
Foundation PHP for Flash

Credits
Author Content Architect

Steve Webster Alan McCann

Appendices Editors
Kev Sutherland Alan McCann

Stef Lewandowski Jim Hannah
Antonio Gould Richard O'Donnell

Lead Reviewer Author Agent
Matthew Gadd Gaynor Riopedre

Technical Reviewers Project Administrator
Gareth Heyes Fionnuala Meacher

Stef Lewandowski
Steve Parker Graphic Editors

Jake Smith Katy Freer
Kev Sutherland Deb Murray

Peter Walker

Proof Readers
I ndex
Simon Collins

Lou Barr
Simon Collins Cover Design

Joanna Farmer Katy Freer
Jenni Harvey

Fionnuala Meacher
Richard O'Donnell

Gaynor Riopedre

About the Author

Steve Webster is a Freelance Web Developer and
has several years experience with Macromedia
Flash and scripting & back-end development. A
keen programmer since the age of 8 [and the good
old days of the Sinclair Spectrum 48k], he has
studied for an HND in Software Engineering. He is
also a moderator in, among others, the Scripting &
Backend forum at the excellent FlashKit site
[www.flashkit.com], where he spends the majority
of his time providing support and helping others
with their projects.

Acknowledgements:

First and foremost I have to thank my long-term girlfriend Nicki. As always, your
overwhelming support and encouragement kept me going through all those long nights
and I couldn't have done it without you. I can't find the words to thank you enough letting
me be what I had to be in order to get this book finished, and for putting up with me not
being "all there" over the past few months.

What can I say, except: you are my rock and without you this dream would never have been
realised. Maybe now we can get back to some sense of normality and enjoy the rest of our
lives together. .. until the next time.

Eternal gratitude goes out to Alan and Gaynor for helping me through every stage of the
book with saint-like patience, and for keeping the hounds at bay. I have learned, and hope
to continue learning, a great deal from you, both about the technical aspect of writing and
the human capacity for compassion and accommodation. You are true friends and I can
only hope that we can continue working together (...I've still got that t-shirt by the way!)

I would also like to thank the rest of the friends of Ed team who helped make this book a
reality. In particular I'd like to thank Matt and the rest of the technical review team who did
such an outstanding job finding all of my deliberate mistakes -you're an author's dream!

To my family: thanks for supporting my passion for technology as I was growing up. Despite
the occasional grumble that I was "spending too long in front of that infernal machine"you
were always quick to praise and encourage my efforts, suffering many a "come and look at
what I've done now" session.

http://www.flashkit.com

All I can say is that I told you all that sitting in front of my computer woulpay off
eventually ... and I've finally made it. Hmmm ... almost an "I told you so" ;o)

Special thanks to my sister Sharon and her family for renting the sofa to me while I was
between homes! It's probably the most uncomfortable sofa I've ever spent the night on but
it beats cold hard streets!

Finally, thanks must go to Boris the Monkey. I must explain that Boris is the name 1 have
given to a stuffed bear that my other half gave to me, and he kept me company during the
late and sleepless nights that occupied the final throes of writing this book. He took all of
my fits and tantrums in his cheerfully deadpan manner and never criticised me when I made
a mistake. Boris -you rule!

...what do you mean it's time for me to go back in my cage? I haven't finished!
Heeeeeeeeelllllllpppppppppp	

No stuffed bears were harmed during the production of this book ... honest!

About the Authors

Foundation PHP for Flash

1

Introduction

	

1
Styles You'll Come Across in the Book	 2
What You'll Need For This Book	 2
Support - Everybody Needs It	 3

PHP and Server-side Scripting	 5
The Client and the Server	 6

Dynamic Data for Flash

	

13
Loading External Data	 15

Advice on using loadVariables 	 18
The Movie Clip Event Handler	 19
Sending Information from Flash	 24
Building a Download Registration Form	 25
The Server-Side Scripts 	 31

The Main Registration Script 	 33

2 Getting Started with PHP

	

39

3

A Word About Naming Conventions 	 40
Comments	 42

Variables	 43
Naming your Variables	 44

Data Types	 47
Operators	 49

Using Statements	 53
Selection	 53
I teration	 60

Arrays	 65
Creating Arrays	 65
Looping Through a Sequential Array 	 67
Looping Through a Non-Sequential Array 	 69
Multi-Dimensional Arrays 	 72
Sorting Arrays	 74

Building a Flash Login Application 	 76

Making PHP Work for You

	

89
I ntroducing Functions	 91

Variable Scope	 94
Variable Lifetime	 95
Passing Data to Functions 	 96

Table of Contents

Returning Data from Functions 	 97
Passing Data by Reference	 98

Including External Files 	 99
Creating a Flash Tell-a-Friend Application 	 1 02

4 PHP and Information Handling

	

113
The Basics	 114

Character Escaping	 115
Joining Strings Together	 116
Using Variables in Strings 	 117

String Related Functions	 1 20
Making a Flash Text Highlighter 	 134

© Looking for Patterns

	

141
Basic Pattern Matching 	 1 42
Character Classes and Ranges 	 1 48

Escape Characters	 1 50
PHP Regular Expression Functions	 1 52
The phpforflash.com News Archive	 157

news.php	 166
fetchnews.php	 1 67

6 Remembering Visitor Information

	

177
Cookies	 178

Restrictions on Cookies	 180
PHP Likes Cookies	 181

Setting cookies	 1 82
Common Pitfalls 	 1 83

Who Ate all the Cookies? 	 1 85
The Life and Times of a Cookie	 1 87

A Brief History of time() 	 187
Cookies Do Time Travel 	 189
Anti-Ageing Cream for Cookies	 190
I ncorporating the Calendar	 191
Deleting a Cookie	 1 92

Cookie Paths and Domains	 1 92
The Cookie is Secure, Sir!	 1 92

The Flash Cookie Cutter 	 1 93
Further Development 	 203

D Tapping Into External Files

	

207
Opening Files	 209

Some Function Action 	 212
Warnings	 213

Closing Files	 213
Displaying a File	 215
Reading From Files 	 217
Writing to Files	 224
Navigating Within Files	 228
More Useful Functions	 230
Building a Flash Mailing List Application 	 233

8 Introducing the Database

	

251
An Introduction to SQL	 252

Relational Databases	 253
A Brief History of MySQL	 253

Open Source	 253
Support	 253

Database Theory	 254
SQL for Kicks	 255
Creating a Database	 255
Creating a Table	 258

data types	 259
Removing Databases and Tables	 264

Manipulating Our Databases and Tables 	 265
I NSERT	 265
REPLACE	 268
UPDATE	 269
DELETE	 270

Searching Our Databases and Tables 	 270
SELECT	 270
Beefing Up the Search 	 272

Integrating PHP with MySQL

	

275
When PHP Met MySQL	 276

Connecting to the MySQL Server 	 276
Disconnecting from the MySQL Server 	 279
Selecting a Database 	 281
Creating a Database Through PHP 	 282
Dropping a Database	 285

Table of Contents 00
Executing SQL Queries with PHP	 286

Data Definition: CREATE, DROP	 286
Data Manipulation: INSERT, REPLACE, UPDATE, DELETE 	 290
Data Manipulation: SELECT	 292

Building a Content Management System 	 294

Case Study 1 - User Poll

	

313
How To Start With Our User Poll 	 315

Laying Down The Law	 315
Executive Decisions	 316
Exercising Our Admin Rights	 317

I nterfacing With Your Users 	 317
The Back End Scripts 	 318

Building our User Poll Application	 319
Adding Some PHP Power 	 334

Case Study 2 - Event Planner

	

351
Planning It All Out	 352
Charting the Days in Flash 	 355
Building the PHP Back End	 371

® Case Study 3 - Forum

	

387
Drawing Up a Masterplan	 389

Forum View	 389
Thread View	 391
Post New	 392
Post Reply	 393
Register	 394

Arranging Our Tables	 395
Creating the Flash Forum	 397
The PHP Scripts	 419

D Installing PHP and MySQL

	

439
Installing Apache & PHP for Windows	 440

Downloading Apache 	 440
Downloading PHP	 440

I nstalling Apache Web Server for Windows	 441
Troubleshooting Tips 	 446

Foundation PHP for Flash l
Installing PHP on Apache for Windows 	 447

v

O

Troubleshooting	 451
Installing Apache and PHP for UNIX	 452

Downloading Apache 	 452
I nstalling Apache for UNIX	 452

Downloading PHP	 456
I nstalling PHP on UNIX	 456

Troubleshooting	 459
Apache and PHP for Mac OS X	 460

Troubleshooting	 462
I nstalling, Configuring and Running MySQL on Win32 	 463

I nstallation	 463
The MySQL Daemon	 464
MySQL Monitor	 465
MySQL Security	 466

PHP and Object-Oriented Programming

	

469
OOPS!	 469
OOP by Example	 470

Properties	 470
Methods	 471

tiation	 473
Constructors	 474
I nheritance	 475

Building a Flash Shopping Basket 	 476
The Flash Bit	 478
The PHP Bit	 483

Resources

	

495
Foundation PHP for Flash links 	 495
Author's homepage	 495
Sotware homepages	 495
Setup Tools	 496
PHP Editors	 496
PHP Street Corners and Forums 	 496
PHP Web Resources	 496
Hosting Companies Supporting PHP	 497

I ndex

	

499

PHP and Flash were made for one another.

Sure, Flash can impress us on its own, but to create a changing, fully
interactive Flash web site, you need to add some power behind the scenes.
Put simply, PHP is the free and easy way to do it. With a list of functions as
long as your arm PHP can always add dynamic sparkle to your Flash sites,
and this book is your introduction to the sea of possibilities server-side
scripting offers.

Foundation PHP for Flash will part that sea, and guide you through at your
own speed.

How This Book Works
This book is aimed at designers, and specifically Flash designers, although my
main aim is to teach you PHP in a friendly and designer-focused way. For that
reason I've assumed, for the purpose of the case studies, that you'll know
the basics of Flash and will be learning PHP to improve your Flash sites. But
whether you're a Flash master or a novice, I'll nevertheless fully explain the
Flash that we use throughout the book.

I believe in simplicity, so here's what we'll cover in each chapter:

•

	

The basics of a particular aspect of PHP scripting

•

	

A powerful reusable and adaptable Flash-integrated case study

The emphasis here is not on teaching you a ton of theory and then leaving
you to figure out how to get some use from it, but rather to show you how
PHP can make your life as a Flash designer better and easier.

I'll show you from start to finish what PHP is all about and, more importantly,
how to use it in increasingly sophisticated and exciting web applications.
Throughout each chapter we'll be working through simple code examples,
working towards building everything your site could possible need, from
registration and login movies, to a full Flash forum - a grand total of 12 full
sample applications.

I ntroduction

Foundation PHP for Flash

Styles You'll Come Across in the Book
We use a few layout conventions to make things clearer throughout the book.

•

	

I f I introduce a new important term or reference a future Chapter No. then
these will be in bold.

•

	

I'll use different styles to emphasize things that appear on the screen, pieces
of code, important pieces of code, as well as hyperlinks and file paths.

If there's something you shouldn't miss, I'll highlight it like this! When you
see the bubble, pay attention!

	

J

•

	

Lastly, I'll be running you through case studies and examples using worked
exercises:

1. I f you see the exercise numbers, switch on your computer and get
ready for action

2. Follow the steps through and check the screenshots and diagrams for
more hints

3. When you get to the end, test it out!

What You'll Need For This Book
Of the few things we've so far mentioned about PHP you'll probably have been most
drawn to the fact it's open source (in other words free). The most popular web server for
running PHP, Apache, is also free. And the database solution MySQL, which PHP fully
supports, yes, you've guessed it, it's open source too!

You'll want to download and install PHP now. I've supplied a comprehensive multi-
platform installation guide in Appendix A. You should definitely check it out if you haven't
yet got PHP running on your machine.

Essentially, you can use the book in a number of ways, either developing, running and
testing your scripts on a local web server (eek! chicken/egg - if you don't know about
server-side scripts and are a complete newbie, we'll cover all that in a moment) ... or you
can upload your scripts and FLAB to a remote server - for example, one provided by your
web host.

For the first option you'll need a local web server. For Windows, you could have PWS
(Personal Web Server) or IIS (Internet Information Service - the network option) which
should be available either on the Windows CD or from the Windows web site. For

Windows, Unix or Mac, you can also run Apache, a popular open source server. Full
installation instructions on Apache can be found in Appendix A.

If you're hosting remotely, you might still want to test locally, but you'll need to have a
host which supports PHP and MySQL (an increasing number do). See Appendix C -
Resources for some suitable providers.

You'll also need to install the database solution MySQL, and again Appendix A has
instructions.

Another thing you'll need is something to write your scripts with. PHP, like HTML, can be
written in any text editor, like Notepad or SimpleText or even with one of the many PHP
editing programs available. Such programs include syntax highlighting and color coding for
easy scripting and a few examples can be found in the Resources Appendix. PHP files are
simply saved with the extension php.

All these technologies also come with full documentation, and if you have problems
setting up, try our support forum at www.phpforflash.com . Which brings us neatly onto
the topic of...

Support - Everybody Needs It
This friends of ED book is fully supported both at www.friendsofed.com and at our very
own site at www.phpforflash.com . Source files for the book can be downloaded from
either, and you can also visit our support forums for help, inspiration or just to chat. In
fact, the forum at www.phpforflash.com is one of the case studies later on in the book,
so pop along and have a sneak peek, and leave a message to say you like it!

I ntroduction

http://www.phpforflash.com
http://www.friendsofed.com
http://www.phpforflash.com
http://www.phpforflash.com

Foundation PHP for Flash

The PHP for Flash web site also contains additional files and tutorials, errata updates and
plenty of neat demonstrations of the case studies in the book. Join our mailing list or
submit FLAB for showcasing on the site - we'd love to see what you've achieved!

I f it's the full designer's breakfast you want, the friends of ED site has interviews with top
designers, information on other books and sample chapters, and much more. The book is
just one part of the experience.

However, if you do run into trouble, and maybe have a problem with a certain file or
tutorial or just get plain muddled, we're right here for you. Leave a message on the forum,
use the online feedback form or drop a mail to support@ friendsofed.com - we'll get you
sorted in no time.

And even if you don't have problems, let us know what you think. Mail
feedback@friendsofed.com or fill out the cute little reply card at the back of the book -
that's what it's there for, and we'd love to hear from you!

Now that you're primed and ready, you're probably more and more curious about PHP and
the kinds of things we'll cover, so let's move onto a quick history of the language and little
more detail on what server-side scripting is.

mailto:support@friendsofed.com
mailto:feedback@friendsofed.com

PHP and Server-side Scripting
If you've been soaking up the information up to this point then you should already know
that PHP is a server-side scripting language. That's all well and good, but I imagine that at
least some of you are sat there wondering what on earth a server-side script is and what
they're used for. Let's take a quick tour starting with how it all began - the story of how
PHP came to being and why it has become one of the most popular and powerful
server-side scripting languages available.

PHP was conceived in late 1994 and is the brainchild of Rasmus Lerdorf. It all started out
when he created a collection of Perl scripts in order to keep track of the people who were
looking at his online CV (or resume).

I nevitably others wanted to use these scripts on their own sites. In response to several
requests, Rasmus released them as a package, called Personal Home Page Tools, to a
hungry audience in 1995. At this early stage PHP was little more than a collection of
common online utilities - a guestbook, a counter and some other bits and bobs - with a
si mple macro parser bolted on to it.

I n mid-1995 Rasmus completely rewrote the parser. He also added what was called the
Form Interpreter, which basically gave PHP the ability to process HTML forms. These were
collectively known as PHP/FI or PHP2. However, and for reasons probably best left
unknown, the PHP bit now stood for: PHP Hypertext Preprocessor ...just to confuse
everyone!

Although it is difficult to find any exact figures, it is estimated that by the end of 1996 PHP
was being used on over 15,000 web sites, with that number growing to in excess of 50,000
by mid-1997. 1997 also saw the development of PHP switch from a one-man show to a
whole group of developers committed to and responsible for the project and its
organization. Again the parser was completely rewritten and this formed the foundations
of PHP version 3. The language syntax was also refined, borrowing heavily from C and Per[
to make it both more powerful and easier to learn. An API (Application Programming
I nterface) was also added to enable third party developers to extend the functionality of
PHP by writing their own modules for it.

I t was version 3 of PHP made web designers and developers sit up and listen. A server side
scripting language that mere mortals could understand! No longer did you need to be a
CGI genius to create page counters, guestbooks, registration forms and all those other
server-side applications that form the meat of most modern web sites.

Version 3 changed the face of web development, making dynamic web content a reality
with its simple syntax and ability to communicate with databases. The demands of the
growing PHP community ensured that development of new functions and features
continued with many developers contributing to PHP's functionality.

I ntroduction

Foundation PHP for Flash

I n parallel to several further releases bug fixes and enhancements of version 3, two
developers. Zeev Suraski and Andi Gutman, both responsible for major contributions to
the development of earlier versions of PHP, set about rewriting PHP from the ground up.

The outcome of the rewrite was the Zend engine, the heart of PHP4. The name Zend
comes from the names of the two developers (Zeev and Andi). The Zend engine (PHP4)
brought with it many new features including higher performance (up to a 1000% speed
increase over PHP3), support for an even wider array of third-party libraries and
extensions.

There is also increased object-oriented support, and Appendix B i ncludes an advanced
tutorial on this if you're feeling up to it in 500-or-so pages time!

The Client and the Server
Basically, a server-side script is a program that is executed on the server and can handle
information requests, returning the appropriate document or generating a document on
the fly, based on certain criteria - for example, it will generate a page that displays
Welcome back Steve after you've logged in. It also allows us to access utilities on the
server to provide us with extra functionality.

With the help of some diagrams, we can see the difference between a request for a normal
file and a request for a server-side script.

The normal process for fetching a standard web page or file is as follows:

Although this is a somewhat simplified view of the process, it covers the major stages
involved with fetching a web page. First the client (you or your visitor's computer) makes
a request to the server for a given web page. Then, assuming that the page exists, the
server pulls the page from its storage location and returns it to the client.

This is the way that the majority of small web sites (and some larger ones) serve up their
web pages and files. The pages involved are often referred to as "static pages" since their
content can only be changed by editing the HTML file - and this can be a real pain if
you've got a lot of content to change. Even the majority of Flash-based sites operate in
this manner, although once the web page has been returned a separate request is issued
for the SWF file.

However, when the page requested is a server-side script, such as PHP, the process is a little
different.

You can see that the request for the page is issued by the client as per usual since the
client neither knows or cares whether it's asking for a server-side script or a normal file -
like a hungry child in a sweet shop it just cries "I want one of those". When the server
receives the request it pulls the file and passes it to the server-side (in this case PHP)
engine.

The page passes though the PHP engine, with all code being executed before being
returned to the client. It is at this stage of the process that the really exciting things get
done: dynamic content can be generated, common files can be pulled in as part of the
returned document, and utilities on the server can be executed. Information can also be

Introduction

pulled from a database or other source during this stage, though no external data source
is shown here - we'll get to that from Chapter 7 onwards.

Now that we know what PHP is, and we've discussed the advantages of adding server-side
goodies to your 'static' sites, we can start to create our first PHP pages. We'll get into this
properly when we see our first case study at the end of the next chapter, but for now, take
a look at just how easy it all is.

The Basics of PHP

Normally, PHP code is embedded within an HTML file to produce dynamic web pages.
Since we're only interested in how we can use PHP we will dispense with the HTML code
in the scripts we create, although in our case studies between Chapter 10 and Chapter
12 we'll be using PHP along with HTML to create admin sections for our web applications!

1. I f at this stage you've installed PHP and have access to an appropriate server,
open up your preferred text editor and type in the following two characters:

This is our opening tag - it tells the PHP processor on the server that we are
now dealing with PHP script. All our scripts will need to contain these tags <?
?>, with our code going between them.

2. Now we'll introduce what is known as the echo () function, a simple way to ask
PHP to send a certain piece of information or text to the client for display.

echo() ;

You've probably already guessed, but we put our text inside those brackets.
Note how our line ends with a semi-colon - this is a must in PHP.

3. Add in a simple phrase in quote marks; you can write anything you like:

echo("Hello and welcome to the site!");

4. Now close off your PHP script with the essential closing tag:

?>

All that's left is to upload this or copy it to your PHP-enabled web server.

5. Save your file as basic.php i n your root folder. You should have set this during
installation. With Apache, it is usually by default in htdocs folder in the Apache

Foundation PHP for Flash

directory on your computer. If you're not testing locally at all, upload it to your
site.

6. Lastly, type in the address to view your new file. Running locally for most of you
this should be http://localhost/basic.php; check the Appendix i f you have any
problems. If you're using a remote web host, simply type in your address, e.g.
www.phpforflash.com/basic.php.

I ntroduction

urc so tnis Kma or basic tning can be done in a second in Flash or HTML, but those little
PHP tags open a lot of doors for us, and enable us to do amazing things.

What if we wanted to greet visitors by name when they returned? It really is as simple as:

echo("Hello, $name, and welcome to the site!");

... where $name represents the value of a 'cookie', or little fragment of data we have stored
containing our visitor's name. The cookie is set with just one line of PHP code and we'll be
using them to the full in Chapter 6.

http://localhost/basic.php;
http://e.g.www.phpforflash.com/basic.php.
http://e.g.www.phpforflash.com/basic.php.

These $ values are worth big bucks to us. They are variables and can store all kinds of
information, be it from a box where the user has typed something, the result of a server-
side calculation (such as fetching the current time and date) or a whole array of data from
a database.

Now what if we wanted to take that further - what else could we do with our visitor once
we've greeted them by name?

•

	

We could show him news articles, maybe - sorted by the latest article using the
time function.

• Or how about news articles based on his interests - if we have asked him to
provide us with preferences then we could use those to build a news page based
on his favorite things.

• And what if we wanted to update the news? Would we have to rewrite the
scripts? Nah ... why don't we just use a simple text file containing easily
updatable info, and just load the news items in using PHP - the PHP file need
never change. Chapter 7 will show you how to tap into all kinds of external files.

• What if we allowed him to save certain pieces of news or content to view later?
We just save his favorite items to the database along with his user details and
he can retrieve them whenever he wants.

• And how about letting him search our news archive for a particular feature or
keyword. We see how to search through text in Chapter 5 and by Chapter 9 it
will be massive databases that we're searching.

Those <? ?> tags are our ticket to ever-changing, easy reusable and updatable
information, and that information can be fed straight into our Flash projects. You can
customize and personalize every aspect of your user's experience and bring people back
to your site again and again.

In the first chapter, we'll be covering the bulk of the Flash side of things, although there
will be plenty of Flash throughout the book. And to round off the next chapter, I'll take
you through a great little user registration application, dissecting the Flash side bit by bit
and then showing you the true power of PHP scripts before we take the first steps toward!
fully understanding the crazy world of PHP.

PHP makes it easy to do practically anything your heart desires, and in 450 pages time
you'll wonder how you ever lived without it.

Static is yesterday, PHP is today, and if you can read this book by tomorrow then it's your,
for the taking!

Foundation PHP for Flash

What we'll cover in this chapter:

Dynamic Data
for Flash

•

	

Bringing external data into Flash

•

	

Loading variables using ActionScript

•

	

Controlling the loading of data and movie clip event handlers

•

	

Sending data from Flash

•

	

Our first glimpse of Flash and PHP combined - a registration
application

1

Foundation PHP for Flash

M

Before we dive head long into PHP, we're going to spend a chapter looking at the facilities
available to us from within our Flash movies to interact with the server and load dynamic
data. Although this chapter is mainly focused on the Flash side of things, you will find a
sprinkling of PHP code here and there and an impressive practical case study at the end.

To follow our examples fully and to check your work against completed files, you'll need
to pop along to www.phpforflash.com to download our comprehensive set of source code.

Before you download our files, you'll need to register your name and e-mail address witl
us. It'll only take two seconds and these details will also form the basis of your user profit ,

on the PHP for Flash forum. If you'd like this kind of neat Flash PHP function on your site
I'll show you how in our extended tutorial at the end of the chapter. It'll give you an insigh
into just how well PHP and Flash work together and how simple it is to put real PHP powe
into your own Flash movies, sites and applications.

At the end of this chapter we'll strap on our water wings and dive straight into the dee
end, but there's no reason to feel daunted. I'll be taking you through some Flash and PH
integration step by step and showing you what it does and in what chapter you can lear
it - and you'll learn exactly what PHP can do for you and what this book will teach you.

http://www.phpforflash.com

The syntax of this command is:

loadVariables(url, target [, variables])

where:

• url i s an absolute or relative URL where the variables are located, for example
www.phpforflash.com/variables.txt (or if the file resides in the same directory,
just variables.txt)

•

	

target i s a level or movie clip to receive the variables, such as
root.movieclip.

• variables (sometimes referred to as the method) i s an optional argument
specifying a method for sending variables; there are two methods - POST and
GET and we'll introduce these later.

if the deep end sounds a bit much ... well we all know what happens when
you dive in the shallow end (you bang your head!). Don't worry, it'll all
make sense soon enough.

\	 	 -.11

So, you're already a Flash user (or you're learning) and your eyes light up at the word
'dynamic'. Let's have a look at how to inject some energy into those FLAs. Once we get
that sorted then we can start down the road to creating some truly awesome dynamic
Flash applications.

Loading External Data
The first thing we need to know is how to load dynamic data into our Flash movies. Once
you know how to do this, anything is possible, and the kind of data you can load in is
limited only by your imagination - it could be news, user feedback, forum posts, visitor
information, anything you like!

The main way we will be loading external data into our Flash movies is using the
loadVariables () command in ActionScript.

Dynamic Data for Flash

http://www.phpforflash.com/variables.txt

Foundation PHP for Flash

m

When the loadVariables () command is called, the file identified by url i s fetched by the
Flash plug-in and the variables are loaded into our Flash movie. In order for this to succeed,
the variables and their values must be specified within the file in the following format:

&varlname=value&var2name=value&var3name=value...

I f we split this up we can see that it is a series of name and value pairings:

Variable 1

	

Variable 2

	

Variable 3
&varlname=value

	

&var2name=value

	

&var3name=value

For each of these name and value pairs, a variable is created on the timeline specified by
target. These variables can then be used in the Flash movie as we would use a normal
variable created using ActionScript.

A few examples of this in action might be to control the flow of the movie based on the
values of these variables, or having them displayed in a textbox.

Before we go any further, let's knock up a quick demo movie that'll let us illustrate the
use of the loadVariables () command using a simple text file.

The before and after screenshot shows you basically what we're aiming for:

All we're going to do is load some text from a file into a Flash movie usin€
loadVariables and have it displayed in a textbox.

Using loadVariables

First things first, let's sort out the Flash movie...

1. Create a new Flash movie and save it as lvtest. f la

2. Duplicate the layer structure shown below:

Here, we have not needed to use the optional variables, whilst
"lvtest 1txt° refers to what will be our variables file, and this means
this movie, and tells Flash to load the variables into the current timeline.

Dynamic Data for Flash

UN

3. On the Window BG layer we'll want to create some funky styling. This
i sn't strictly a necessary step so you can pass on it if you're in a hurry, though I
always feel that it's worth making things look cool! You can either follow the
styling shown or get creative and design your own.

4. On the "Text" Textbox layer, create a multiline dynamic text box that's big
enough to hold the text we want to load into it. Give this a variable name of
Text. It's up to you whether you put in some informational text, such as The
data will appear here when loaded.

5. On the Button layer, create a simple button and attach the following
ActionScript code:

on (release) {
loadVariables("lvtest.txt", this);

A given onClipEvent handler can only be set to look out for one of the above events,
although a given instance of a movie clip can have as many onClipEvent handlers
attached to it as you like. When the event specified by event occurs, the ActionScript
statements i nside the handler are executed.

I t is worth noting that all statements executed in an onclipEvent handler are relative to
the movie clip instance to which it is attached. This means that any variables used in the
onClipEvent handler actually refer to variables on the timeline of the movie clip instance
to which it is attached, and any movie clip functions that are called act on the same
timeline. For example, if I were to call the gotoAndPlay(i) function from the event

Foundation PHP for Flash

Event I nitiated
load as soon as the movie clip instance appears in the Timeline.
enterFrame as each frame of the movie clip instance is played. Actions

unload
execute before any actions attached to the frame.
i n the first frame after the movie clip instance is removed from

mouseDown

the Timeline. Actions execute before any actions attached to
the frame.
when the (left) mouse button is pressed.

mouseUp when the (left) mouse button is released.
mouseMove every time the mouse is moved.
keyDown when a key is pressed
keyUp when a previously pressed key is released.
Data when data is received as a result of a loadVariablesor

loadMovie call. In the case of loadvariables, this event is
fired only once, when the last variable has been loaded. When
used in conjunction with loadMovie this event is fired
repeatedly as each section of the movie is loaded.

oading... Please Wait

The onClipEvent Way

1. The first step is to convert everything that we have on the main stage at
the moment into a movie clip, since onClipEvent handlers can only be
attached to movie clips. Do this by selecting everything you can see on the main
stage and hitting F8 or selecting Convert to Symbol from the Insert menu. Make
the behavior Movie Clip and give it an appropriate name as I have.

handler, the movie clip to which it is attached will gotoAndPlay frame 1. Obviously if you
want to reference a different timeline for these actions then you need to specify that in
the statement... _root. gotoAndPlay (1) and _root. myVariable = 15 ... or use a with

block.

As a quick example, an onClipEvent handler that looks like the following will increment
the count variable every time a key is pressed:

onCl ipEvent (keyUp) {
count++;

All of the events listed above are useful, and you'll probably end up using all of them at
some time, but it is the last one, data, that we're particularly interested in. As you can see
from the table, an onClipEvent handler that has been specified with the data event is
executed when the last variable has been loaded as a result of a call to loadvariables.

To demonstrate the use of the onclipEvent handler we're going to modify our
lvtest.fla movie to intelligently handle the loading of the data. This will let us display
a loading... please wait frame while the data is loading, and once it has fully loaded we
can switch to the frame where the data is displayed.

Note that if you test this on your local machine you're only likely to get a
tiny glimpse of the loading frame because the data will be loaded so
quickly. To remedy this you'll probably have to upload the files to a web
server and test them from there. Failing that, change the data being
loaded in from "the quick brown fox..." to the entire text of War and Peace
- that should do the trick!

Dynamic Data for Flash

Foundation PHP for Flash

2. Now we need to edit our new movie clip and add a Loading frame to be
displayed white the data is toading. Duplicate the layer and frame structure
shown:

3. Go to the Loading keyframe and remove
the button and the textbox since we won't want
to show these while we're waiting for the data to
load. In their place put some suitable text to let
the user know that the data is being loaded
(though yours doesn't have to be as delusional as
mine!)

4. On the first frame of the Actions layer we need to put a stop action
to stop the movie clip on the Display frame when the movie is first loaded.

5. While we're on the Display frame we may as well edit the code for the
Load Data button so that, in addition to calling loadvariables, we tell the
movie clip to goto the Loading frame and stop. Edit the code so that it reflects
that shown below:

on (release) {
loadVariables("lvtest.txt", this);
gotoAndStop("Loading");

Now all that's left to do is to attach the onclipEvent handler to the
i nstance of our movie clip on the main timeline and we're sorted.

6. Return to the main timeline and select the instance of our movie clip. If
the Actions window is not already visible then make it so by right clicking on
our movie clip and selecting Actions. Finally, enter the following code and test
your movie (CTRL+ENTER).

The Frame Loop Way
I f we don't want to use onclipEvent, or if using it is impractical, then we can
use a frame loop to wait for data. This would be implemented using simple
ActionScript statements that hold up the movie until a certain variable has the
correct value. Some may describe this as the "old way" of doing things, as this
was the only method available in Flash 4 for performing such an action.
However, it does have one key advantage over the previously described
onClipEvent method; namely that it can be used to wait for data to be loaded
i nto the root of a movie, not just a movie clip.

We can easily convert the previous example to use a frame loop rather than
the onclipEvent handler.

7. To do this, simply remove the onclipEvent code from the movie clip
(basically undoing step 6) and edit the movie clip so that it matches the
diagram below:

Dynamic Data for Flash

6. Return to the main timeline and select the instance of our movie clip. If
the Actions window is not already visible then make it so by right clicking on
our movie clip and selecting Actions. Finally, enter the following code and test
your movie (CTRL+ENTER).

The Frame Loop Way
If we don't want to use onClipEvent, or if using it is impractical, then we can
use a frame loop to wait for data. This would be implemented using simple
ActionScript statements that hold up the movie until a certain variable has the
correct value. Some may describe this as the "old way" of doing things, as this
was the only method available in Flash 4 for performing such an action.
However, it does have one key advantage over the previously described
onClipEvent method: namely that it can be used to wait for data to be loaded
i nto the _root of a movie, not just a movie clip.

We can easily convert the previous example to use a frame loop rather than
the onClipEvent handler.

7. To do this, simply remove the onClipEvent code from the movie clip
(basically undoing step 6) and edit the movie clip so that it matches the
diagram below:

Dynamic Data for Flash

Foundation PHP for Flash

m

You can see that we're checking to see if the Loaded variable is set to
true and, if so, we're breaking out of the frame loop and going to the Display
frame.

Unfortunately, Loaded isn't some magical variable that is automatically set
when the data is loaded, so we'll need to do this ourselves. The good news is
that this is so easy it's almost unbelievable. We simply add &Loaded=l to the
end data we're loading in and, because it's the last variable to be loaded in, we
know that all the variables have loaded when this variable is set.

8. Simply edit your lvtest.txt file to look something like this:

9. I f you now test your movie again you'll find that it behaves exactly the
same as the earlier example, with the only difference being that it's now using
a frame loop to control the flow of the movie.

You will find uses for frame loops such as this one on your travels through Flashland but
they will probably be few and far between. The rest of the code in this book uses the
onClipEvent method, but now you know how to use frame loops you can write your
code using either.

Sending Information from Flash
Back in the Loading External Data section we touched quickly upon the fact that, as well
as being able to read in data , Flash can also send data out to server-side scripts. This is
an extremely useful feature of the loadvariables command, and one that we'll be
making extensive use of throughout this book.

Let's refresh our minds on the syntax of loadVariables:

loadVariables (url, target [, variables]);

Using the optional variables argument of the loadVariables command, we can send
all of the variables on the current timeline (the one from which loadvariables is called).
The variables argument can take one of two possible values, and that value dictates
how the variables are sent to the server-side script.

Dynamic Data for Flash

The major flaw with using GET is that it can cause problems if you're trying to pass a large
amount of data, as there are limits on the amount of information you can send this way.

The alternative method is known as POST and sends the data using buffers. This is the
preferred method of passing data to server-side scripts, so let's take a look at a simple
example of using loadVariables to send data to a server-side script.

Building a Download Registration Form
Now that we know how to pass information into and out of our Flash movies, it's time to
start building a real world example, and you'll have already seen this in action at the start
of the chapter when you went to our site and downloaded our source files.

The main purpose of this section is to show you how loadVariables and onClipEvent

can be combined to build truly interactive and dynamic Flash applications. Having said that
we'll be extensively using PHP code in this chapter to fetch and store data, but you're not
expected to understand it at this stage - we'll leave that for the coming chapters. If you're
curious though, I've fully commented the PHP code so you can have a good look to see
what it's doing without having to know how it's doing it!

The application we're going to be building is our download registration form. This will
basically allow you to keep track of who is accessing any part of your Flash site - in our
case the Downloads section at www.phpforflash.com - although the example here has
been adapted a little!

The first thing we should do is figure out what we're going to need. A few things that
should spring to mind are:

•

	

A data entry form

•

	

Somewhere to store the data

•

	

A method of moving the data between the form and the data store

This value, called the method, can be either POST or GET.

With the GET method, the data is passed as an appendage to the URL. You've probably
seen at least one example of data passed this way on your journey through the tangled
Web. A good example is the Google search engine at www.google.com . Once you've
typed in your search criteria and hit the Search button you'll see a whole load of
information added to the URL in your browser's address bar - that's data being passed
using GET!

http://www.phpforflash.com
http://www.google.com

Foundation PHP for Flash

m

•

	

We might also want to be able to display the data already in the data store
since information isn't much use unless you can look at it

To illustrate the skills we've just been learning we're going to use a Flash-based registration
form to input our details, send them to a server-side script for storage in a database, and
then get the server-side script to send all of the entries in the database back to our Flash
movie for display. This way you can see everything in action.

The whole thing can be visualized using the following diagram:

Because this example uses a server-side script and a database to add the
necessary functionality (being able to fetch and store data), you'll either
have to be running a web server with all the relevant applications (PHP
and MySQL) on your local machine, or have access to a remote server
with the same relevant applications installed. For your convenience,
comprehensive installation and configuration information is presented in
Appendix A and you'll find a list of third party hosts that provide the
facilities we need in Appendix C - Resources.

The main focus in the next exercise is going to be on building the Flash front-end to our
download registration system. We're going to need at least 3 sections:

•

	

A form to collect the data
•

	

A please wait screen to display when submitting/reading the data
•

	

Somewhere to display the returned registration data

Before we get really stuck in it might also be worth thinking about what kind of
i nformation we're going to want to collect from the user. Typical information for a
download registration form to collect might be:

•

	

Name
•

	

E-mail Address
•

	

Location

I t is also likely we would want to store the date and time that a given form was submitted
but this is best handled by the server-side script. Bear in mind that when you come to do
your own projects, you can choose to ask your visitors for whatever information you need.
You might need a date of birth, or a shoe-size - it's up to you, but for now we'll stick with
name, e-mail address and location.

Let's take a look at the kind of thing we're aiming to create and then we can get Flashing!

The diagram shows the three stages that the application will have to go through - Data
Entry, Loading, and Display, so let's get started.

Designing Your Flash Form

1. Begin a new movie and save it as register. f la.
2. Select Insert > New Symbol from the main menu or press CTRL+F8 to

create a new movie clip.

3. Enter the following details into the Symbol Properties window and hit OK.

Dynamic Data for Flash

Foundation PHP for Flash

m

4. Within our new movie clip, duplicate the following layer and frame
structure. Don't worry about the tween on the Section Items layer for now.

5. Add the stop actions to the appropriate frames as indicated above.

6. Again we're going to want to create some nice styling for the background
of our download registration form. I've carried on using the same style from
previous examples but you can use whatever you like.

7. On the Data Entry frame of the Section Items layer we're going to need
some text boxes so that we've got somewhere to enter the data. It's also nice
to have some text explaining what the form is for.

You can see from the previous diagram the necessary settings for each of
the textboxes. You'll see I'm also adding in a maximum value for each text box
- this prevents the user from exceeding the database field's 255 character limit.

8. We're also going to need some kind of a submit button that'll call
loadVariables and send our movie clip to the Loading frame. All I've done is
to copy the button from the previous example, changing the text and the code
attached to it.

9. You can see from the screenshot below that I've added code to stop the
form from being submitted if any of the textboxes have not been filled in, and
that we're sending the variables from the Flash movie using the Post method.
Do likewise and alter the copied button's ActionScript to reflect the screenshot:

10. Now we come to the Loading frame. I have built a clock face animation
as a separate movie clip and placed it on the Section Items layer to show that
the movie is waiting for something. You can copy this from the Library of the
finished FLA if you want to use it. Because it is a separate movie clip it will play
when our Data Registration Form movie clip is stopped on the Loading frame.

Dynamic Data for Flash

m

11. Coming back to the tween between frames 9 and 14 on this layer, simply
fade out the clock face animation. I think it's always better to have some kind of
transition between different sections of a movie, and it is good to give the user
visual feedback that something is happening and that their machine hasn't
crashed!

Now it's time to construct the final section of our movie clip - the
Display section.

12. Study the diagram below, adding the following to your frame:

•

	

A multiline dynamic text box with the variable name list
•

	

A button to scroll upwards and one to scroll downwards
•

	

Some ActionScript to empower these buttons

Finally, we need to add an onClipEvent handler to our movie clip
i nstance on the main stage to get it to go to the Display frame when data is
received.

Foundation PHP for Flash

13. Return to the main timeline and select the instance of our movie clip. If
the Actions window is not already visible then make it so by right clicking on
our movie clip and selecting Actions.

14. Enter the following code:

Dynamic Data for Flash

That's the Flash movie finished. Take a well-deserved breather and then we can plough on
with the server-side scripts.

The Server-Side Scripts
All that's left for us to do now is write a couple of server-side scripts; one to create the
database structure, and the other to handle the passing of information between the Flash
form we've just created and the database.

Because of the nature of the relationship between PHP and MySQL you will need to find
out the following information in order to get them to communicate:

•

	

Database host address
•

	

Your allocated username
•

	

Your password

You may also need to find out the name of the database allocated to you if you do not
have the ability to create databases yourself. This is generally only applicable to those
hosting their sites on virtual servers.

