cursor variable

Note: Y ou cannot declare cursor variablesin a package. Unlike packaged variables, cursor variables do not
have persistent states. Remember, declaring a cursor variable creates a pointer, not an item. Cursor variables
cannot be saved in the database; they follow the usual scoping and instantiation rules.

Inthe RETURN clause of aREF CURSOR type definition, you can use “R0OWT YPE to specify arecord type
that represents arow returned by a strongly (not weakly) typed cursor variable, asfollows:

DECLARE
TYPE TrpCur Typ IS REF CURSOR RETURN enpl oyees ¥%ROMYPE;

tmp_cv TrmpCur Typ; -- declare cursor variable
TYPE EnpCur Typ | S REF CURSOR RETURN t np_cv%ROMYPE;
enp_cv EmpCur Typ; -- declare cursor variable

Likewise, you can use % YPE to provide the datatype of arecord variable, as the following example shows:
DECLARE
dept _rec departnent s¥ROMYPE; -- declare record variable
TYPE Dept Cur Typ | S REF CURSOR RETURN dept _rec%lYPE;
dept _cv Dept Cur Typ; ~-- declare cursor variable
In the final example, you specify a user-defined RECORD type in the RETURN clause:
DECLARE
TYPE EnpRecTyp |'S RECORD (
enpno NUMBER(4),
ename VARCHAR2(10,
sal NUVBER(7, 2)) ;
TYPE EnmpCur Typ IS REF CURSOR RETURN EnpRecTyp;
enp_cv EmpCur Typ; -- declare cursor variable

Cursor Variables As Parameters

Y ou can declare cursor variables as the formal parameters of functions and procedures. In the following
example, you definethe REF CURSOR type EnpCur Typ, and then declare a cursor variable of that type as
the formal parameter of a procedure:

DECLARE
TYPE EnpCur Typ | S REF CURSOR RETURN enp%rOMYPE;
PROCEDURE open_enp_cv (enp_cv I N OQUT EnpCurTyp) IS ...

Introduction to Oracle9i: PL/SQL D-5

Using the OPEN- FOR, FETCH, and CLOSE
Statements

* The OPEN- FOR statement associates a cursor
variable with a multirow query, executes the
guery, identifies the result set, and positions the
cursor to point to the first row of the result set.

* The FETCHstatement returns a row from the result
set of a multirow query, assigns the values of
select-list items to corresponding variables or
fields in the | NTOclause, increments the count
kept by RONCOUNT, and advances the cursor to
the next row.

* The CLCSE statement disables a cursor variable.

D-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OPEN- FOR, FETCH, and CLOSE Statements

Y ou use three statements to process a dynamic multirow query: OPEN- FOR, FETCH, and CLCSE. First,
you OPEN a cursor variable FOR amultirow query. Then, you FETCH rows from the result set one at atime.
When all the rows are processed, you CLOSE the cursor variable.

Opening the Cursor Variable

The OPEN- FOR statement associates a cursor variable with a multirow query, executes the query,
identifies the result set, positions the cursor to point to the first row of the results set, then sets the
rows-processed count kept by %8R0WCOUNT to zero. Unlike the static form of OPEN- FOR, the
dynamic form has an optional USI NG clause. At run time, bind arguments in the USI NG clause
replace corresponding placeholders in the dynamic SELECT statement. The syntax is:

OPEN {cursor_variable | :host_cursor_variable} FOR dynam c_string
[USI NG bi nd_argunent[, bind argunent]...];

where CURSOR _VARI ABLE isaweakly typed cursor variable (one without a return type),
HOST _CURSOR_VARI ABLE isacursor variable declared in a PL/SQL host environment such as an OCI
program, and dynamni c_st ri ng isastring expression that represents a multirow query.

Introduction to Oracle9i: PL/SQL D-6

Using the OPEN- FOR, FETCH, and CLOSE Statements (continued)

In the following example, the syntax declares a cursor variable, and then associates it with adynamic
SELECT statement that returns rows from the EMPLOYEES table:

DECLARE
TYPE EnpCur Typ IS REF CURSOR;, -- define weak REF CURSOR type
enp_cv EnmpCur Typ; -- declare cursor variable

my_enanme VARCHAR2(15);
my_sal NUMBER : = 1000;

BEG N
OPEN enmp_cv FOR -- open cursor variable
" SELECT | ast _nane, sal ary FROM enpl oyees WHERE salary > :s’
USI NG ny_sal ;
END;

Any bind arguments in the query are evaluated only when the cursor variable is opened. Thus, to fetch
rows from the cursor using different bind values, you must reopen the cursor variable with the bind
arguments set to their new values.

Fetching from the Cursor Variable

The FETCH statement returns arow from the result set of a multirow query, assigns the values of select-list
items to corresponding variables or fieldsin the | NTO clause, increments the count kept by YRONCOUNT,
and advances the cursor to the next row. Use the following syntax:

FETCH {cursor _variable | :host_cursor_vari abl e}
I NTO {define_variable[, define_variable]... | record};

Continuing the exampl e, fetch rows from cursor variable EMP_CV into define variables My_ ENAME and
MY_SAL:

LOOP

FETCH enp_cv I NTO ny_enane, ny_sal; -- fetch next row

EXIT WHEN enp_cv¥NOTFOUND;, -- exit |oop when last rowis fetched
-- process row

END LOOP;

For each column value returned by the query associated with the cursor variable, there must be a
corresponding, type-compatible variable or field in the | NTOclause. Y ou can use adifferent | NTOclause
on separate fetches with the same cursor variable. Each fetch retrieves another row from the same result
set. If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the predefined
exception | NVALI D_CURSOR.