If you're using a third party to host your website then you'll need to get hold of their
technical support people if you cannot find this information on their website. If you're
hosting the site locally then the default values provided in the scripts below should work
for you. See the installation/configuration tips in Appendix A i f you have any problems.

Don't forget that the source code to all the examples in this book is available in the source
files if you don't feel like copying it from these pages, and also remember that it can be
found at www.phpforflash.com .

Before we can store any information in the database we need to create the database and
table to store the information in. I've created a script to do that for you easily and quickly.
The file, called register setup.php in the source files, should be copied to your web
server (either remotely or to your web root folder if you're running a server like IIS or
Apache on your machine) and then run through your web browser.

Once you have the file in the correct place and if you have PHP and MySQL properly
installed (see Appendix A), simply type the path to your file straight into your browser's
address bar and hit ENTER.

If you are using IIS or PINS then the files should be put in your
C:/Inetpub/wwwroot folder. You might want to create a sub-folder called
phpforflash to house your book files. Then use the following address
http://Iocalhost/phpforflash/register setup.php. Essentially, l ocal host (or
the name ofyour computer if it has one) replaces the I ntepub/wwwroot
in the path.

You'll soon be able to understand exactly what this code does, and we'll be covering
everything later in the book. For now, sit back and let the file run itself, and set up your
phpforflash database and a simple downloadLog table.

As I said earlier you may need to edit the variables at the beginning of the script to match
the details of your particular set-up...

/* MySQL details */
$dbhost = "localhost;
$dbuser = "your username";
$dbpass = "your_password";
$dbname = "your allocated database";

Foundation PHP for Flash

http://www.phpforflash.com
http://Iocalhost/phpforflash/register

The Main Registration Script
Now we come to the main server-side script for this application. This one will handle the
communication between the Flash form and the database where we're storing our data.
I ts job is to take the data from the Flash form and store it in the database, then fetch all
the information in the database and return it back to the Flash form.

The script has many of the same elements as register setup.php. I t still has to connect
to our database and talk to it, but this script will also interact with Flash!

Dynamic Data for Flash

As before the purpose of this exercise is to put what you've already learned to good use
and to give you a glimpse of the kind of thing that will be second nature to you in 450
pages time! Just follow the diagrams on the next two pages and you'll see how
straightforward it really is...

Foundation PHP for Flash

Dynamic Data for Flash

All that's left to do now is to upload or copy all the files we've created to your web server
and test. In practice you might not necessarily want to show visitors the details of all the
other visitors but it's a good demonstration of the techniques presented in this chapter.

Summary

I n the course of this chapter we have covered all the Flash techniques you'll need to know
to create some stunning Flash applications. Don't worry if these techniques seem a little
confusing at first - once you start using them on a regular basis you won't even have to
think about what you're doing!

We're only one chapter in, and already we've looked at:

•

	

I mporting and exporting variables and data from Flash

•

	

Controlling the display of loaded data

•

	

Two methods of withholding your data until it is fully loaded - movie clip event
handlers and frame loops

•

	

Using Flash as the front-end to a practical and dynamic PHP application

Now that we've covered the Flash basics, it's time to take a look at what programming for
the Internet involves and how PHP can bridge the gap between your Flash movie and the
server. If you're feeling up to the challenge then turn the page (mind the chapter divider!)

Foundation PHP for Flash

What we'll cover in this chapter:

•

	

Beginning your PHP journey; naming conventions and
comments

•

	

Using variables to store and call information

•

	

Tying your code together with operators
•

	

Using statements to build complex arguments

•

	

Storing and calling your data using arrays
•

	

Putting it all together in a simple login application

Getting Started
with PHPz

Foundation PHP for Flash

Now that we've had our first experiences of PHP and know a little bit about how it works,
i t's time to start getting our hands dirty. In this chapter we're going to take a look at the
basic elements of the PHP language and how we can use them to allow us to provide
dynamic content for our Flash sites - because that's what we really want isn't it?

I'll use these pages to create a solid foundation upon which the rest of the chapters in this
book can build - and trust me, we'll soon be reaching the dizzy heights of PHP heaven!
After I've shown you the basics of good PHP scripts, I'll round it off with a nice User Login
application.

A great deal of what you learn in this chapter will probably seem familiar to you if you're
particularly experienced with ActionScript. This is because ActionScript has the same basic
constructs as PHP, meaning that variables, arrays and so on may well be old news to you.
Having said that though, it's worth pointing out that the way in which PHP handles these
constructs can be quite different from ActionScript, so you'll want to pay attention even
i f you're an ActionScript whiz kid!

A Word About Naming Conventions
Before we get started it's worth
spending a moment thinking
about coding style. What I
mean by coding style is not how
you type or what you wear
when you're writing your code -
I mean how your code looks.

That code looks pretty, but could you find your way around it? You've
probably guessed, but coding style has nothing to do with fancy fonts or
neat colour coding, but everything to do with proper commenting and
smart naming conventions.

Coding styles can apply to all aspects of the way your code reads but the one that has the
most impact on making your life easier as a coder i s the way that you name your variables.

Over the years I have been programming I've tried many different naming conventions,
and have ended up creating my own style by hashing together my favorite bits of each. In
the end it is not important which method you adopt, just that you use it consistently
throughout your scripts.

One of the most popular naming conventions is called camel notation. Using this
notation, variable names that are made up of just one word are written in lowercase
letters, for example name. I f more than one word is used for the variable name then the
first letter of each extra word is capitalized - dateof Birth for example. Camel notation
is the default style used in ActionScript and for this reason I'm going to be using camel
notation throughout the course of this book, both for the ActionScript and the PHP code.

If you've done a fair amount of ActionScripting using the Expert mode, you'll either have
developed your own coding style or adopted one from somewhere else. If you feel more
comfortable scripting this way then feel free to carry on doing so. After all, if it ain't broke,

Getting started with PHP

Foundation PHP for Flash

As you've probably already guessed, all this code does is print Foundation PHP for Flash,
but let's take a closer took at what's happening here...

On the first and last lines of the script we have the opening and closing PHP tags. As we've
already discussed, everything between these two tags is considered to be PHP code and is
executed by the PHP processor on the server side.

The second line (after the comment) shows an example of variable initialisation in PHP.

$bookTitle = "Foundation PHP for Flash";

Something that may strike you as peculiar is the dollar symbol in front of the variable
name. This is an old Perl convention that has been carried over to PHP, and will probably
cause you a few problems as you get to grips with the language since ActionScript does
not require you to use the dollar signs. However, PHP insists on it and doesn't suffer laxity
on our part!

Basically, the line reads like this: Store the string named Foundation PHP for
Flash into a variable named $bookTitle.

The next line uses the echo function we met earlier to output the contents of the variable
$bookTitle. Notice that this is slightly different to the way we used echo before. In the
last chapter we were simply printing a sentence on the screen (called a string literal). This
time we are passing the variable $bookTitle which contains the string we want to print.

Of course, in this case the effect is the same, but once we assign these variables we can
change their value easily and quickly, and once we're at the stage of $bookTitle

"whatever you type" then we're really empowering our Flash movies!

Naming your Variables
As we mentioned earlier, PHP imposes some constraints on how we name your variables. The
simple rule to remember is that you can only use alphanumeric characters and the underscore
character in your variable names, and that the first character must not be a number!

You can see an example of some good and bad variable names below...

These are pretty much the same rules that govern how you name your variables in
ActionScript so you might already be pretty familiar with them.

Aside from how we name our variables, it is also important what we name them. For
example...

$name = "Steve Webster";

... makes far more sense than...

$a = "Steve Webster- , ;

It's generally a good idea to name your variables somewhere along the lines of what you're
going to be using them for. Firstly it will help you remember what they are called when
you're halfway through your script and need to use it, and secondly you'll be able to make
sense of it when you come back to the script in a few months to add some new
functionality!

Loading Variables from PHP

Before we roll smoothly onto the next section let's take a look at how we can replace the
text file from our lvtest_onclip.fla example with a PHP script to achieve the same
effect. When we built our Registration FLA in Chapter 1, we used that technique, but this
time, we're going to follow the process through step by step. This exercise will put that
technique to use in our very first loadvariables test.

Getting started with PHP

Since we're using one of the examples from the first chapter as the basis for this example
we can simply save that file under a different name so we don't have to recreate the movie.

1. Open the lvtest_onclip a fla movie from Chapter 1 and save it as
phplvtest onclip.fla.

Foundation PHP for Flash

2. The only part of the movie that we need to change is the name of the file
called by loadVariables. Edit the ActionScript on the Load Data button to call
i t lvtest.php i nstead of lvtest. txt...

3. Now to create the PHP file. Using whichever is your favored text editor,
or indeed your PHP editor if you have one, enter the following code and save
it as lvtest.php.

// lvtest.php

// Store message into variable
$text = "This is the PHP loadvars test! Do you like it?";

// Output to Flash movie in name/value pair format
echo "&text=" . urlencode($text);

4. Here we've used the urlencode function to make sure that any special
characters in $text are passed properly to the Flash movie. This is discussed in
Chapter 4 along with related functions.

5. That's it! Note that unlike loading a simple text file you'll have to upload
or copy the HTML, SWF and PHP files to your web server in order for the
example to work properly. This is because the PHP code needs to be executed
by the server.

I f you try and test the file locally
you'll get some weird results where the
PHP code is not executed. If you look at
the PHP script you should be able to see
what's happening!

OK, now maybe you're thinking "what's the difference between loading the variables from
the text file and the PHP file". Well, now I've shown you how to load those variables from
a PHP file, we are no longer confined to loading the set sentence This is the PHP loadvars
test...

We can set $text to equal whatever we want; it might be a username, a preference, a
piece of news ... now that the variable in passed in and out from a PHP script it has become
dynamic and is ready to use in an amazing number of ways. That $text variable might
even represent a value pulled from a database. In Chapter 9 I'll show you just how to do
that but you've already seen it in action - in the registration example from Chapter 1.

Data Types
Now we know what variables are and how we use them, we're going to look at the
type of information that a basic variable can hold - known as its data type.

PHP has three basic data types that we can use:

• I ntegers are used to store whole numbers (in other words, numbers with no
fractional part) within a range of approx. -2,000,000,000 to +2,000,000,000. An
example of an integer might be 5.

•

	

Doubles (also known as float or real numbers) are used to represent numbers
that have a decimal value or an exponential part, for example 2.765 or even 2.0.

•

	

Strings are used to represent non-numerical values and are encased in quote
marks, such as "I am a non numerical value" or even "2"!

PHP is what is known as a weakly typed language. This means that, like ActionScript, the
data type of a variable can be changed by re-assignment or can be interpreted as
appropriate depending on the way i n which it is used. It does differ from ActionScript
slightly but the basic idea is the same.

Getting started with PHP

We can see how easily PHP variables are interpreted according to use with the following
piece of code.

$first = "1";
$second = "2";

$result = $first + $second;
echo "The result was: $result";

?>

Firstly we initiate two variables, $first and $second, with string values of I'll' and "2

respectively. The variables are then added together, with the result being stored in the
$result variable. Finally, we output the value of $result with a call to the echo

function.

Generally, the process of adding two strings together results in the two strings being joined
is known as concatenation. With this in mind, it would be perfectly reasonable to assume
that the value assigned to $result would be "12" as a result of the concatenation or
joining of the two strings. Indeed, this is exactly what would happen if we recreated this
code in ActionSccipt.

However, in PHP the "+" symbol is a mathematical operator designed to work with
numbers. So what actually happens is that the strings first get translated into the
appropriate number types (integers in this case) and are then mathematically added
together. This means that the value of $result i s actually 3 (an integer) rather than "12"

(a string). The values and data types of the $first and $second variables have not been
modified; they were simply translated for the purposes of addition.

I f we wanted to concatenate the strings then we would have to use PHP's concatenation
operator; which is a full stop (or period). So, if we change the code to read...

$first = "1";
$second = "2";

$result = $first . $second;
echo "The result was: $result";

?>

...then $result would be assigned the string "12" as originally expected.

Foundation PHP for Flash

In the next section we're going to be looking at some of the bare
necessities of a PHP script, including operators, statements and arrays.
Don't worry if these seem scary at first; they're not, and once you
understand how these basic concepts weave together your PHP variables,
you're well on the way towards writing your own advanced scripts and
designing amazing interactive sites!

Operators

Operators are used to build up mathematical and other expressions. We've already used
operators in this section and you've undoubtedly used them in basic math and in your
ActionScript code.

Let's take a look at what we mean by operator...

Getting started with PHP

Addition is one of the simplest operators and the diagram above shows the different parts
of the expression. This particular expression is built from two operands and a single
addition operator. Obviously the more complex your expressions the more operands and
operators you are likely to have, but you can always boil an expression down to a
collection of operations such as the above.

PHP has a number of different operators so I'll take you through the main ones in the next
few short sections. Since we've just seen one of them in action, let's see the arithmetic
ones first.

You should recognize all of the above symbols from math, though they may have brought
back a few bad memories! The last one might be new though. The modulus operator (%)

Arithmetic Operators

Operator Operation Example Result
+ Addition 6+ 2 6 + 2= 8
- Subtraction 6- 2 6- 2 = 4
/ Division 6 / 2 6 / 2 = 3
* Multiplication 6 * 2 6 * 2 = 12
$ Modulus 7 % 2 7 % 2= 1

returns the remainder of the left operand divided by the right, so it's (7 % 2) = (3
remainder 1) and so the result is 1.

If you're wondering why we would need this one, then you'll find out in
Chapter 12, where the modulus operator will be needed in our final in-
depth case study - a PHP-based Flash forum!

Negation Operator
The minus sign (-) can also be used with a single operand or number to negate the
number (in other words, to make a positive number negative, and a negative number
positive).

$numl = 57; // 57
$num2 = - $numl; // -57
$num3 = - $num2;

	

// 57

Assignment and Concatenation Operators
As we've already seen, the assignment operator, (_), is used to assign a particular
value or the result of an expression to a variable. We've also already met the string
concatenation operator earlier in this chapter. It is represented by a period (.) and is
used to join two strings together.

<?
$first = "Hello, ";
$second = "Birmingham!";

echo $first . $second;
// Prints "Hello, Birmingham!"

Foundation PHP for Flash

Comparison Operators
The comparison operators are used to compare two values or variable values.

Getting started with PHP

There are so many uses for these operators and you shouldn't
underestimate them. The equal to operator == could, for example, check
that a password matches the one in the database, whilst the greater than
operator > could be used to grant extra admin permissions to someone
whose $accessLevel was greater than 3.

Logical Operators
Logical operators are used to evaluate a single expression, or series of expressions,
extracting a Boolean true or false answer as the result. They are used in conjunction
with the comparison operators, or with Boolean variables, to form complex
expressions.

Operator Meaning Example Evaluates to true if...
= i s equal to $a = $b $a i s equal to $b
! = i s not equal to $a !_ $b $a i s not equal to $b
< i s less than $a < $b $a i s less than $b
> i s greater than $a > $b $a is greater than $b
<= i s less than or equal to $a <= $b $a is less than or equal to $b
>= i s greater than or equal to $a >= $b $a is greater than or equal

to $b

Compound Operators
Compound operators are used to perform arithmetic and assignment operations
si multaneously. They can save you time when you're coding but can make the
expression harder to read.

In our login example later, we'll be using OR (11) to validate our login
form, to ensure that if the password OR the username have been left
empty, our script returns an error.

You might by now have realised (or recognise from ActionScript) that the
++ and - operators are perfect for incrementing or decrementing a value,
which might be a user number or ID or anything you like!

OK, by now the only operators you may be interested in are the kind that begin with
"Operator - can I have the number of the nearest math tutor", but don't worry; now we've
i ntroduced these operators it'll become second nature using them in our scripts and they
have limitless potential.

Just copy the last few pages, stick them on your wall for reference and you'll never get
stuck again. Then take a breather - you've earned it, and when you're ready, read on...

Foundation PHP for Flash

Operator Example Equivalent to
++ $a++ $a = $a + 1
-- $a-- $a = $a - 1
+_ $a += $b $a = $a + $b
-_
/_

$a -_
$a /=

$b
$b

$a =
$a =

$a
$a

= $b
/ $b

*_ $a *_ $b $a = $a * $b
_

$_
$a ._
$a ~_

$b
$b

$a =
$a =

$a
$a

. $b
% $b

Operator Meaning Example Evaluates to true if...
&& AND $a && $b $a and $b evaluate to true
I

	

I OR $a I I $b $a or $b evaluate to true
and AND $a and $b $a and $b evaluate to true
or OR $a or $b $a or $b evaluate to true
xor Exclusive OR $a xor $b $a or $b evaluate to

! NOT ! $a
true, but not both
$a evaluates to false

Using Statements
Thinking back to when I was knee-high to a grasshopper, I pretty much did what I was told.
My parents would holler orders at me (usually along the lines of "put that down" and "get
that out of your mouth") and I'd faithfully obey! This continued for who knows how many
years until my vocabulary picked up that word that every parent dreads..."no"! Suddenly I
was able to make decisions (not that my parents appreciated my obvious genius) and I'd
generally repeat the word a few times for good measure. Oh how my parents pined for
what was later dubbed "the days before no".

And this is exactly what has to happen to our PHP. It's about time our scripts grew up and
learned some new skills; selection and iteration. Using these two constructs we're going
to give our scripts the ability to make decisions based on certain criteria, and save
ourselves a great deal of time and effort by using loops to repeat a single statement or
even a series of statements.

Selection
In all but the most basic of PHP scripts we're going to want to make decisions, and to
execute statements based on those decisions. PHP provides two basic types of selection
statement and we're going to meet both of them here.

If... statements
The if statement allows the execution of one or more lines of code based on a given set
of conditions. if those conditions evaluate to true then the statements are executed.
otherwise execution passes to the next statement after the if block. PHP's if statement
is written and behaves in exactly the same way as the if statement in ActionScript.

The syntax for an if statement in PHP is as follows:

if (condition) {
statements

If we look at the flowchart we can see the operation of the
if statement. If the expression shown as condition evaluates
to true then the statements are executed.

Getting started with PHP

Foundation PHP for Flash

I f the expression evaluates to false then execution passes out of the if statement.

To build the expression we use either one or a combination of the comparison operators
and/or logical operators. An example of an if statement is shown below.

if ($name == "Steve Webster")
echo "You are the author of this book! Get on with

writing Chapter 2!";

Note that as with a lot of the code snippets throughout the book, you'll
have to add opening and closing tags, and occasionally set variables if
you want to test them as above.

if..else.. statements
These are an extension of the standard if statement, and allow you not only to specify
code to be executed if the given condition is met, but also to include code to be executed
i f the condition is not met. If we digress back to my childhood again, this is the age-old
"if (you eat your sprouts) {you can have some ice cream), else {it's no dessert for
you}"!

The syntax for an if. . else. . statement is shown below:

if (condition) {
statements

else {
statements

Looking at the syntax above and the flowchart diagram
we can follow what happens in an if..else. .

statement.

Firstly condition is evaluated. If the expression evaluates as true then the first block of
statements is executed. Otherwise, the second block of statements is executed.

Continuing on with the previous example, we could expand it to use an if..else. .

statement, like so...

if ($name == "Steve Webster") {
echo "You are the author of this book! Get on with

writing Chapter 2!";

else {
echo "You are NOT the author of this book! Could you

phone him and tell him to get on with writing Chapter 2!";

Getting started with PHP

I t is worth noting that the else section is completely optional. If the condition specified
in the if statement is not met then execution simply passes to the next program
statement. Needless to say though, you can't have an else without an if.

if..elseif..else.. statements
This variation on the standard if statement allows you to specify alternative conditions to
be checked if the one in the if block is not met.

The syntax looks like:

if (condition) {
statement

else if (condition) {
statement

else {
statement

I t's worth noting that you have as many elseif blocks as you like and that the else block
on the end is optional.

Foundation PHP for Flash

switch statements
The switch statement is useful for testing a single expression against a number of
different values. While this can be done with if statements, it quite often leads to
multiple nested if statements, which, at the best of times, are hard to follow.

Consider the nested if statements below:

if ($language == "PHP")

echo("Good choice - PHP is cool! You don't by any chance
use Flash too?");

else

if ($language == "Perl")

echo("Not bad. You might want to learn PHP
though!");

else
{

	

continues overleaf

Getting started with PHP

if ($language == "ASP")

echo("ASP eh? Have you checked out
www.asptoday.com!");

else

echo("You're not using PHP, Perl or ASP!");

I n this fragment of code we are comparing the value in the $language variable to a series
of three string values. With what you've learned about if statements so far you should be
able to follow this code without too much of a problem. However, consider what would
happen if we had to compare a variable or expression against 20 values ... hmmm, it starts
getting complicated.

Enter the almighty switch statement. The following code would perform the same
operation as the multiple if statements above.

switch ($language)

case "PHP":
echo("Good choice - PHP is cool! You don't by any

chance use Flash too?");
break;

case "Perl":
echo("Not bad. You might want to learn PHP

though!");
break;

case "ASP":
echo("ASP eh? Have you checked out

www.asptoday.com!");
break;

default:
echo("You're not using PHP, Perl or ASP!");
break;

Foundation PHP for Flash

Getting started with PHP

Note: as in some of the previous examples, if you're testing this, you'll

have to give the PHP script some tags, and also define your variables. In a
real situation, this variable could come from a database or a cookie (see

Chapter 6) or from an input box. Imagine a simple Flash movie where you
ask the user what scripting language they use, and that variable is passed

to the PHP script as $variable.

The variable or expression to be tested is placed between parentheses after the
switch keyword. Then for each value you want to compare the variable/expression
against you have a case keyword followed by the value and a colon (:).

You then list the statements you wish to be executed if the variable/expression matches
that particular value followed by a break keyword. You must include a break i n a switch

statement otherwise PHP will jump to the next condition.

The default section of the switch statement is much like the else section of an if

statement. If no matching case has been found for the variable/expression given then the
statements in the default section are executed. It is perfectly valid not to include a
default section in a switch statement, in which case, if no matching case has been
found for the variable/expression given, then no statements are executed and execution
passes out of the switch statement and onto the next line of code.

I t is worth noting that a switch statement can only test for equality. That is, it can only
test to see if the given variable/expression is equal, "==", to the values in the case

statements. If you tried to test for a range of values in a case statement it would generate
an error:

switch($age)

// WRONG! Will not work!
case <15:

echo("You're never too young to use PHP!");
break;

// CORRECT! Will work!
case 21:

echo ("You're never too young to use PHP!');
break;

Also, unlike many other languages, PHP will let you use variables in case conditions.

I teration
I teration (or looping) i s a means by which we can execute a block of one or more
statements, repeating them a specified number of times or until a condition is met.

I magine that we had to output all the numbers from 1 to 10. The following code will do
this for us.

echo "1\n";
echo "2\n";
echo "3\n";
echo "4\n";
echo "5\n";
echo "6\n";
echo "7\n";

Foundation PHP for Flash

echo "8\n";
echo "9\n";
echo "10\n";

However, this isn't very efficient and typing it out like this would get really tedious if we
had to print all the numbers from 1 to 1000. In situations like this, looping is the designer's
best friend. PHP offers three different looping statements, just as in ActionScript, and they
are while, do. while, and for. We'll discuss each of these in turn but we won't dwell
on them for too long since you might already be familiar with them from ActionScript.

The \n at the end of the string passed to the echo statement is used to
insert a carriage return (or new line) at the end of the output line. We use
the newline character because we want each key/value pair on its own
line. However, an HTML page won't recognise these and so later we will
be adding
 (HTML line break tags) to the 1 n if we are displaying it
straight into a browser.

On line 1 we initialize the $count variable. Following that, we have the whole while loop.
Firstly, we have the while keyword followed by a condition in parentheses.

Getting started with PHP

In plain English this is saying "while $count is less than or equal to ten, print
it to the screen". Let's have a closer look at exactly what this code does.

while loops
Let's look at an example of a while loop.

$count = 1;

while ($count <= 10) {
echo $count . "\n";
$count++;

We then have the block of code to be executed if the condition evaluates to true. As
discussed earlier in the Operators section, the ++ operator that is applied to the $count

variable above simply adds 1 to the variable. We need to do this in the loop, otherwise the
value of $count will never change from that assigned in the first line of this script and we
will be stuck in the while loop forever!

Also worthy of note is that in this situation the $count variable is often referred to as the
loop control variable.

You may have guessed by now that this loop gives exactly the same output as the 10
statements above. I think you'll agree that it's much more efficient.

A while loop is known as a 'zero or more times' or pre-test loop because
the condition is evaluated before the first iteration of the loop (or at the
start).

Foundation PHP for Flash

do-while loops
A do. while l oop is really just a variation on the while

loop, with the only difference being that the condition is
evaluated at the end of the statement as opposed to the
beginning. This makes it a 'one or more times' loop because
the statements in the loop are guaranteed to execute at
least once. This type of loop is also known as a post-test
loop since the condition is evaluated at the end of the loop.

We could rewrite the example from the previous section using a do. while loop like so:

$count = 1;

do
echo $count . "\n";
$count++;

} while ($count <= 10);

There are a couple of things to note about a do. while loop. Firstly, you'll see that the
while (condition) section has been moved to the bottom of the loop and, the do

keyword has been inserted in its place. Note that a semi-colon has been added to the
while section. This is essential and PHP will show an error if it is omitted.

for loops
The last of PHP's looping statements is the for loop. Generally, for loops are used when
you know how many times a given loop needs to be executed.

Getting started with PHP

The syntax of a for loop is slightly more complex than that of the while and
do. while l oops:

for (initialize; condition; control)

statements

The for l oop takes three expressions inside its parentheses, separated by semi-colons. The
first expression initialize is used to initialize the loop control variable. The second
expression condition i s used to specify the condition, which if true will continue the
loop. The final section, labeled here as control, i s used to manipulate the loop control
variable. Often this is just a simple increment or decrement expression.

OK, so that sounds a bit scary, let's take a look at a real one:

for($count = 1; $count <= 10; $count++)

echo $count . "\n";

Yes, you've guessed it! This does exactly the same as the two preceding examples. If you
look closely at the examples you'll see that all we've done is move all the statements
referring to the loop control variable within the for loop.

Foundation PHP for Flash

Arrays

The easiest way to think of an array is as a list of variables all referenced by the same
name. In order to access the individual variables (or elements) in an array we use what is
known as array index notation.

I n PHP, the simplest array consists of a series of elements with indices starting from zero
and incrementing sequentially. Let's look at an example of such an array. Suppose that we
wanted to create an array to hold 10 names. The structure might look something like:

Here we have 10 array elements, with each element being represented by a box with the
name of the array and the appropriate element index contained in square brackets. This
is how individual elements of an array are referenced in PHP, as well as in Flash.

Creating Arrays
Now that we know what an array is, we need to know how to create one. PHP provides a
number of different methods for creating an array and we'll discuss the most common
ones here.

With arrays in PHP, as with variables, you do not need to declare them before you can use
them. Instead, an array is created when a value is first assigned to it.

The simplest way of creating an array is to assign values to the array in the following
manner:

$name[] = "Steve Webster";
$name[] = "Alan McCann";
$name[] = "Kev Sutherland";

This creates an array called $name that has 3 elements. Since we didn't explicitly state the
element indices when assigning the values to the array, they are automatically placed at
positions o, 1 and 2 i n the array. The same thing could have been achieved with the
following code:

$name [0] = "Steve Webster" ;
$name [1] = "Alan McCann" ;
$name [2] = "Kev Sutherland";

Getting started with PHP

The difference here is that we are explicitly stating the element indices when assigning the
values to the array. Note that in PHP, you can have elements in the array holding different
data types. This is because as we mentioned before. PHP is a weakly typed language. So
the following is perfectly valid (although it doesn't make much sense):

It is good practice to assign array elements sequentially (at sequential indices) as this
makes looping through an array much easier. However, there are times when we might
want to put elements at non-sequential indices. These are known in other languages as
sparse arrays and commonly used in the writing of spreadsheet programs.

$name[77] = "Kev Sutherland";
$name[0] = "Steve Webster";
$name[34] = "Alan McCann";

The above is perfectly valid but it is worth paying special attention to what happens to
subsequent simple array assignments. In this case, the highest array index is 77. Now if we
add another element using the simple array assignment method like so:

$name[) = "Jim Hannah";

	

// Assigned to $name[78]

The new element is entered into the array at an index one higher than the current highest
array index, in this case 78.

Arrays can also be created (initialized) using the array construct. To use this construct we
simply pass it the values that we want to assign to our new array and store the returned
value into a variable. For example, the following code will create an array identical to the
one we first encountered in this section.

$name = array ("Steve Webster", "Alan McCann", "Kev
Sutherland");

So far we have only created arrays with integers as indices. However, we can also have an
element whose index is a string value. For example, we could create the following array:

$book['Title'] = 'Foundation PHP for Flash';
$book['Publisher'] = 'friends of ED';
$book['Subject'] _ 'Web Design';
$book ['Rating'] = 10;

We could then output the title of the book as follows:

echo($book['Publisher']);

	

// Prints "friends of ED"

Foundation PHP for Flash

$name[O] = "Steve Webster"; // A string
$name [1] = 15; // An integer
$name[2] = -24.17; // A double

Looping Through a Sequential Array
So far you may be thinking that you could do without arrays and just use individual
variables to store the values that you need. However, the real power of an array becomes
apparent when we use it in conjunction with looping.

Imagine that your script had to store and print four names to the browser window. Using
individual variables this could be accomplished with the following code:

$namel = 'Steve Webster';
$name2 = 'Alan McCann';
$name3 = 'Kev Sutherland';
$name4 = 'Jim Hannah';

echo($namel);
echo($name2);
echo($name3);
echo($name4);

This may not be too bad for just four names, but imagine what would happen if we had
to store and print 100 names ...you'd have to have one echo statement for every name

Getting started with PHP

Foundation PHP for Flash

that had to be printed. If we use an array in conjunction with a for l oop then this task
can be made much simpler:

Have a look at the example below and see if you can figure out what's
happening. Everything there has been covered already, and you should be
becoming a bit more comfortable with PHP code.

$name = array('Steve Webster', 'Alan McCann', 'Kev
Sutherland', 'Jim Hannah');

for ($index = 0; $index < count ($name); $index++)

echo($name[$index)) . "
\n";

The first line creates a sequentially indexed array with our four names in it ($name (0),

$name [1) and so on, just like our boxes earlier). We then introduce a for loop using a
variable called $index as the loop control variable. Probably the most interesting part of
this loop is the $index < count ($name) section. The count function returns the
number of elements in the array (in this case 4) and that value is checked against the value
of $index every time we go through the loop.

Note that count returns the number of elements in the array, not the highest index of the
array. If we go back to this example:

$name[77] = 'Kev Sutherland';
10-

	

$name[O] = 'Steve Webster';
$name[34] = 'Alan McCann';

Then count ($name) would return the number of elements in the array (3) and not the
highest index of the array (77).

Looping Through a Non-Sequential Array
As we've discovered we need to treat non-sequentially indexed arrays in a special way. A
non-sequential array can be one whose integer indices - [1] [2] [3] and so on - do not
form a sequence, or an array whose elements are indexed though a string value (as seen
previously). Luckily for us, PHP provides facilities for working with these types of array.

An array, whether sequential or non-sequential, has a built-in pointer. This pointer keeps
track of the current array element. When an array is first created, the pointer will point to
the first element in an array. We can read the value of this array element by using the
current function, and the element's index with the key function.

We can illustrate the use of these functions if we return to our previous example:

j

$name[77] = 'Kev Sutherland';

	

$name[O] = 'Steve Webster';
$name[34] = 'Alan McCann';

$currentvalue = current ($name);
$currentindex = key($name);

echo("$currentindex: $currentvalue");

Because the array has just been created the pointer is pointing to the first element in the
array. So, this code will print 77: Kev Sutherland. This may be a little unexpected but this
was the first element in the array (regardless of its index) because it was the first to be
assigned to the array.

Note though that neither current nor key will advance the internal pointer. For that job
we need to enlist the help of the each and list functions. An example of a loop that will
print out all of the values in our non-sequential $name array could be:

reset($name);
while (list($key, $value) = each($name))

echo("$key: $value
\n");

Getting started with PHP

The reset function returns the internal array pointer to the first element of the array. We
may not need to do this (the array may have just been created) but it's worth using anyway
so that we definitely know where the pointer is!

The each function is passed an array. It then returns the key and value of the current
element and moves on to the next array element. When the last element of an array is
reached it returns false. Because this function returns two values, it has to return them
as an array, which is where the list function comes into play.

The list function basically breaks apart the return value of the each function (an array)
and stores them in two variables ($key and $value).

The output would look like this:

This same loop would work for our string indexed array:

$book['Title'] = 'Foundation PHP for Flash';
$book['Publisher'] = 'friends of ED';
$book['Subject'] = 'Web Design';

$book['Rating'] = 10;

reset($book);
while (list($key, $value) = each($book)) {

echo("$key: $value
\n");

For which the output would look like:

Getting started with PHP

We can also use the foreach l oop that was introduced with PHP version 4. This is the
preferred method of looping through all of the values in an array

There are two syntaxes; the second is a minor, but useful, extension of the first:

1.
foreach($array as $value) {
statements

continues overleaf

2.
foreach($array as $key => $value) {

statements

The first form loops over the array given by $array. On each loop, the value of
the current element is assigned to $value and the internal array pointer is
advanced by one (so on the next loop, you'll be looking at the next element).

The second form does the same thing, except that the current element's key (or
index) will be assigned to the variable $key on each loop.

The following code would produce identical output to the previous...

foreach($book as $key => $value) {
echo("$key: $value
\n");

Multi-Dimensional Arrays
At the beginning of this section we mentioned that an array is simply a collection of
variables. Of course, there's no reason why these individual elements of an array cannot
be arrays themselves. This creates what is commonly known as a two-dimensional array. If
the nested arrays' elements also contains arrays then we've got a three-dimensional array!

To help you understand this better take a look at the following piece of code:

$users [O] ['name'] = "steve" ;
$users [0] ['pass'] = "nottelling" ;
$users[1]['name') = "joe";
$users[1]['pass') = "itsasecret";

Although this code will not actually output anything, it will create a two dimensional array.

Foundation PHP for Flash

Here we can see the tree-like structure of the two dimensional array we've created. You
can see from this that the two elements of the $users array are, in fact, arrays themselves,
each representing a given user. Each of these arrays holds the name and password for each
user.

When combined with looping, multi-dimensional arrays provide a powerful container for
our information. The following code would output the above array, indicating the
structure.

// Loop to traverse elements of $users array
foreach($users as $key => $value) {

// Output
echo "User $key\n";

// Loop to traverse each sub-array
foreach($value as $key2 => $value2) {

echo " $key2: $value2
\n";
}

Getting started with PHP

This could be visualized by the diagram below.

Foundation PHP for Flash

The last two pieces of code, if put together in a script, would produce the following output:

We could also use the same theory to loop through arrays with more dimensions, simply
by adding more foreach l oops.

Sorting Arrays
Now that we know how to create arrays and how to loop through them, it would be nice
to be able to get them into some kind of order. We'll only cover the simplest of sorting
routines for arrays here, as we're only likely to want to sort our arrays numerically or
alphabetically. If you're interested in more advanced array sorting methods in PHP then
take a look at the Arrays section of the PHP manual.

The simplest of the array sorting functions is sort. This function rearranges the elements
of an array so that they are sorted into numeric and alphabetical order. It also reassigns
the array's indices to reflect the new order.

For example, consider the following piece of code:

$reviewers = array("Gareth", "Stef", "Pete", "Jake");

sort ($reviewers);

f oreach ($reviewers as $id => $reviewer) {
echo "Reviewer $id: $reviewer
\n";

This would output:

You can see that the array has been sorted alphabetically. However, as mentioned
previously, the array indices are also reassigned, so this method of sorting may not be
convenient for non-sequential or string indexed arrays. To combat this problem we can
use the asort function. This changes the order of the array elements but does not alter
their indices.

PHP also provides two related functions, rsort and arsort, that work in exactly the same
was as sort and asort respectively except that they order the array in reverse.

Getting started with PHP

You can see from this that we're going to require three sections for the movie. Firstly we'll
build a data entry page to collect the login information from the user. We'll then fire this
i nformation off to a PHP script for verification while we display a nice loading screen.
Finally we'll display a message received from the PHP script, which is individual to the
entered username/password.

We also have an error section to handle incorrect username/password information - one
error if any of the fields are left empty, and another if there are no valid matches.

Right, that's enough chit-chat - let's get cracking!

Foundation PHP for Flash

Putting It Into Practice

We've covered a massive amount of ground in this chapter but it wouldn't be complete
without a practical example to round it all off. In this section we're going to create a simple
user authentication system for our Flash movies.

So that we're not fumbling around in the dark, let's take a look at the finished article.

Building our Flash Login Interface
The first thing we need to do is to create a movie clip. Since we're going to be using the
onClipEvent handler to detect when we've received data from the PHP script we'll need
to have everything encapsulated in a movie clip.

1. Create a new movie clip by selecting Insert > New Symbol from the main
menu or by pressing CTRL+F8 - you know the drill by now! As always, give it a
suitable name (I've used Login Window) and hit the OK button.

2. Next we need to create the layer and frame structure for the sections of
the movie clip. Use the screenshot below as a guide.

Don't forget to add the ActionScript as shown!

3. Before we move on to create the individual sections of the movie clip
let's create a nice stylish background to run through the whole interface. After
a chapter of PHP basics, statements, loops and arrays, I bet you'll relish the
chance to get arty! I've kept up my theme from earlier examples but you can
use whatever you fancy...

Getting started with PHP

Foundation PHP for Flash

Create your styling on the window BG
l ayer.

Having created a suitably awesome background, we need to start adding
the functional content to our movie clip. We'll start out with the Login frame:

4. The main areas of this section that we need are the two text boxes and
the button. It's also nice to add a bit of text telling the user what we want from
them, or else they may just sit staring blankly at it all day! Add these as in the
screenshot, not forgetting to ActionScript some functionality into the button!

5. Moving on to the Loading frame,
this is probably about as simple as it gets.
All I've got here is some text telling the
user what is happening. If you've got
some time to kill you might want to put a
groovy animation in here to keep them
i nterested, such as the clock animation
we used in Chapter 1.

Now we need somewhere to display the data that the PHP script returns
to our Flash movie. The script will return a custom message in the message
variable so as a bare minimum we'll need a text box of the same name. I've also
thrown in a Back button as well so that you can try out different
username/password combinations without having to refresh the movie - think
of it as an early Logout button!

6. On the Logged In frame duplicate the following structure, with a dynamic
text field to hold our customized message and a Back button.

I f the username/password information entered into the form does not
match any of the ones we're going to code into the PHP script, we need a
section of the movie clip to tell the user just that. The PHP script will return
error information in a variable named errorMsg so, again, we'll at least want a
text box with that name.

7. For this, simply replicate the Logged In frame, changing the small header
at the top to reflect the fact that it's an error page, and changing the name of

Getting started with PHP

Now for the PHP bit...

Scripting the Login Engine
All that's left for us to do now is to bash out the PHP script to run the whole show. As you
probably expected, we're going to be using a lot of the techniques covered in this chapter.
Although I'll be walking you through the code, don't feel intimidated if you don't
understand what we're doing - keep it simple in your mind, make sure you understand the
basics, and eventually the more complicated code will unravel itself like a budding flower.

This is where it all comes together.

Throughout the book, if you ever get stuck at a certain concept or
function and can't remember where it was covered, don't forget the
index and the table of contents - all the information is here if and
when you need it, and if you're still stuck on any particular item you
can check the PHP manual at www.php.net or visit us at
www.phpforflash.com/support!

Foundation PHP for Flash

the text box to errorMsg so that our error message will be displayed.

Now there's only one bit left to add: the onClipEvent handler to tell our

movie clip when the data has been loaded.

8. From the main timeline, drag a copy of our newly created movie clip from
the Library onto the stage and attach the following code to the new instance.

http://www.phpforflash.com/support!

1. The first part of the script deals with storing the usernames and
passwords, along with the custom messages, of each authorized user. We use
three separate arrays to store this information, with each array holding separate
data items.

$usernames [] = "Steve";
$passwords[] = "nottelling";
$messages[] = "Welcome, oh masterful one!\nHow are you
today?"

$usernames[] = "Matt";
$passwords(] = "itsasecret";
$messages[] = "Hello Sir Matt, knight of the purple jelly
table! Did you bring my rubber wallpaper?";

$usernames[] = "Bill";
$passwords[] = "pimple";
$messages[] = "Is that little penguin scaring you again?";

Getting started with PHP

Note that the usernames and passwords we are setting here will be case-
sensitive so be careful how you type them!

Next we need to have some code to check we have been passed both a
username and a password. We do this first since there's no point in continuing
if either one or the other, or both, isn't present. Note that this could have been
performed in the Flash movie before we sent the information to our PHP script.
I ndeed, that is generally a better method of doing such things. However, for the
sake of a tutorial, let's nail it all to PHP.

2. To do this we use the if statement that we met in the selection section,
along with some logical operators and the functions we met in the variables
section to determine that they have a value.

// Check that a username and password have been passed...
if (!isset($username) ~~ empty($username) ~~

! isset($password) ~~ empty($password)) {

// If not tell Flash movie that we've failed and exit
print "&result=Fail&errorMsg=" . urlencode("You need to

supply a username and password");

		

exit;

}

Foundation PHP for Flash

There are two bits of code here we haven't met before. Firstly the isset
and en ty functions are used to check that a given variable exists and has a
value respectively. The other is the exit statement. This statement ends the
PHP script prematurely at the point where it is specified. This is useful, as we
have used it here, when an error has occurred and there's no point in going on.

3. Now we set up a variable that we're going to use to indicate whether a
match was found for the username and password passed into our script from
the Flash movie. This is initially set to false.

// Set a variable so we can indicate
// whether a match was found or not

$matchFound = false;

Now comes the juicy bit - looping through the usernames and
passwords arrays we created earlier to see if we can find a match for the ones
from the Flash movie.

4. We do this using a for loop since we can tell how many iterations (loops)
we're going to need by counting the number of elements in any of the three
arrays.

// Now we loop through each entry in our arrays
// looking for a valid match
for ($count = 0; $count < count($usernames) &&

$matchFound == false; $count++)

// If username and password matches entry...
if ($username == $usernames[$count] && $password =_

$passwords [$count])

// Get the user's message and indicate we've found a
match

	

$message = $messages [$count];

	

$matchFound = true;}}

You'll notice from the above code that we're checking for a combination
of conditions within the for l oop statement. Firstly we're checking to make sure
that our loop control variable $count has not exceeded the total number of
elements in the $usernames array, since we can't check the details against users
we don't have.

Getting started with PHP

Foundation PHP for Flash

However, we're also checking that the value of $matchFound i s still
false. This means that once we've found a match the loop terminates - there's
no point in checking the details against the rest of the users if we already have
a match.

I f a match is found, we copy the value of the relevant element of the
messages array so that we can output it to Flash later. We also set the
$matchFound variable to true so we can break out of the loop.

5. Finally, we check the value of the $matchFound variable so that we can
determine whether a valid username/password combination has been entered.

// If we found a match...
if ($matchFound) {

// Tell movie login was okay and return custom msg
print "&result=Okay&message=" . urlencode($message);

} else {

// Otherwise, tell Flash movie we failed
print "&result=Fail&errorMsg=" . urlencode("No match

found for username/password");
}

?>

Getting started with PHP

That's it! Upload or copy the whole lot to your web server, fire up a browser window and
have fun! Remember, to add users or change passwords, just change them in the array -
it's as easy as that.

In later chapters, you'll learn how to adapt this kind of thing to work with
a database of users, and that's when things will really start to kick off

Foundation PHP for Flash

Summary
We'll kick off the summary with simple truth: the ground we've covered in this chapter is
absolutely massive. I f you've got to this stage, then you should realize that you've already
got a fairly firm grounding in the basics of PHP.

We've discussed:

•

	

Good naming conventions and comments - making your code readable

•

	

Variables, and loading variables from a PHP script into Flash

•

	

Operators and how to use them

•

	

Using statements - selection and iteration

•

	

Arrays, sequential and non-sequential - how to call data from them and sort
them

•

	

Bringing it all together in a practical PHP and Flash application

We've been able to skim through the basics of PHP relatively quickly because of the
si milarity between PHP and ActionScript and because you should already have been
familiar with concepts such as variables, arrays, selection and iteration. All we had to do
was work out how they were used in PHP and identify any quirks!

So, where to next? Well, I don't know about you but I'm off to shove my head in a bucket
of ice and let it cool down for a while. The nature of the content covered in this chapter
was fairly dry, and you may have found it hard going because of that, but like I said, it's
only Chapter 2 and you're well on your way. I'd suggest you give yourself a hearty pat on
the back and take the rest of the day off... you've certainly earned it!

What we'll cover in this chapter

•

	

Introducing functions - essential to writing good, reusable PHP
code

•

	

Passing data to and from, into and out of functions

•

	

Making reference to functions in our code; including external
files

•

	

A fully reusable Tell-a-Friend application

Making PHP
Work for You3

Foundation PHP for Flash

Up until this point we've been writing our scripts in a strictly monolithic fashion. Essentially
this means that all our code has been thrown together in the same section of the same
script. While this is fine for the relatively small scripts that we've written so far, once we
begin to write larger scripts, or even start working on a whole site, it will lead to a lot of
redundant, unmanageable and non-reusable code.

Avoiding these three pitfalls at all costs is the mark of a good PHP developer; so let's take
a quick moment at the start of this chapter to explore why.

• Redundant Code. The word 'redundant' is used a lot when talking about bad
programming practice and has been used in many different contexts to convey
different messages. Of these, the one we're concerned with here is the
unnecessary repetition of code throughout a script.

• Unmanageable Code. Another point against redundant code is the fact that it
can make your code unmanageable. Taking the previous example of a script that
needs to authenticate a username and password at several points throughout
the script, imagine what would happen if we needed to change the way that the
password was validated - we'd have to go through our script and edit every
instance of our verifying code. Unmanageable code is unmaintainable code, and
needs to be avoided!

• Non-Reusable Code. Continuing with our example, imagine that we have
several scripts on our site that need to perform the same username and
password authentication. Each script would have a repeat of the authentication
code, making it both redundant and unmanageable.

You're obviously going to want to stay as far away as possible from these coding
nightmares. Thankfully, PHP provides the ability to create user-defined functions so that
we only have to write code for a particular purpose once, referencing it throughout our
script. PHP also allows us to pull in code from external files, meaning that we can store
code that is common to more than one script in a single file.

Having met and understood this fearsome trio of coding no-nos, it's time to take an in-
depth look at our best defence - the trusty function. Put simply, functions are little
chunks of reusable code that, once defined, can be called upon whenever and wherever
we need them.

Functions in PHP work in pretty much the same way as their ActionScript
counterparts - right down to the syntax used to create and call them. This
similarity exists because believe it or not, both PHP and ActionScript both
have a common ancestor - the C programming language!

I/
just in case you haven't met functions in ActionScript, or any other language for that
matter, we'll spend a paragraph or two recapping on what a function is and what it allows
us to do.

Introducing Functions
Functions help to divide monolithic scripts into parts that are easier to understand and
modify, splitting a big problem into smaller parts. They help to clarify the structure of the
script, avoid code duplication and make it easier to modify the script.

This is basic to any good design. Once you break the general idea into smaller ideas,
l ocating areas of repetition is easier and you can then turn these areas into functions.

OK, so you know what a function is in theory, but if you're still a little mystified as to why
these functions are so useful, I'll draw on personal experience and lead you on a tale of
bikes, yellow stickers and forgetfulness...

I have a motorcycle. It's only a little Peugeot Speedfight 100 but it gets me from A to B
(with an occasional detour to C), and it infuriates the heck out of car drivers when I zip
past them in traffic jams - most satisfying! Anyway, I am forever losing the keys for my
little scooter, resulting in an almost daily hunt the keys session.

Now, I could solve the problem by making 20 copies of the keys and dotting them all over
the house - I'd be sure to stumble across a copy within a few minutes of searching.
However, if I ever need to change my keys (perhaps when I get myself a nice new Ducatti
1100) I will have to change all 20 copies of my keys too.

A better solution would be to have a single set of keys and to constantly store them on
the key-rack by my front door. Then I could dot some yellow sticky notes around the
house telling me that my keys are on the key-rack by the front door. That way, when I find
one of these notes I go straight to the key-rack and pick up my keys. If I ever need to
change the keys I don't need to change the notes, since the notes just tell me where I can
find my keys!

Making PHP Work for You

Foundation PHP for Flash

This is the basic idea behind functions, storing a piece of code to fulfil a
purpose (the keys) in a single place and then referencing it throughout
our code (the sticky notes).

So now you know what functions do (and what kind of bike I have) let's see how they
work. Here's the procedure for creating a function in PHP:

function functionName([parameters]) {
statements

As with a lot of the elements of the PHP language we've met so far, this is exactly the same
as the syntax for creating functions in ActionScript, so it might be pretty familiar to you if
you're already a Flash user.

A simple function in PHP might look something like:

function outputName() {
echo "My name is Steve Webster.";

echo "I'll tell you my name.
\n";
outputName O ;

This obviously isn't too useful a function since all it does is print a name, but it does give
you a simple look at a real PHP function. The last line of the above code is an example of
how to call a function. This is done simply by using the name we gave the function earlier
in the script, followed by a pair of parentheses, with a semi-colon to finish off the line.

When the function is called, or invoked, execution passes to the first statement in the
function. The statements inside the function execute as normal until either the end of the
function or until the return keyword is encountered. At this point the execution passes
back to the next statement after the function call.

It's like that detour to C on the A to B journey through a script or page. When the PHP
processor hits the function, it heads off at a tangent to fulfil the function step by step, and
then comes back once the function has been completed and carries on with the rest of
the page.

We can visualize this using the diagram below:

PE

Foundation PHP for Flash

Variable Scope
With the introduction of functions into our scripts, we encounter the issue of variable
scope. The scope of a variable determines which parts of the script have access to it.

Until now, all the variables we've used are what are known as global variables, meaning
that they are accessible throughout the script. However, variables that are created inside
a function have limited scope and are only accessible within the function itself, and these
are known as local variables.

Moreover - and though you might not think it - variables that exist outside of the function
(global variables) are not automatically accessible within our functions. This was
introduced to combat the security implications of automatically creating global variables
from data passed in via GET and POST.

The distinctly non-global nature of global variables can be illustrated with the following
piece of code:

function increment() {
$number++;

$number = 1;

echo $number . "
";

	

// Will print 1
increment();
echo $number . "
";

	

// Will print 1

Because the $number variable is not visible inside the increment function, it is not
i ncremented as we might expect it to be. Instead, a new $number variable is created
locally to the increment function, and it is this variable which is incremented, leaving our
global variable untouched!

All is not lost however, and we can access global variables from within our functions by
specifying them within the function preceded by the global keyword. We could rewrite
the previous piece of code to take advantage of this feature:

function increment({
global $number;

$number++;

$number = 1;

echo $number . "
";

	

// Will print 1

increment O;
echo $number . "
";

	

// Will print 2

We could also have accessed the global $number variable by using the built-in $GLOSS

array. This array holds all of the script's global variables and allows us to manipulate them
without having to use the global keyword.

function increment() {
$GLOBALS['number']++;

$number = 1;

echo $number

	

"
";

	

// Will print 1
increment();
echo $number

	

"
";

	

// Will print 2

Obviously the sample functions presented here are not necessarily the most useful, but
they're just to illustrate the techniques that you will need as a PHP designer.

Variable Lifetime
Like all things on our wonderful planet, variables have a lifetime, and when that lifetime
is over, they cease to exist. Unlike the aforementioned planet dwellers though, the lifetime
of a variable is governed not by the passage of time but by when the variable goes out of
scope.

This whole concept can be made a little easier if we look at a piece of code.

function updateCount() {
$count++;
print "Count: $count
\n";

updateCount(); // Will print "Count: 1"
updateCount(); // Will print "Count: 1"

I f you look at the code above, it doesn't matter how many times we call the updateCount

function, the output will always be the same. This may seem a little strange until you
realize that at the end of the updateCount function, the local $count variable goes out
of scope and dies. When the function is called again, a fresh $count variable is created.

Making PHP Work for You

Foundation PHP for Flash

We can force PHP to remember the value of certain variables by specifying the variable
name with the static keyword.

function updateCount() {
static $count = 0;

$count++;
print "Count: $count
\n";

updateCount(); // Will print "Count: 1"
updateCount(); // Will print "Count: 2"

You can see from the above code that this time $count retains its value between function
calls (although it is still a local variable and not accessible outside the function). What
happens is that the first time updatecount is called, $count i s initialized to 0, and on
subsequent calls this initialization is passed over. However, you have to remember that the
now static $count variable will only retain its value during the execution of the whole
script. If the script is reloaded then the $count variable will again be initialized to 0.

Passing Data to Functions
The example given above shows a simple function that doesn't take any arguments. While
this is still useful, functions really start to come into their own when we can pass
information to them.

Passing arguments is really passing information. When variables are listed
in a function definition they are known as parameters and they tell PHP
what information the function expects. When the function is called in the
script, data is passed using arguments (which is just another name for the
bits between the parentheses)

	

J

To pass information we use the parameters part of the function definition syntax. Here,
as in ActionScript, all we do is list the information we want to be passed in the form of
variable names. We can then use these variable names inside our function to reference the
information passed in.

function outputDetails($name, $jobTitle, $age) {
print "Your name is $name, you are a $jobTitle and you

are $age years old
\n";

outputDetails("Steve Webster", "PHP Guru", 22);
outputDetails("Alan McCann", "Content Architect", 23);

You can see the benefits of being able to pass data into functions by looking at the above
code. By making the name and age parts of the output dependent on the arguments of
the function, we can change the output by changing the arguments we feed to the
function in the function call.

Returning Data from Functions
As well as being able to pass data into our functions, we can return information from
them. This is accomplished by using the return keyword, followed by the value we want
to return (or the variable name that contains that value).

For example, a function to square a number could look like:

function square($number)
return $number * $number;

echo "4 squared = " . square (4) . "
\n";// 16
echo "10 squared = " . square(10) . "
\n";

	

// 100

The square function takes the data passed in via the $number parameter, squares the
number by multiplying it by itself, and returns the result. This means that we can pass this
function any number and it will return that number's square.

Making PHP Work for You

Foundation PHP for Flash

The return keyword can be used anywhere in the function and causes the exiting of the
function at that point. In addition, we can have multiple return statements in a function,
and this is often used with the selection statements to indicate the success or failure of
an operation.

But, because of the fact that execution of a function is aborted when a return keyword
is encountered, we are restricted to a single active return statement in a function, and thus
restricted to a single return value. As a workaround, we could use an array as a return
value in order to allow us to return more than a single value. For example, a function that
will both double and square an argument could look like:

function doubleAndSquare($number) {
$returnArray(`double'] = $number * 2;
$returnArray['square'] = $number * $number;

return $returnArray;

$values = doubleAndSquare(5);
print "Doubled: " . $values['double']

	

"
\n"; // 10
print "Squared: " . $values['square'] . "
\n"; // 25

Using this technique, we can return as much information from a function as possible.
However, returning data in the form of an array may not always be practical. In the next
section we'll look at a way of having data from within the function available outside of it.

Passing Data by Reference
By default, all arguments are passed by value. This means that a copy is made of any
variable used as an argument to a function. This ensures that playing around with the
variable inside the function will not affect the value in the original.

I f we do want the function to be able to play with the value in our global variables then
we need to pass them by reference. We specify this by using an ampersand in front of the
variable name in the parameter list:

function doubleAndSquare($number, &$double, &$square) {
$double - $number * 2;
$square - $number * $number;

$valueDouble - 0;
$valueSquare - 0;

doubleAndSquare(5, $valueDouble, $valueSquare);
print "Doubled: " . $valueDouble . "\n";

	

// 10
print "Squared: " . $valueSquare

	

"\n";

	

// 25

Making PHP Work for You

Notice that the ampersand is only placed before the variable names in the list of
parameters for a function (in the function definition) and not in the list of arguments
(where the function is invoked).

Passing by reference allows us to modify the value of global or other variables to which
the function does not have direct access. This isn't possible with the standard way of
passing information since this means that a copy of the variable is just made. Any
modifications are applied to the copy and then thrown away when the function ends.
References allow us to get around this.

There are a couple of ideals you should try and conform to when creating
functions. Firstly, a function should only complete a single purpose, and
its name should reflect that purpose without being too long-winded -
remember our conventions from Chapter 2. It should have strong
cohesion, meaning that all the internal operations should be closely
related - geared towards completing a single operation. Plus they should
not be strongly related to, or heavily dependent on, other functions,a
technique known as loose coupling. By having strong cohesion and loose
coupling we make our code as reusable and easy to maintain as possible.

Including External Files
I n addition to writing commonly used code into functions, it would be handy if we could
put these functions in an external file and add them into our scripts when we want to use
them. If you have ever designed a web page in HTML and have used Cascading Style
Sheets, you might have used a similar technique to reference the style file in every page
throughout your site.

PHP provides two functions for including external files in our PHP scripts, called include
and require. Both functions take a filename to include as a single argument and, in PHP4,

Foundation PHP for Flash

they now both operate in much the same way. The main difference between include and
require is that include is evaluated every time it is encountered (at every iteration of a
loop) at runtime, while require is evaluated only once at the pre-processor stage.

I n both cases, the file specified is assumed to be a standard HTML file, so we'll still have
to use our PHP tags when we're specifying common code.

The syntax for the functions is:

require(filename);
include(filename);

Let's take a look at the include function in action...

File ccmmon.php - this will be our included file:

<?
function square ($number) {

return $number * $number;

File includetest.php - this will pull in the cc®moon.php script and use it to call the
square function

include ("ccmmion.php");
echo "4 squared = "

	

square (4)

Here we specify the square function in the common.php file, and include that in our
includetest.php file using the include function. This allows us to use the square

function in our code as though it was a normal function defined in the includetest.php

file.

As stated previously, in PHP4 it pretty much doesn't matter which of these two we use to
include our common code. However, the rest of this book favors the include function as
i t has the same name as a similar function in ActionScript.

Making PHP Work for You

So there we have it - the code in its isolated form, and yet we can't really be said to have
applied it to anything that allows us to do anything dramatically different from the
previous chapter. We just know how to do things in a more efficient way. Now don't get
me wrong - this is a supremely important thing to do. Efficiency is nine-tenths of the law

Q Foundation PHP for Flash

102

in programming. But wouldn't it be nice just to get our hands on a little sample
application?

Tell Your Friends
Oh, go on then. So, what are we going to build? My answer to this is a site
recommendation system. Put simply, we're going to build one of those Tell-a-Friend
utilities that seldom make an appearance on Flash based sites. A visitor fills out this form
with their details and the details of a friend that they want to tell about the site. When the
data is submitted, an email is sent to the friend telling them all about how great the site
i s and to go take a look.

You're probably getting quite used to this by now, but before we set out building this
application let's look at where we're headed.

Obviously in addition to the screens shown above we're going to have an email being sent
out to the friend.

Building the Tell-A-Friend Interface

As usual, we're going to start out by building the Flash front-end for the site.

1. Create a new movie clip by selecting Insert > New Symbol from the main menu
or by pressing CTRL+F8. Give it a suitable name - like the one shown overleaf -
and hit the OK button.

2. Next we need to create the layer and frame structure for the sections of the
movie clip. As in the previous chapter, just follow my screenshots, remembering
to add in the all-important ActionScript.

3. For the sake of continuity I've
carried on using the same
style from previous examples,
so as you've already seen, this
i s what my Window BG layer
looks like:

Making PHP Work for You

104

Foundation PHP for Flash

4. On the Data Entry frame of the Section Items layer we're going to need some
textboxes so that we've got somewhere to enter the data. It's also nice to have
some text explaining what the form is for.

7. Now we come to the Loading
frame. I have used the same clock
face animation as in the
Download Registration Form
example in Chapter 1.

Making PHP Work for You

5. We're also going to need some kind of a submit button that'll call
loadVariables and send our movie clip to the Loading frame. All I've done is
to copy the button from the previous example, changing the text and the code
attached to it.

6. You can see from the screenshot below that I've added code to stop the form
being submitted if any of the text boxes have not been filled in, and that we're
sending the variables from the Flash movie using the POST method.

8. Lastly, we need to construct the final section of our movie clip - the Thank you
section. What we need here is a multiline text box to display the response from
the PHP script, and a Back button so the user can go back and recommend
more friends!

9. Study the diagram below and recreate the main points:

The only thing left is the onclipEvent handler to our movie clip instance on
the main stage to get it to go to the Display frame when data is received.

10. Return to the main timeline and select the instance of our movie clip. If the
Actions window is not already visible then make it so by right clicking on our
movie clip and selecting Actions. Enter the following code:

Making PHP Work for You

Adding the PHP Script

Now we've got the skeleton of the project, let's flesh out the Flash.

1. We'll kick off the script by initializing a few variables that we might want to
change from time to time.

// tellafriend.php

$siteName = "Foundation PHP for Flash";
$siteURL = "http://www.phpforflash.com";
$siteContact = "admin®phpforflash.com ";

2. Next, we'll construct the e-mail message using the variables we've been passed
from the Flash movie. In this piece of code we take advantage of the fact that,
when assigning a string value to a variable, we can span that string over multiple
lines, and have all the line breaks included in the string.

$mailMessage = "Hello $recipientName,

$senderName ($senderEmail) came across the $siteName
website at
$siteURL and though that you might like to take a look for
yourself!

$senderName also left the following additional comments
for you:

continues overleaf

http://www.phpforflash.com
http://phpforflash.com

Foundation PHP for Flash

$comments;

If you believe you have received this email in error then
please
contact $siteContact and let us know!

Also, please note that we cannot be held responsible for
the comments
added by the sender.

3. Now we're going to build up the variables for sending the e-mail. This is simply
a case of things like a properly formed To and From field, as well as a Subject
for the e-mail.

// Build up e-mail header fields
$mailFrom = "From: $siteName <$siteContact>";
$mailTo = "$recipientName <$recipientEmail>";
$mailSubject = "Recommendation from $senderName";

Making PHP Work for You

4. Next, we're going to send the e-mail using the mail function.

// Send e-mail
mail($mailTo, $mailSubject, $mailMessage, $mailFrom);

mail (to, subject, message [, additional headers])

This function basically attempts to send an e-mail to the e-mail address
specified in to with a subject of subject and a body of message. The
optional additional_headers part allows you to set things like the
From address, as we'll see later in this example.

5. Finally, we send our response back to the Flash movie.

$response = "Thank you $senderName,\n\nYour recommendation
has been send to $recipientName at $recipientEmail.";

// Respond to Flash movie!
print "&result=Okay&response=$response&";

Try it out and tell all your friends about us!

Fulil

Foundation PHP for Flash

Summary
This chapter was all about learning how to program good, reusable and maintainable PHP
scripts. It is important from the outset to get used to writing your scripts with the topics
covered in this chapter in mind, as this will save you a lot of time when you come to
update your scripts.

We've explored:

•

	

Functions and reusable, maintainable code

•

	

How functions affect variables and their scope and lifetime

•

	

Passing data in and out of functions

•

	

I ncluding external files

As a bonus, you've now got a Tell-a-Friend movie clip that you can include in any site -
now that's what I call reusable!

Now that you've finished this chapter, I'd suggest you go and take a breather. Go out for
a walk, sit in the garden teasing the dog, or just collapse in front of the TV - anything but
sit in front of your computer reading this book. When you come back you'll be fully
refreshed and eager to tackle the next chapter!

4 PHP and
I nformation
Handling

What we'll cover in this chapter:

•

	

The basics of using strings in PHP

•

	

Joining strings together and using variables in strings

•

	

The most important and useful string-related functions

•

	

Building a simple but effective text highlighting application

Foundation PHP for Flash

At some point or another in our scripts, we're going to want to be able to analyze and
manipulate strings. We've already touched upon strings briefly at various points in the
previous chapters, but in this chapter we're going to roll up our sleeves and get down and
dirty with them! We'll be looking at how we can convert our strings into a given format,
as well as some of the string manipulation functions available to us in PHP.

Rather surprisingly, there's a lot more to strings than initially meets the eye. We've already
got the basics pinned down - namely that we can use strings in our scripts to store textual
information - and we've already seen some examples of strings in action in earlier
chapters. Adding to your familiarity with strings we'll see that strings are also available to
use in ActionScript and, although their implementation and use is quite different from
PHP, you'll at least have an understanding of the concept of strings and the kinds of
operations that can be performed on them.

Once we've covered the basics of strings in PHP, we'll move on to looking at string
manipulation functions. PHP provides a multitude of string manipulation functions - some
totally obscure that I've never found a use for, and others so useful that life without them
would be unbearable! Well, okay ... maybe not quite that bad, but it would make our lives
as web designers a heck of a lot harder without them.

OK, enough chit-chat from me - let's get those strings in tune!

The Basics
A string is basically a series of characters, textual data if you will... In PHP, there is no
practical limit on the length of your strings, and you can shove as much information into
them as you like, although your hosting company may not thank you for gobbling up all
their RAM if you decide to test that theory.

I n PHP, a string is anything between a pair of matching single or double quotes.

"This is a string"

` So is this!'

It's worth noting, however, that the quotes must be a matching pair or PHP will throw a
wobbly! This is a common error to make when you're first starting out coding with PHP,
and we've all done it at sometime or another.

PHP and Information Handling

Single quoted strings are slightly more efficient in terms of their operation
because PHP doesn't have to process them for a multitude of special
characters or perform variable expansion in them, so use them wherever
you can. ifyou're required to output such fanciful things as variable values
or want to make use of escape sequences (which we'll come to later) then
you'll need to use a double quoted string!

Under normal circumstances, when PHP encounters a matching quote to that which was
at the beginning of the string it will assume that the end of the string has been reached,
and process anything afterwards as normal PHP code. This obviously presents a problem
if we want to include these characters within our strings, but thankfully a workaround is
provided.

Character Escaping
I f you have a look at the two strings listed below, you can see examples of the kinds of
problems we could come across when dealing with quotations in strings.

$stringl = "Why won't "this" work?";

$string2 = `Why won't this work?';

I n the first string, the single quote being used as an apostrophe in the word won't doesn't

cause any problems since the string is using double quotes as its delimiters. The error in
this particular string is contained in the double quotes surrounding the word this. When

PHP encounters the first double quote after the start of the string, as far as it's concerned
that's the end of the string. As a result of this, the word this becomes a bunch of junk
characters that PHP doesn't understand.

In the second string, unlike the first, we've got a problem with the single quote being used
as an apostrophe in the word won' t. Again, this turns the characters after it into
incomprehensible junk that'll generate an error if used in a script.

In order to have quotation marks, and certain other special characters, as part of our
strings we need to precede them with the backslash character - a technique known as
character escaping. Take a look at the strings below to see escaping in operation.

i
$stringl = "This one \"will\" work!";

$string2 = `So will \`this\' one!';

HM

Foundation PHP for Flash l

By escaping each of the troublesome characters with a backslash we've created a pair of
valid and trouble-free strings.

Joining Strings Together
We met the string concatenation operator back in Chapter 2 but it's worth revisiting it
here to view it in context. One or more strings can be concatenated (or joined) using the
string concatenation operator - a simple full stop or period (.).

$firstName = "Steve";
$1astName = "Webster";

$fullName = $firstName . ` ` . $lastName;;
echo $fullName; // Prints "Steve Webster"

The above piece of code takes the values of the $firstName and $1astName variables,
concatenates them with a space in between (denoted by ' ') and stores the resultant
value in the $fullName variable. The value of $fullName at the end of this code will be
"Steve Webster", and this is a relatively common operation to perform on user data.

PHP and Information Handling

Using Variables in Strings

PHP allows us to include the values of variables inside double quoted strings. This means
that we don't have to use the concatenation operator in simple operations such as the one
outlined above.

For example, the following two lines of code will produce the same value in the
$fullName variable...

$firstName = "Steve";
$lastName = "Webster";

$fullName = $firstName . ` ` . $lastName;
$fullName = "$firstName $lastName";

echo $fullName; // Will print "Steve Webster"

Basically, what PHP does when it encounters the $ character in a double-quoted string is
encase everything immediately after to form a valid variable name. In order to explicitly
specify the end of a variable name in the string we'll need to enclose the entire variable
name, including the s, i n curly braces.

$drink = "ED Cola";

echo "I think $drink's great" . "
\n",
echo "I need to get some chilled $drinks from the shop" .
1-"
\n";
echo "I have many {$drink}s every day" . "
\n";

Foundation PHP for Flash l
The first echo statement will produce the
expected output since the single quote
character cannot be part of a valid variable
name.

The second one will not, however, because PHP treats the 's' on the end of $drink as part
of the variable name. Since $drinks i s not defined, the output will look like this:

I need to get some chilled from the shop

This problem is solved in the last echo statement by encasing the variable name in curly
braces.

The PHP processor handles double and single quoted strings differently. The main
difference is that PHP will interpret double quoted strings, while single quoted strings are
treated almost exactly as written.

For example, what we failed to mention when we previously covered the escaping
technique was that we can insert many special characters into our strings by escaping

PHP and Information Handling

certain other characters. This allows us to represent characters that cannot be represented
visually (non-printable characters) such as carriage-return and tab. Take a look at the table
below to see some of the possibilities.

Sequence

	

Translated to...
\n

	

Linefeed (LF)
\r

	

Carriage Return (CR)
\t

	

Horizontal Tab
\\

	

Backslash character
\$

	

Dollar sign

Note that, because the backslash and dollar signs have special meanings
within a string, they need to be escaped in order to obtain the desired
result, even though they can be represented visually in the source file.

However, these escape sequences are only translated when used in double quoted strings.
This is because their single quoted counterparts aren't processed for this kind of
information. The only exceptions to this rule are the escaped single quotes we met earlier
and the escaped backslash.

Let's look at an example and all should become clear...

echo "Line1\nLine2\nLine3";

echo `Line1\nLine2\nLine3';

The first print statement will give us the output we expect:

Linel
Line2
Line3

Note, as mentioned in Chapter 2, these linefeeds will not show up in your
browser (but do work when passed into Flash) and so if you test the
following through a browser you'll only see spaces between the text not
line breaks!

However, since \n has no special meaning inside of a single quoted string, the output will
be given exactly as written:

Linel \nLine2\nLine3

The moral of the story is to use the right quotes for the right job!

String Related Functions
At the time of writing, PHP has 72 string related functions, and there's no way we're going
to be able to cover them all here - it would be such a stupidly long and boring chapter
that hospitals could use it as cheap anaesthetic. Instead, we're going to be concentrating
on the most useful functions, as these are the ones you'll find yourself needing to use most
often.

For those who want to know how to do such wildly quirky things as
calculating the Levenshtein distance between two strings, you can find a
complete list of PHP's string functions either online at www.php.net or in
the electronic manual supplied with PHP.

i

print() and echo()
The print and echo functions take exactly the same arguments and perform exactly the
same operation as one another.

print (string)
echo (string)

They take the string and output it to the client (namely the web browser). In use, they
might look something like this:

print('This is output to the client');
echo("Welcome back $firstName");

PHP and Information Handling

Because the string being passed to the print function requires no processing with regards
to special characters or variables, we have encased it in single quotes. Similarly, because
we want to insert the value of the variable $firstName i n the string passed to the echo

function, we need to encase it in double quotes.

An interesting point to note is that neither print nor echo are strictly functions, they are
language constructs. This means that they can happily be used without the parentheses.

print "Welcome back $firstname";
echo `This is output to the client';

As with naming conventions, it is best to pick one style and stick with it throughout your
scripts. You'll save yourself a lot of hassle and your scripts will be easier to read too.

printf() and sprintf()
The printf and sprintf functions allow us to produce a string that is formatted
according to a set of instructions. Their operation differs slightly in that printf will output
the resultant string to the client, returning true or false depending upon the success of
the operation, while sprintf returns the resultant string without printing it to the client,
so that it can be stored in a variable or used in an expression.

printf(foxmat string [, args...]);

sprintf(format string [, args...]);

We use the format string to give the function our instructions for formatting the list of
arguments (args) i n the resultant string. It will generally contain a mixture of standard
characters, which are included in the resultant string as they are written, and something
known as conversion specifications that actually do the job of formatting the arguments.

A conversion specification begins with a "%" followed by up to five specifiers. They are,
from left to right:

• An optional padding specifier that says what character will be used for padding
the results to the right string size. This may be a space character or a 0 (zero
character). The default is to pad with spaces. An alternate padding character can
be specified by prefixing it with a single quote mark.

• An optional alignment specifier that says if the result should be left-justified or
right-justified. The default is right-justified; a "-" character here will make it left-
justified.

•

	

An optional width specifier - a number that says how many characters
(minimum) this conversion should result in.

Foundation PHP for Flash l
• An optional precision specifier that says how many decimal digits should be

displayed for floating-point numbers. This option has no effect for other types
than double. (Another function useful for formatting numbers is number format.)

•

	

A type specifier says how argument data should be treated. A partial list of the
most commonly used type specifiers is given below:

%

	

a literal percent character. No argument is required.

d

	

the argument is treated as an integer, and presented as a signed
decimal number.

u

	

the argument is treated as an integer, and presented as an unsigned
decimal number.

f

	

the argument is treated as a double, and presented as a floating-point
number.

s

	

the argument is treated as, and presented as, a string.

A typical statement without using printf might look something like the following:

$month = 1;
$day = 7;
$year = 2042;

echo "$month/$day/$year";

The above piece of code would output the date represented by the variables in the
m/d/yyyy format:

1/7/2042

PHP and I nformation Handling

However, we may want to show the date in mm/dd/yyyy format which is where the
printf function comes into play. If we swapped the echo line above for the following
printf function call we'd get the desired output.

printf("%02d/%02d/%d", $month, $day, $year);

This will output

01/07/2042

This shows how printf and sprintf can be used to accomplish things that would
otherwise be near-impossible or just down right annoying. We're using the optional width
specifier in the conversion specifications for the $day and $month variables to ensure that
the resultant string has at least two characters for each, padding them with a zero if
necessary.

4

Foundation PHP for Flash

I f we wanted to store the nicely formatted output in a string then we'd use the sprintf

function.

$month = 1;
$day = 7;
$year = 2042;

$date = sprintf("%02d/%02d/%d", $month, $day, $year);

// Will print 01/07/2042
echo $date;

Although we're going to end our discussion of printf and sprintf here, you'll find them
cropping up in a few of the examples later on in the book.

urlencodep
Along with the basic output functions we've met already, urlencode i s going to be one
of the most constant features of our scripts. We've seen this already in previous chapters
and the format looks something like:

urlencode(string);

What this does is take all non-alphanumeric characters, with the exception of "-", "_" and
' .' in the string, and replaces them with a % symbol followed by two hex digits. In
addition, spaces are swapped for the "+" character.

This is a format known as application/x-www-form-urlencoded and is used for the
information passed between a web browser and a server-side script such as PHP. It allows
special characters to be passed as they were intended instead of being interpreted and
processed by either the web browser or server software.

The function also returns the urlencoded version as a string, which can
then be passed around (or into Flash as we saw in Chapter 1).

An example may clear things up a little:

$myString = "Hello isn't PHP just wicked?";
echo urlencode($myString);

The above piece of code will produce the following output:

Hello+isn%27t+PHP+just+wicked%3F

PHP and Information Handling

Foundation PHP for Flash

You can see that the spaces have been replaced with the "+-- character and special
characters such as the apostrophe and question mark have been translated into some kind
of cryptic code. This may look like scribbledehobble to us, but the web browser and (more
i mportantly from our point of view) Flash understand this just fine!

urlencode has a partner function, urldecode, which performs exactly the same
operation, only in reverse. There are also two related functions called rawurlencode and
rawuridecode, that are essentially the same except they translate spaces into a % symbol
followed by two hex digits (%20).

You might have seen %20 in action if you've ever been to a web page
where the owner has used a space in the file name or address!

The earlier string encoded with rawurlencode would look like:

Hello%20isn%27t%20PHP%20just%20wicked%3F

explode()
This rather smashing function splits a string into an array, using another string to specify
the boundaries at which to split it.

explode(separator, string [, limit]);

The string i s split at the separator, with each substring becoming an element of the
array returned. The optional limit argument allows you to specify the maximum number
of elements in the returned array, with the final element containing the portion of string

not split.

The following example is similar to the one that appears in the PHP manual, and has been
used here both because it is an extremely fitting example and because I have a massive
pizza fetish!

$pizza = "piecel piece2 piece3 piece4";

$pieces = explode(`

	

$pizza);

As you've probably guessed, $pieces ends up as an array with 4 elements once the
$pizza string has been exploded using a single space as the separator.

It's worth noting that each space character is thrown away in this operation, and does not
appear in any of the array elements. Also note that the original string ($pizza) is not
modified in any way, shape or form by explode.

PHP and Information Handling

i mplode()

The explode function's partner in crime is called (unsurprisingly) implode.

implode(glue, pieces);

...where the glue is a string value and the pieces represent an array. This function joins
all the elements of the array pieces together, inserting glue in between each to form the
returned string.

As an example, we could put the formerly split string back together again using the
i

	

following code.
ft

$newPizza = implode(' `, $pieces);

Well that example was purely theoretical because those four pieces of pizza have already
been eaten by me and my editors!

These two functions together are useful for storing an array of
information as a single string and then getting is back out again. It's use
is really shown in Chapter 7, where implode allows us to store all the
information about a given user on a single line, and explode let's us get
at the individual bits again

I/

im

Foundation PHP for Flash l
substrp

The substr function will return part of a given string based on the information passed in
i ts arguments. Let's take a look at the prototype:

substr(source, start [,length]);

Here, source i s the string to be parsed, start i s the position at which to begin the
returned string, and the optional length specifies the end of the returned string - note
that the latter two need to be integers.

It is also important to note that the first character in any given string is at
position 0 rather than 1.

In its simplest form, this function in use would look something like the following:

$fullName = "Steve Webster";
echo substr($fullName, 6); // Will print: Webster

Bringing into play the length argument, we could change this to:

$fullName = "Steve Webster";
echo substr($fullName, 6, 3); // Will print: Web

PHP and Information Handling

I f length i s negative, substr will count backwards from the end of the source string.

$fullName = "Steve Webster";
echo substr($fullName, 6, -5); // Will print: We

In practice, substr can be used to chop a sting down into something
more manageable. For example, if we had an FLA where we have a text
box that'll only display roughly 50 characters because of it's size then we
can use substr to give us the first 50 characters of a given string to be
put in there. This is useful for giving a quick snippet of a piece of
information, and can be used in conjunction with a More... button to
show the full string.

[K]

Foundation PHP for Flash

strlen()
This function simply returns the number of characters in a given string (answering that
age old question of how long is a piece of string).

strlen(atring);

This is actually a very useful function and can be used to check the length
of data being sent to PHP before we attempt to insert it, for example, into
a database.

I/

strstr()
This function will search for one string inside of another.

strstr(hayatack, needle);

The function returns the substring of haystack from the first occurrence of needle to
the end. If no match is found it returns false.

This function also has a case insensitive relative called stristr. We use these last two
functions later on in the chapter.

Searching for one string within another is invaluable and can be used for
search engines as well as for validating input!

J

str replace()
This function is used to perform search and replace operations on a string.

str replace(needle, replacement, haystack);

str replace will replace all occurrences of needle in string haystack with
replacement. The resultant string is returned, but haystack i s not modified in this
operation.

Let's take a look at an example:

$text = "The cow jumped over the moon";
echo "Before: $text
\n";

t $text = str replace("cow", "troll", $text);
echo "After: $text
\n";

Try this out and your browser should look like the one in the screenshot:

PHP and Information Handling

Foundation PHP for Flash

$replacement =
"cookie monster";

This is an extremely useful function for weeding out particular words,
phrases, or variables. You could even use it to replace swear words with
asterisks!

,11

strtolower() and strtoupper()

These two functions both take a single string argument and return a modified version of
that string. They look roughly like this:

strtolower(source);

strtoupper(source);

I n the case of strtolower, all the alphabetical characters in the string source are
converted to lowercase. I won't insult your intelligence by explaining what strtoupper
does!

Both of these functions are available as methods of the string class in ActionScript, so you
should be somewhat familiar with their operation already!

Let's take a look at what they'll do to a string...

$string = "Friends of ED";

$string = strtolower($string);

// Will print friends of ed
echo $string . "
\n",

$string = strtoupper($string);

// Will print FRIENDS OF ED
echo $string;

PHP and Information Handling

4 Foundation PHP for Flash

The main use I've found for these functions is when checking for e-mail
addresses already present in a mailing list or user registration application.
Since the regular string comparison using the == operator is case-
sensitive, we need to find a way of making sure that everything is in the
same case when checking for things such as this. This is because
steve@codejunkie.co.uk and Steve@codejunkie.co.uk are actually
different strings but they'll both send email to the same account because
e-mail addresses are not case-sensitive. By using strtolower on the e-
mail address we can solve this problem!

stripslashesO
The default installation of PHP has a configuration option set that will automatically escape
any special characters that comes from either POST or GET methods, or via a cookie.
Because of this we either need a way of removing these backslashes from our strings, or
we have to program our way around the fact that these backslashes are going to be there.