Closing the Cursor Variable

The CLOSE statement disables a cursor variable. After that, the associated result set is undefined. Use the
following syntax:

CLCSE {cursor_variable | :host_cursor_variabl e};
In this example, when the last row is processed, close cursor variable EMP_CV:
LOOP

FETCH enp_cv | NTO ny_enane, ny_sal;
EXIT WHEN enp_cv¥NOTFOUND;
-- process row
END LOOP;
CLCSE enp_cv; -- close cursor variable
If you try to close an already-closed or never-opened cursor variable, PL/SQL raises| NVALI D_CURSCR.
Introduction to Oracle9i: PL/SQL D-7

An Example of Fetching

DECLARE
TYPE EnpCur Typ | S REF CURSOR;
enp_cv EnpCur Typ;
enp_rec enpl oyeesYROMYPE;
sqgl _stnt VARCHAR2(200);

ny_job VARCHAR2(10) := 'ST CLERK ;
BEGA N
sql _stnt :='SELECT * FROM enpl oyees

WHERE job id = :j’;
OPEN enp_cv FOR sgl _stnt USI NG ny_j ob;
LOCP
FETCH enp_cv I NTO enp_rec;
EXIT WHEN enp_cv%NOTFOUND;
-- process record
END LOOP;
CLOSE enp_cv;
END;
/

D-8 Copyright © Oracle Corporation, 2001. All rights reserved.

An Example of Fetching

The example in the preceding slide shows that you can fetch rows from the result set of a dynamic multirow
guery into arecord. First you must definea REF CURSOR type, EnpCur Ty p. Next you define a cursor
variableenp_cv, of thetype Enpcur Typ. Inthe executable section of the PL/SQL block, the OPEN-
FOR statement associates the cursor variable EMP_CV with the multirow query, sql _st nt . The FETCH
statement returns a row from the result set of a multirow query and assigns the values of select-list itemsto
EMP_RECinthel NTO clause. When the last row is processed, close the cursor variable EMP_CV.

Introduction to Oracle9i: PL/SQL D-8

Index

%

%ISOPEN 6-14
%NOTFOUND 6-15
%TYPE 1-23

A

attribute 1-23

Anonymous blocks 1-5

B

basic loop 4-19

Boolean expressions 1-25
Bind variable 1-10

BFILE 1-27

BFILENAME 15-12

BLOB 1-27

C

clause 3-6,7-5

control structures 4-3
clause 7-7

collections 1-26

comments 2-7

composite data types, 1-9
conversion 2-10

Create 15-11

cursor 3-18,6-20

cursor attributes 6-13
CASE 4-3

CLOB 1-27

CLOSE 6-12

COMMIT 3-21

CREATE ANY DIRECTORY 15-13
D

declaration section 1-12
declare an explicit cursor 6-7
Delimiters 2-4

DBA_JOB 14-19,14-13
DBA_JOBS_RUNNING 14-19
DBMS_JOB.BROKE 14-18
DBMS_JOB.REMOVE 14-18

Keyword List -- iii

DBMS_JOB.RUN 14-18
DBMS_LOB 14-21
DBMS_OUTPUT 1-32
DEFAULT 1-15
DIRECTORY 15-10
E

exception 8-3
exception handler 8-6
expressions 4-3
explicit cursors 6-4
external large object 15-8
ELSIF 4-5

END IF 4-5

EXIT 4-19

F

function 15-12
FETCH 6-10
FILE_LOB 15-16
file_type 14-27

FOR 4-23

FOR UPDATE 7-5

|

Identifiers 2-5
implicit cursor 3-18
INSERT 3-11

INT 3-6

IS OPEN 14-26

L

Load 15-15

locator 1-9

loop 4-21,4-3

LOB 1-27

Keyword List -- iv

N

naming convention 3-16

NCHAR 1-27

NCLOB 1-27

nest loops 4-27

nested blocks 2-12

non-predefined Oracle server error 8-12
o]

object 15-11

OCl 15-10,15-12

OPEN 6-9
OTHER 8-6
P

package 14-21

package declares seven exception 14-25
pointer 15-15

privilege 15-12

parameter in the cursor declaration 7-3
pointer 1-9

predefined Oracle Server error 8-8
procedural capabilities 0-7
procedures and functions 14-23
programming guidelines 2-19
propagate the exception 8-18

PL/SQL o0-3

PRAGMA 8-12

PRINT 1-30

R

reference host variables 1-31
RAISE_APPLICATION_ERROR 8-20
READ 15-12

ROLLBACK 3-21

Keyword List -- v

S

same type 16-6

statement 4-3

SAVEPOINT 3-21

Scalar data types 1-9
schedule batch job 14-13
security mechanism 15-9
submit PL/SQL program 14-13
Subprograms 1-5

subquery 7-9

SELECT 3-4
SESSION_MAX_OPEN_FILE 15-13
SQLCODE 8-14

SQLERR 8-14
SUBMIT 14-15
T

TO_DATE 1-15
U

use 15-13

user-defined exception 8-17
UPDATE 3-12
USER_JOB 14-19
UTL_FILE 14-21
UTL_FILE_DIR 14-22
UTL_HTTP 14-29
UTL_TCP 14-31

\%

variables 1-7

w

WHEN OTHER 8-15
WHERE CURRENT OF 7-7
WHILE 4-21

Keyword List -- vi

Keyword List -- vi