Thankfully, PHP provides us with a function that will remove these slashes so we can go
about our normal business. The final function we're going to cover in this chapter simply
goes like this:

stripslashes(source);

This function simply takes our source string, strips out all the slashes, and returns the
resultant string. The original source string is not modified in any way.

A Simple Text Highlighter
Well, it's sample application time again. For the purposes of demonstrating the
i nformation garnered in this chapter we're going to build a fairly simple text based search
application. This will employ some of the features discussed in this chapter, and include
others we'll meet later in the book - especially in the three case studies.

Let's take a look at what we'll be building...

mailto:steve@codejunkie.co.uk
mailto:Steve@codejunkie.co.uk

PHP and Information Handling

What we'll be doing is using PHP to highlight all occurrences of the string given by
criteria i n the source string. We'll then store the result in result.

We're going to make the structure of the FLA far simpler than previous ones, creating
everything on the main timeline, and in a single frame, rather than encapsulating
everything in a movie clip.

I f you're hungry for more movie clip action then fear not - we'll be creating two of them
in the next chapter! For now, let's see some more of those string functions...

1. With no movie clip to create, the first thing we should do is to set out the layer
and frame structure.

4 Foundation PHP for Flash

I've just used separate layers as usual for the movie background and the various
form elements.

2. After creating whatever styling you feel like on the Window BG layer it's time
to create the form elements. Use the diagram below as a guide:

The important thing not to miss out here is to ensure that the HTML check box
is checked for the result text box. This is because we're going to use HTML
tags to highlight any matches found.

3. The final step on the Flash side is to add the code for the Go button.

Here we're setting result to show the user that we're in the process of loading
their data, and then calling the loadVariables function to send information
to, and fetch information from, the PHP script.

4. That's it for the Flash movie, and the PHP script is so simple that it really
demonstrates the power of the string functions available to us with this scripting
language.

// highlight.php
// Chapter 4 - Foundation PHP for Flash

// Perform search and replace
$result = str_replace($criteria, "$criteria",

$source);

// Output result to Flash
print "&result=" . urlencode($result);

?>

PHP and Information Handling

You can see that we're using the str_replace function to replace each
occurrence of the value of the $criteria variable passed in from Flash in the
variable $source. What we're replacing $criteria with is actually $criteria

i tself surrounded by HTML bold tags - ... - meaning that the word is
highlighted when returned and displayed in Flash!

HiLl

Foundation PHP for Flash l

Summary
So there we have it. That's enough specialist information about strings to keep a
professional tennis player in rackets! We've looked at some really important and
fundamental PHP principles here, and by this stage you should be comfortable with them.

We've looked at:

•

	

Strings and how they are constructed

•

	

The convenience of character escaping

•

	

How to join strings together

•

	

Using variables in strings

•

	

The most important string-related functions

Finally, as usual, we flexed our PHP muscles a little with an exercise and believe me this
kind of practice will stand you in good stead for your PHP future!

5 Looking for
Patterns

What we'll cover in this chapter

•

	

What a regular expression is, in its simplest form

•

	

How we can advance things a little for better results

•

	

PHP functions that make regular expressions more powerful

•

	

How to make simple and advanced search applications

M

Foundation PHP for Flash

Okay, now you should be feeling that we're really getting on, and we're now going to be
steering the good ship PHP out into some deep blue water. In this next chapter we're going
to take a look at regular expressions, and we'll check out exactly what kind of
manipulation they perform on our strings.

Simply speaking, regular expressions provide a way to match patterns in our strings. We
can start simply by selecting a particular letter (I don't know, say, "a") to match. Or we can
get a bit more adventurous and match a whole range of letters or even non-letters. It
depends on how brave we are feeling, or how complex our programming needs to be.

Let's dip our toes in the deep end for a moment - without diving in quite yet. Have a look
at the expression below which, believe it or not, is a regular expression for checking the
validity of an e-mail address (You don't need me to tell you how useful this could be).

'([a-zA-ZO-9. -]+)®([a-zA-ZO-9-])+(\. (a-zA-ZO-9-]+)+$

See what I mean? But we're not going to hide from them here. We're going to tackle them
head on and by the time we've finished this section you should be able to understand
exactly what's going on in there and why it works. Honestly!

Despite their top-of-the-range, supercode appearance, regular expressions by themselves
are pretty useless without functions. It is the functions that take them and apply them to
our strings, and towards the end of this section we'll have a look at the most useful of
PHP's regular expression functions and how we can use them in our scripts.

Basic Pattern Matching
First, however, we need to know how to build regular expressions in the first place! Whole
books have been dedicated to the theory and construction of regular expressions so don't
expect to become a guru of them overnight, or indeed in the course of this section.
Regular expressions take quite a while to learn, but once you've got the basics down you
can pick the rest up as you go along!

Before we go anywhere, you need to be aware that we specify regular expressions in PHP
as strings, passing them to functions to perform the required operations. This is quite
different to languages such as Perl where regular expressions are part of the constructs of
the language.

Let's kick things off with a discussion of the basics. A regular expression is essentially a
pattern that describes the nature of the string we're trying to find. I t's similar to how you
might search for a word in a text document. The pattern can be as simple or as complex
as you like. It might range from a literal string to a complex series of character classes.
There are all sorts of other wondrous things you can search for - but more of that later.

Looking for Patterns

As each new feature of the PHP regular expression is covered, we'll take a look at an
example of it in action, showing some strings for which that regular expression would
return a match. You'll find the portion of the string that matches the regular expression
shown in bold so you can see clearly what's going on.

Beginning and ending with ...
Anyway, let's take a look at a straightforward example.

""one"

Please note that the double quotation marks are just to show that what
we've got here is a string, and is not actually part of the pattern itself

Although this is a pretty basic example, we've included a single special character in here.
The " character, also known as a carat, i ndicates that the pattern should only match
strings beginning with one. This means that when we apply this regular expression to a
string, it will match "one green bottle" but not "I want one of those green bottles".

Such special characters are known as anchors, and the " anchor also has an opposite, the
$ anchor.

"night$"

This indicates that the pattern should only return a match for strings that end with night.

When applied to a string, this would match "in the middle of the night", but not "night
and day" or even "had a nightmare".

I f we want to be really restrictive we can use both of the previously mentioned anchors.

"elephant$"

The regular expression above would only return a match for the string "elephant", with
everything else being ignored. This means that none of the following strings would match:
"elephants are cool", "I love elephants" or "international elephant appreciation society".

We can also be completely unrestrictive with regards to the position of the matched string.

"elephant"

The above would match "I have a little baby elephant", "elephants have long memories"
and even "meet Nigel, my elephantine friend".

Foundation PHP for Flash

Having given you far too personal an insight into the special characters in my life, it's time
to be moving swiftly on. There are other special characters we can use in our regular
expressions that would make them more flexible and powerful.

Wildcards
We can specify how many times a given character may occur in a string that we want to
be matched by using one of the regular expression wildcard modifiers. These can add a
greater flexibility to our search.

The wildcard modifiers are *, + and ? and they apply to the preceding character or group
of characters. Each of the modifiers has a different meaning:

* Match zero or more occurrences
+ Match one or more occurrences
? Match only zero or one occurrence

The wildcard modifiers are applied to the preceding character. Take a look at this example:

If CO+"

A regular expression that looks like this will match any string that has a ' c' followed by one
or more 'd characters. It would gladly match "This is cool" and "I'll fetch my coat" but
would overlook "What a lovely card".

If we swapped the + for a * then all three strings would return a match because only the
' c' i s mandatory. This is because the * makes the previous character match zero or more
occurrences of itself, so would even match a string that doesn't contain an 'ô at all.

An example of the final wildcard modifier might look something like:

"snakes?"

This would match both "There's a snake i n my boot" and "snakes are cool".

You might be thinking that we could do away with the wildcard modifiers in the previous
examples, and you'd be right. To take the last one as an example, if we'd simply used

"snake"

...for our regular expression then it too would have matched "There's a snake i n my boot"
and "snakes are cool". However, you can see that the final ' s' i n the word "snakes" remains
unmatched and this may not be desirable. For example, if we wanted to include the space
after the word in the above regular expression then it would look something like

"snake 11

Because we're specifying that we want a space after the word snake then "snakes are cool"
would not return a match because it doesn't fit the pattern. However, by using our
wildcard modifiers we could make this work.

"snakes? "

This translates to something like:

Match any string that contains the word "snake", possibly
followed by an "s", but always with a space at the end..

Of course it goes without saying that if we need to match for any of the
special characters then we simply need to escape them with a backslash.

Another point to be aware of is that using the * and + modifiers can end up with a match
on a completely zany string. For example, if we were looking for something to match both
"about" and "abbey", it would be reasonable to expect the following regular expression to
handle the job for us.

'lab*"

However, while it would match both of the desired strings, it would also match pointless
strings like:

"abbbbbbbbbbbbbbout"

This clearly may be undesirable and we need to find a more restrictive way of handling
this kind of situation.

Bounds
Luckily for us, we can use a feature of regular expressions known as bounds. This allows
us to specify a minimum and maximum number of occurrences for a given character.

A simple bound in use might look something like:

"ab(2)"

Here we're saying that we want to match any string that has an "a" followed by exactly two
"b"s The above example shows how to match an exact number of occurrences of a given
character, but we can also use bounds to specify a range for the number of occurrences,
using a minimum range value and a maximum range value.

Looking for Patterns

Q Foundation PHP for Flash

Take a look at this example:

"ab{1 2}"

This regular expression will match a string with an "a" followed by a minimum of one "b"
and a maximum of two "b"s. It would have the result we were looking for earlier, namely
matching "about" and "abbey" but not "abbbbout".

I f we omit the maximum range value, but leave the comma, then we have a way of
specifying that we want at least a certain number of occurrences of a given character. If
we wanted to match at least three occurrences of a character then our regular expression
would look something like:

"ab{3 }"

I t would be a mistake to try and do exactly the same with the first number of a range,
since it's impossible to have less than zero occurrences of a character. We would get the
desired effect by using zero as the minimum range number:

'l ab(, 3) "

	

// Not good
"ab{0,3}"

	

// Much better

Matching Any Character
So far we've been using our regular expressions to match specific characters or character
sequences. While this is useful, it's often desirable to have a true wildcard character, one
that will match any character.

For this kind of operation we can use a full stop or period, (.), in our scripts. This is used
to represent any non-newline character in our strings. So:

Itco.1"

...would match both "coalition" and "cool", the period representing an "a" in the first
example, and an "o" in the latter.

When used in conjunction with either bounds or the wildcard modifiers, we can produce
some extremely flexible regular expressions. For example, the following regular expression
will match any word that begins with a "b" and ends in an "e" and has at least one
character in between.

"b.+e"

So this would match "I've got a new bike", "blondie i s great" and "I love brie" but not
simply "be" (because the + denotes that we need at least one character in between "b"
and "e").

Quantifying Character Sequences
All of the previous examples involve matching multiple occurrences of individual
characters, but what if we wanted to extend the same functionality to character
sequences?

The answer is that we need to enclose the characters in parentheses. So, if we wanted to
match any string that had a "b" followed by one or more sequences of "an" then the
regular expression might look something like:

"b(an)+"

This would match both "ban" and "banana".

The same idea can be used with all of the elements of regular expressions we've met so
far, and you can even use them inside the parentheses.

Using OR
Yet more flexibility is afforded in the shape of

	

I n our regular expressions we can use
the ' 1 ' symbol to mean oR.

You'll remember in Chapter 2 we covered the OR operator and it was
'epresented by I I - note that inside regular expressions we use just the
one because they appear inside strings.

Looking for Patterns

So, let's take it back to our first example:

"'one ,,

This, as you will recall, matches anything beginning with "one", such as "one green bottle".
Now let's shoehorn in an OR operator:

"
, ' one l'two"

which, as you may have guessed, will return anything beginning with "one" or "two".

Foundation PHP for Flash

We can also apply this to previously covered techniques, so the following regular
expression will match any string that contains "cool" or "coalition".

"co(olloalition)"

Character Classes and Ranges
Another funky keyboard-saving feature of regular expressions is that of character classes
and ranges.

Character ranges are specified using what is known as a bracket expression. This uses
square brackets to enclose the range, and the characters to be matched can either be
specified explicitly or using range notation. Let's take a look at a few examples:

11 (abd) "

	

Will match a string that contains an "a", "b" or "d"
[a-z] "

	

Will match a single lowercase letter "a" to "z"
[0-9] "

	

Will match any single digit

We can also combine ranges to produce more complex expressions:

" [a-zA-Z] "

	

Will match a single upper or lowercase letter.
" [a-zA-ZO-9] "

	

Will match any alphanumeric character.

I n the same manner we can specify character ranges that we don't want to match by using
the carat symbol, "', as the first symbol in a bracket expression. Now, let's just relax about
the fact that this is totally different from our previous use of carat. If these quirks don't
kill us (and they won't), they can only make us stronger.

" ["a-zA-Z] "

	

Will match any non-alphabetic character.
" [^a-zA-ZO-9] "

	

Will match any non alphanumeric character

We also need to be concerned with representing the '-' symbol in a character range since
it has a special meaning - that of denoting a range (like [a-z] or [O-9]).

I n order to have the dash as part of a character range we need to ensure that it is either
the first character after the opening bracket (or after the carat if we're using it as above)
or the last character before the closing bracket.

So if we wanted to match any string with an alphanumeric character followed by a dash
then we'd use either of the following expressions:

" [a-zA-ZO-9-] "

" [-a-zA-ZO-9) "

Character classes are similar but arguably more useful than character ranges. They can
save us time trying to construct the same thing using other regular expression techniques.

You'll find a listing of the most useful character classes below:

Character Class

	

Matches...

	

Same As
[(:alpha:]]

	

any letter

	

[a-zA-Z]
[[:digit:]]

	

any digit

	

[o-9]
[(:alnum:]]

	

any letter or digit

	

[a-zA-ZO-9]
[[:space:]]

	

any whitespace

	

(\ t\r\n\c]
([:upper:]] any uppercase letter [A-z]
[[:lower:]]

	

any lowercase letter

	

[a-z]
([: punt :]]

	

any punctuation mark

	

[. ! , ; :]

These can be used anywhere a normal character can be used. For example, if we wanted
to match any letter followed by any punctuation mark we could use the following
expression:

"[(:alpha:]] [(:punt:]]"

Now, if you take a look back at the first page of this chapter, and at that
first bit of code we were introduced to, don't you find it starting to form
itself into some kind of coherent sense?

\11	 i

Escape This Madness!
With all these symbols having special meanings you're probably wondering what we're
going to do if we want to actually use them as search characters in our regular expressions.

Well, we're back to our good old friend ... escaping. We need to escape these special
characters using the backslash symbol. So, if we wanted to match any sequence of
characters that are enclosed in square brackets we could use the following regular
expression...

If \ (+\ 1 '1

This may be a little more understandable if we split it apart...

"\ [
The opening bracket, escaped to show that we want it to be included in the search string
as opposed to signifying the start of a character range.

Looking for Patterns

EPE

These are treated as special characters since the backslash used at the beginning of the
string only escapes the immediately following character.

\l "
The escaped closing bracket.

So this would match "[hello]" and "how are (you]" but not "I'm fine thanks" or even "why
do you [ask" (the last one isn't matched because there's no closing bracket).

Breaking Down Our E-mail
Now that we know what regular expressions are and how to construct them we're going
to return to the complex regular expression presented at the beginning of this chapter and
see if we can make total sense of it.

Just to refresh our memories, here's what it looked like:

"([a-zA-Z0-9. -]+)@([a-zA-ZO-9-])+(\. [a-zA-ZO-9-]+)+$

This regular expression is one that can be used to validate an e-mail address. We're not
concerned whether the e-mail address actually exists, just that it's in the correct format.
Before we get started let's have a think about the different ways to represent an e-mail
address. The list below shows some of the more common formats:

steve@codejunkie.co.uk
j oe.bloggs@bloggs369.com
bi l l y-bloggs@terra-nova.com
james_archer@another.co . it

1. From this we can determine some common points between different formats of
e-mail address. There are three parts to an e-mail address. We have the
username, followed by an @ symbol and the address ends with the domain
part. This last section is split into a domain name (codejunkie) and a top-level
domain (.co.uk).

As I stated in an earlier chapter, we only really need to escape the first (or
opening) bracket here. The reason for this is that once we've escaped the
opening bracket, the closing one has no special meaning. However, this is
considered bad programming practice as it can lead to confusion when
dealing with complex expressions.

Foundation PHP for Flash

mailto:steve@codejunkie.co.uk
mailto:joe.bloggs@bloggs369.com
mailto:ly-bloggs@terra-nova.com
mailto:james_archer@another.co

Looking for Patterns

Now we know what we're looking for we can start to break apart our regular
expression.

2. Before we delve into the workings of the expression, the first thing we should
notice is that the whole expression is topped and tailed by the ^ and $
characters. This shows that we're only interested in a match if our expression
makes up the entire string.

3. Once we've removed these, the next section that needs dealing with looks like
this:

([a-zA-Z0-9. -] +)

This part of the regular expression matches the username part of the e-mail.
You can see that we're using character ranges to specify the valid characters for
this part of the address, which can consist of alphanumeric characters as well as
a ". ", " " or "-". The "+" outside of the closing square bracket shows that we're
after one or more occurrences of one of these characters.

Note that we didn't need to escape the period in the above expression
because it has no special meaning inside of a character class - it just
matched a period!

4. Next we've got a plain ® symbol on its own. This represents the g symbol in an
e-mail address and nothing special needs to be done with this.

Obviously this leaves the rest of the regular expression to match the domain
portion of the e-mail address.

([a-zA-ZO-9-])+(\.[a-zA-ZO-9-]+)+

I f we split this up and deal with it a piece at a time it will be easier to
understand.

5. Firstly we've got the following section:

((a-zA-ZO-9-]) +

Foundation PHP for Flash

This is quite similar to the username section described above, except that we're
only looking for characters that fall in the alphanumeric category and dashes.
Again, we're using the "+" symbol to denote that we're looking for one or more
occurrences of these characters.

6. The final part is a little more complicated:

(\. [a-zA-ZO-9-]+)+

We're using parentheses here to show that we're after a sequence of characters,
and the "\." bit tells PHP that we want the first character of that sequence to
be a period.

Following this we've got a character range as for the first part of the domain
section shown previously. We add a closing parenthesis to show that that is the
end of the character sequence we're looking for.

Lastly, we add a "+" to show that we're looking for one or more occurrences of
this character sequence.

7. If we overlay a valid e-mail address onto this expression you can see how each
section relates...

Steve

	

@codejunkie

	

co.uk
^([a-zA-Z0-9. -]+)

	

@([a-zA-ZO-9-])

	

+(\.[a-zA-ZO-9-]+)+$

Regular expressions are extremely powerful and you'd be at a disadvantage to not
understand them. That said, they are complex beasts so don't feel too concerned if it takes
a while for the penny to drop!

PHP Regular Expression Functions
Okay, so now we've figured out how to create regular expressions, let's look at what we
can do with them. PHP provides a whole array of functions that we can use to evaluate
regular expressions in our scripts.

eregq and eregip
The ereg function is probably the most used of PHP's regular expression functions.

ereg (pattern, string [, regs])

In its simplest form this function simply returns true i f the regular expression pattern

was found in string, or false i f no match was found.

http://co.uk

Looking for Patterns

If matches are found for parenthesized sub-strings of a pattern, and the function is called
with the optional third argument regs, the matches will be stored in the elements of the
array regs.

$regs [1) will contain the sub-string which starts at the first left parenthesis;
$regs [2] will contain the sub-string starting at the second, and so on.
$regs (o] will contain a copy of string.

With ereg, searching is case sensitive. If we want to perform a case insensitive search then
we would need to use ereg's partner-in-crime - eregi.

eregi (pattern, string [, reps])

eregi performs in exactly the same way as ereg, except for the fact that the search is
performed without regard for letter case.

So we could use this function, along with the complicated regular expression we've just
been building, to check that a given e-mail address is valid.

$emaill = "steve@codejunkie.co.uk ";
$email2 = "not a@valid email";

$regexp = "^([a-zA-ZO-9._-]+)@((a-zA-ZO-9-])+(\.[a-zA-ZO-9
] +)+$";

if (eregi($regexp, $emaill)) {
print "E-mail address '$emaill' is valid
\n";

} else {
print "E-mail address '$emaill' is invalid
\n";

if (eregi($regexp, $email2)) {
print "E-mail address '$email2' is valid
\n";

} else {
print "E-mail address '$email2' is invalid
\n";

This should output the following:

E-mail address 'steve (ffcodejunkie.co.uk' is valid
E-mail address 'not a(U-1valid email' is invalid

mailto:steve@codejunkie.co.uk

EU Foundation PHP for Flash

ereg replace() and eregi replace()
These functions are used to perform a search and replace operation using regular
expressions. This can be extremely useful for doing a batch replacement of certain words
or symbols in a given string.

As with ereg and eregi, these two functions are identical except for the fact that
eregi_replace will perform its operation regardless of letter case. For this reason we're
only going to cover ereg_replace here.

The format for this function is:

ereg replace(pattern, replacement, string)

This function scans the string for matches to pattern, then replaces the matched text
with replacement. The modified string is returned. If no matches are found in string

then it will be returned unchanged.

Looking for Patterns

So if, for example, we were running a message board for children and didn't want them
to be able to display their e-mail address, we could use these functions to filter out e-mail
addresses and replace them with a message saying that e-mail addresses are not allowed.

$msg = "Hi Nicki, my new email: steve@codejunkie.co.uk";
$regexp = " ([a-zA-ZO-9._-]+)@([a-zA-ZO-9-])+(\. [a-zA-ZO-9-
] +)+";

$msg = ereg replace ($regexp, "[Email addresses not
allowed]", $msg);

print $msg;
?>

The above code will give the following output:

Hi Nicki, my new email: [Email addresses not allowed]

mailto:steve@codejunkie.co.uk

Foundation PHP for Flash

Of course this could be simply worked around by adding spaces between one or more
letters in the email address, since space is not part of a valid email address and therefore
not part of our regular expression. We could rewrite the expression to take spaces and
other characters into account but we could end up censoring perfectly innocent content.
I t's a case of striking a balance between being diligent and keeping the system user friendly
- not an easy task.

split() and spliti()
These functions are used to split a string into an array. In this respect they are much like
the explode function we met in the previous chapter. However, they differ in that they
take a regular expression as the boundary at which to split the string.

Again, spliti i s just a case insensitive version of split so there's no need to cover that
here.

The format for the function is:

split (pattern, string [, limit])

This returns an array of strings, each of which is a sub-string of string formed by splitting
it on boundaries formed by the regular expression pattern. I f limit i s set, the returned
array will contain a maximum of limit elements with the last element containing the whole
rest of string. If an error occurs, split returns false.

So if we wanted to split a string into an array of sentences we'd need to split it at any end
of sentence punctuation, such as a full stop, question mark or exclamation mark.

$string = "This is cool. PHP is real cool! How about some
lunch? I'm having some";

$sentences = split("[.!?]", $string);

foreach($sentences as $count => $sentence) {
print "$count: $sentence
\n";

Here you'll see we're using the [. ! ?] character class to match all end of sentence
punctuation marks. Then we use a foreach loop to output each sentence in turn.

This will output

0: This is cool
1: PHP is real cool
2: How about some lunch
3: I'm having some

Looking for Patterns

It is worth noting that splitting a string by a regular expression is less efficient than doing
so by a simple string, so if you maybe do not require the power of regular expressions in
this instance then use explode i nstead.

Again, we've covered some pretty heavy ground in this chapter but now it's time to
exercise that gray matter. We're going to be building a fully searchable news archive where
the user can choose between doing a simple string-based search, and performing a regular
expression search.

The phpforflash.com News Archive
Here, we're going to see how to scour through the archives at www.phpforflash.com,
where, incidentally, the final application is available for download.

http://phpforflash.com

Q Foundation PHP for Flash

Below you'll find a diagram of the one I made earlier.

This movie consists of two movie clips; one for the search box on the left, and another
for the search results on the right. We're going to build each of these in turn before
moving onto the PHP scripts.

Building The Flash Front End

The first thing we have to do is to build the Flash interface - made up from two movie
clips which we're going to build here.

1. Before we go anywhere with the two main movie clips we'll need to build a
custom check box for the case sensitive option of the search box. If you don't
feel like building your own you can use the CheckBox smart clip that comes as
part of Flash, which can be found by selecting Window > Common Libraries >
Smart Clips.

2. To make your own, start as usual by creating a new movie clip and giving it a
suitable name, in this case Check Box.

3. Next we need to create the layer and frame structure for the sections of the
movie clip. Use the following screenshot as a guide.

4. On the Images layer, create images of a checked and unchecked box in the
relevant frames as shown below.

Looking for Patterns

5. On the Button layer we're going to create an invisible button. An invisible button
is a button where only the Hit state has anything on it. They are useful on many
occasions and we'll be using them again later in this application.

6. Once you've created the invisible button you need to add an instance to the
Button layer and resize and place it so that it is in the same position and is the
same size as the check box images we've just created.

Foundation PHP for Flash

7. All that's left to do now for this part is to add the following ActionScript code
to the button.

on (release) {
if (checked == true) {

checked = false;
gotoAndStop("Off");

else {
checked = true;
gotoAndStop("On");

This code is what actually does the legwork of our little check box. When the
mouse is pressed over the invisible button, this code checks to see what state
the check box is currently in. If the checked variable is set to true, then, at the
moment, the check box appears On. In this case we set the checked variable
to false and go to the Off frame.

Otherwise, the checked variable must either be set to false or, if this is the
first time the user has clicked on our check box, checked has no value. In this
case we set the checked variable to true and go to the On frame.

That's it - we now have a custom check box to use in our Flash movies. Return
to the main stage and drag a copy of your check box from the library.

We now need to make a start on the search box. This is where the lion's share
of the work is going to be done.

8. The first thing we need to do is to create a new movie clip. Although we're not
going to be using the onClipEvent handler for this application it is nice to
keep different parts of the movie separate by encapsulating them in movie clips.
This allows us to make the whole movie easier to manage.

Create another new movie clip and call it SearchBox.

9. The layer and frame structure of the movie clip should be as follows:

Looking for Patterns

Don't forget to add the ActionScript as shown as it sets up the initial search
method and stops the movie clip.

10. In order to get the tabbed dialog look I've simply drawn two different images
on the Background layer; one with the Simple tab shown as active and at the
front, and the other with the Advanced shown active.

Take a look at the images below to see what I mean:

You'll see that I've also added a textual explanation of the different search
modes to help the user understand what each does. It's generally a good idea
to build this kind of thing into your user interfaces where users might be a little
lost as to what to do. Go ahead and create something similar, though I'm sure
you can improve on mine.

11. Now we need to create the functional elements of the interface. Take a look at
the following screenshot of the Form Elements layer:

The first thing you'll want to do is to add the text box so that the user can type
in their search criteria. Give this a variable name of doCriteria. It's also
sensible to limit the amount of data that can be entered here as shown in the
screenshot above.

12. We're going to need an instance of our Check Box movie clip so that the user
can select whether or not they want their search to be case sensitive. Drag an
instance from the Library onto the Form Elements layer and give it an instance
name of cbCaseSensitive - this will let us reference it from ActionScript so that
we can check it's status.

13. The final element is the Submit button. This is a simple button with the
following ActionScript attached:

on (release) {
if (doCriteria !_ "") {

if (cbCaseSensitive.checked) {
doCase = true;

} else {
doCase = false;

}

_root.NewsDisplay.searchResults = "Searching";

loadVariables ("fetchnews.php", root.NewsDisplay,
"POST");

}
}

Foundation PHP for Flash

Looking for Patterns

The one part of this code that may need explaining is the following line...

if (cbCaseSensitive.checked) {

This checks the value of the checked variable in our instance of the Check Box
movie clip we created earlier. If its value is true then the user wants to perform
a case sensitive search, otherwise they want a case insensitive search, so we set
$doCase accordingly.

All this chunk of code does is check that the user has entered at least something
in the search criteria box. If they have, the checked status of our Check Box is
examined and the docase variable is set accordingly, which we'll use in our PHP
script. Finally, we call the PHP script that'll handle the search, sending the data
using the POST method, and tell loadvariables that we want any data that is
returned put into the _root. newsDisplay movie clip (which we'll get to in a
moment).

14. The very last thing that we need to take care of in our SearchBox movie clip is
to add a couple of invisible buttons to allow the user to switch between Simple
and Advanced search modes.

Don't forget to make sure that these are added to the SearchBox movie clip
i tself and not just the instance on the main timeline!

Foundation PHP for Flash

15. This is a simple case of taking two instances of our invisible button on the
Buttons layer and stretching them to cover the tabs. Then all you have to do is
add the relevant ActionScript which simultaneously sets the appropriate search
mode and sends the movie clip to the correct frame.

Now that we've got our search box we need to create the movie clip to display
the search results.

16. Return to the main timeline by selecting Edit > Movie from the main menu.

17. Create a new movie clip and call this one NewsDisplay.

Because this is a relatively simple movie clip, everything is in a single frame on
a single layer.

18. Create a background layer - in fact you can borrow and amend a Window BG
layer from previous exercises - add a dynamic text box, with the variable name

searchResults and two nice scroll buttons. Eventually, your layout will
resemble the screenshot below.

Looking for Patterns

Note how we've set the text box up to render and display HTML so that
we can add text formatting to the search results.

19. The final thing we need to do on the Flash side of things is to drag an instance
of each of our SearchBox and NewsDisplay movie clips onto the main stage.

Foundation PHP for Flash

Although we don't need to give an instance name to the instance of our
SearchBox movie clip, we do need to name the instance of NewsDisplay. If you
think back to when we were creating SearchBox, we added the following
loadVariables call to the Submit button

loadVariables ("fetchnews.php", root.NewsDisplay, "POST");

20. You can see from this that we're telling Flash to load any data returned from
fetchnews.php to the _root. NewsDiplay movie clip. If we want the search
results to be displayed we'll need to set the name of our instance of the
NewsDisplay movie clip to NewsDisplay.

That's it for the Flash front end unless you want to add something yourself. I've
just plonked a bit of text on mine to tell the user what it is about.

Adding a Portion of PHP

It's now time to move on to the PHP scripts that actually do all the work of searching and
returning news data. We're going to use a couple of techniques we picked up in earlier
chapters to break the tasks of defining and searching/returning the news items into two.
This will make the whole system more manageable and is a great excuse to put everything
we've learned so far into practice.

news.php
The first script we're going to look at is news.php. This is where we'll enter all the news
items that we want to be searchable. We'll use a multi-dimensional array to store the
information and then use the include function in our other script to import the data.

1. Rather than boringly list the whole contents of my news. php script I'll show you
how to build up a couple of news items and then let you loose to create your
own wacky news. This is achieved by the code outlined below.

$newsItems[0]('Title'] = 'Put your news title in here';
$newsItems[0]['Body'] = 'This would be the news text';

$newsItems[l]['Title'] = 'News Item 2 Title';
$newsItems[1]['Body'] = 'Another load of news text';

?>

From this, and, the PHP material we covered in Chapter 2, you should be able
to add as many news items as you like.

2. You'll want to create at least five items to enable you to test the search properly
but if you don't feel particularly creative you can download all of the files for this
chapter, including a complete news.php script, from www.phpforflash.com .

Remember that in single quotes strings the only thing you need to worry
about escaping with a backslash are any extra single quotes you use (\1)
and the backslash character itself (\V.

J

fetchnews.php
This is the PHP script that is called from our Flash movie, and it's here we're
going to be searching the news items and returning the results.

3. The first thing we need to do is to load in the news items from news. php. We'll
do this using the include function we met in Chapter 3. You're beginning to
see how it all comes together.

<?
// Load news items in from external file
include("news.php");

4. With that done, we need to un-escape the special characters in our
$doCriteria string, that is being passed in from our Flash movie, or we'll have
problems when it comes to searching for a match. We also need to initialise a
variable to hold any matching news items that we find.

// Unescape special characters in $doCriteria string
$doCriteria = stripslashes($doCriteria);

// Initialize our variable to hold search results
$searchResults = I'll;

S. Next, we need to determine which search method was selected and perform the
relevant search operation. We do this in the form of some function calls that
we'll get around to writing next.

// If we're performing a simple search...
if ($doMethod == "Simple")

// Call simple search function & store return value
$searchResults = SimpleSearch();

} else
// Call advanced search function & store return value

continues overleaf

Looking for Patterns

http://www.phpforflash.com

Foundation PHP for Flash

$searchResults = AdvancedSearch();

You can see from this that we're going to be returning the search results from
the function called, and that we're storing this information in our
$searchResults variable so that we can set it up for sending back to Flash.

6. Finally we output the results to Flash. We include a summary of the search
options used before encoding and outputting the search results.

// Output search header
print "&searchResults=";
print urlencode("Method: $doMethod\nCriteria:
$doCriteria\nCase: $doCase\n\n");

// Output search results
print urlencode($searchResults) . "&";

With the main part of our script written, it's time to sort out the search
functions.

I

Looking for Patterns

You can see from the previous section of code that we have two functions;
SimpleSearch and AdvancedSearch. As the names might suggest,
SimpleSearch will perform a basic, string-based search for the given criteria,
while Advancedsearch will treat the search criteria as a regular expression and
perform, you guessed it. a more advanced search.

7. Kicking off with the Simplesearch function, the first thing we need to do is to
define the following code as a function and to set up any global variables that
we need.

// Function to perform a simple string search
function SimpleSearch() {

// Global variables
global $newsItems;
global $doCriteria;
global $doCase;

8. Once this is done we need to set up a loop so that we can search through all
of the news items in the $newsltems array. We'll use a for l oop for this, using
the count function to get the number of news items in the array.

// For each news item in array...
for ($count = o; $count < count ($newsItems) ; $count++) {

9. We'll want the function to be able to search through both the Title and Body

elements of the current news item, so we use the foreach function to fetch
and process each value in turn. Using this method also allows you to add more
elements to the $newsltems array we constructed in the news.php script and
have them searchable too.

// Loop through each element of news item...
foreach($newsItems[$count] as $value) {

10. Next we need to determine if we're performing a case sensitive or case
insensitive search. We need to do this because it impacts on which function we
need to call.

// If we're performing a case sensitive match...
if ($doCase == "true") {

LUE

11. So, if we're performing a case sensitive simple string-based search then we'll
want to use the strstr function, which finds the first occurrence of a string,
that we met in the previous chapter. We pass to this function the current
element of the current news item ($value) and the search criteria
($doCriteria) and check the return value to see if a match was found.

// Use case sensitive function to check for match
// If match found...
if (strstr($value, $doCriteria)) {

12. I f we find a match then we'll want to add the current news item to the search
results. At the same time we use HTML tags to format the output so that the
news item's title is shown as a bold blue, while the body is shown in whatever
color we specified for the searchResults text box in our Flash movie.

// Store news item details for output
$searchResults ._ '';
$searchResults ._ $newsltems[$count]['Title'];
$searchResults ._ '
';
$searchResults ._ $newsltems[$count]['Body'];
$searchResults ._ '

';

// Move on to next news item
break;

We also use the break keyword to break out of the foreach l oop and move
on to the next news item. We need to do this because there's little point in
searching the remaining elements in a news item for which we've already found

Foundation PHP for Flash

a match. We'd also end up with each news item being added to the search
results multiple times if a match was found in more than one element - not
good enough!

If no match is found then no action is taken and we simply move on to the next
element of the current news item, or to the next news item if the current
element is the last.

13. The code below also shows the operation of a case insensitive match. No
explanation is offered for this, save to say that the only thing that is different
between this section of code and the previous one is that, instead of calling
strstr, we call stristr for a case insensitive search.

else {

// Use case insensitive function to search
// If match found...
if (stristr($value, $doCriteria)) {

// Store news item details for output
$searchResults ._ '';
$searchResults ._ $newsltems[$count]['Title'];
$searchResults ._ '
';
$searchResults ._ $newsItems[$count]['Body'];
$searchResults ._ '

';

// Move on to next news item
break;

1

Looking for Patterns

Foundation PHP for Flash

14. Now we need to determine if any match was found at all. If no match was found
then we place a message, telling the user this, into our $searchResults

variable. We do this by using the strlen function to check the length of the
$searchResults variable. If the length is zero then we didn't find any matches.

// If we didn't find a single match...
if (strlen($searchResults) == 0) {

// Set "no match" message
$searchResults = "No match found";

15. Finally we return the $searchResults string and exit the function.

// Return search results...
return $searchResults;

16. The Advancedsearch function works in exactly the same way, except that we
use the regular expression functions to perform a search on the strings instead.
You can read the comments in the code for further explanation but it is
essentially the same as SimpleSearch. You should also notice a good many
things popping up that we have covered in previous chapters - merely a sign of
your overall PHP proficiency increasing!

// Function to perform a regular expression search
function AdvancedSearch() {

// Global variables
global $newsltems;
global $doCriteria;
global $doCase;

// For each news item in array...
for($count = 0; $count < count ($news Items); $count++) {

// Loop through each element of news item...
foreach($newsItems[$count] as $value) {

// If we're performing a case sensitive match...
if ($doCase == "true") {

// Use case sensitive function to check for match
// If match found...
if (ereg($doCriteria, $value)) {

// Store news item details for output
$searchResults ._ '';
$searchResults ._ $newsltems[$count]['Title'];
$searchResults ._ '
';
$searchResults ._ $newsltems[$count]['Body'];
$searchResults

	

'

';

173

Looking for Patterns

Foundation PHP for Flash

// Move on to next news item
break;

}
} else {

// Use case insensitive function to search
// If match found...
if (eregi($doCriteria, $value)) {

// Store news item details for output
$searchResults ._ '';
$searchResults ._ $newsltems[$count]['Title'];
$searchResults ._ '
';
$searchResults ._ $newsltems[$count]['Body'];
$searchResults

	

'

';

// Move on to next news item
break;

}

// If we didn't find a single match...
if (strlen($searchResults) == 0) {

// Set "no match" message
$searchResults = "No match found";

}

// Return search results...
return $searchResults;;

}

That's everything. All that's left to do now is to upload and/or copy the whole lot to your
web server and play happily in the knowledge that you've created something this
advanced!

Looking for Patterns

There are a couple of things that strike me as missing from this application, and these were
left out on purpose to give you something to do between chapters.

Firstly, there are some elements missing from the news items. In addition to a title and a
body, news items will often list an author for that item, as well as when it was posted.
Secondly, it would be nice to give the user the option of displaying all of the news items.
Although this can be done by using a single period in the Advanced Search mode (because
a single period in a regular expression will match any character) but it isn't exactly elegant
to make the user do it themselves.

Summary
Now, I guess I don't have to tell you that it's not been easy, and it's certainly nobody's idea
of a picnic - but you should now have a thorough understanding of some of the more
complex aspects of the PHP language.

We have looked at:

•

	

Regular expressions and what a puzzle they appear to be

•

	

Basic pattern matching

•

	

Getting more flexible with wildcard modifiers

•

	

Shaping things up with bounds

•

	

Taking a few shortcuts with character classes and ranges

•

	

PHP Regular Expression Functions

and all that with a couple of really handy exercises. What more could you ask? Well, just
look at the next chapter!

Remembering
Visitor Information6

What we'll cover in this chapter

•

	

Introducing Cookies

•

	

Creating and manipulating cookies using PHP's setcookie
function

•

	

Setting restrictions on cookies such as an expiry date

•

	

Putting it all together with a cookie cutter Flash application

Foundation PHP for Flash

One of the most helpful features any web site can have is being able to remember visitor
i nformation. The common things we might like to remember about our visitors are:

•

	

Visitor name or other personal details
•

	

Username and/or password
•

	

Site Preferences
•

	

Shopping cart items

Remembering this kind of information can help us make the visitors time at our site a lot
easier and a lot more productive. I'm sure you've been to sites that had a little check box
which offered to remember your username and password next time you logged in from
the same computer.

From recalling your name to storing your address and shopping preferences, one of the
easiest methods of remembering visitor information in PHP is with the use of...

Cookies
Cookies, originally known as 'the magic cookies', were first developed by Netscape for
i ncorporation in its web browser software, and can be used to remember little titbits of
i nformation about a given user.

The great thing about cookies is that they are stored on the user's own system, meaning
that we don't have to deal with how and where to store them ourselves. Although it
occasionally varies, most web browsers store their cookies as small text files on the user's
hard drive.

I n its simplest form, we can use the cookie to remember the visitor's name and to provide
them with a personalized greeting the next time they visit the site. At the more extreme
end we can use cookies to develop shopping cart type applications, using them to
remember items and quantities that a user has selected so far. The fact that this
information will be stored when the visitor leaves the site, and will be available when they
return, marks the advantage of using cookies over global variables on your Flash sites.

You've seen all those Flash sites with a Skip I ntro button, but how about
a cookie that remembers whether or not you've already seen the intro and
skips it automatically on subsequent visits - with PHP this is easy and
you'll see just how easy later on!

Remembering Visitor Information

According to the cookies specification drawn up by Netscape, there are some restrictions
imposed on the use of cookies to ensure that the system isn't abused. Firstly, a web
browser should only store a total of 300 cookies, and only allow a given server to store a
maximum of 20. In addition, a single cookie should not exceed 4kb in size. If we need to
retain more information, it should be done so on the server-side (in a database for
example) with some kind of identifier being stored as a cookie instead.

Another security feature, but this time for the sake of data privacy rather then integrity, is
that cookies are only sent to servers which are permitted to receive them and, typically,
only the web page that created the cookie is able to view it. When we start playing around
with cookies you'll see that it's possible to limit which servers, and under what conditions,
the cookies are sent out to.

Cookies are used on a huge number of web sites. If your web browser supports it, turn on
cookie prompting and take a spin around your favorite sites - you'll be surprised how
many are using cookies to store information about your visits.

To do this, follow the screenshot, and set a Custom Level in the Security tab from Tools >
I nternet Options. You can choose to be prompted before a cookie is set, and you can now
go cookie hunting!

Foundation PHP for Flash

Remember when you're doing this though that cookies are not inherently
evil surveillance devices - they can only store personal information about
you which you provide to the site yourself

Restrictions on Cookies
There are four pieces of information we can supply with a cookie so that it's just what we
need.

Expiry Date
Every cookie has a date at which it will expire - an expiration date if you like! When a
cookie has expired it wilt no longer be sent to the server and in most cases will be removed
from the user's system. If no expiry date is specified when the cookie is set, then the
cookie will be removed at the end of the current browser session (when the user closes
the browser). This method is useful for creating temporary cookies to remember whether
a user is logged in or not.

If you look back to our cookie options, you'll see that there is a setting to also prompt
when these temporary per-session cookies are being used.

Remembering Visitor Information

Domain
When a web browser searches for valid cookies to send to the server, the domain attribute
i s checked against the domain name of the server to which the cookie will be sent. A
match is determined by performing a tail check, which compares the cookies domain
attribute against the end of the server's domain name.

For example, a domain attribute of .codejunkie.co.uk would match www.codejunkie.co.uk
and another.partof.codejunkie.co.uk . I f a match is found, the path attribute is then
analyzed.

A cookie can only be set for a given domain if the request comes from a host within that
domain. The default value of the domain attribute for a cookie is the host name of the
server that generated the request.

Path
The path attribute of a cookie is used to specify the subset of URLs in a domain for which
the cookie is valid. If a match is found here then the cookie is considered valid for the
current site and is sent along with the standard HTTP header.

As an example, if a cookie had a path of /news then it would be available to
Inewsletter.php, as well as all files in both /newsamples/ and /news. In fact, the cookie will
be available for anything that begins with /news, be it a directory or a file. To make the
cookie available for the whole domain set the path to "/".

If no path is given for a cookie then it will take the path from the file requesting the setting
of the cookie.

Secure
The final restriction is the secure attribute of the cookie. If a cookie is marked as secure
then it will only be sent if the communication channel with the host is a secure one.

This means that secure cookies will only be sent to servers when the connection uses the
V Secure Socket Layer (SSL) protocol, in other words URLs that begin with https:// rather

than htta://.

i PHP Likes Cookies...
As you might have guessed, if only by their very inclusion in this book, cookie support is
fully integrated into PHP, allowing us to use cookies in our scripts with very little effort.
For example, reading cookies from within PHP is as easy as accessing variables. This is
because any cookies that are valid for the current document are automatically made
available as global variables, in exactly the same way that POST and GET data is. This
happens before any of the code in the PHP script is executed.

http://www.codejunkie.co.uk
http://another.partof.codejunkie.co.uk

Foundation PHP for Flash

This ease of use extends to setting cookies from PHP too. This can be achieved by a single
function call, which in its simplest form accepts two arguments; a name and a value for
our cookie. Cunningly enough, the function concerned is called setcookie - even I can
remember that one!

Setting cookies
Let's take a little look at setcookie...

f

// Increment number of visits count
// If count isn't set then it will be set to 1
$count++;

// Store the cookie on the user's system
setcookie('count', $count);

// Output message
print "You have visited this site $count time(s).\n";

When the above script is first run the $count variable is initialized and assigned the value
of '1' - this happens to all non-existent variables that are incremented in the manner used
here. A cookie is then set on the client under the name of count. Finally a simple print
statement is used to give feedback on the current value of $count.

Remembering Visitor Information

Things start to get interesting when the script is loaded for a second time. Because a
cookie exists by the name of count, a global variable by the same name is generated
automatically with its value set to the value of the cookie. This is all done before any code
in the PHP script is executed, so when we increment the $count variable, it will now hold
a value one greater than the value stored in the cookie. Finally we're using setcookie ()

to update the cookie's value to the new $count and printing our visitor message again.

If you play with this you'll notice that each time you refresh your browser the number of
times you've visited the site, or at least that page anyway, is updated and reflected in the
message you see on-screen.

If this example doesn't work for you then double-check that you have
cookies enabled in your browser

ommon Pitfalls
When dealing with cookies, there are several common pitfalls that the designer can fall
into which will either prevent cookies from working or produce error messages (maybe
even both!)

Of all the pitfalls, by far the most common is outputting information before a call to
setcookie. It is important to remember that cookies form part of the HTTP header, and
accordingly calls to setcookie must appear before any standard output, such as that
given by the print and echo statements. This also includes any white-space characters
before the opening PHP tag.

Foundation PHP for Flash

If you see an error message like the following then it's time to backtrack and check your I
scripts for pre-setcookie output.

Another common pitfall is the assumption that, as soon as you call setcookie, the cookie
will be immediately available to your script.

setcookie('username', 'steve');

print "Username : $username" ;

I t may be considered reasonable to assume that the above script would produce the
output you see on the right (opposite page).

However, the output will not be as expected on the first run due to the way that cookies
work with server-side scripts. When a given script is requested, all valid cookies are sent
to the server. Although calling setcookie tells the browser to create and store a cookie
named username, the cookie won't get sent back to the server until the next time the
script is requested. Thus, on subsequent runs of the script the output is fine.

Remembering Visitor Information

Who Ate all the Cookies?
Having cookies available as global variables is all very well, but what if we wanted to
process all the cookies that are available to us? How would we know which global variables
were generated as a result of cookies and which came from other sources such as GET
and POST data?

Besides this, using automatic global variable creation in PHP should be avoided wherever
possible due to the security risk it poses. So unfortunately, despite its use as a teaching
exercise, the method of setting cookies we have just examined will be replaced in our
more advanced scripts. But what can we use to replace it?

The answer lies in the $HTTP COOKIE VARS array. Each cookie that is passed to the server
is stored in this array, in addition to being created as a global variable. This allows us to
process all, or a subset, of the cookies available using the array looping procedures we set
out in Chapter 2.

Get your best typing gloves on and create the following PHP script or, alternatively, leave
the gloves off and just open it from the source files.

// setcookie.php
// Chapter 6 - Foundation PHP for Flash

// Set up some cookies...
setcookie('username', 'steve');
setcookie('password', 'nottelling');
setcookie('skipintro', 'true');

// Determine the number of cookies currently set
$cookieCount = count($HTTP COOKIE VARS);

// If we've got more than one cookie...
if ($cookieCount > 0)

Foundation PHP for Flash

// Output header
print "Cookies found: $cookieCount

\n\n";

// Loop through all cookies...
foreach($HTTP_COOKIE_VARS as $cookieName =>

$cookieValue) {

// Output name/value
print "$cookieName=$cookieValue
\n";

}
} else {

// Otherwise output "no cookies" msg
print 'No cookies available, hit refresh';

}
?>

Here we're using the foreach loop (specific to version 4 of PHP) to work our way through
the array of cookies, outputting each one in turn. When run, this script should give output
similar to that shown below.

Remembering Visitor Information

As you'll see, the first time you run it, you'll have to hit Refresh as there
are no cookies yet to display. This script shows us the power available to
us in creating and calling cookies from PHP!

The Life and Times of a Cookie
The previous example was all very well, but you'll find that if you close the browser
window and then reopen it and reload the page, the visit counter has been reset to 1.
Because we didn't provide an expiry date for our cookie the browser removed it at the
end of the session, or when the browser window was closed. While this can be useful for
storing information such as the login status of a user, we're also likely to want to store
information in the cookie on a more permanent basis.

I n order to increase the life of a cookie beyond the current session we need to provide a
date on which we want the cookie to expire. We can do this easily enough by adding an
extra parameter in the call to setcookie, but unfortunately we can't just supply the date
as a string.

A Brief History of time()

Rather than a human readable date such as 27/02/2002 21:15:00, we need to supply the
desired expiry date of our cookie in the form of a Unix timestamp. This may sound
daunting at first until you realise that a Unix timestamp is simply a number specifying the
number of seconds that have elapsed since midnight on 01 January 1970 - also known,
rather grandly, as the epoch.

For those of you who fear that we're going to have to calculate this ourselves, fear not!
Nor is there a poor Unix user who has been counting these seconds since 1970 without
toilet breaks. PHP provides us with a nice little function that will fetch the current time as

a Unix timestamp. As with most of PHP's standard functions this one is intuitively named,

and it's simply called time () .

The syntax for time i s about as simple as we've met so far:

time();

Taking no arguments whatsoever, we can simply call time and store the returned integer
i n a variable for future use.

Foundation PHP for Flash

For example, we can use the following piece of code to fetch the current time as the
number of seconds since the epoch and store it in the $now variable:

// Fetch current time as no. of seconds since epoch
$now = time();
print $now

Remembering Visitor Information

Cookies Do Time Travel
Now you may be wondering how this function can be used to set the expiry date of our
cookie. There's little point in taking the return value of time and using it directly as our
expiry date since the cookie would expire as soon as we've set it. What we need is a way
of manipulating the timestamp so that we can fast-forward it to some date in the future.

As the return value of time i s an integer, we can use the standard mathematical operators
to play around with it, allowing us to set a timestamp for some date in the future.

<?
// Fetch current time as no. of seconds since epoch
$now = time();

// Advance timestamp by 10 seconds.
$future = $now + 10;

// Display our time values
print "Now: $now
\n";
print "Future: $future";

?>

If you test the above
code on your server
you should have an
output similar to the
following.

Obviously when you run the above script you'll get different numbers
because this number represents the time when I was writing this book
(and the number in the previous example was greater because it
represents the time when Alan was editing the book and added the
screenshot!) Regardless of what your numbers are, the bottom one should
be 10 greater than the top one, and that represents an extra 10 seconds.

Foundation PHP for Flash

Anti-Ageing Cream for Cookies
Given the capabilities of the time function, and since we know (or can at least calculate)
the number of seconds in a given period such as an hour or a day, we can now start
extending the life of our cookies.

Let's breathe some life into the count example we met earlier in the chapter. The original
file is included as count.php i n the source files, and we're now going to make some
amendments.

// Expiry date is current date plus 1 minute (60 secs)
$expiryDate Q time() + 60;

// Increment number of visits count
// If count doesn't already exist then to 1
$count++;

// Store the cookie on the user's system
setcookie('count', $count, $expiryDate);

// Output message
print "You have visited this site $count time(s).\n";

So long as you reload the site more frequently than once every minute the count will keep
ticking - even if the browser has been closed and opened in between. Every time the script
i s run the expiry date of the cookie is updated to 1 minute in the future, ensuring that our
cookie is valid for that period regardless of whether the browser has been closed or not.

You'll find that if you do not reload the page within 1 minute the count will reset to 1.
This is because our cookie has expired and is no longer valid. You may find, however, that
i t takes considerably longer than 1 minute for the cookie to expire because the time

function fetches the time according to the server. If the time on your system is 4 minutes
behind the server time then you'll have to wait 5 minutes for the cookie to expire. In the
same fashion you may find that the cookie expires as soon as it's set because your system
time is in front of the server time.

For this reason it is best to steer clear of cookies that expire within a few minutes of the
current time. Quite often this won't be a problem anyway because we'll either want to
store the cookie indefinitely or store it for at least for a few days, but you should at least
be aware of using time to store a cookie over relatively small periods.

Remembering Visitor Information

Incorporating the Calendar
Using the time function is all well and good, but what would happen if we wanted our
cookie to expire on a certain date. What we need is a method of generating a timestamp
that represents a given date.

Thankfully, PHP provides us with the mktime function:

Ktime(nours. minutes. seconas, monLn, aav, vear);

So, for example, if we wanted to generate a timestamp for a cookie that would expire at
midnight on the 25th December 2002 the function call would look like:

$expiryDate = mktime(0, 0, 0, 12, 25, 2002);

Another function we can use to generate a Unix timestamp for a given date is strtotime.

This function is far more user friendly in that it takes its date as a humanly readable string.

Creating the same timestamp as the code above using strtotime i s a simple case of
entering something like this:

. : xpiryDate = strtotime("12/25/2002 00:00:00");

It will also endeavor to convert dates represented in other formats but this is often a
matter of trial and error to see how a given format works.

One thing to bear in mind is that the function leans towards U.S date
formats, so "01 / 02 / 2 0 0 2 " will be taken as 2nd January 2002 rather
than 1st February 2002 which is how you might read it if you're used to
the European format.

Foundation PHP for Flash

Deleting a Cookie
There may come a time when you've finished with a cookie on a given user's system and
want to remove it. Although PHP doesn't provide any function specifically for removing
cookies, we can produce much the same effect by updating the cookie's timestamp. By
setting the expiry date of the cookie to one sometime in the past, we are forcing the
cookie to expire and effectively removing the cookie from the user's system.

For example, the following line of code sets the expiry date of a cookie named
existingcookie to one day (or 86400 seconds) ago.

setcookie('existingcookie', '', time() - 86400);

I t is worth noting that any changes made to a cookie during the execution of a script are
not reflected in either the $HTTP_COOKIE_VARS array or in the automatically created
individual variables until subsequent runs of the script. This means that after the above
line of code has been executed we can still use these values throughout the script.

Also worthy of note is the fact that deleting and setting (in that order) a given cookie in
the same script in PHP4 is achieved as we would expect - first removing the old cookie
and setting the new one. This is not the case however if you are using PHP3, where
setcookie calls are actually performed in reverse order.

Cookie Paths and Domains
We can also use setcookie to restrict the cookie to a specific part of our site using the
domain and path attributes. These are specified as additional arguments to the call to
setcookie.

setcookie(name, value, expires, path, domain);

So if we wanted to set a cookie up to only be visible to the /samples path of our site (my
codejunkie.co.uk site in this case) then the function call would look something like the
following:

setcookie ("test", "ing", 0, "/samples", ".codejunkie.co.uk");

Because we're explicitly adding the path and domain portions of the function call we also
have to include the expiry date argument. However, as we just want a single session cookie
i n this case we can use zero as an expiry date to have it skipped.

The Cookie is Secure, Sir!
The last bit of information we can cram into our call to setcookie i s an integer to
represent the secure attribute of the cookie. This is just slapped onto the end of the
argument list in the function call and any non-zero value will mean that the cookie is set-

http://codejunkie.co.uk

Remembering Visitor Information

up as a secure one. That said, it's generally best to use true i f you want a cookie to be
secure, or false i f you want to explicitly set it to non-secure (as opposed to not including
the argument at all which would have the same effect).

setcookie ("test", "ing", 0, "/samples", ".codejunkie.co.uk",
true) ;

This would set a secure cookie for the same domain and path settings as previous, and it
would only be sent to the server if the connection used the SSL protocol as discussed at
the start of the chapter.

The Flash Cookie Cutter
Now that we've crammed all this wonderful cookie knowledge into our gray matter it's
time to put it to good use in Flash.

I n this section we're going to build what is commonly known as a cookie cutter. This
application will let us view the cookies for our site, set new ones and update or remove
existing ones. An application like this is a brilliant introduction to using cookies with Flash
and can be used over and again.

Let's have a look at the final FLA, which you can find in the source files for this chapter:

Foundation PHP for Flash

The user interface will be divided into two sections. The top section is where we'll be able
to view all of the cookies currently set and the bottom section will be used to manipulate
our cookies. Now let's open Flash and get cutting...

Cutting Cookies in Flash

1. As with most of the other applications that we've built thus far, we're going to
be using the onclipErent handler to detect when a given server-side
operation has been completed. To this end we're going to want to put
everything in a movie clip so the first thing we have to do is create one. Insert
> New Symbol from the main menu or press CTRL+F8 to create the movie clip
and give it a suitable name.

The timeline for this movie clip is going to be somewhat simpler than the
previous ones with everything contained on a single frame. However, it's still a
good idea to separate different elements of the movie clip onto different layers.

2. Recreate the layer structure shown below, where I've simply separated all the
background elements from the form elements.

Remembering Visitor Information

3. Again we're going to want to create
a suitably stylish background for our
movie clip. As always. I've remained
faithful to the style introduced from
the outset in this book, but you can
make yours as extravagant or as
simple as you like.

Remember, all these applications are perfectly adaptable for you to use on
your own sites, with your own design and whatever extra functionality you
want. You could even try combining some of the sample applications
you've met so far, and cookies are a great way of making visitor data
available to all your site's Flash applications!

4. Now we need to add the form elements onto the Form Elements layer. Use the
diagram as a guide...

Foundation PHP for Flash

5. Next we to add the ActionScript for the various buttons on the form. We'll kick
off with the small scroll buttons next to the cookieList text box. These simply
manipulate the scroll property of the text box to scroll the text up or down
when the relevant button is clicked. This will allow the user to easily view all the
cookies if there are more than can be displayed at any one time in the text box.

Now we can deal with the buttons that will interact with the PHP script we're
going to be developing in a moment.

6. The Get Cookies button first sets the action that we want the PHP script to
perform. It then clears the cookieList and cookieCount text boxes. Finally,
it sets the status variable to reflect the operation being performed and calls
the script.

on (release) {

// Set the action we want
action = "getcookies";

// Now clear the text boxes

cookieList = I'll;

Remembering Visitor Information

cookieCount = I'll;

// Let user know what we're doing
status = "Fetching cookies for site...";

// And lastly, call the script
loadVariables("cookiecutter.php", this, "POST");

7. The operation of the Kill Cookie button is to remove the cookie specified in
cookieName. Again we set the action variable to tell the script what we want it
to do for us, call the script and set the status variable.

on (release) {

// Set the action we want
action = "killcookie";

// Let user know what we're doing
status = "Removing cookie...";

// And lastly, call the script
loadVariables("cookiecutter.php", this, "POST");

8. The final button we need to consider is the Set Cookie button. The code for this
button only differs from the previous one in the values we are using for the
variables.

Foundation PHP for Flash

on (release) {

// Set the action we want
action = "setcookie";

// Let user know what we're doing
status = "Setting cookie...";

// And lastly, call the script
loadVariables("cookiecutter.php", this, "POST");

The final thing we need to do on the Flash side of things is to drag an instance
of our Cookie Cutter movie clip onto the main stage and attach some code to it.

9. Once we have an instance on the main stage, we need to add the code to
i nform the user that the previous operation has been completed. We'll do this
by simply using an onclipEvent (data) handler to set the status variable,
indicating the success of the operation.

Remembering Visitor Information

With the Flash front-end sorted, all that's left to do is to code the PHP script that will
actually perform all the cookie manipulations for the application. The script will use a lot
of the cookie related features of PHP we've met in this chapter, and is actually deceptively
short.

Sharpening our Cookie Cutter with PHP
1. The first thing we need to do at this end is to decide what action is required of

us by the Flash movie. This is specified in the $action variable and we're going
to use the switch statements we saw in Chapter 2 to test its value.

// Determine what action to take
switch ($action) {

The first possibility is that the Flash movie has requested that a list of all the
cookies be returned.

// If we're fetching the cookies...
case 'getcookies': {

2. I f this is the case then we initialize a string variable to hold the list of cookies.
We then loop through the $HT P COOKIE VARS array using foreach and add
each cookie's name and value to our string, putting each cookie on its own line.

// Initialize variable to hold cookie list
$cookieList = I'll;

// Loop through cookies. Add them to cookielist var
foreach($HTTP_COOKIE_VARS as $cookieName =>

$cookieValue) {
$cookieList .= "$cookieName: $cookieValue\n";

Foundation PHP for Flash

3. We then fetch the total number of cookies for display in our cookieCount text
box in Flash. Although it's not required, it is helpful to use the same name for
the variable in PHP as the one we're using in Flash as it helps to eliminate
mistakes!

// Fetch total number of cookies
$cookieCount = count($HTTP COOKIE VARS);

4. Finally for this action we need to output the list of cookies along with the cookie
count to Flash, and use the break keyword to signify the end of this particular
case block.

// Output cookie information back to Flash
echo "&cookieCount=$cookieCount";
echo "&cookieList=" . urlencode($cookieList);

// Done
break;

i

Dynamic Data for Flash

5. I f we're supposed to be setting a cookie,rather then fetching a list of them, then
we need to add another case block to our switch statement.

// If we're setting a cookie...
case 'setcookie': {

6. Here we must determine whether the user wants to set a single session cookie
(one that will be removed as soon as the browser window is closed) or whether
we want to keep it for a number of days.

7. We can test for this by checking the variable $cookieDuration that has been
passed from Flash. If it is set to 0 we can assume that the user wants this to be
a single session variable and call setcookie, with just the cookie name and
value specified.

// If specified duration is zero...
if ($cookieDuration == 0) {

// Set cookie for this browser session only
setcookie($cookieName, $cookieValue);

8. If, however, we have a meaningful value for $cookieDuration then we need
to calculate the Unix timestamp for the specified number of days in the future.
We do this by first multiplying the value of $cookieDuration by 86400 (the
number of seconds in one day) to get the number of seconds until we want the
cookie to expire. We then add this to the value returned by time to form a valid
future timestamp.

We then simply call setcookie with the extra argument specifying the desired
expiry date for the cookie.

} else {

// Otherwise convert days into a future date.
$expiryDate = time() + ($cookieDuration

	86400) ;

// Set the cookie with the calculated expiry date
setcookie($cookieName, $cookieValue, $expiryDate);

}

9. We finish up by telling the Flash movie that we're done doing its bidding and,
again, use the break keyword to signify the end of the current case block.

// Done
echo '&result=Okay'; continues overleaf

Foundation PHP for Flash

break;

10. The final operation that we could conceivably be asked to perform is that of
removing a cookie. If you remember back to the main chapter text all that
needs to be done here is to update the cookie with an expiry date sometime
way back in the past. For this, the simplest timestamp to use is 1 since that
represents 1 second from the epoch, or midnight on 1st January 1970 - that'll
be long enough ago I think!

// If we're removing a cookie...
case 'killcookie': {

// Force cookie to expire
setcookie($cookieName, '', 1);

// Done
echo '&result=Okay';
break;

Remembering Visitor Information

You should now have a fully working cookie cutter! And you've built it yourself - how good
does that feel? All you need to do now is to upload or copy these files to your web server
and load the Flash movie through your browser.

Further Development
If you want to develop this application further then you could try adding fields in the Flash
movie to allow the user to set domain and path i nformation for the cookies. Of course,
this will also require a small edit to the Flash movie.

The same techniques presented here can be used to remember many different bits of
information about your visitors and their time at your site. One of the possibilities is a
clever Skip Intro button that when clicked will store a cookie on the users system,
specifying that they don't want to see the intro if they return to your site. You can then
check for this as soon as your movie loads and skip the intro automatically if appropriate.

You'll need to change the way the cookie information is returned from the script. Rather
than returning the cookies as a list stored in a string, you'll want to return one variable for
each cookie, with the name and value of the variable identical to the cookie's name and
value respectively.

Alternatively, you could try setting a cookie at the very end of the intro so that the site
knows that this user has already seen it and won't play it again. There are limitless
possibilities.

Foundation PHP for Flash

Summary
I n this chapter we've discovered a simple way of storing information on the user's
computer and of using that information to influence the content of our Flash movies. This
i s our first look at maintaining a visitor's information between visits to the site so you can
feel extremely proud of what you've accomplished here!

Beginning with a discussion on the nature of cookies in general we've also seen:

•

	

What they are and how they work

•

	

The restrictions that can be placed upon them

•

	

How the time function can be used to set expiry dates

•

	

How we can read and manipulate cookies with PHP and the setcookie
function

•

	

A working example of a cookie cutter application!

Because PHP makes handling cookies easy there wasn't a great deal to the script, and this
can only be a good thing for busy designers who want to spend their time designing!

This is just the first step in storing information with PHP. In the next few chapters we'll look
at some more advanced methods of handling and storing user data with PHP, and build
some more excellent Flash applications.

What we'll cover in this chapter

•

	

Reading from external files
•

	

Writing new information to files and holding information for
future use

•

	

Putting all that to use in creating and maintaining a Flash-
based mailing list

Tapping Into
External Files7

Foundation PHP for Flash

In the last chapter we took a look at cookies and how we can use them in PHP to
remember visitor information between visits. This is all very well for relatively small
amounts of non-critical information but they have a number of disadvantages in certain
situations...

•

	

Data Size
Cookies are great for holding small pieces of information, and accordingly have
a maximum size of 4kb. This means that storing large amounts of data using
cookies is wholly impractical.

•

	

Availability
Cookies, by design, are only available to the site when a given user is actually
visiting it. This would make it virtually impossible to use cookies to store
i nformation such as personalized news items for display on the site when users
visit. Each visitor would have to have a copy of each news item, and we're then
back to being limited by the maximum data size of a cookie.

•

	

I nformation Retention
Another problem with cookies is that we can never guarantee that they are
going to be available to the site when the visitor returns. If the user has visited
many sites in between and exceeded the maximum of 300 cookies, old cookies
will start to be thrown away to make room for new ones. Similarly, if the user
removes the cookies manually or needs to reinstall the software on their
machine, the old cookies will not be available.

This means that we should not store any crucical information in a cookie
because we cannot be sure that it will still be there when the visitor returns.

•

	

User Preference
And of course users can always disable cookies in their browser.

All these things mean that although cookies can be a great help, we cannot fully rely on
them for holding and returning important information.

Having realised that the humble cookie has some serious limitations, we need to find
another way of storing and retrieving data from our scripts. Over the coming chapters we'll
be covering many of these methods but for this one we're going to focus on that old
stalwart of data storage - the text file.

PHP provides us with a whole truckload of file handling functions. It currently has over 65
file and directory related functions, which should be enough to keep us contented.

We don't have room to cover all the functions here, and it would be a questionable
exercise anyway since only a handful of them are going to be of any long-term use. Instead
we're going to concentrate on the ones that will help us to perform the most common file
operations:

Tapping Into External Files

•

	

Open
Opening a file with a view to reading and/or writing information to/from it.

•

	

Close
Closing the file when we're done with it.

•

	

Read
The actual operation of reading data from the file.

•

	

Write
Writing data to the file.

and a few others thrown in for good measure including a quick look at related functions
that handle directories. How can you resist?

Finally we're going to round the chapter off with yet another solid example. This time
we're going to build a Flash-based mailing list application that you can add to any site.
We'll include in this an admin section that will let you manage the mailing list and send
out e-mails.

You can see the mailing list in action at www.phpforflash.com where you can also grab the
example files for the chapter.

To whet your appetite in the meantime take a look at the screenshots of the application
below - but no peeking ahead to see how it's done!

Opening Files
The most basic thing we're likely to want to do to an external file is open it. This is
achieved through a single function in PHP: fopen () .

The syntax for the (open function is as below:

fopen (filename, mode [, use include path]);

http://www.phpforflash.com

Foundation PHP for Flash

Before we get into the nitty-gritty of this function's parameters we need to consider the
return value of the function.

I f the targeted file is successfully opened, this function returns what is known as a file
handle. This is basically an integer that uniquely identifies the open file so we can use it
i n subsequent file-related function calls. If the file is not opened successfully then the
function will return false.

Let's look at the component parts in more detail.

filename
If you glance up at the above syntax for (open, you will note that filename i s a string
that specifies the name of the file that we want to open. We can use the (open function
to open any file that exists on the server's file system, or via HTTP or FTP on the Internet.
The method used depends on the beginning of the filename string.

http://
I f filename begins with "http://", a connection is opened to the specified server and a
handle to the specified file is returned.

PHP does not handle HTTP redirects, so you must fully qualify the filename you want to
open. As an example, suppose we wanted to open a file name index.html from
http://www.phpforflash.com .

We would have to set filename to...

http://www.phpforflash.com/index.html

... in order to open the file, even though simply entering http://www.phpforflash.com i n our
web browsers takes us automatically to the index.html file.

I f you're a bit concerned about people opening and modifying files from your site then
fear not. For obvious reasons, files opened via HTTP are read-only.

ftp://
I f filename begins with ftp: //, an FTP connection to the specified server is opened and
a handle to the requested file is returned. If the server does not support passive mode
ftp, this will fail.

You can open files for either reading or writing via FTP but not both simultaneously. This
restriction is particular to FTP.

I f filename begins with anything else, the file is opened from the file system, and a
pointer to the opened file is returned.

http://www.phpforflash.com
http://www.phpforflash.com/index.html
http://www.phpforflash.com

Tapping Into External Files

It is worth noting that neither the http:// nor ftp:// at the beginning of the
file have to appear in any particular letter case.

The remainder of the filename may or may not be case sensitive
depending on the operating system on which the file being targeted
resides. For example, windows servers will treat file.ext, File.ext and
FILE.EXT in exactly the same way, while to Unix or Linux based servers
these are three totally different files.

Returning to the syntax of the (open function, you will see that filename i s followed by
the mode parameter.

mode
Essentially, its the modes job is to tell PHP exactly what kinds of operation we want to
perform on the file. There are several possible values this string can take and they are
listed below, along with the operation(s) they represent:

Value Meaning
r

	

Open file for reading only. Place file pointer at the beginning of the file.

r+

	

Open file for reading and writing. Place file pointer at the end of the file.

w

	

Open for writing only. I f the file already exists then delete i ts contents. If
the file does not exist, attempt to create it.

w+

	

Open file for reading and writing. If the file already exists then delete its
contents. I f the file does not exist, attempt to create it.

A

	

Open file for appending - write only. Place the file pointer at the end of the
file. If the file does not exist then attempt to create it.

a+

	

Open file for appending - read and write. Place the file pointer at the end
of the file. If the file does not exist then attempt to create it.

The mode may also contain the letter "b" - signifying that the file should
be opened in binary mode. This is useful only on systems that differentiate
between binary and text files (that is to say it's of no use in Unix). If not
needed, this will be ignored. When dealing with binary files it is better to
use the "b" flag because although Unix treats ASCII and binary files the
some, it is better to make your code cross compatible.

http://nor
ftp://at

Foundation PHP for Flash

i nclude_path
Finally, taking one last glance back at the syntax for fopen, you will see an optional third
parameter. You can set it to "1", if you want to search for the file in the include-Path,

too. The include_path i s an entry in the PHP configuration file and you can find out
more at www.php.net.

Some Function Action
let's take a look at a couple of instances of the fopen () function in action.

// Open news.dat from file system for reading only
$file = fopen("news.dat", "r");

// Create a new file for writing on the file system
$file = fopen("output.txt", "w");

// Open file for appending: read and write in data dir
$file = fopen("data/banned.inf", "a+");

// Open index.html from http://www.phpforflash.com
// MUST be read only
$file = fopen("http://www.phpforflash.com/index.html ", "r");

I f your server is running a Windows-based operating system then you need to take special
care when specifying the path to the file that you escape the backslash characters. This is
necessary because the filename is specified as a string and because the backslash character
has a special meaning within strings (as we have already seen). Alternatively you can use
the forward slash character, which has no special meaning and does not require escaping:

http://www.phpforflash.com
http://www.phpforflash.com/index.html

Tapping Into External Files

Warnings

Before we go any further it's worth discussing the automatically generated error messages
when an operation like a file open is performed. Depending on your configuration of PHP,
if something goes wrong with the operation you may get error messages automatically
shown within the output of the script.

An example can be seen below:

Warning: file("test.txt") - No such file or directory in
/path/to/www.codejunkie.co.uk/publiçhtml/file.php on line 3

Obviously this kind of output can cause havoc with either nicely designed HTML user
interfaces or, in our case, the information sent back to Flash.

To suppress these error messages we can use PHP's error suppression operator - @ -
before the function call. For example, to suppress an error message from the (open
function, the function call may look like:

$file = @fopen("test.txt", "r");

We can then test the value of $file and output a more pleasing error message if we
choose to do so.

Closing Files
Now that we know how to open files we need to cover closing them! Any files that remain
open at the end of your script will be automatically closed by PHP, but it's good
programming practice to close a file when you're done with it. You will also need to close
a file if you want to change the mode with which the file was opened.

PHP provides us with the (close () function for this task.

fclose (file handle);

(close takes a single argument, which is the handle of the
file to close. For this we use the previously returned value
of fopen. The function returns true on success, or false

on failure.

http://www.codejunkie.co.uk/publi�

Foundation PHP for Flash

Now that we can open and close a file we can look at a real running example:

// Attempt to open file for reading
$file = @fopen("test.txt", "r");

// If the file was opened successfully...
if ($file) {

// Output success message
print "File opened successfully!\n";

// Close file
fclose($file);

} else {

// Otherwise output failure message
print "File not opened!\n";

}

This code simply attempts to open the test. txt file from the same directory that the
PHP script is in. If it succeeds then we print a message saying so and close the file.
Otherwise, we simply print a failure message. It may seem like common sense but it's
worth noting that we don't need to close a file if it wasn't opened successfully!

Tapping Into External Files

Displaying a File
Opening and closing files is all well and good, but it's not exactly exciting is it? What we
need is a way of displaying the file to get it to work for its supper!

What we are going to look at is the PHP fpassthru () function. It sends the contents of
the file to the client.

fpassthru(file handle);

Again this function takes the handle of the file to be displayed and presents it as a single
argument. On success the function will return true, on failure false.

This function outputs the contents of the file from the current file position (more on that
later) to the end of the file. As an added bonus, fpassthru will close the file for us when
it's done. We could modify the previous example to actually output the contents of the
file if it is opened successfully, like so:

<?
// Attempt to open file for reading
$file = @fopen("test.txt", "r");

// If the file was opened successfully...
if ($file)

// Output success message
print "File opened successfully!
\n";

// output file contents
fpassthru($file);

} else

// Otherwise output failure message
print "File not opened!\n";

}
?>

Foundation PHP for Flash

Note that we've removed the call to the fclose function since
fpassthru handles closing the file for us.

When used in this context, text files will make the best target for the fpassthru function.
However, we could also use it to output images:

// Attempt to open file for reading
$file = @fopen("picture.gif", "r");

// If the file was opened successfully...
if ($file) {

// Output image
fpassthru($file);

} else {'

Tapping Into External Files

// Otherwise output failure message
print "File not opened!\n";

If you enter the URL for this script into your browser and the image exists, the result of
this would be the same as typing the name of the image file in directly. However, if the
file doesn't exist you get a nice message telling you so.

The same technique could also be used with another fpassthru function call to output
an image not found message which would make it suitable for an HTML tag,
replacing those horrid boxes with red crosses in them!

PHP code:

// Attempt to open file for reading
$file = ®fopen($filename, "r");

// If the file was opened successfully...
if ($file) i

// output image
fpassthru($file);

} else {

// Otherwise output failure message
$errorimg = fopen("whoops.gif", "r");
passthru($errorimg);

}
?>

HTML code:

Here we're using a query string to pass the name of the desired image file via the
$filename variable.

eading From Files
fpassthru i s a nice enough function, but it's not very useful if we don't want to actually
output the contents of a file. What if we just want to read data in and use that in our PHP
script? Can PHP handle that too? Of course it can!

PHP provides a number of functions for reading data from an external file and we're going
to look at some of them in this section.

Foundation PHP for Flash

fread()
To read a string from an opened file we can use the fread function.

fread(file handle, length);

This function takes it upon itself to read the string, expecting it to be as long as length
specifies, and expecting it to be buried in the file quoted by f ilehandle.

To take up one of our earlier examples, rather than outputting the whole file we could just
output the first 26 characters of it (the first sentence only) with the following code:

// Attempt to open file for reading
$file = @fopen("test.txt", "r");

// If the file was opened successfully...
if ($file) {

// Output success message
print "File opened successfully!
\n";

// Read first 26 bytes from file
$output = fread($file, 26);

// Output string
print $output;

} else {

// Otherwise output failure message
print "File not opened!\n";

}

Tapping Into External Files

Note that if the end of the file is reached before fread has read length characters, the
text up to that point will be returned.

fgetc()
Although fread can be used to read single characters at a time it's a bit like using a
sledgehammer to crack a nut - a touch heavy!

A better solution would be to use the fgetc () function.

fgetc(file handle);

This would be more efficient from an overheads point of view because it doesn't need to
read ahead to determine the total length of the string. So to read the first character of
the file from our example earlier we could use the following code:

// Attempt to open file for reading
$file = @fopen("test.txt", "r");

// If the file was opened successfully...
if ($file)

// Output success message
print "File opened successfully!
\n";

// Read first character from file
$output = fgetc($file);

ontinues overleaf

Foundation PHP for Flash

// Output string
print $output;

} else

// Otherwise output failure message
print "File not opened!\n";

}?>

Here we've simply replaced the call to fread with a call to fgetc. We could replicate the
output of the previous example if we were to loop the reading and outputting code 26
times.

fgets()
The (gets function is largely similar to f read.

fgets(file handle, length);

I t has the same parameters and performs almost the same operation as fread. The
difference is that if a newline character is encountered during the read operation then
fgets will stop reading at that point. This makes the function ideal for reading through
li nes of a text file one at a time.

There is also a subtle difference in the interpretation of the length argument. While
f read will read up to length characters from the file, fgets will only read up to length

- 1 characters.

The following code will loop through our test file, outputting every five characters of the
file on a separate line...

// Attempt to open file for reading
$file = @fopen("test.txt", "r");

// If the file was opened successfully...
if ($file)

// Output success message
print "File opened successfully!
\n";

do

$output = fgets($file, 6);

Tapping Into External Files

if ($output) {
print "$output
\n";

} else

// Otherwise output failure message
print "File not opened!\n";

?>

Foundation PHP for Flash

file(
The last of the file reading functions we're going to take a took at is the file () function,
which creates a nice array out of our external file.

file(filename);

You can see from the above syntax that, rather than an open file handle, the file function
takes as its single argument the filename (and path) of the file to be opened.

This is a handy all-in-one function that will open the file, load the file into an array, with
each line represented by one element of the array, and then close it when it is done,
returning the array. If the file could not be opened then the function returns false.

Note that each array element, having been constructed from a single line in the file, will
still contain the newline characters that were present in the original file.

Using this function we could loop though all the lines in a given file, outputting them with
line numbers.

Tapping Into External Files

// Attempt to open file for reading
$lines = @file("file to array.txt");

// If the file was opened successfully...
if ($lines) {

// Loop through all lines of file
foreach($lines as $count => $line) {

// Output count and line
print "$count: $line
";

}
} else {

// Otherwise output failure message
print "File not opened!\n";

Foundation PHP for Flash

Writing to Files
The ability to read data from files is all well and good, but we need to find a way of getting
the information there in the first place. We could just re-upload the file every time we
wanted to change it, but that's akin to having a spa bath installed and never turning on
the water jets.

PHP provides us with a couple of functions to enable us to write to files.

fputs(file_handle, string [, length]);
fwrite(file handle, string [, length]);

The parameters for both functions are the handle for the file to be written to, the string

to be written and, optionally, the number of characters from the string to be written.

The functions return true i f the write operation is successful and, well, false if it is not.

The two are nearly identical and the only occasion when one is preferential over the other
is when writing to binary files. I n this instance you should use the fwrite function as it
has been designated as a binary safe function.

A common use of the file writing functions is to write to a site-wide error log, allowing
you to determine if there are any occasional or persistent problems with your site. For
example, if we take one of our previous examples we can modify it so that a log is kept
of all errors.

We'll do this using a function that you should be able to use in most of your PHP scripts.
The function will include adding a timestamp so we can tell when the error occurred!

// Attempt to open file for reading
$lines = ®file("test.txt");

// If the file was opened successfully...
if ($lines) {

// Loop through all lines of file
foreach($lines as $count => $line) {

// Output count and line
print "$count: $line
";

}
} else {

// Otherwise output failure message
print "File not opened!\n";
writeLog("Couldn't open test.txt");

Tapping Into External Files

function writeLog($logEntry) {
// Filename of log file
$logFile = `error.log';

// Create human readable date/time string for
// current time
$dateStamp = strftime("%D %T", time());

// Open log file for appending
$file = Wfopen($logFile, `a');

// If we've opened the file successfully
if ($file) {

/ /Write the log entry and close file
fwrite($file, "$dateStamp: $logEntry\n");
fclose($file);

// Return success
return true;

} else {
// Otherwise, return failure
return false;

}
}

Here we're using a function to attempt to write errors to an error log file. We use the
(open function to attempt to open the file specified in $logFile for appending and test
that the file was opened correctly. If it was, then we write our log file entry on a new line
i n the file and then close the file. We return true to indicate that the operation was a
success.

If we fail to open the file then we simply return false since we can't write that error to
a log file.

There's one function buried in here that we haven't met so far - strftime. This function
converts the timestamp returned from the time function into a string with a format of
our choosing.

It works very much like the printf and sprintf functions we met in Chapter 4, i n that
the various tokens given in the string (which make up the first argument) are converted
i nto text representing certain parts of the timestamp. All of the tokens begin with a % sign
and the ones we've used represent...

Foundation PHP for Flash

•

	

%D The date in mm/dd/yy format

•

	

%T The time in hh:mm:ss format

So, if the test. txt file cannot be found then an entry will be made in the error. log

file that looks something like this:

08/11/01 15:57:23: Couldn't open test.txt
06/11/01 08:08:21: Couldn't open test.txt
06/11/01 07:11:50: Couldn't open test.txt
. .

Note that you'll need to make sure that you have the permissions to write
to the error file or the folder it is in. Right-click and view the Properties,

specifically the Security tab, to check. Also, if you actually have the
test. txt file still in your root folder, you should temporarily move it or
rename it to check that the errors are being generated.

Tapping Into External Files

This is a good function to use across our site, and it would be worth taking a little time
out to develop our function to tell us the file that generated the error. This would only
mquima small addition On extra parameter passed into the function and a modification
of the call to f write) but would make the log file a lot more useful since we'll know the
source of alt our problems.

Foundation PHP for Flash

Navigating Within Files
So far we've been reading and writing from and to the beginning of any files we've been
playing with. While this is useful we will often want to navigate our way through the files
we encounter to find the bits we're interested in.

Since each subsequent read operation advances our position within the file, we could use
a loop reading one character at a time to move our way through all the data. However,
this will only let us move forwards and we'd have to close the file and re-open it in order
to reset the file pointer.

Thankfully, PHP provides a handful of functions that we can use to navigate our way
through files more freely.

rewind()
The simplest of these functions is the rewind(function. As its name suggests, this
function resets the file position to the beginning of the file.

rewind(file handle);

You can see from the syntax above that file rewind function takes as its only argument the
file handle of the file to rewind. If the operation is successful the function returns
true, and on failure it returns false.

fseek()
The f seek function allows us to navigate to any point in our file with a single function
call.

fseek(file handle, offset [, whence])

The fseek function sets the file position indicator for the file referenced by
file handle. The new position, measured in bytes from the beginning of the file, is
calculated by adding the value of offset to the position specified by whence.

The possible values for whence are as follows.

SEEK_SET Sets file position relative to the start of the file. SEEK CUR Sets file position
relative to the current file position SEEK_Etm Sets file position relative to the end of the
file.

Unusually for PHP functions, the fseek function will return "0" on success and "-1" on
failure.

Tapping Into External Files

I t's worth noting that it is perfectly valid to have a negative offset when setting the file
position relative to either SEEK_CUR or SEEK_END but doesn't make much sense for
SEEK START since you can't seek before the start of a file.

I t's also worth noting that you cannot perform f seek operations on file handles returned
by fopen i f they use the "http://" or "ftp://" formats.

So, for example, if we wanted to open a file and read just the last 10 characters (the very
last word in our test. txt file) we would use the following code:

$file = fopen(`test.txt', `r');

if ($file) {
fseek($file, -10, SEEK_END);
$output = fread($file, 10);

print "Output: $output\n";
fclose($file);

} else {
print "Cannot open file";

}

Foundation PHP for Flash

Here you can see we're using our newly acquainted f seek function to move 10 characters
back from the end of the file (SEEK END). We're then using a simple f read to read the
final 10 bytes of the file in and a print statement to output the lot!

A few more examples of the f seek function in action are shown below. The comments
alongside should give you a good indication of their use.

// Move 5 characters from start of file

fseek($file, 5, SEEK SET);

// Move 5 characters back from current file position

fseek($file, -5, SEEK CUR);

// Move 11 characters past end of file
// Useful for files opened with write access to extend
// the file
fseek($file, 11, SEEK END);

// Move to start of file. Same as rewind($file)

fseek($file, 0, SEEK SET);

ftellp and feof()
The (tell O function is used to determine the current position within the file.

ftell(file handle);

Again, ftell takes a sole argument - the handle of the file from which to fetch the
current file position.

Another useful function is feof (). This function is used to indicate whether or not the
current file position is actually the end of the file.

foef(file handle);

This function returns true if the file specified is at EOF and false otherwise.

More Useful Functions
We round off our journey through file-related functions in PHP with a look at some useful
functions that don't really fit into any other category we've covered.

A greater sensitivity of error message is afforded by the file_exists function. As its
name dictates, this function allows us to figure out whether or not a file is actually on our
server at all. The format is:

file exists (filename);

Tapping Into External Files

The function simply takes the filename of the file for which we want to check as a single
argument. It will return true if the file exists, or false otherwise.

We can use this function to determine if a file exists before attempting to open it.

$filename = "lums.txt";

if (file exists($filename)) {
$file = @fopen($filename, `r');

if ($file) {
fpassthru($file);

} else {
print "File found but couldn't open";

}
} else {

print "Cannot find file $filename";
}

1 f you follow through the nested if . . else statements, you'll see that we
first check it exists, and then we check if we can open it, outputting
different messages if it doesn't exist or if it does but we just can't open it.

Foundation PHP for Flash

Now, you may be forgiven for thinking that the fopen function would serve all our
conceivable needs in terms of file existence. After all, you try to open a file, it doesn't
open, it doesn't exist, right? Wrong! There are a number of reasons why a file might fail
to open. You can see from the above example that using both functions in tandem allows
us to give a more specific error message to the user.

There's also a couple of other functions we can use prior to calling fopen to help us
decide whether the operation will succeed or not.

is_readable(filename);
is writable(filename);

These functions are very self-explanatory, returning true if the file is readable and
writable respectively, and false otherwise. Let's pretend we've found our lums.txt file,
but someone's gone and made it read-only!

$filename = "lums.txt";

if (is readable($filename)) {
print "File is readable
\n";

} else {
print "File is not readable
\n";

}

if (is writable($filename)) {
print "File is writable
\n";

} else {
print "File is not writable
\n";

Tapping Into External Files

Having looked extensively at the file-related functions in PHP and how we can use them
to store and retrieve information, it's time to put all that knowledge into practice with a
sample application.

Building a Flash Mailing List Application

I n this section we're going to be building a mailing list application. There are actually two
parts to it - the user side and the administration side. The user side will handle all user
interaction, which is basically just the subscription to our mailing list. The admin side will
handle the sending out of a-mails to all the users subscribed on the mailing list.

As with most of the other applications we're going to use a movie clip to hold the entire
application.

1. Create the movie clip, give it a suitable name like Mailing List and hit the OK
button.

2. Next we'll build the timeline and frame structure for the movie clip. Use the
screenshot below as a guide.

Foundation PHP for Flash l
3. Again we're going to want to create a

suitably stylish background for our movie
clip. As always, I've used the
phpforflash.com style introduced from the
outset in this book but you've probably
developed your own funky design calling
card by now.

4. Now we need to add the form elements onto the Textboxes layer. Use the
diagram below as a guide...

http://phpforflash.com

Tapping Into External Files

5. You'll also want to add some ActionScript to the Subscribe button shown above.
This is to process the details entered and send us to the Loading frame

6. Now we move on to that Loading frame.
Here I've re-u sed the waiting clock
animation from previous examples.

Foundation PHP for Flash

7. We also need to create the elements for
the Success frame. This is simply a
message telling the user that they've been
subscribed successfully to our mailing list.

8. The last frame we need to worry about is the Error frame. This is where any
errors that occur will be displayed so we'll need a text box to display them. We'll
name the variable errormsg and use that to return error information from our
PHP script.

9. The final thing we need to do on the Flash side of things is to drag an instance
of our Mailing List movie clip onto the main stage and attach some code to it.

10. Once you have an instance on the main stage we need to add the code to send
the movie clip to the appropriate frame on success/failure of the operation. We
can do this by checking the result variable that we'll set from our PHP script
and using gotoAndstop to jump to the appropriate frame.

Tapping Into External Files

With that done we now need to build up the PHP script to handle the requests from the
Flash movie. We'll use a lot of functions in this code to keep everything easily
understandable.

Adding The PHP Script

Before we kick into the PHP script, we need to think about how we're going to store the
user data in our text files. Since the file function will load each line of the given file into
an array element it seems sensible to have one line per subscriber in the file. However, we
need to store more than a single piece of data about each subscriber. The information
we'll want to store is:

•

	

Name
•

	

E-mail Address
•

	

Date Subscribed

So we need a way of fitting this all on to one line whilst still being able to get at the
individual bits when we need to. The answer is to use some kind of separator and then
use the explode function to split the string apart when we want to get at the individual
bits.

We need to make sure that the separator we choose isn't likely to crop up in any of the
data fields we want to store, or else it'll cause problems when we come to explode the
string. A commonly used separator is the " I " character and this is the one we'll be using
in this application.

Just so you're sure about what's going on here, take a look at a few entries from my text
subscriber file:

Steve Websterlsteve®codejunkie.co .ukl998254219
jamesljames@codejunkie.co . ukl998297924
billylbilly®codejunkie.co . ukl998299352

Here you can see how the different data fields are separated with their Unix timestamps
at the end.

1. Right, with all that sorted we can get on and tackle the PHP script. This is our
opening chunk of code:

1

// Check for required data
if (!isset($email) 1 1 ! isset($name) 1 1

empty($email) 1 1 empty($name)) {
fail("Both name and email are required");

continues overleaf

http://codejunkie.co
mailto:jamesljames@codejunkie.co
http://codejunkie.co

Foundation PHP for Flash

// Make string lowercase
$email = strtolower($email);

The first thing we do is to check that the required data has been sent to us.
Although we're doing this already in the Flash movie it's worth double checking
the data as it helps to weed out any errors that could occur as a result of
misnamed variables.

We then use the strtolower function we covered in Chapter 4 to make sure
that the e-mail address uses all lower case letters. We do this so that, when
checking to make sure that a given user is already subscribed to the mailing list,
we don't get any confusion between, say Steve@codejunkie.co.uk and
steve@codejunkie.co.uk.

2. Next, we use a switch statement to check the value of the $action variable
which will be sent from the Flash movie. We check it against two known actions
and call the appropriate function if a match is found, and we use the default:

block to return an error message if the value of $action i s not a valid action.

// Determine operation to perform
switch($action) {

case "subscribe":
subscribe ($name, $email);
break;

case "unsubscribe":
unsubscribe($email);
break;

default:
fail("Unknown action: $action");

That's the end of the main code for the maillist.php file and we now move
onto the functions that actually do the legwork.

3. The first two functions we meet, although small, will be used throughout the
rest of the script to report back to Flash on the status of the operation. The
fail () function, as its name might suggest, will tell our Flash movie that the
operation has failed and, by making $errorMsg a parameter of the function,
we can use it to report all of our errors with a custom error message.

function fail($errorMsg) {
$errorMsg = urlencode($errorMsg);
print "&result=Fail&errorMsg=$errorMsg";
exit;

mailto:Steve@codejunkie.co.uk
mailto:steve@codejunkie.co.uk

Tapping Into External Files

4. The success () function works in much the same way, except we've no need
to supply any more information than the fact that the operation succeeded.
Thus, the function has no parameters and uses a simple print statement to
feedback to Flash.

function success() {
print "&result=Okay";
exit;

i

Both functions use the exit keyword once they've sent their data to Flash to
prevent any further execution.

5. Next we have a function that will determine if a given email address is
subscribed to the list. This will be used in both the subscribe () and
unsubscribe () functions to determine the current subscription state of a user.
This allows us to return error information if a user is already subscribed in the
case of subscribe, and if a user isn't subscribed in the case of unsubscribe.

function isSubscribed($email) {
$matchFound = false;
$subscribers = file(`subscriber.dat');

Here we're setting up our $matchFound variable to false, and we'll use this
variable to i ndicate whether or not a user is subscribed.

We then use the file function we've just met to load the contents of the
subscriber.dat file into an array called $subscribers, with each subscriber
being stored in an element of the array.

6. Now we check that the file has been opened successfully and that it actually has
some data in it. If so, we use a foreach loop to go through each element of
$subscribers in turn, storing the index and value of the current element in
the $count and $subscriber variables respectively.

if ($subscribers) {
foreach($subscribers as $count => $subscriber) {

7. We then use the explode function to separate the three data fields of the
$subscriber string into an array.

$info = explode(' I ' , $subscriber);

8. After exploding $subscriber, we check the value of $info [11, which is the
e-mail address for the current subscriber, against the e-mail address being

Foundation PHP for Flash

passed into the function. If there is a match then we set our $matchFound
variable to true.

if ($info[l] == $email) {
$matchFound = true;

return $matchFound;

Once we've finished looping through all subscribers in the file we close the
foreach loop and the if statement, and return the value of our $matchFound
variable.

9. We now move on to the subscribe() function.

function subscribe ($name, $email) {

if (isSubscribed($email)) {
fail("$email already subscribed");

You can see that we're receiving the $name and $email variables as arguments
when the function is called. We're then using our isSubscribed function to
check whether the e-mail address supplied is already subscribed to the mailing
list. If the function returns true, then we call our fail function to tell Flash
why we've failed.

10. It's now time to fetch the current time and date to use as our joined date for
the subscriber, and attempt to open our subscriber.dat file in append mode.

$joinDate = time();

$file = @fopen(`subscriber.dat', `a');

if (!$file) {
fail("Error: Couldn't open subscriber file");

fputs($file, "$nameJ$emailJ$joinDate\n");
fclose($file);

success();

Tapping Into External Files

I f the file was not opened successfully then we report that back to Flash.
Otherwise we use the fputs function to output our subscriber information on
a new line in the file, remembering to separate each of the data items with the
" I " character. Another crucial point is the newline character added at the end
"\n". This ensures that the next subscriber is added on the next line, maintaining
the structure of our file.

All that's left to do then is to close the file and report the success of the
operation back to our Flash movie.

11. The final function we need to handle is the unsubscribe () function. This is a
little more complicated than the subscribe () function because of the fact
that you cannot simply remove a line in the middle of a file. Instead we have to
read the entire file by using file, delete the element that corresponds to the
subscriber we want to remove, and then write the whole lot back to the file,
overwriting the current contents.

function unsubscribe($email) {
if (!isSubscribed($email)) {

fail("$email not subscribed to mailing list");

The first thing we need to do in our function is to check to see if the e-mail
address being passed into the function actually exists in the subscriber file. If it
doesn't exist there's no pointing trying to remove it so we return error
i nformation to Flash.

12. We then attempt to read the entire subscriber file into the $subscribers

array. We check to make sure that there wasn't an error opening the file and, if
there was, report an error to Flash.

$subscribers = file(`subscriber.dat');

if (!$subscribers) {
fail("Error: Couldn't open subscriber file");

13. We then use a foreach loop to check each of our subscribers in the file for a
match to the email address given. If there is a match then we remove that
element from the main $subscriber array using the unset () function.

foreach($subscribers as $count => $subscriber) {
$info = explode(`1', $subscriber);

if($info[l] == $email) {
unset($subscribers[$count]);

continues overleaf

Foundation PHP for Flash

14. Next, we attempt to open the subscriber.dat file for writing, using the "w'

mode to ensure that any existing file is overwritten with our new one. We make
sure that there wasn't an error opening the file and, if there was, report that
back to Flash as an error.

$file = fopen(`subscriber.dat', `w');

if (!$file) {
fail("Couldn't remove subscriber from file");

}

15. We then loop through the remaining elements in the $subscribers array,
writing them to file.

foreach($subscribers as $subscriber) {
fwrite($file, $subscriber);

}

16. Finally we close the file and report our great success back to Flash.

fclose($file);

success();
}

Well, we're on a roll, so let's carry on. There's one thing that we need to do, and our
mailing list application is pretty much useless without it. We need to build some kind of
facility by which we can at least send an e-mail to these subscribers - the whole point of
our mailing list in the first place.

Designing the Admin Interface
Since this admin section is not going to be publicly visible there's no point in going
through the hassles of building it in Flash - we should be man or woman enough to
stomach plain HTML. This will also give you an insight into how comfortable PHP is working
with both.

1. So, we'll first start off by building the HTML file that'll act as our user interface.

Tapping Into External Files

As I've said this is a simple HTML form and there shouldn't be anything new to
you here - here's the code anyway, or you can find the file in the source code
for this chapter:

<html>
<head>

<title>Mailing list admin</title>
</head>
<body>

<form action="maillist-admin.php" method="POST">
Admin Details

Username: <input type="text" name="inUsername">

tinues overleaf

Foundation PHP for Flash

Password: <input type="password"
r' name="inPassword">

<hr>
List Subscribers

<input type="submit" name="action" value="List
I- Subscribers">

<hr>
Send Email

Subject: <input type="text" name="mailSubject">

Body: <textarea name="mailBody" cols="60"
t' rows="10"></textarea>

<input type="submit" name="action" value="Send Email">
</forms

</body>
</html>

One of the interesting points to notice here is that, unusually, we're giving our
submit buttons a name and a value. Not only does this allow us to set the text
that appears on the submit button, these also get sent to PHP as variables - just
as any other form element would.

As an example, take the following line of the above code:

<input type="submit" name="action" value="Send Email">

When the form is submitted, this will create a variable in the PHP (script names
$action) with the value of "Send Email". Since we have more than one
submit button in the HTML form we'll use this variable in the PHP script to
determine which action the user wants us to perform.

2. Moving on to the PHP script, there should be little here that you haven't seen
before.

// Define subscriber file
$subsFile = `subscriber.dat';

// Define admin username and password
$adminUsername = "steve" ;

$adminPassword = "nottelling";

Tapping Into External Files

First up we store the name of the subscriber file in the $subsFile variable so
we can refer to it through the rest of our script. Working in this way allows us
to change the subscriber file we're using with the minimum amount of hassle.

We then set up the administration username and password that will be required
to perform any of the operations in the script. We do this because we don't
want Joe Public being able to come in and view all of our subscribers or send
them e-mails.

3. Consequently, the next stage in the script is to check the supplied username and
password against the admin details we've just defined. If the username and/or
password does not match then an error message is displayed and execution of
the script is halted.

// If supplied username/password do not match above
if ($inUsername !_ $adminUsername 1 1 $inPassword !_

$adminPassword) {
// Output error information and quit
print "Invalid username or password";
exit;

4. I f the username and password are correct then we need to decide what action
the user wants the script to perform. This is where our $action variable that
we discussed earlier comes into play.

// Decide on what action we need to take
switch($action) {

// Fetch list of subscribers
case "List Subscribers":

fetchList();
break;

// Send email to subscribers
case "Send Email":

sendEmail($mailSubject, $mailBody);
break;

default:
print "Unknown action: $action";
exit;

t

You can see that, depending on the action given, the appropriate function is
called. In the case of sendEmail () we also pass in the elements of the HTML

Foundation PHP for Flash

form that pertain to the e-mail - namely the supplied subject and body for the
e-mail.

I f no known match for $action i s found then we output an error message and
quit.

5. That's the end of the main section for the PHP script, and we now need to write
the functions that are called by the above code.

function fetchList O {
// Register global variables
global $subsFile;

The first function to stand up and be counted is the fetchList () function, and
all we're doing here is making sure that we've got access to the global variable
$subsFile that contains the name of the subscriber list.

6. We then attempt to load the subscriber file as an array using the file function.
I f this function fails then we simply output an error message and halt the script.

// Attempt to open subscriber file
$subscribers = file($subsFile);

if (!$subscribers) {
// Output error information and quit
print "Couldn't open subscriber file or no
w subscribers listed";
exit;

7. If all goes well we then use a foreach l oop to traverse the array of subscribers.
The first thing we need to do for each subscriber is to split the subscriber
i nformation using the explode function so that we can get at the individual
pieces of information.

// For each subscriber line...
foreach($subscribers as $count => $subscriber) {

// split subscriber info into array
$info = explode (` I ' , $subscriber);

8. We then take this information and assign it to meaningfully named variables to
make the rest of the script more understandable.

// Assign array to meaningful variable name
$name = $info [0] ;

Tapping Into External Files

$email = $info[l];
$joined = $info(2];

9. Since the date on which the subscriber joined is stored as a Unix timestamp we
need to convert this to a humanly readable time, and we do this using our trusty
strftime function.

// Create a readable joined date out of timestamp
$joined = strftime("6D", $joined);

10. All that's left to do then is to output the current subscriber's information.

// Output information for each subscriber
print "Subscriber $count
";
print "Name: $name
\n";
print " Email: $email
\n";
print "Joined: $joined
\n";
print "
\n";

11. With regards to the sendEmail function, we start this in much the same way as
we did with the previous one by making sure we've got access to the name of
the subscriber file.

function sendEmail ($mailSubject, $mailBody) {
// Register global variables
global $subsFile;

// Set up reply address for mailing list
$mailFrom = "Mailing List <you@youremail.com";

12. We then define the name and e-mail address that we want the e-mail being sent
to our subscribers to appear to be from. This is done in the

Name <Email>

...format that is the standard for e-mail programs to understand.

13. We then need to make sure that any automatically escaped quotation
characters in the e-mail information passed into the script are removed before
i t's sent. We do this using the stripslashes function we met in Chapter 4,
and we need to do this for both the subject and the body of the e-mail.

// Ensure that subject and body of email have
// automatically inserted escape slashes removed

continues overleaf

mailto:$email
mailto:you@youremail.com

Foundation PHP for Flash

$mailSubject = stripslashes($mailSubject);
$mailBody = stripslashes($mailBody);

14. We then attempt to load the subscriber file, outputting error information if
anything goes wrong. This is exactly the same as with the fetchList function
earlier so we shouldn't need to go through this again.

// Attempt to read subscriber file
$subscribers = file($subsFile);

// If file open failed...
if (!$subscribers) {

// Output error information and quit
print "Couldn't open subscriber file or no
w subscribers listed";
exit;

15. Again, as with the last function we use a foreach l oop to process each
subscriber in turn, first splitting the information and then assigning that
i nformation to meaningfully named variables.

// For each subscriber line...
foreach($subscribers as $subscriber) {

// split subscriber info into array
$info = explode(`1', $subscriber);

// Assign array to meaningful variable name
$name = $info[o];
$email = $info[1];
$joined = $info[2];

16. Next up we build the e-mail address that the e-mail will be sent to. Again, we
do this using the Name <Email> that's become the standard.

// Build to address including subscriber name
$mailTo = "$name <$email>";

The final thing we need to do for each subscriber is actually send the e-mail. We
met the mail () function way back in Chapter 3, and we can use this function
to send e-mails from our script.

// Send email to
mail($mailTo, $mailSubject, $mailBody, "From: " .

$mailFrom);

Tapping Into External Files

17. Finally for the function, indeed the script, we just output a confirmation
message that the e-mail has been sent.

print "Email sent to all subscribers";

That's all for this application. All that's left to do, as usual, is to upload or copy the whole
lot to your web server. Don't forget to set the appropriate permissions for the
subscriber.dat file so you have the appropriate write permissions.

One thing you might want to add is the ability for users to unsubscribe themselves from
the e-mail. Armed with the information in this chapter have a go at adding this
functionality. Hint: The function is already in the PHP script, we just need to build an
interface for it!

Summary
Having reached the end of this chapter you should be fully proficient with the file-related
functions in PHP. There is a lot to take in, especially if you're not familiar with basic file
operations, but by working through each function in turn we've given ourselves a really
good base from which to build.

We kicked off the chapter by looking at the basic operations. These were introduced as a
foundation to the following sections, which would use them extensively, and we covered
them in just about as much detail as was possible.

I n full, we covered:

•

	

How to open and close external files and even how to check if they actually exist

•

	

How to display files and images, and create custom error messages

•

	

Reading whole files or reading just one byte at a time

•

	

Navigating files and other useful functions

Finally, we built a fully functional Flash based mailing list system. Here we used a lot of the
techniques covered both in this chapter and so far throughout the whole book. It's a
perfect addition to any website and can be practically dropped inas it stands!

Now that we've seen cookies in action and the benefits of using external text and log files,
repetition it's time (and we're definitely ready) to hook up to a database and start using
SQL to take our Flash movies into the stratosphere!

I ntroducing the
Database8

What we'll cover in this chapter

•

	

Fetching information from databases - an introduction

•

	

SQL and Relational Databases

•

	

Basic SQL functions

•

	

How we'll use MySQL as a database option for our PHP scripts
and Flash movies

Foundation PHP for Flash

Before we can examine databases in depth, we need to take a sneak peek at how we can
communicate with them to perform the tasks we want.

All we'll need to learn to talk to databases is a language known as SQL (pronounced
sequel), which we will be implementing through the popular and powerful open source
database product MySQL (confusingly enough pronounced My-Ess-Cue-Ell).

Now, what this constitutes is a minor diversion from our full-blooded rush on the subject
of PHP. However, my advice is that if you engage with this chapter, employ MySQL and
work through step by step, you will be head and shoulders above the rest of the class in
the next chapter when PHP comes hurtling back.

The aim of this chapter is not to bore you with another language or to take your
concentration away from PHP, but rather to enable you to fully understand, and then
effectively use, this powerful language as a feature of your PHP scripts. As I've hinted at in
previous chapters, once you can use databases to pull data into Flash, the sky's the limit.

So, kick off your shoes and start enjoying SQL!

An Introduction to SQL
SQL stands for Structured Query Language and it is the main language for interacting
and manipulating databases. This may sound a little on the intimidating side but, unlike
many programming languages, it's been strategically modelled around the English
language, making SQL statements both easy to construct and easy to read.

Structured Query Language was first developed by IBM to bundle along with its own
prototype RDBMS (Relational Database Management System) called System R. Details of
the SQL language were subsequently published in various technical journals and in 1979
Oracle introduced the first commercially available implementation of SQL. Since then SQL
has become widely implemented and is now accepted as the industry standard database
access language.

What does all this mean to you and me? It means that if we devote a tiny chunk of gray
matter to learning SQL then we should be able to use that knowledge with most database
systems we come across. You can also bore your friends stupid by talking to them in SQL...
though the novelty may wear off after the first handful of blank stares or violent attacks.

I n this chapter we're going to focus on how to build SQL statements that will persuade any
database server to perform to our heart's desire. Because SQL is something of a standard,
we're going to do this without regard of implementation. What does that mean? Well,
we're going to be concentrating on how to build good SQL statements that should work
regardless of which database implementation we happen to be using.

I ntroducing the Database

However, before we get to play with, or even touch upon SQL, we need to cover a bit of
theory behind databases. More specifically, we need to take a look at relational
databases, why they exist, and what they can be used for.

Relational Databases
I n the early 1970s, a learned fellow by the name of Dr E F Codd developed the relational
database model. Dr Codd was an IBM scientist who devoted years of research to finding
new ways to handle large amounts of data.

The problem with conventional methods, using so-called hierarchical databases, was that
they were either too complex or required the developer to have an understanding of how
the data was physically stored. This lead to great difficulties when altering the structure of
the database or changing the storage medium, often resulting in applications having to be
rewritten in order to access the data.

I n the relational database model, data is stored in tables, with each table consisting of a
number of records. As can be gathered from the name, the data in these tables is inter-
related, a much more logical method of storing information.

A Brief History of MySQL
MySQL was developed in 1996 by a Swedish consultancy named TCX. They required a
relational database system that was affordable, flexible, fast and could handle large
amounts of data. Here are just some of the features that have helped make MySQL
as successful as it is today:

Open Source
A key feature of MySQL is that it is provided open source, like good old PHP itself.
This means that not only do you get a tip-top relational database management
system, but you also get the source code for it. If there's a feature you'd like to see
added to MySQL then there's no reason why you couldn't add it yourself by modifying
the source code, assuming you have the technical wherewithal.

Support
Over the past few years the rise of Linux (an open source operating system) has
i nstilled a confidence among businesses for open source products in the workplace.
Indeed, the majority of the Internet is housed and served from computers running
some flavor of Linux. This has led to a drastically increased user base for MySQL,
ensuring its continued support and development.

MySQL is often confused as being a form of Structured Query Language. Rather, the
MySQL tool uses, and in some cases expands upon, SQL to perform operations and
manipulate its databases.

Foundation PHP for Flash

Database Theory

I know, I know, a quick glance down the page at the last few headings leaves you with a
very short attention span. But stick with it. Before we get stuck into using MySQL, it would
be a good idea to cover a little ground on database theory.

Let's look at a simple relational model of MySQL before we discuss each part in detail:

What can we gather from this? Well we can see that a single installation of MySQL can
have many databases, and that each of the databases can have a number of tables. Each
table contains specific data, which may or may not be related to the other tables in the
database. The tables are made up of a number of columns and rows, much like a
spreadsheet, and the point at which a column and row meet is called a field.

Each record in the table is stored in its own row, and each column has a name and a
certain type of data that can be stored in it. A given field contains data designated by the
column for that row or record in the table.

As mentioned previously, the tables in our databases can contain data that is related or
completely separate from the other tables in the database. There is a concept known as
relationships that can be used with related data in MySQL, but that is beyond the scope
of this short introduction.

Introducing the Database

SQL for Kicks...
I n this section we will discuss the use of Structured Query Language to create and
manipulate our databases. We will take a look at the most common SQL commands and
discuss how they will work with our chosen database management system. This is divided
into sub-sections to deal with the different types of SQL statements.

I n the following chapter we'll be focusing on MySQL as our database system of choice and
we'll be taking a look at how we can access and manipulate data within it from PHP.
Although MySQL uses the SQL language to manipulate and perform operations on its
databases, it also expands upon SQL by introducing new commands not present in the
language itself. For this reason we'll be taking special note of commands that are not part
of standard SQL, in case we try to use them on a Microsoft database and receive nothing

I more than a giant raspberry.

Having got the introduction and the historical tracts out of the way we can get down to
the serious business of taking in this supremely useful language.

For those who are cool enough to dive right in and use MySQL, you are
going to have to install it on your system so you can play as we go along.
Full instructions on installing and using MySQL can be found in Appendix
A. If you'd rather just read on, and get into MySQL in the next chapter
when we introduce it to Flash, turn your computer off and stick the night-
light on...

Creating a Database
Now, let's not attempt to breakdance before we can walk. Before storing any information
in our database we need to actually create it. Now, you're probably thinking this involves
starting from scratch and constructing this big relational monster - wrong. We simply do
i t with the GATE command - I told you this stuff was easy!

The CREATE command is the main building tool of the SQL language and is used to create
both databases and tables - the latter of which we'll come to in a moment.

The syntax for creating databases is one of the simplest you'll come across:

CREATE DATABASE databasename;

where databasename is the name of the database to create.

Foundation PHP for Flash

Note that / have used upper case for the SQL commands in this case, and
will continue to do so throughout the chapter. This is not essential - SQL
accepts lower-case too - / am simply doing it to draw your attention to
the syntax of the language.

We need to pay special attention to the semi-colon at the end of the statement on the
previous page. This signifies to whatever database system we're using that this is the end
of the current statement, which allows long SQL statements to be split over multiple lines
to make them more readable. The usefulness of this feature will become apparent later.

OK, let's enter this command. If you've been dabbling in the first appendix finding your
MySQL feet then you'll have encountered the MySQL monitor - which is our way of
controlling MySQL. Essentially, you need to follow the first part of the screenshot below
i n the command line. After we've typed cd \mysql then bin\mysql, we have started the
MySQL monitor and it's waiting on our orders!

Now let's use the monitor to create a database named phpforflash:

CREATE DATABASE phpforflash;

We'll be using this database to store the information for the rest of this chapter. When you
type this command into MySQL (shown opposite in the third-to-last line), you should see
the following output:

Introducing the Database

To take a look at the database we have just created, we would simply type:

SHOW DATABASES;

Before we can do anything else to our database we need to make sure that our database
system knows that we want to use it for subsequent operations, as many databases can be
run concurrently. For this we will require the USE command and you can see the syntax
below.

USE databasename;

So, to select our database we would need to enter the following command into the MySQL
monitor:

USE phpforflash;

This is a common step to miss out when you're learning and playing around with SQL and
can be the root cause of some very frustrating problems when trying to manipulate your
newly created database. Everyone makes this mistake at least once so you'll be in good
comoanv when you do.

Remember, each MySQL command ends with a semi-colon.

Foundation PHP for Flash

Creating a Table
Now that we have had a look at creating our database, we're going to want to add some
tables to actually hold the data. We can do this using the CREATE command we've just
met, but we'll need to use it in a slightly different way.

The basic syntax for creating a table is slightly more complex than for creating a database,
because we need to define a name and data type for all columns in our table.

In MySQL, a data-type is the type of information that a given column can
hold - whether it's a string ("Hello"), a number (174) or something else
such as a date or time. You cannot store a string in a column that has
been designated to hold a number and vice versa. This is in contrast to the
variables in both Flash and PHP, for which you do not have to specify a
data-type, and the data-type can be changed throughout your script to
suit your particular needs. We'll discuss some of the data-types available
in MySQL a little further on in this section.

The basic syntax for the CREATE TABLE command is:

CREATE TABLE tablename (column definitions);

Here, tablename i s the name of the table to create and column_definitions describes
all the columns for our table. The column_definitions element of the above command
contains one or more of the following structures, each separated by a comma.

column_name type [NOT NULL I NULL] [DEFAULT def val]
[AUTO INCREMENT] [PRIMARY KEY]

Most of the elements of the above syntax should be self-explanatory by their names. For
example, column_name is the name of the column we want to create, and type i s the
desired data type for the column.

Note however that this is not the complete syntax. What I've done is strip
it down to show the options that are most likely to be used. If you're
interested in all the juicy details then feel free to dip into the MySQL online
manual.

I ntroducing the Database

data types
"So," I hear you cry, "what kind of data types can we play around with?"

Well, this pretty much depends on how you're going to implement it. While some data
types are common across all SQL-supporting database systems, others are proprietary
and are only available on a specific system.

However, the data types presented below are the most commonly used of those available
regardless of the database system you choose to use. For a complete list of data types
supported by your chosen system then have a look in any documentation supplied with it
- they'll be in there somewhere!

Anyway, enough of the rant! Bring on the data types...

INTEGER

	

Numerical value to hold an integer (that is to say, non fractional)
value.

Range: -2,147,483,648 > 2,147,483,647

VARCHAR(n)

	

A variable length character field [string] of, at most, n characters.

The maximum length of a vARCHAR field is 255 characters.

CHAR (n)

	

A character type [string] of exactly n characters.

The maximum length of a cHAR field is 255 characters.

TEXT

	

A type to hold textual data with a maximum length of 65535
characters.

MEDIUMTEXT A type to hold textual data with a maximum length of 16,777,215
characters.

DATETIME

	

A type used to store date/time information in the format
'YYYY-MM-DD HH:MM:SS'

TIMESTAMP

	

A type used to store date/time in the format ' YYYYDDMMHH MRSS'

I f not explicitly assigned a value in an INSERT or UPDATE command,
or if it is set to NULL, TIMESTAMP fields will be set to the current
time.

This is a handy feature and means that we can use it as a simple last
updated counter without having to worry about explicitly assigning
i t a value.

You'll probably recognize many of these types from our PHP scripts!

Foundation PHP for Flash

The elements after datatype are an important part of SQL. They allow us to set up some
behavior rules for a given column. Note that these elements are shown in square brackets
i n my examples only to indicate that they are optional: The square brackets do not form
part of the SQL command.

The particulars of each element are discussed below.

NOT NULL I NULL Using either NOT NULL or NULL i ndicates if a value must be
provided for this column in each row, or whether it can be left
empty, respectively.

I f this is not explicitly defined in the statement then NULL is

assumed.

DEFAULT def _value This allows us to specify a default value for this column. If a
row is added where no value is given for the column then
def value is used instead.

AUTO
-
INCREMENT Using AUTO INCREMENT we can specify that, unless a specific

value is given for this column, then the value should be set to
1 greater than the highest value for this column.

Obviously, this only makes sense when the column has a
numerical data type and is most frequently used with table
keys.

PRIMARY KEY

	

We use PRIMARY_KEY to designate that a particular column is
to be used as the primary key for that table.

Adding a primary key to a table improves the efficiency of any
searching or sorting operations carried out on the table, but it
can only be used on a column for which each row is assured
of containing a unique value.

It i s good practice to ensure that each table has a
PRIMARY KEY column, even if we have to make up a column
for it specifically. This is because it can be used to give a record
a specific number or value.

We'll be meeting these in use as we go through the remaining chapters in this book, so it's
worth familiarizing yourself with them at this early stage.

With the basics covered, let's see if we can create our very first table. Again, you can type
each stage as it comes into the MySQL monitor or you can leave off the practical session
untill we hit PHP again. We'll use this chapter to manually create the foundation for the
content management system we're going to be creating in the next chapter, by which
point we'll be able to store news items in a database and toad them into Flash dynamically!

I ntroducing the Database

This example will cover a news section database table. If we think about what kind of
information we might want to store in this, we should end up with at least a few of the
following on our list:

•

	

News Title
•

	

Author Name
•

	

Date of News Item
•

	

News Body

Let's take a look at the whole SQL statement we'd use to create an appropriately
structured database, and then we'll pick it apart piece by piece so that we understand
what's going on.

CREATE TABLE news
newslD INTEGER AUTO-INCREMENT PRIMARY KEY,title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT

Here we can see that we're creating a table called news, and that this table has five
columns. Each column has been specified on a new line, making it easy to visualize the
structure of the table.

Go ahead and type that SQL query into your MySQL monitor (careful with the commas
and semi-colons!) and we'll take a look at the elements that go towards creating this
statement.

Foundation PHP for Flash

Dissecting the CREATE TABLE SQL Statement
1. OK, so let's take a look at that code in slow motion:

CREATE TABLE news
news ID INTEGER AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT

The first column specified is newslD. We're specifying that newslD i s of type
INTEGER, and that we want this column to be used as the primary key for the
table. This ensures that each record added to the table will be assigned a unique
number, allowing us to identify each separate news story.
CREATE TABLE news
news ID INTEGER AUTO-INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT

2. Next we've got the title column, and as the name suggests we'll use this to
store the title of our news item. I'm pretty sure that none of my news item titles
will be more than 100 characters long so I have opted to go with this as a safe
maximum length to use with vARCHAR. I f you feel that yours will be longer or
shorter then feel free to adjust it as you see fit. The benefits of limiting the
length are simply a question of making our program run more quickly.

CREATE TABLE news
newslD INTEGER AUTO-INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT

3. Following this, we have the author field that we'll use to store the name of the
author who posted the news story. I've limited this to a maximum of 30
characters. Again, modify this length as you see fit.

CREATE TABLE news
newslD INTEGER AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(50),
posted INTEGER,

I ntroducing the Database
body MEDIUMTEXT

4. This next field may seem a little strange at first. If we've got data types available
to us that will store date and time information, why have I chosen to go with an
INTEGER? The reason is that I want to be able to manipulate the date from PHP
using the strftime function we met in the last chapter.

Since strftime works on the return value of time, and since time returns an
i nteger, I can use an INTEGER field to store the return value of time for later
use. Cool, huh?

CREATE TABLE news
news ID INTEGER AUTO-INCREMENT PRIMARY KEY,title VARCHAR(100),
author VARCHAR(50),
posted INTEGER,
body MEDItJMTEXT

5. Finally we've got the body column in which we'll store the main bulk of the
news for each item. I've used MEDIUMTEXT for this so that I can store shed loads
of body text for each news item, should I need to - up to 16,777,215 characters!
That's about 30 copies of this book!

6. I f you're following along then we can take a peep to make sure that we've
created our table by using the SHOW TABLES command. To ensure that we've
created the table type the following into the MySQL monitor:

SHOW TABLES;

This will produce a list of all the tables in the current database. The output
should look like the one shown below:

Foundation PHP for Flash

7. If you want to see what columns exist in your table then type the following into
the MySQL Monitor:

DESCRIBE news;

And there we have it - our first MySQL table. Would you say it was really so hard?

Removing Databases and Tables
While we're on the subject of creating databases and tables in SQL, it is worth mentioning
the commands used to destroy or delete them too.

The DROP command can be thought of as the bulldozer of the SQL world. Its job is to
destroy databases and tables we no longer want. Generally, we'll only want to do this when
a database or table is not required anymore, for example if we've radically updated our
site and it is no longer used.

Be very, very careful when you're using the DROP command; you'll see that
there's no warning or confirmation request given, the data and structure of
the database/table is just sent straight to join the great data bin in the sky.

The syntax for that DROP command is pretty much the same for removing both databases
and tables from MySQL.

DROP DATABASE databasename;

DROP TABLE tablename;

I ntroducing the Database

I t may seem fairly obvious, but it's worth noting that dropping a database will also drop
all the tables inside that database. Also, it's worth repeating that once the DROP command
is issued there's no going back - your data is toast!

So, if we wanted to drop the table we just created in the last section, we'd issue the
following MySQL command:

DROP TABLE news;

If you're playing along then you can try it out if you like -just make sure that you go back
and re-create the table before moving on to the next section, because we'll use it with
some of the other SQL commands. You have been warned!

Manipulating Our Databases and Tables
I n this section we'll cover all the commands that we'll need to know to manipulate our
databases. By manipulate, I mean we'll discuss how to add, remove and update data
to/from/in our tables.

Again feel free to follow what I'm doing in the MySQL monitor if you have it open.

I NSERT
The INSERT command is used to populate the rows in our tables with data. Each
successful INSERT command will create a new row in the table.

Foundation PHP for Flash

The syntax of the INSERT command is:

INSERT [LOW_ PRIORITY DELAYED] [IGNORE)
INTO tablename [(columns)] VALUES (values);

Here, tablename i s the name of the table into which we want to insert our data, and
values i s a comma-delimited list of values for the new row.

columns i s an optional comma-delimited list of column names. The purely optional
columns element can be used to specify both the columns to which data is being assigned
i n the values element, and in which order this data should appear. If columns i s not
specified then the values in values must be specified in the same order as the columns
were, when the table was first created.

The Low_PRIORITY option can be used to wait until no other client is reading the table
before inserting the new row. This will cause the client to wait for completion of the
statement before carrying on. If we don't want to wait we can use the DELAYED option,
which will perform a similar operation as LOW_PRIORITY but will return control
i mmediately back to the client.

The IGNORE option (which I'm sure sounds particularly appealing to some of you at this
precise point in the book!) is used to ignore errors when trying to insert a new row into a
table, where our new row may have the same value as another on a unique column. In this
case the INSERT statement is ignored instead of generating a database error and no new
row is added to the table.

Inserting a Row Into Our Sample Table
This should all make a lot more sense if we take a look at a simple statement to insert a
new row of data into our news table.

1. Try entering the following:

INSERT INTO news VALUES (NULL, `New Book Released',
` Steve Webster', 0, `This is the news body');

Note that we set the first column (newslD) for this row to NULL, so that it will
assign its own value. This will happen because of the AUTO - INCREMENT we
added to the column definition when we created the table.

Also notice that we're setting the posted column for the new row to zero,
because we'll need a return value from time to set this value properly. When
we come to the next chapter and start looking at using PHP to interact with

I ntroducing the Database

MySQL we can perform this task, but until then this column will have no real
meaning.

You can type this all in as one line as in the screenshot if you want, or you
can take line returns after the commas to break it up; MySQL won't
execute the command until it encounters the semi-colon.

2. The values section of this statement contains all the data that we want to make
up a new row of our news table. Note that the values are specified in the same
order as the columns were declared earlier in this chapter. As mentioned earlier,
i f we do not include the columns section of the INSERT command then we
must specify the data in this order to ensure that the data is put in the correct
column for the row.

The optional columns section is used when we either want to fill out just some
of the fields for the new row of a table, or when we want to provide the data
i n a particular order in the values section. It is often worth doing this anyway
just to make sure that we're adding the data to the appropriate columns.

3. So, if we rewrite the previous statement but this time with the columns section
included, we would have:

INSERT INTO news (title, author, body)
VALUES ('New Book Released', `Steve Webster',
`This is the news body');

Foundation PHP for Flash

Note that because we have specified which columns we want to fill out for
this row in the columns section, we can exclude the news ID column from
the values section. This is due to the fact that this is already designated
as an AUTO INCREMENT column and the value for it in our new row will
be set automatically to 1 higher than the current highest value for that
column.

We've also excluded the value for posted since, as discussed previously, it has
no meaning in the current context. This will automatically be set to NULL for the
new row.

4. Go ahead and use this technique to add seven more rows to the news table with
different values. This will give us some data to work with in the later sections of
this chapter. Don't forget to change the details (such as the name) for each row
or they'll all be the same!

I f inspiration fails you then try some of the sample values listed below:

Title

	

Author

	

Body
New Book Released

	

Steve Webster

	

This is the news body

Ace Author Agent Gets

	

Alan McCann

	

All the best for the future
Married

	

from everyone in the PHP
team and Steve

Here Comes the Bride

	

Gaynor Riopedre

	

Funny coincidence is his
name's ED

Layout of Book Heralded

	

Katy Freer

	

The Future's Pink!

PHP Changes Lives

	

Kev Sutherland

	

My Appendix was put in

Fifth Printing For Book

	

Richard O'Donnell

	

I left Chapter 5 on the train to
Dorridge

PHP Sweeps World

	

Felicity Kendal

	

St Mirren for the cup

Knighthood For PHP Writer

	

Elizabeth Windsor

	

I t's the best thing I've read
since Bravo Two Zero

REPLACE
The RspLAcE command is specific to MySQL (it is not part of the SQL language). Its syntax
is almost identical to that of the INSERT command, and it performs a similar task.

Introducing the Database

I However, as you might expect, if another row exists with the same value in a column that
has been designated as a unique index (as the PRIMARY KEY) then the new record
replaces the old. If no such row exists then the new row will be added to the table as if

F an INSERT command were executed.

Thus, the general syntax is:

REPLACE [LOW PRIORITY I DELAYED) [IGNORE]
INTO tablename [(columns)] VALUES (values);

The options work the same way as those for the INSERT command.

UPDATE
The uPDATE command is used to change the values of one or more columns in an existing
row or rows.

The general syntax is:

UPDATE [LOW PRIORITY] tablename
SET colname=value [, colname=value...]
[WHERE condition] [LIMIT n];

This command will update the rows in tablename that match the condition(s) specified
i n condition, up to a maximum of n rows. If no condition i s specified then all rows in
the table are updated, up to a maximum of n rows.

For each of these rows, the value in each column specified by colname i s set to the
corresponding value.

Note that you can use multiple colname=value expressions to update more than one
column at a time. Simply separate each expression with a comma as shown in the syntax.

The part of the statement where condition i s specified is known as the WHERE clause.
and we'll meet this one further on down the road. condition can be a simple comparison
or a complex series of expressions. For the purposes of this book we're only going to be
performing simple comparisons here.

A simple example of update we can use to change the author of all stories written by Steve
Webster to Alan McCann in our news table would look like this:

UPDATE news SET author='Alan McCann'
WHERE author=`Steve Webster';

Foundation PHP for Flash

DELETE
The DELETE command is used to remove one or more rows from a given table. Like the
UPDATE command, this can be limited to rows that match a particular criteria using a
WHERE clause within the statement, or can be set loose to delete all the rows in a given
table. You can limit the number of affected rows by the use of the LIMIT block, also
described previously.

The general syntax for the DELETE command is:

DELETE [LOW_PRIORITY] FROM tablename
[WHERE condition] [LIMIT n];

If we omit both the WHERE and LIMIT clauses all rows in the given table wilt be removed
- no warning will be given and our data will be long gone!

If we wanted to remove all entries in our news table where the author was Alan McCann,
we would use the following statement:

DELETE FROM news WHERE author='Alan McCann';

Searching Our Databases and Tables
Once we've got our data into the database we'll want to be able to get it out again or
search it for certain criteria. To perform these queries, let's meet another new command.

SELECT
The SELECT command is used to retrieve rows or columns of data in your web
applications from your MySQL database. This is an extremely powerful command, and
therefore has a fairly complex syntax. For this reason only the most commonly used
aspects of the syntax are shown below:

SELECT columns FROM tablename
[WHERE condition]
[ORDER BY colname (ASC DESC]]
[LIMIT n] ;

Note: the options must appear in the order shown above.

This will fetch all rows from tablename that match the optional condition, up to a
maximum of n rows.

Most of the individual elements of the SELECT statement should be familiar to you by now
from earlier commands, so we're only going to be looking at the bits that are different
here.

The columns element can be either a list of columns whose information we want returned
or an asterisk, in which case all columns are returned for matching rows.

The optional ORDER BY clause allows us to specify a column by which the results returned
will be ordered. The optional element of this clause enables us to specify whether the
results should be returned in ascending (ASC) or descending (DESC) order.

As with most things, this may make a heck of a lot more sense if we take a look at an
example of SELECT strutting its stuff.

SELECT * FROM news;

Here the asterisk is used to fetch information for all columns in the table - we'll take a
look at how we can narrow our statement down a little later on.

The above command will return all the columns for all of the rows in our news table.
Because no wHERE clause has been specified the rows will be returned in the order in
which they were added to the database.

I ntroducing the Database

Foundation PHP for Flash

Beefing Up the Search
Making the statement a little more complex, we can just return the first 2 entries in the
news table by adding a LIMIT clause.

SELECT * FROM news LIMIT 2;

We can also beef up our statement by limiting the information returned to just the values
of the title and author columns.

SELECT title, author FROM news LIMIT 2;

Getting ever so slightly more useful, we can order the information returned by the value
in the posted column. Since we're going to use this column to store the date and time that
the news item was posted we can fetch the 2 latest news items by using the following
statement.

SELECT title, author FROM news ORDER BY posted DESC
LIMIT 2;

We can further modify this statement to return the five latest news items posted by Joe
Bloggs in reverse date order.

SELECT title, author FROM news
WHERE author.'Joe Bloggs' ORDER BY posted DESC
LIMIT 2;

We can, of course, specify more than one condition in the WHERE clause with the use of
the logical AND, OR and NOT operators.

For example, to return the last 5 news items posted by either Joe Bloggs or Jane Bloggs
then we'd use the following statement

SELECT title, author FROM news
WHERE author='Joe Bloggs' OR author-'Jane Bloggs'
ORDER BY posted DESC LIMIT 2;

I ntroducing the Database

Summary
Well, this chapter has been a merry jaunt down SQL Avenue. It's not always been easy but
I hope the remaining chapters in this book will have made it a worthwhile journey.

Storing relatively large amounts of data efficiently is the key to slick, dynamic websites.
Without the techniques covered in this and the following chapter, we'd be stuck with
conventional storage methods such as the humble text file or the flat file database we met
in previous chapters.

We covered:

•

	

Basic elements of the SQL language

•

	

Creating and deleting databases and tables

•

	

Inserting and updating information in our tables

•

	

Searching our tables and returning specific information

If you're aching to put your newfound SQL knowledge to use then mosey on over the page to
the next chapter, where our content management system (and more PHP with Flash) awaits.

We kicked off with a look at where relational databases came from and why we need
them. This is the foundation upon which SQL was built so it was an essential topic to cover.
I n the next chapter we'll get our hands dirty with one of these relational database systems.

I ntegrating PHP
with MySQL9

What we'll cover in this chapter

•

	

Integrating a MySQL database with PHP scripts

•

	

Connecting to MySQL from PHP; selecting and creating

databases

•

	

Executing SQL queries through PHP; data definition and
manipulation

•

	

Creating a powerful Content Management Application with
Flash, PHP and MySQL

Foundation PHP for Flash

Having given ourselves a good foundation in Structured Query Language it's time to took
at MySQL as an example of a specific database implementation using SQL. In particular,
we'll be looking at how PHP can interface with MySQL to store and fetch data for our
applications.

Luckily for us, interfacing with MySQL from PHP is very much the same as interfacing with
any relational database system. PHP provides many built-in functions for accessing a
myriad of databases such as Microsoft's popular SQL Server and Oracle and this means
that porting an application from one database system to another can be as simple as
changing the name of a few function calls.

We'll start off by looking at how we can access and manipulate data stored in MySQL
databases using PHP. PHP supplies us with a hatful of functions for these tasks and we'll
be exploring the most useful and popular of these.

To round off the chapter we shall be building a complete dynamic news system that you
can use on any Flash site. This application will be the culmination of all our hard work in
the last few database-driven chapters, but we'll be using techniques from almost every
chapter to build it.

Don't forget that you can find the installation instructions for PHP and
MySQL for Windows, Mac and Linux in Appendix A.

When PHP Met MySQL
OK, so it's time to see how we can use PHP to fetch and manipulate the data in our MySQL
databases. We need to do this because Flash cannot access the MySQL databases itself so
we have to use PHP as a kind of office gopher - fetching the information for us at our
command.

At the time of writing, there are over 30 MySQL related functions built into PHP, many of
which will perform similar or more obscure tasks to the SQL commands mentioned earlier.
Covering all of these functions here would take a great many pages so we'll just discuss
the most commonly used ones.

Connecting to the MySQL Server
The first thing we need to do in any PHP script we want to interact with MYSQL is to
connect to the MySQL server. We need to do this because your PHP scripts will not have
access to MySQL unless they specifically ask for it. The syntax for this function is:

mysgl connect([hostname (, username [, password]]]);

I ntegrating PHP with MySQL

The hostname i s the name of the host running your MySQL server. If the MySQL server
and the web server are running on the same machine then this can be set to localhost,

and this is the default value if the hostname is not specified.

The username i s the name of the user allowed to connect to the MySQL server. The
password is the password assigned to that particular user.

The function will return a positive integer referencing the connection, called the link
identifier, if the connection was successful, or false otherwise. We'll use the link identifier
in future calls to MySQL related PHP functions.

Note that all three arguments are optional in a call to mysgl connect (symbolized by the
square brackets I used). If no arguments are given then PHP will attempt to connect to a
MySQL server running on localhost, and no username or password information will be
sent. The stacked square brackets show that if you provide a username then you must
provide the hostname argument, and if you provide a password then you must provide
both the hostname and the username arguments.

Throughout this chapter we will use "user" and "pass" to represent
your individual username and password for the database server
respectively. You'll need to replace these with your own username and
password. If you followed the installation tutorial in Appendix A then
you'll need to use the username and password you entered there.

If you're using a third party to host your system then you may need to
contact their technical support department to get this information. You
may also need to use a different host than "localhost", and again this
information can be obtained from your hosting company.

So, let's take a look at mysgl connect i n action.

// Attempt to connect to the MySQL server
$link = cmysgl connect("localhost", "user", "pass");

// If the connection was successful...
if ($link)

// Output link identifier
print "Link ID is $link";

} else
// Otherwise, output error information
print "Error connecting to database server";

Foundation PHP for Flash

Because we're providing our own error message, we're using the error suppression
operator, @, just before the call to mysgl connect to prevent PHP from throwing up any
of its own error messages should the connection fail.

This little piece of code will attempt to connect to your MySQL database. If the connection
is successful then the value of $link, which will contain the link identifier for the
connection, is output.

I f the connection fails and you get an error message then you'll need to make sure you're
using the correct arguments in the call to mysgl connect. Double check the source of
the details, and that they are entered correctly, and then try again.

On success, you should receive output similar to the following:

So, what does it mean? The 1 (or any other positive integer) in the output indicates that
the connection to the MySQL server was successful. The following output would indicate
a failure:

Error connecting to database server

Okay, so this isn't exactly rocket science but it's the first step in using data from a MySQL
database in our Flash/PHP applications.

It is worth mentioning that you can open more than one connection using the
mysgl connect function. This is something that seems obvious once you're told but is
often missed when learning to get PHP interacting with MySQL. That said, this feature is
seldom used, so you need only bear it in mind.

I ntegrating PHP with MySQL

Disconnecting from the MySQL Server
Although our connection to the MySQL server is automatically closed when the script
ends, it is good programming practice to close the connection manually when we've
finished with it. Think of it as good manners. You wouldn't just up and leave if you'd been
to someone's house for tea, would you?

The function we need to do this business is, rather unsurprisingly, called mysgi close.

The format for this function is shown below.

mysgl close([link id]);

mysgl close takes a single optional argument of the link identifier of the connection to
be closed. If no link identifier is specified then the most recently opened database
connection is closed. If the operation was successful the function returns true, otherwise
i t returns false.

Let's go back and add a call to mysgl close to the previous example:

// Attempt to connect to the MySQL server
$link = Omysgl connect("localhost", "user", "pass");

// If the connection was successful...
if ($link) {

// Output link identifier
print "Link ID is $link";

// Close the connection
mysgl_close($link);
print "You are the weakest \$link ... good-

bye!„ ;

} else {
// Otherwise, output error information

} print "Error connecting to database server";

Foundation PHP for Flash

Here we've added the call to mysgi close, but we've put it inside the if statement since
there would be no point in trying to close a database connection that was not opened
successfully.

Whilst creating and terminating connections to the MySQL server is no doubt useful - even
essential - it's not quite the riveting stuff I promised you at the start of the chapter. So
l et's move on and look at how we can get MySQL to jump through some hoops at our
command!

I ntegrating PHP with MySQL

Selecting a Database

Once we're connected to the database server we're ready to start playing around with our
databases. However, before we can get to the really juicy stuff we need to tell MySQL
which database we want to be playing with.

I f you've installed MySQL on your system and have followed along with the previous
chapter then we'll already have a database we can play with named phpforflash. If you're
hosting your site through a hosting company then you'll need to find out from them the
name of the database you've been allocated.

The function we'll need to tell MySQL which database we're after is the
mysgl select db function.

mysgl select db(db name [, link id]);

Here the string db_name i s the name of the database we want to select, and the optional
link_id specifies the link identifier of the connection we want to use for this action. If
this argument is left off then the most recently opened connection is used.

I f the database was selected successfully then the function returns true, and returns
false otherwise.

Let's take a look at this in action...

// Attempt to connect to the MySQL server
$link = @mysgl connect("localhost", "user", "pass");

// If the connection was unsuccessful...
if (!$link) {

// Output error information and exit
print "Error connecting to database server";
exit;

}

// Attempt to select database. If successful...
if (@mysgl select db("phpforflash")) {

// Inform user of success
print "Database selected";

} else {
// Otherwise inform user of failure
print "Couldn't select database";

}

// Close the connection
mysgl_close($link);

Foundation PHP for Flash

You'll see here that I've shuffled the code around a little. The reason for this is that, as we
go through each of the PHP functions in this chapter we're going to be building up a
complete script to read the entries from the news table we built up in the previous
chapter. Don't worry if you didn't follow that through because we're going to be covering
that from a PHP angle a little later in the chapter.

The most important part of this code from our perspective is the call to
mysgl select_db. Here we're attempting to select our phpforflash database, testing the
return value of the function using an if statement to find out whether or not the
operation was a success. We then output an appropriate message and round off the script
by closing the database connection.

If all goes well then you should see the following output.

I f you didn't play along with the previous chapter then you'll have got an error message
instead of the above output. Fear not as this is simply because you haven't created the
database yet and as such it can't be selected.

All of which is a perfect link to...

Creating a Database Through PHP
As we're wandering through these PHP functions it probably won't surprise you that
there's a function for creating databases through MySQL too. You should also be familiar

I ntegrating PHP with MySQL

enough with the way that PHP functions are named to have a decent stab at guessing the
name of this function.

The function is called mysgl create db and it looks something like this:

mysgl create db(db name [, link id]);

Here, db name i s the name of the database you want to create and, again, link_id i s the
link identifier for the connection to the MySQL server you wish to use (and is optional).

The function returns true i f the database was created successfully, and false otherwise.

Anyone feeling particularly alert will realise that this is the same as the following SQL
statement.

CREATE DATABASE db name;

Since we're only going to need to create that database once we won't want to make this
part of the script that we're building up. We'll just create a separate mini-script to create
the database for us if it doesn't exist. We're going to return to this script a little later on
in this chapter and add the code to create the table too so we can use it as a setup script
for the application - cool huh?

Anyway, on with that mini-script:

// Attempt to connect to the MySQL server
$link = @mysgl connect("localhost", "user", "pass");

// If the connection was unsuccessful...
if (!$link) {

// Output error information and exit
print "Error connecting to database server";
exit;

// Attempt to create database. If successful...
if (@nysgl create db("phpforflash")) {

// Inform user of success
print "Database created";

} else {

// Otherwise, tell user there was an error
print "Couldn't create database";

}
continues overleaf

Foundation PHP for Flash

// Close the connection
mysgl close ($link);

You'll see that this script uses a lot of the same code as the other one we're building up.
That's mainly because we still need to be able to connect to and disconnect from the
database server, and to provide feedback for the user on the success of the whole
operation.

I f you're hosting through a third party then you may not be able to create
databases yourself in this manner, in which case you'll see an error
message when running the above script. If this is the case, and you don't
have a database automatically set up for you, then you'll need to contact
your hosting company's technical support department and have them set
one up for you.

I f the operation was a success and you've got access to the MySQL monitor, either from
your own machine or on your hosted server via telnet then you should be able to see your
newly created database using the SHOW DATABASES command we met in the previous
chapter. This will produce a list of the databases on the MySQL server, among which should
be the shiny new one we've just created.

I ntegrating PHP with MySQL

Dropping a Database
Would it surprise you to find out you can also drop a database using a special function in
PHP? I thought not! It probably won't surprise you that the function is called
mysgl drop db either.

mysgl drop db(db name [, link id]);

If you're not sure what the various arguments mean then look back at the two functions
we've just met - they're exactly the same. As with the previous two, this function returns
true on success and false otherwise.

We'll not play with this one, otherwise we're going to delete our nice newly created
database. However, if we wanted to drop our phpforflash database we could use the
following function call:

mysgl drop db("phpforflash");

Note that although it hasn't been shown, we'd need to be connected to the MySQL server
using the code we've created previously before executing this statement.

If you happen to be playing along and have just deleted your database
then you'll need to go back a step and recreate it as we're going to be
using it for the remainder of this chapter!

Foundation PHP for Flash

Executing SQL Queries with PHP
Having straightened out this database manipulation tangle, it's about time we turned our
attention to tables. This is where our knowledge of SQL gleaned in the previous chapter
will come in handy since there aren't any specific functions for performing table related
tasks, such as inserting, updating, deleting and fetching data.

I nstead, table manipulation is the job of a single function, mysgl query. We'll use this
function in conjunction with the smattering of SQL knowledge we picked up in the
previous chapter to both create our tables and work with the data within them.

The syntax of the function looks like this:

mysgl_query(querystring [, link id]);

The one argument of this function that needs closer examination is query string. We
use this argument to specify as a string the SQL statement that we want to perform on the
currently selected database - also known as querying the database.

The return value of the mysgl query function will vary depending on the type of query
we specify in query string. There are basically two categories into which our SQL
statements can fall - those that can be used to modify the tables themselves (known as
Data Definition Language statements) and those that act on the data in a table (known
as Data Manipulation Language statements) and we'll look at these now.

Data Definition: CREATE, DROP

The first thing we're likely to want to do once we've created a database is to populate it
with tables. We can use the mysgl query function for this, passing an SQL query using
the CREATE TABLE command to create our tables.

I n the case of Data Definition Language (DDL) statements, the mysgl query function
returns either true or false depending upon the success of the operation.

For example, if you remember back to the previous chapter we constructed the following
query to create our news table.

CREATE TABLE news
news ID INTEGER AUTO-INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT
) ;

I ntegrating PHP with MySQL

We could use the same query from PHP to create the table using the mysgl query

function. A quick snippet of the query being built and executed is shown below, and we'll
look at a more detailed example in a moment.

// Build table-creation query
$query = "CREATE TABLE news

newslD INTEGER AUTO INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT)";

// Attempt to create table. If successful...
if (®mysgl query($query))

// Inform user of success
print "Table created successfully";

} else

// Otherwise, tell user there was an error
print "Error creating table";

This shows how to build up the query over a number of lines. It is worth noting that this
isn't strictly necessary - you could specify the query as one long string if you like - but by
building it up piece by piece we make our code a lot more readable. This is generally good
programming practice as trying to find errors in a moderately complex query string when
it's all specified on one line is not easy!

Note also the fact that we've omitted the semi-colon from the end of the query. The
reason for this is that the entry in the PHP manual states that this is not required and
should not be included. Don't confuse this with the semi-colon that delimits the end of
the current PHP statement, as that's still required.

We're going to use the example code we created back when we met the
mysgl create_db function, adding the code to create the table once we've attempted
to create the database. This will then form the setup script for the sample application at
the end of this chapter and can be uploaded to any web server to create the database and
table structure for the application.

Before we dive headlong into this we'd better think about exactly what we want the script
to do so we know where to place our new code. Before we do that let's just refresh
ourselves as to what the code looked like.

// Attempt to connect to the MySQL server
$link = Qmysgl connect("localhost", "user", "pass");

ontinues overleat

Foundation PHP for Flash

// If the connection was unsuccessful...
if (!$link) {

// Output error information and exit
.print "Error connecting to database server";
exit;

}

// Attempt to create database. If successful...
if (@mysgl create db("phpforflash")) {

// Inform user of success
print "Database created";

} else {

// Otherwise, tell user there was an error
print "Couldn't create database";

}

// Close the connection
mysgl close ($link);

An intuitive place to put our new table creation code would be inside the if statement
once we've successfully created the database. This is a good starting place but it's far from
the ideal position for our code. The reason for this is that it's perfectly reasonable for the
database phpforflash to already exist but for it to be empty. In this case, the
mysgl_create_db function will return false and, if our table creation code is inside the
if statement, it will never get executed.

Placing this kind of limitation on setup scripts is not generally a good idea. So what we
want to do is to attempt table creation regardless of whether database creation succeeds
or fails. This will leave us with a script looking something like the following:

// Attempt to connect to the MySQL server
$link = @mysgl connect("localhost", "user", "pass") ;

// If the connection was unsuccessful...
if (!$link) {

// Output error information and exit
print "Error connecting to database server";
exit;

}

// Attempt to create database. If successful...
if (@mysgl create_db("phpforflash")) {

I ntegrating PHP with MySQL

// Inform user of success
print "Database created
\n";

} else {

// Otherwise, tell user there was an error
print "Couldn't create database
\n";

}

// Build table creation query
$query = "CREATE TABLE news

news ID INTEGER AUTO_INCREMENT PRIMARY
KEY,

title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT)";

// Attempt to create table. If successful...
if (@aysgl query($query)) {

// Inform user of success
print "Table created successfully";

} else {

// Otherwise, tell user there was an error
print "Error creating table";

// Close the connection
mysgl close($link);

This code now attempts to create the table once the database creation code is done with.
In this case, the only message that matters is the one that indicates the success or failure
of the table creation.

Note that if you followed along with the instructions in the previous
chapter you'll get failure messages for both database and table creation
with the above piece of code. This is because both the database and table
already exist so don't worry too much - in this case the error messages are
a good thing!

Foundation PHP for Flash

Data Manipulation: INSERT, REPLACE, UPDATE, DELETE
With Data Manipulation Language (DML) statements, the return value of the
mysgl query function is true on success or false i f the query could not be executed.

Since all these statements are used to manipulate data we can find out the number of rows
affected by calling the mysgl affected_rows function. We won't be using this feature
i n our scripts but it's a useful function to have in your arsenal should you ever need it.

So, we can use the mysgl_query function to insert and manipulate the news items in our
news table. We'll start by inserting a row into our database, and because we're working
from PHP we can finally fill in the posted column for our new row with the current time,
as returned by time.

// Attempt to connect to the MySQL server
$link = ®mysgl connect("localhost", "user", "pass");

// If the connection was unsuccessful...
if (!$link)

// Output error information and exit
print "Error connecting to database server";
exit;

// Attempt to select database. If unsuccessful...
if (!@mysql select db("phpforflash"))

// Inform user of failure and exit
print "Couldn't select database";
exit;

// Define news item information
$title = "News from PHP";
$author = "Joe Bloggs";
$body = "This is a news item added from PHP";

// Fetch current time
$posted = time();

// Build query
$query = "INSERT INTO news (title, author, body, posted)

VALUES(`$title', '$author', `$body', $posted)";

// Attempt to insert row. If successful...
if (@mysgl query($query))

I ntegrating PHP with MySQL

// Inform user of success

print "Row added to table";

} else I

// Otherwise, tell user there was an error
print "Error adding row";

}

// Close the connection
mysgl close($link);

You can see that once we've connected to the MySQL server and successfully selected our
database we start to turn our attention to adding the new row of data to our news table.
The first thing we do is to use the time function to fetch the current time as a Unix
timestamp, storing the result in the $posted variable. We then build up our INSERT query
to add some bogus data to our table, using $posted to insert the time that the article was
posted in with the new row.

One thing of special interest with this code is how the query string is built up:

// Build query
$query = "INSERT INTO news (title, author, body, posted)

VALUES(`$title', `$author', `$body', $posted)";

Now, it may strike you as rather odd that we're using single quotes before and after the
$title, $author and $body variables used in the query string. The reason we need to
do this is because the data is stored in the table as strings. Once the variables have been
expanded in the string we need those single quotes to tell MySQL that these are strings.

This may make a little more sense if we look at what happens once the variables have been
expanded.

•

	

VALUES(`$title' ...

becomes...

•

	

VALUES(`News from PHP' ..."

However, if we left off the single quotes then things are a little different.

•

	

VALUES($title ..."

...becomes...

•

	

VALUES(News from PHP ..."

Foundation PHP for Flash

...which isn't a valid SQL statement because we need to enclose our string in single quotes.

A special exception to this rule is $posted. This doesn't need the single quotes since it is
a number, and the data type for the posted column in our news table is INTEGER.

We'll be reusing a great amount of this code later in the chapter when we come to build
our news application. For now, just run the script a few more times with different details
for title, author and body, as this will give us some content to work with when we
move on to the SELECT queries from PHP. You can go and check the data you've entered
using the MySQL monitor.

Data Manipulation: SELECT
Although it is part of the Data Manipulation Language (DML) family of SQL commands,
running the SELECT query from PHP deserves special attention. This is because the results
of the query are not displayed directly on screen (as they were in the MySQL monitor) but
are instead stashed away in a result set. The mysgl query function returns the result
identifier for this result set when executing a SELECT query.

I n order to fetch the results from this result set we need to use the mysgl_fetch array
function. What this function does is to fetch the next row of the result set and return it
as an array - moving to the next row afterwards. If no more rows are available this
function returns false.

The general syntax for the mysgl fetch array function is:

mysgl fetch array(result_id [, result type]);

Here, result id i s the result identifier returned by mysgl query. The result type is
an optional argument that allows you to specify the type of array returned and can have
the following values:

MySQL NtM The array returned will have numeric indices only. This is useful if
you either don't know or don't want to rely on the column names
for the table.

MySQL ASSOC

	

The array returned will have string indices only. Individual values
can be accessed using the column name as the array index.

MySQL BOTH The array will have both numeric and associative indices. This
allows you either to access the individual values using either the
column name or a number. This is the default value if the
result type argument is omitted.

Integrating PHP with MySQL

We can also use the mysgl num rows function to see how many rows were returned in
the given resultset.

mysgl num rows(result id);

Once we have finished with the results we could use mysgl free result to free up the
memory associated with the result set. This is the syntax:

mysgl free result(result id);

This tends only to be used if you think your script is using too much memory when
running. If this is not used, all result sets are freed once the script ends.

We should now have enough knowledge stashed away in our heads to write a small script
to display the contents of our news table, using the mysgl query and
mysgl_fetch array functions in tandem.

// Attempt to connect to the MySQL server
$link = Omysgl connect("localhost", "user", "pass");

// If the connection was unsuccessful...
if (!$link)

// Output error information and exit
print "Error connecting to database server";
exit;

// Attempt to select database. If unsuccessful...
if (!@mysgl select_db("phpforflash"))

// Inform user of failure and exit
print "Couldn't select database";
exit;

// Build query
$query = "SELECT * FROM news";

// Execute query
$result = @mysgl query($query);

// Attempt to insert row. If successful...
if (!$result)

// Otherwise, tell user there was an error
print "Error adding row";

continues overleaf

Foundation PHP for Flash

// For each row in resultset...
while ($row = mysgl fetch array($result)) {

// Convert `posted' into dd/mm/yy hh:mm format
$posted = strftime("%d/$m/%y %H:%M", $row[`posted']?;

// Output news item data
print "newslD: " . $row[`newslD'] . "
\n";
print "title: " . $row[`title'J . "
\n";
print "author: "

	

$row[`author'] . "
\n
print "posted: "

	

$posted . "
\n";
print "body: " . $row[`body'J . "
\n";

// Add a few line breaks to separate news items
print "

";

// Close the connection
mysgl close ($link);

This code will loop through and display all news items in your table. We'll need to make
a slight modification to this script in order to be able to send our information to Flash but
we'll deal with that when we come to it.

Building a Content Management System
Having covered all the MySQL related PHP functions that we'll need throughout the rest
of the book it's time to see them in action in a real application.

As hinted throughout this and the previous chapter, we're going to be building a dynamic
news system for our site.

Since we don't want just anyone being able to update our news items, we're going to use
two separate movies. One will be purely for displaying the data while we'll use the other
to add news items. The PHP script for this second movie will be password-protected to
stop malicious users (stop looking so guilty!) adding cheeky news stories to our sites.

Let's take a look at what we'll be building:

I ntegrating PHP with MySQL

The Flash Movies Part 1 - news.fla
As usual we'll kick off by creating the Flash movies for the application before moving on
to the PHP scripting that does all of the legwork.

OK, I imagine you'll be glad of the chance to get back to a bit of creative work as we splash
down into Flash. First off, we're going to tackle the Flash movie that we'll use to display
the news on our site.

Foundation PHP for Flash

1. As with most of the other applications that we've built so far in this book, we're
going to be using the onclipEvent handler to detect when our Flash movie
has received all of the data from the PHP script.

So, we're going to want to put everything in a movie clip and the first thing we
have to do is create one. Select Insert > New Symbol from the main menu or
press CTRL+F8 to create the movie clip. Give it a suitable name and hit the OK
button.

2. Our next step is to create the layer and frame structure for the movie clip. Use
the screenshot below to guide you through.

Don't forget to add the ActionScript shown above. The part that deserves
special attention is the ActionScript on the Loading frame. This actually
performs the task of calling the PHP script that will fetch our news items for us.
Notice that we're using the technique discussed way back in Chapter 1, of
adding a random number to the URL of the PHP file to prevent the web browser
from serving us a cached version of the script output.

I ntegrating PHP with MySQL

3. The Background layer contains the main background for the movie. Again I've
stuck with the design I've been using throughout but you can make this as
i ndividual as you like.

4. The Loading frame is simply the animated clock hands that I've been using
throughout this book. The tween between frames 1 and 9 on the Section Items
layer is used to give a simple fade-out of the clock face.

5. The final frame we need to construct is the Display frame. This contains all of
the elements necessary to display the news for our site.

Here you can see we have a multiline text box with HTML enabled for displaying
the actual news text and a couple of simple scroll buttons so that we're not

Foundation PHP for Flash

restricted to the size of the text box for our news items.

6. The final thing we need to do for this movie is to return to the main timeline
and drag a copy of our News Panel movie clip from the Library onto our main
stage.

7. We then need to add the following ActionScript code to it so that we can move
on to the Display frame once all the news items have been loaded in.

That's it for this movie - it's ready to rock and roll as soon as we get the database
and the PHP script up and running. First though we need to sort out the movie clip
that we'll use to add news items to our site.

The Flash Movies Part 2 - addnews.fla
This movie is a little more complicated than the previous one because of the amount of
data we need to handle. Regardless, we still need to go through the same basic steps.

1. Again we're going to use an onclipEvent handler to control the flow of our
movie clip once all data has loaded from a given call to loadvariables. This
should be old hat to you by now - we're going to need to create a movie clip
in which to encapsulate everything.

I ntegrating PHP with MySQL

2. Next we need to create the layer and frame structure for this new movie clip.

The ActionScript on the Actions layer of the Data Entry frame is a simple
stop () action to prevent the movie clip from playing automatically. If we didn't
have this then we wouldn't be able to enter our data, so it's an essential step.

3. Again the Background layer is made up of some simple styling to fit in with your
site. As always, feel free to experiment here.

4. Next up is the Section Items layer of the Data Entry frame. This is where all of
our information for adding a news item will be entered, so there's a lot to take
in here. As well as the various details for the news item we'll provide text boxes
for entering a username and password, and we'll use this in the PHP script to
verify that the user has authority to add news items.

Use the screenshot below as a guide to creating the text boxes and buttons
necessary for this section.

Foundation PHP for Flash

The detail noticeably missing from the previous diagram is the ActionScript for
the three buttons in the frame. The two smaller arrows are used to scroll the
newsBody text box and, since we've been using this technique throughout the
book, I shall leave you to your own devices to add this code.

5. The one element that deserves special attention is the Add News button, as
we'll use this to call our PHP script and send it the data to be added to the news
table.

The ActionScript for this button looks like the following:

on (release) {
// If any required field not completed
if (newsTitle

	

newsAuthor

	

newsBody
lilt)

	

l
// Set error message and show error
errorMsg = "All fields required";
gotoAndStop("Error");

} else
// Otherwise call script and wait
loadVariables("addnews.php", this, "POST");
gotoAndStop("Loading");

}
}

6. The Loading frame is yet again simply the animated clock face that we used in
the previous movie.

I ntegrating PHP with MySQL

7. The Success frame simply
contains a message to let
the user know that the
operation has succeeded,
as well as a button to take
them back to the Data
Entry frame where they
can add more news items.

8. The Error frame is much the same, except that we have a text box to display the
error message returned from the PHP script.

Foundation PHP for Flash

9. The final thing we need to do for this movie is to return to the main timeline
and drag a copy of our News Admin Panel movie clip from the Library onto our
main stage.

We then need to add the following ActionScript code to it so the movie goes
to the correct frame on success or failure of the operation. Note that the
result variable will be returned from the addnews.oho scriDt.

Now we've got the Flash under control, let's dive straight into the two PHP scripts.

The PHP Scripts Part 1 - newssetup.php

I t's now time to turn our attention to the PHP scripts that will actually perform the fetching
and storing operations to and from the database.

First up is just a refresher of the setup script we developed earlier in this chapter to create
the database and the table structure for our news site. Since we've already built this script
up over a number of stages there's little point in mulling over it again, so here's the script
in full:

// Attempt to connect to the MySQL server
$link = camysgl connect("localhost", "user", "pass");

// If the connection was unsuccessful...
if (!$link) {

I ntegrating PHP with MySQL

// Output error information and exit
print "Error connecting to database server";
exit;

}

// Attempt to create database. If successful...
if (@mysgl create db("phpforflash")) {

// Inform user of success
print "Database created
\n";

} else {

// Otherwise, tell user there was an error
print "Couldn't create database
\n";

}

// Attempt to select database. If successful...
if (@mysgl select db("phpforflash")) {

// Inform user of success
print "Database selected
\n";

} else {

// Otherwise, tell user there was an error
print "Couldn't select database
\n";

}

// Build table creation query
$query = "CREATE TABLE news

newslD INTEGER AUTO INCREMENT PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(30),
posted INTEGER,
body MEDIUMTEXT)";

// Attempt to create table. If successful...
if (@mysgl query($query)) {

// Inform user of success
print "Table created successfully";

} else {

// Otherwise, tell user there was an error
print "Error creating table";

}

continues overleaf

Foundation PHP for Flash

// Close the connection
mysgl close($link);

I f you've not been playing along with all the bits of code as we've been moving through
the last two chapters then you'll need to upload or copy this to your web server and load
it through your web browser.

If this is beginning to feel familiar then you might remember this kind of
setup script was used way back in Chapter 1 to set up our Registration
movie!

The PHP Scripts Part 2 - fetchnews.php

We now move on to the script that will fetch the news items for our news, f la Flash
movie. We've already developed the bulk of this script too, but we'll go over each of the
main parts so that we can familiarize ourselves with its operation.

1. First up we define our connection details for the database. By defining all this
at the top of the script we make it easy to use the same script on other sites,
since we won't have to go hunting through the script for each of these details.

// Define database connection details
$dbHost = "localhost";
$dbUser = "user";
$dbPass = "pass";
$dbName = "phpforflash";
$table = "news";

2. Next, we attempt to connect to the database server using the mysgl connect

function. Here we use the variables we created previously as the arguments for
the function call, and test the return value to check that we've got a successful
connection to the database. If we've failed then we output error information to
Flash and exit the script.

// Attempt to connect to MySQL server
$link = @nysgl connect($dbHost, $dbUser, $dbPass);

// If the connection was unsuccessful...
if (!$link)

I ntegrating PHP with MySQL

// Report error to Flash and exit
print "&newsText=" . urlencode("Couldn't connect to

server");
exit;

	

_

3. We then attempt to select our database, outputting error information and
exiting the script if unsuccessful.

// Attempt to select database. If unsuccessful...
if (!@mysgl select db($dbName))
{

// Report error to Flash and exit
print "&newsText=" . urlencode("Could not select $dbName

database");
exit;

4. Now we move on to the meat of the script.

// Build query to fetch news items from database
// Using ORDER BY to fetch newest items first
$query = "SELECT * FROM news ORDER BY posted DESC";

// Execute query
$result = @mysgl query ($query);

As the comments show, we're first building up the query to fetch all the news
items from the database and then using the mysgl_query function to execute
this query.

Notice that we're using the ORDER BY clause of the sFT.Fcr command to make
sure that we receive the news items in reverse date order. We do this because
i t wouldn't be very user friendly to have to scroll all the way to the bottom of
the news window to see the latest news.

5. Following this, we make sure that at least one news item has been returned and
then initialize a variable to hold our news items that we're going to pass back
to Flash.

// If query was okay AND we have at least 1 news item...
if ($result && ®mysgl num rows($result) > 0) {

// Initialise variable to hold news items
$newsText

continues overleaf

Foundation PHP for Flash

// For each news item returned from query...
while($row = mysgl fetch_array($result))

6. We then create a while loop, using the mysgl fetch_array function to fetch
a new row from the result of the SELECT query on each iteration of the loop.

7. The first thing we need to do to the current row is to extract the posted
information and convert it from a Unix timestamp to a readable date. We do
this using the strftime function that we met in Chapter 7.

// Format date in `day dd/mm/yy hh:mm' format
$posted = strftime("%a %d/%m/%y %H:$M",

r+ $rowE'posted'J);

8. Next we add the title of the current news item to our $newsText variable that
we'll be sending back to Flash. We're emphasizing the title of each news item so
that it stands out from normal chapter text by using HTML tags to change its
size and color.

// Add title to output in large white font
$newsText ._ `';
$newsText .= stripslashes($row[`title']);
$newsText ._ `
';

Worth nothing here is that we're using the stripslashes to remove any
slashes that were automatically added to the chapter title when it was applied
to the database.

9. We then need to add the by-line of the news item, which will consist of our
humanly readable posted date that we constructed earlier along with the name
of the author who posted the news item.

Note that again we're using HTML tags to alter this information's appearance,
though this time we are making the text smaller than the default 12-point text
that the main news body will be shown in.

// Add date posted and author name in small font
$newsText ._ `';
$newsText ._ $posted . " by " . $row [`author'];
$newsText ._ `
';

10. The final thing we do in the while loop is add the main news body, followed
by a handful of HTML line breaks to separate each news item. Note that we're
using stripslashes again here to remove any unwanted escaping from our
strings.

I ntegrating PHP with MySQL

// Add news item body with a double linebreak
$newsText .= stripslashes($row('body']);
$newsText

	

`

';

11. Once all the news items have been added to the $newsText string we simply
output that information back to Flash.

// Output news items back to Flash
print "&newsText=" . urlencode($newsText);

12. The final thing we need to handle in our script is a nice error message for if we
were unable to fetch any news items from the database. Then we just round the
script off by closing the connection to the MySQL server.

else

// Tell Flash no news items were found
print "&newsText=" . urlencode("No news items yet");

// Close link to MySQL server
mysgl close($link);
?>

That's it for this script and we now need to write the script to actually get the information
into the table in the first place.

The PHP Scripts Part 3 - addnews.php
This script will perform a lot of the same basic actions as the previous one, so if you see
a large menacing looking chunk of code you don't quite understand then check back with
the previous script - it'll be in there.

1. As with the previous script, we're defining the various details of our database
and connection at the top of the script to make it easy to change.

// Define database connection details
$dbHost = "localhost";
$dbUser = "user";
$dbPass = "pass";
$dbName = "phpforflash";
Stable = "news":

Foundation PHP for Flash

2. We then check that the username and password being passed in from the Flash
movie are correct. If they're not then we output some error information back
to Flash and exit the script. We do this before connecting to the database since
there's no point in doing so if the user doesn't have the authorization to add
news information.

// Check username and password
if ($username != "myusername" 1 1 $password != "mypassword")

print "&result=Fail";
print "&errorMsg=" . urlencode("Incorrect username

and/or password");
exit;

Obviously you may want to change myusername and mypassword to something
a little harder to guess!

3. We then move on to the database connection code:

// Attempt to connect to MySQL server
$link = @mysgl connect($dbHost, $dbUser, $dbPass);

// If the connection was unsuccessful...
if (!$link)

// Report error to Flash and exit
print "&result=Fail";
print "&errorMsg=" . urlencode("Could not connect to

database");
exit;

// Attempt to select database. If unsuccessfull...
if (!®mysgl select db($dbName))

// Report error to Flash and exit
print "&result=Fail";
print "&errorMsg=" . urlencode("Could not select $dbName

database");
exit;

You should recognize the main elements of the code above by now as we've
been using them since the beginning of this chapter. This code basically

I ntegrating PHP with MySQL

attempts to connect to the database server and to select our desired database,
outputting error information if anything goes wrong.

4. Time once again to fetch the current time as a Unix timestamp using the time

function. We'll store-this in the database so that, when the news item is read out
again, we can reconstruct the date on which it was posted.

// Fetch the current time
$posted = time();

5. Following that, we build our SQL query to insert the news item into the
database. We constructed a similar query earlier in the chapter so if you're not
sure of the exact details then you need only flip back a few pages.

// Build Query
$query = "INSERT INTO news (title, author, body, posted)

VALUES(`$newsTitle', `$newsAuthor',
` $newsBody', $posted)";

6. We then execute the query using the mysgl query function, storing the result
i n the $result variable.

// Execute Query
$result = @mysgl query($query);

7. Finally, we test the value of $result and output success or failure information
back to Flash as appropriate, before rounding off the script by closing the
connection to the MySQL server.

// If query was successful
if ($result)

// Report success back to Flash movie
print "&result=Okay";

else

// Otherwise, tell Flash we stuffed up
print "&result=Fail";
print "&errorMsg=" . urlencode("Couldn't add news

item");

// Close the connection
mysgl close ($link);
?>

Foundation PHP for Flash

There are several things you might want to add to this news system and, being the rotten
little stinker that I am, I left them out so that you could put all the knowledge in this
chapter to use and add them yourself.

The main things that stick out are:

•

	

Ability to edit existing news items

•

	

Ability to remove news items

•

	

The fact that all news items are loaded at once

With the knowledge you've picked up in this chapter you should be adequately prepared
to attempt adding all of the above functionalities to our news system. If you're still feeling
a little daunted however you'll find a completed and documented version on the
www.phpforflash.com web site.

Summary
It's only when you look back and see just how easy the Registration script from Chapter 1 now seems
that you can truly realize how much ground we've covered in these last few chapters, and
just how much you've learned during the course of the book so far.

We've now taken our theory of the SQL language and put it into use with PHP and Flash
to create a genuinely useful application.

We discovered how to:

•

	

Communicate with MySQL using PHP scripts

•

	

Create and maintain databases and tables

•

	

Run SQL queries through PHP scripts to fetch data from our tables

Finally, we spent a massive amount of time developing our news system, using a
culmination of the techniques we've learned so far throughout the book.

I n the final few chapters, we're going to put all that together in some awe-inspiring
practical applications. No more theory, just hard-edged useful, reusable scripts and FLAs
for you to build, adapt and plug-in to your site.

I don't know about you but I'm off for an ED Cola break first...

http://www.phpforflash.com

Case Study 1 -
User Poll10

What we'll build in this chapter

•

	

A neat interface in Flash for our user poll, easily slotted into
any site or page

•

	

A reusable file to contain our database connection and
common functions

•

	

Two great new scripts to fetch polling information, register
and store votes and display results

•

	

A user-friendly HTML admin page to enter new polls

Foundation PHP for Flash

Ladies and gentlemen, here we are, moving into the twilight hours of our PHP learning.
We are all dressed up in our tuxedos and evening gowns, and the only thing we need is
somewhere nice to go.

So how about Club PHP? I know some great case studies we can check out. These case
studies will be more detailed than the sample applications we've been building so far,
giving you a chance to stretch your knowledge and find out why Flash, PHP and MySQL
make such a winning combination.

Each case study will be more complex than the last, but they are all well within our reach
as PHP masters. We have risen through the ranks, and now is the time to make it pay off.
I f you find a part of the project that you don't quite understand then simply flip back to
the relevant chapter and top up your knowledge-banks.

A learned fellow once gave us to understand that you can't get where you're going unless
you know where you are. To remedy this, each of the case studies will be presented as
complete projects. This means that before we dive in and start coding and messing about
with Flash, we're going to take a step back and look at what we're trying to achieve.

We'll identify the project concept and make sure that it's a sound one. We'll then look at
what we will need in order to achieve the goal, and how all of our various sections will fit
together. Finally, we'll set about building the project, and maybe even apply a dash of
testing too!

So, it's heads up, shoulders back, belly in, and let's go meet and greet the serious PHP
crowd!

Case Study 1 - User Poll

How To Start With Our User Poll
We're going to kick off our series of case studies with the good old user poll. You've
probably come across these on your jaunts through the tangled Web, and they're a great
way of gauging user opinion on some hot topic or other.

The questions posed in the poll can range from the serious "Who should be the next
President?" to the sublimely pointless "ED Cola - Full Fat, Diet, or Caffeine Free?"

Since it's always a good idea to get inspired before embarking upon any project, take a
few minutes to go cruising around a handful of web sites and see how many polls you can
spot.

I f we look at these polls then we can see some of the basic things we're going to need for
our project:

• First and foremost we have the almighty question. Without the question the
user isn't going to know what they're giving their opinion on, or even what their
opinion is!

•

	

Next up we've got the list of possible answers that the user can choose in
response to the question.

•

	

Finally, once we've voted we can often see the results of the poll as it currently
stands.

Well, that doesn't sound too high brow, does it? We should be able to deal with this one
- and with ammunition to spare!

.aying Down The Law...
Okay, to make our lives a little bit simpler we're going to lay down some ground rules for
our project. Ground rules, as you know, are an all-important part of PHP etiquette. They
stop our minds from drifting onto half-formed ideas.

First of all, we're going to be working on the assumption that each question will have only
three possible answers. This is a good compromise, since it allows us to pose such
questions as:

Do you like marbles? What's your favourite food?

	

How old are you?

• Yes » Ham » under 10
• No »Jam » 10 to 29
•

	

What's a marble? » Spam » 30+

Foundation PHP for Flash

Also, for the purposes of this project we're not going to let the users have access to any
other poll than the current one - even to view.

One last thing to note is that we're going to let a given poll run until we add a newer one.
This can be a problem if we've got a poll that has a logical end (for example, "Who will
win next season's Formula One Grand Prix?" becomes null and void once Michael
Schumacher romps home for yet another championship win) but at least it keeps us on
our toes updating our polls every now and again.

While these are all limitations, they're something you can add yourself if you really want
to. If you feel up to the challenge but aren't sure where to start then you'll find some hints
for doing this on the web site at www.phpforflash.com .

Executive Decisions...
Since we're fresh from the MySQL boot camp that was the last chapter, I think we should
flex our newly acquired database muscles and store our poll information in a database.

With that and all the limitations for our project in mind, we can now start to sketch out
the basics of what we need our little application to do.

First up, we need our Flash movie to fetch the details of the latest poll. Obviously Flash
can't access the database itself so we'll have to employ the help of PHP to do the hands-
on work for us.

•

	

Once the information has been loaded, we can display the question and options
to the user.

•

	

Once the user makes a choice from the range of options, we then need to
register that user's vote in the database. Again we'll use trusty old PHP here.

• When the vote has been registered we'll want to display the results of the poll
as it currently stands. This information is returned to the Flash movie where we
perform some jiggery-pokery on it, presenting the user with a suitably aesthetic
set of results.

I n addition to all this, it would be desirable to prevent any of the users from voting more
than once in any poll. This can skew your results and you'd be surprised just how long
users will sit around voting for the same thing over and over again just for kicks.
Remember that scandalous vote on Big Brother? That was me!

There are a couple of methods we could use for this but we're going to stick with the
faithful old cookie, despite the fact that a cookie is relatively easy to remove if a user really

wants to vote more than once. No system we could develop would be 100% bullet proof
so it's not really worth the effort.

http://www.phpforflash.com

Case Study 1 - User Poll

Exercising Our Admin Rights
For the admin side of things we're going to want a simple method of adding new polls to
the system and for listing all the polls to date along with their results. Since this is
administration stuff that the user won't get to see, we don't need to use anything as flash
as ... well ... Flash for the interface, we're big enough and ugly enough to handle plain old
HTM L.

Although the www.phpforflash.com site is completely designed in Flash,
the admin section (for myself and Alan only) is plain HTML; it's the
quickest and most basic method of creating such a thing and it works a
treat. It'll also show you just how easily you can apply your new PHP skills
to o technologies other than Flash.

This actually brings up quite an important point. Never make anything more complicated
than it has to be - you'll only give yourself a headache!

Interfacing With Your Users
We should now have an idea of the kind of thing we're looking to build, and we've just
filled in enough blanks to get us started on the project. We're now faced with the task of
designing the user interface for our application. This is a crucial step and is best done with
good old fashioned pen and paper.

We need to take into account all the steps that the application should go through that we
discussed previously, and make sure that there is adequate provision for them.

Looking at the list of steps we came up with in the previous section, we can see that we're
going to require two main sections for our user interface.

First up, we've got the section
where we'll present the user with
the poll question, and provide some
buttons for the three possible
choices. We also want to display the
date that the poll was posted on.

With this in mind, I've sketched the
following design...

http://www.phpforflash.com

Foundation PHP for Flash

The sketch on the previous page includes all of the elements we require from our Poll
View - with each of the options implemented as some kind of button to enable the user
to choose between them.

Once the user has made their choice for the poll and that choice has been processed we
want to show them the results so far in the poll.

Here, we've repeated the question and the choices for the poll, but we're also using a
couple of nifty methods for showing the results so far. The first of these is a series of
simple text boxes containing the number of votes for each option, and this gives a good
indication of how popular your poll is. In addition to this, we display the percentage of
votes that each option has, using some percentage bars.

Fluffiness Aside - The Back End Scripts
Having sorted the design for the visual side of our application it's time to turn our
attention to the back-end. Basically, all we want to do here is to determine our database
requirements for the application so we have a good idea of where we're going when we
come to build the table later on in the chapter.

Since we're only going to be storing very basic information, we can make do with a single
table. Thinking about the information that we need to store in the database, I've come up
with the following list:

•

	

the question
•

	

the date the poll was posted
•

	

1st option
•

	

2nd option

Case Study 1 - User Poll

•

	

3rd option
•

	

no. of votes for option 1
•

	

no. of votes for option 2
•

	

no. of votes for option 3

Well also want to be able to uniquely identify each poll.

With the above list in mind, I've drawn up a table outline that shows not only how our
table is going to be structured but also takes into account the type of information that we
need to store for each column.

I use this kind of form in most of my database related projects, and they come in especially
handy when you've got more than one table to take care of.

Table: poll

Column Name

	

Data Type Description
pollID

	

I nteger

	

This will be our primary key for the table. We can
use this to uniquely identify a given poll

question

	

String

	

This will be the question

posted

	

I nteger

	

We'll use this column to hold the Unix timestamp
for the date on which a given poll was posted

options

	

String

	

The text for the first option

option2

	

String

	

The text for the second option

option3

	

String

	

The text for the third option

votesi

	

Integer

	

The number of votes for option 1

votes2

	

I nteger

	

The number of votes for option 2

votes3

	

I nteger

	

The number of votes for option 3

With all the specification and design preamble out of the way we can get down to the
serious business of actually building the application.

Building our User Poll Application
As usual, before we go anywhere I'll give you a preview of exactly what our final poll will
l ook like...

Foundation PHP for Flash

As you can see, we've taken the concept we sketched out earlier and fleshed (or flashed)
i t into a nice and clean user interface that fits in with the styling of everything we've met
so far in the book.

We'll have our main display section where the user can see the question and choose from
the three options listed for that poll. Once the vote has been cast we can display the
current results for the poll. There are a couple of loading screens in there somewhere too,
but we'll cross that particular bridge when we come to it.

Making Progress

Before we get stuck into the main Flash movie proper, we're going to spend a few minutes
building our little percentage bars shown in the screenshot above.

Since we're going to be using this three times we'll create it as a separate movie clip that
we can use in other movies too - should we want to!

So, first things first, we need to actually create the movie clip that we'll put everything in.

1. Select Insert > New Symbol from the main menu or press CTRL+F8 to create the
movie clip. Call it Percent Bar and hit OK.

Case Study 1 - User Poll

2. Now we need to create the layer and frame structure for the movie clip. This is
going to be relatively simple since everything's going to be on the one frame.

Use the diagram below as a guide.

Don't worry about the ActionScript on the Actions layer for the moment, we'll
come back to that soon enough.

3. We'll now turn our attention to the Bar BG layer. As the name may suggest,
this'll be where we put the background for our percentage bar.

I n our case this is a simple white rectangle.

Obviously you can style this as you see fit but you'll need to make sure that it's
a shape that can be stretched in the horizontal without distortion - the reason
for this shall become clear in the next step.

4. It's now time to create the actual bar that will indicate the percentage on the
Bar layer.

Since when the bar is at 100% it should be exactly the same size and shape as
the background above, your best bet is to copy that shape and use the Edit >
Paste in Place option to paste the new copy on the Bar layer in exactly the same
place.

Once it's pasted in place we'll want to change its color to something that
contrasts with the Bar BG layer. I've chosen a funky dark blue to fit in with the
design but if luminous pink takes your fancy then go for it!

Foundation PHP for Flash

5. I f you're puzzling over how we're going to get the bar to change size according
to what percentage we want it to represent, here's your answer.

Each movie clip has an xscale property and, fortunately for us, it is specified
as a percentage. However, we can't scale the whole Percent Bar movie clip since
we'd also scale the background we created in the Bar BG layer too.

So what do we do about this little dilemma? Well, we simply convert the
contents of the Bar layer into its own movie clip so that we can reference that
separately from all the other items in this movie clip.

6. Select the contents of the Bar layer and select Insert > Convert to Symbol or
press F8. Give the new movie clip a suitable name, such as Bar, and hit the OK
button.

7. Once we've created our Bar movie clip we need to manipulate it a little so that
i t'll scale properly.

What I mean by this is that when we modify the _xscale property of a movie
clip, the scaling takes place relative to the center mark of the movie clip (the
li ttle cross).

Now, at the moment the center mark for the Bar movie clip is ... well ... at the
center of the rectangle shape. What we need to do is to align our movie clip so
that the center mark is actually at the left hand edge of the rectangle.

8. Select our new Bar movie clip and choose Edit > Edit Symbols (or CTRL+E) from
the main menu.

Case Study 1 - User Poll

9. Ensure that the blue rectangle is selected and use the Align panel to align the
l eft hand edge of the selection to the center mark for the movie clip.

10. Having done all that, return to the Percent Bar movie clip and you'll notice that
our nice blue bar has moved over a tad. This is as a result of the above step so
we'll need to move it back over, in line with our background for the percent bar.

To do this we'll use the Align panel again. Simple select our Bar movie clip and
hit the center align button.

Foundation PHP for Flash

11. We now need to give our instance of the Bar movie clip a name so that we can
reference it from ActionScript.

12. All that's left to do now is to create a function in our movie clip that'll enable
us to set the percentage from outside.

This is where, as promised, we return to the ActionScript we noticed on the
timeline screenshot way back at stage 2 of creating this movie clip.

The ActionScript simply defined a function named setPos that'll take a single
argument of the percentage we need to set the bar for. Since the _xscale
property of a movie clip is specified as a percentage, we can simply assign the
value passed in to the xscale property of the instance of our movie clip
named bar.

13. That's it, our Percent Bar movie clip, and the other little clip inside it, are ready
to be used. We'll drag and name instances of this movie clip as appropriate, but

Case Study 1 - User Poll

for now return to the main timeline by selecting Edit > Edit Movie or pressing
the Scene 1 tab above the timeline.

Make Your Vote Count
Having got our Percent Bar movie clip sorted it's time to turn our attention to the main
movie proper. We'll be building up the user interface over a number of stages, just as we
have with previous projects.

1. Again, we're going to be using an onClipEvent handler to take the appropriate
action once all the data has been loaded from a call to loadvariables. You
know what that means by now so get creating that movie clip!

2. The next step, as always, is to rough out the layer and frame structure. Since
we're going to be doing a fair amount in this movie it's a little more complicated
than previous ones but it's not too bad - honest!

We'll worry about the details such as all the ActionScript a little later. For now
let's just be content with mimicking the above structure.

Foundation PHP for Flash

3. Next up we need to create the styling for
the Window BG layer. As mentioned earlier,
I've used the same design as throughout this
book but whatever takes your fancy will be
fine!

4. Once we've got that sorted we can move on to the Section Items layer of the
Load Poll frame. Basically this is going to contain the same loading type screen
with the animated clock face that I've been using since the very first application.

The motion tween between frames t and 7 simply fades the animation out.

5. Finally for this frame we need to add some ActionScript on the Actions layer.

Case Study 1 - User Poll
Here, on the first frame of the movie clip we've simply got some ActionScript
to call the fetchpoll .php script we'll start playing with later on, loading all the
resultant variables into the current timeline.

We're using our.old trick of generating a random number to append to the URL
i n order to prevent the web browser delivering us a cached version of the script
output.

Finally we're stopping the movie clip here so that the loading animation is
shown until all data has been loaded, when we get the movie clip moving again
with an onclipEvent handler.

6. Moving on to the Data frame things start to get a little more interesting. This is
where the poll question will be displayed, along with the possible options to
choose between. We'll also want to display the date that the poll was posted.

On the Section Elements layer we'll need to create the various text boxes to
hold this information. Since we know that our poll can only have three options,
we can design the form with this in mind.

Foundation PHP for Flash

7. The one thing missing from the diagram on the previous page is the presence of
buttons that the user can click to make their choice. If you've been particularly
alert you may have seen an Invisible Buttons layer for this movie clip, and that
may well give you a huge clue as to how we're going to implement this.

Let's take a look at what the
stage will look like with the
invisible buttons in place:

Hopefully you can see that the invisible buttons are represented as light colored
rectangles. They're actually a light blue but given that the above shot is in
grayscale you won't be able to see that!

8. If you look back to the screenshots of the application we discovered right at the
start of this section, you'll notice that when the mouse moves over an option
visual feedback is provided for the user via a semi-transparent bar highlighting
the current option.

If we take a look at the timeline for our invisible button we can see how this
works...

Case Study 1 - User Poll

9. On the Hit frame for the button we create a simple black square to define the
hit area. We then copy this square to the Over frame and change it to a cool
navy blue color. Finally, we reduce the Alpha level of this blue square to 25%.

10. When you're done creating the invisible button above, drag three instances of
i t onto the Invisible Buttons layer of the Data frame. You'll need to position one
over each of the options - stretching the size as necessary - as shown in the
screenshot earlier.

11. For each button we then need to add the following ActionScript code:

on (release) {
action = "vote";
choice = 1;
loadVariables ("vote.php", this, "POST");
gotoAndStop ("Load Vote");

Foundation PHP for Flash

Obviously you'll want to change the choice li ne for each of the buttons to
reflect the relevant option being chosen, but the basic idea is the same. We set
a variable to indicate user choice and another to indicate the action we want
the PHP script to take. We then call the PHP script and advance the movie to
the Load Vote frame.

12. ...talking of which, the Load Vote frame is essentially the same as the Load Poll
frame we developed earlier, with the exception that the ActionScript on the
Actions layer has been changed to a simple stop action.

13. Well, we're nearly there as far as the Flash movie is concerned. The penultimate
frame we need to take care of is the View Results frame where we'll use some
nice Percent Bar movie clips to display the results for the poll visually.

On the Section Items layer we need to create the various form elements that
are required. This is basically a text box to hold the question, a text box for each
of the options, and a further text box for each option to hold the vote count
for that option.

Case Study 1 - User Poll

We can now add our three instances of the Percent Bar movie clip we developed
earlier in the case study to the Section Items layer.

14. Drag three copies of the Percent Bar movie clip from the library onto the
Section Items layer and place as appropriate for each of the options.

We'll also need to give each an appropriate instance name so that we can refer
to it from ActionScript. The ones shown above should do just fine.

Foundation PHP for Flash

15. Now we need to address the ActionScript on the Actions layer of the frame
after the View Results frame (frame 23).

This is where we're going to be calculating the percentage and passing the
results on to the bars movie clip.

Since we'll be loading the votes for each option in the votesi, votes2, and
votes3 variables we can easily determine the relative percentages for each bar
with the following code.

// Calculate total votes cast
total = Number(votesl) + Number(votes2) + Number(votes3);

// Calculate percentages for each option
percenti = (Number(votesl) / total) * 100;
percent2 = (Number(votes2) / total) * 100;
percent3 = (Number(votes3) / total) * 100;

// Set each option's percentage bar
percentBarl.setPos(percentl);
percentBar2.setPos(percent2);
percentBar3.setPos(percent3);

// Stop the movie from moving on
stop () ;

Case Study 1 - User Poll

That should all look pretty straightforward to a Flash demon like you! Basically
we're calculating the percentages for each bar, and then using the setPos

function inside each instance to alter the percentage shown on the bar.

Why is it on the frame after the View Results frame? Well, I originally had it on
the View Results frame but found that the percentage bars were not being set
properly. It turns out that the function calls were failing for some reason so I
had to move the ActionScript on one frame. It all comes down to trial and error
at times like that!

16. Finally we create an Error frame to display any error message returned from the
PHP scripts during the course of their operations.

17. Just before we go, we need to drag a copy of our User Poll movie clip from the
Library to the main stage, and attach the following ActionScript to handle
i ncoming data.

onClipEvent (data) {
// If operation successfull

if (this.result == "Okay") {
// Carry on with movie
this.play();

} else {
// If user has already voted for the current poll
if (this.result == "AlreadyVoted") {

// Set action to a simple fetch
this.action = "fetch";

// Call vote.php to get results
loadVariables("vote.php", this, "POST");

continues overleaf

Foundation PHP for Flash

// Go and wait at the loading screen
this.gotoAndStop("Load Vote");

} else
// Otherwise, something went wrong

this.gotoAndPlay("Error");
}

This is a variant on our usual onClipEvent handler, designed to deal
with the various kinds of incoming information. Follow the comments if
you are unsure.

That's it for the Flash movie. Save the hard work you've done so far and we can get
motoring on to the PHP scripts that'll do all the hardest work for us!

Adding Some PHP Power
It's time to take a look at the PHP scripts that will be doing all the hard graft while the
Flash front end just sits there looking sexy. We're actually going to be developing several
scripts here, of which two will be for direct interaction with Flash, and two will be admin

Case Study 1 - User Poll

related, one setup script and a script that we'll use to hold some data that's common to
all of the scripts.

The common.php Script

First up we've got the comnon.php script. This will contain the details that we'll need to
access the database server, as well as a few common functions for performing various
tasks. We can then use the include function we met in Chapter 3 to add the PHP
elements that are in this file to any other script that we desire, including scripts in the next
chapter!

1. Let's get cracking with our comnon.php code. Firstly we set up some variables
to hold our database access details. Obviously you'll need to change some of
these details to suit your personal configuration, but you should get the basic
idea!

// Database details
$dbHost = "localhost";
$dbUser = "user";
$dbPass = "pass";
$dbName = "phpforflash";
$table = "polls";

2. Next up we define a function called dbConnect. This function will perform the
common "connect to database server and select our database" operation,
outputting any necessary error messages as it goes.

You can see that we're registering a couple of global variables so that we can
access them from our function,

mction dbConnect O {
// Access global variables
global $dbHost;
global $dbUser;
global $dbPass;
global $dbName;

Foundation PHP for Flash

3. We then attempt to connect to the database server and check our link. If our
link fails then we'll call the fail function - which we'll write in a moment - to
output the error information back to Flash and exit the script.

// Attempt to connect to database server
$link = ®mysgl connect($dbHost, $dbUser, $dbPass);

// If connection failed...
if (!$link) {

// Inform Flash of error and quit
fail("Couldn't connect to database server");

1

4. I f all went well with the database server connection then we attempt to select
our desired database. Again, if this fails we're using the fail function to output
error information to Flash and exit the script.

I f we managed to select the database successfully then the link identifier for the
database connection is returned.

// Attempt to select our database. If failed...
if (!@mysgl select db($dbName)) {

// Inform Flash of error and quit
fail("Couldn't find database $dbName");

return $link;

Case Study 1 - User Poll
5. Moving on to our now-infamous fail function, we can see that all this is doing

i s URL-encoding the error message and outputting that along with a fail
message to the Flash movie. We then call exit to quit the script.

function fail($errorMsg)
// URL-Encode error message
$errorMsg = urlencode($errorMsg);

// Output error information and exit
print "&result=Fail&errormsg=$errorMsg";
exit;

Foundation PHP for Flash

While that's it for our common.php script, there's one important task you
need to do before we can move on. Basically, you need to make sure that
there are no whitespace characters either before the opening PHP tag or
after the closing one. The reason for this will become clear soon enough
but for now don't forget that a whitespace character can be a tab or a
space, or even a newline. Happy hunting!

The setup.php Script

This script is going to build the database and table structure for us so we don't have to
mess about with the MySQL monitor!

We'll only need to run this script once so it'll be a simple case of uploading it or copying
it to your web server and then opening it through your web browser.

1. The script kicks off by including the common.php file we've just created so that
we can have access to the database connection variables.

// Include config file
include(`common.php');

2. We then attempt to connect to the database server, displaying a nice error
message if the connection fails.

// Attempt to connect to database server
$link = @mysgl connect($dbHost, $dbUser, $dbPass);

// If connection failed...
if (!$link) {

// Inform user of error and quit
print "Couldn't connect to database server";
exit;

You may have noticed that we're not using the dbConnect function that we've
just developed. The reason for this is that the database may not exist when the
script is first run and if this is the case then we'd like to have a pop at creating
it from PHP rather than halting the PHP script altogether.

Case Study 1 - User Poll

We're also not using the fail function for our error message output since this
was designed with Flash in mind. For us mere mortals a plain text based error
message will suffice!

3. Next up, we have an-attempt to create the database specified in $dbName using
the mysgl create_db function. If this fails then we output an error message,
but we DON'T exit since it could have failed if the database exists already. Of
course, it may not have existed and there was a problem creating it meaning
that it still doesn't exist - we'll weed this out in the next bit.

// Attempt to create database
print "Attempting to create database $dbName
\n";
if (! @mysgl create db ($dbName)) {

// Inform user of error
print "# Couldn't create database
\n";

} else {
// Inform user of success
print "# Database created successfully
\n";

}

I f the database didn't exist, but was created successfully, then we'll get a nice
message congratulating us on our success!

4. Once we've done our best to make sure that the database exists we can attempt
to select it. Since we need to have a database selected to even have a stab at
creating our desired table, we can safely exit the script if any problems were
encountered when trying to select it.

// Attempt to select database
print "Attempting to select database $dbName
\n";
if (! @mysgl select db ($dbName)) {

// Inform user of error and exit
print "# Couldn't select database
\n";
exit;

} else {
// Inform user of success
print "# Database selected successfully
\n";

Of course, if everything goes smoothly then we simply output a success message
and cruise on our merry way though the rest of the script.

5. Talking of the rest of the script, we next formulate the query that we'll use to
add the new table to our selected database. Note that we've used the table

Foundation PHP for Flash

mock-up we developed near the start of the case study as a guide for the
various columns we need.

// Output message to tell user what stage in the setup
// process we're at.
print "Attempting to create table $table
\n";

$query = "CREATE TABLE polls
pollID INTEGER AUTO INCREMENT PRIMARY KEY,
question VARCHAR(255),
optionl VARCHAR(255),
optionl VARCHAR(255),
option3 VARCHAR(255),
votesl INTEGER DEFAULT 0,
votes2 INTEGER DEFAULT 0,
votes3 INTEGER DEFAULT 0,
posted INTEGER)";

6. We then execute the query, and output a message depending on its success or
failure. We round the script off by outputting a message telling the user that
we've reached the end of the setup script so it's safe to scarper off down the
pub!

$result = @mysql_query($query);

if (!$result)
// Inform user of error
print "# Error creating table
\n";

} else
// Inform user of euccess
print "# Table created successfully
\n";

}

print "End of setup";

mysgl close($link);

?>

The fetchpoll.php Script
Finally, we get to the real meat of the PHP scripts. This script is particularly concerned with
fetching the current poll and returning that information to the Flash movie. It'll also
inform Flash of the presence of a cookie that we'll use to make sure that users can't vote
more than once in a given poll.

Case Studv 1 - User Poll

1. The first thing we do here is to include our common.php file again so that we've
got access to the database connection information.

// Include config file
include(`connon.php');

2. We then call the dbConnect function we wrote a while back. will now be in
action for the first time. We simply use this function call to take all of the hassle
out of connecting to the database server and selecting the desired database.
You'll come to appreciate the value of this when we meet the remaining scripts
for the project.

// Connect to database
$link = dbConnectO;

3. We then build our query to fetch the latest poll in the table. By using ORDER BY

posted DESC we can be sure that we're returned the newest poll first, and the
addition of the LIMIT clause ensures that we only get the single newest poll.

// Build query to fetch latest poll
$query = "SELECT pollID, question, optionl,

option2, option3, posted
FROM polls ORDER BY posted DESC LIMIT 1";

Since we're not concerned with how many votes there are for each option at
the moment, we're leaving them out of the list of columns for which we want
information returned. This doesn't make a great deal of difference
performance-wise with a database this simple but it's good to get into the habit
of coding efficiently.

4. Having built the query, it's time to execute it. We check to see if the query has
failed, and, if so, we call our fail function again to tell Flash that something's
gone wrong and then exit the script.

// Execute query
$result = @mysgl query($query);

// If query failed...
if (!$result) {

// Inform Flash of error and quit
fail("Error executing query");

5. I f we get this far then the query must have been a success, so we can extract
our poll information from the result set as an array, using the
mysgl fetch array function.

//Fetch the returned poll at array
$poll = mysgl fetch array($result);

6. We now add a foreach l oop to remove any automatically escaped quotation
characters from any of the elements in the $poll array.

// Remove any slashes from each element of $poll
foreach($poll as $key => $value) {

$poll ($key] = stripslashes($value);

7. Following this, we use the strftime function to convert the UNIX timestamp
that represents the date that the poll was posted into something a bit more
manageable. We've met this function several times before so if you're unsure of
i ts operation have a flick back to Chapter 7.

// Format posted date to something readable
$posted = strftime("%A %d/gym/%y", $poll [`posted']);

8. We then output all of the poll information to Flash, URL-encoding the output
where it may be necessary:

// Output poll information to Flash
print "&poilID=" . $poll[`pollID'];
print "&posted=" . urlencode($posted);
print "&question=" . urlencode($poll[`question']);
print "&optionl=" . urlencode($poll[`optionl']);
print "&option2=" . urlencode($poll[`option2']);
print "&option3=" . urlencode($poll('option3']);

9. Next up, we've got a clever piece of code to check if the user has already voted
i n the current poll. You can see from this code that we're checking for a cookie
named lastPollID and, if its value is a match for the current poilID, Flash is
i nformed via the result variable. If no cookie is present. or the ID does not
match then we just return as normal.

// If cookie says user has voted before...
if($poll['poliID'] == $HTTP COOKIE_VARS[`lastPollID']

// Tell Flash movie
print "&result=AlreadyVoted";

} else
// Otherwise return okay

print "&result=Okay";

10. Finally, being the good little coders that we are, we round off the script by
closing our connection to the MySQL server before we exit. Remember your
manners!

mysgl close ($ link);

The vote.php Script
This script is concerned with registering the users vote in a poll and fetching the results
thus far. It'll also be responsible for setting the cookie that'll tell fetchpoll .php whether
or not the user has already voted in the current poll.

Case Study 1 - User Poll

11. As with fetchpoll.php, we kick this script off by including our common.php

script, and then using the dbConnect function within, to perform the database
connection and selection routines:

// Include config file
require(`common.php');

// Connect to database
$link = dbConnectO;

12. We then decide whether we need to register the users vote for the given poll
(if the user hasn't voted before). This will be indicated by a variable from our

Foundation PHP for Flash

Flash movie called action, so if it's set to "vote" then we know we want to
capture the user's vote.

if ($action == "vote") {
//. Build name of column to update from choice variable
$fieldName = "votes" . $choice;

I f we're registering the vote then we build the name of the column that needs
to be updating by adding the value of the choice variable - which will be 1, 2
or 3 depending on which option was chosen - onto the end of the string
"votes".

13. Next up we build the query that'll increment the value in the appropriate
column for the current poll as identified by $pollID which, having been passed
to Flash when the fetchpoll.php script was called, will be sent to this script
from Flash.

// Build query to update votes for this poll
$query = "UPDATE polls SET $fieldName=$fieldName+1

WHERE pollID = $pollID";

14. We then execute our newly built query and check to make sure that nothing has
gone wrong. If something has then we inform Flash of the error and quit the
script.

// Execute query
$result = @mysgl__query($query);

// If query failed...
if (!$result) {

// Inform Flash of error and quit
fail("Error executing query");

15. Our final action inside this if statement is to set the cookie that will indicate
to f etchpoll.php that this poll has been voted in by the current user. Note
that we're setting the cookie for 365 days - should be long enough.

// Set cookie so user can't vote again
setcookie("lastPollID", $polllD, time() + (365 * 86400));

16. It's now time to build up a query to select the current votes for the current poll
and execute this query. If the query fails then an error message is sent to Flash
and the script will exit.

Case Study 1 - User Poll

// Return votes to this poll
$query = "SELECT votesl, votes2, votes3

FROM polls WHERE pollID = $pollID";

// Execute query
$result = @mysgl query($query);

// If query failed...
if (!$result) {

// Inform Flash of error and quit
fail("Error executing query");

r

17. Next we simply fetch the votes from the result set and output that information
back to Flash, rounding off the script by closing the link to the MySQL server.

// Fetch the returned poll at array
$votes = mysgl fetch array($result);

// Output poll information to Flash
print "&votesl=" . $votes(`votesl'];
print "&votes2=" . $votes[`votes2'];
print "&votes3=" . $votes[`votes3');
print "&result=Okay";

mysgl close($link);

The addpoll.php Script

Finally we need to develop a script that will allow us to add a new user poll to our
database. This script will include an HTML form to allow us to enter the information, as
well as some PHP code to take that information and insert in into our database.

Like our mailing list admin section from Chapter 9 we're going to be using HTML and PHP
on the same page. The main point to remember when doing this is that anything enclosed
inside our PHP tags will be treated as PHP code, and anything outside will be treated as
HTML.

1. The first thing we do is add some initial HTML to set the title of the page as it
will appear in the browser window, and add a large text header so that the user
i s in no doubt as to the function of the form.

Foundation PHP for Flash

<html>
<head>

<title>Add User Poll</title>
</head>
<body>
Add User Poll

2. Having got that sorted we can launch into the PHP code section of the page.
Here we're checking to see if the $action variable has been set, and we'll use
this to determine whether the form has been submitted and therefore whether
we need to take any action script-wise. We can assume that if this variable is set
accordingly then we have all of the information we need to insert into the table.

If the $action variable is set to "add" then the next thing we need to do is to
i nclude our file that contains the database access details and common
functions.

// If the form has been submitted...
if ($action == "add") {

// Include config file
include(`common.php');

3. We then use the dbConnect function to perform the database connection and
selection operations.

// Connect to database
$link = dbConnectO;

4. Having done that we use the time function to get the current time as a UNIX
ti mestamp. We'll use this value as the posted date of our new poll.

// Get date for new poll
$posted = time();

5. We then build the query to insert the new poll into the table. This should be
pretty self-explanatory but you should note that, with the exception of
$posted, the variables we're referencing here will all be created from HTML
form input. We'll get to this a little later on.

// Build query to insert new poll
$query = "INSERT INTO polls (question, optionl, option2,

%*option3, posted)
VALUES(`$question', `$optionl', `$option2',

4*`$option3', $posted)";

Case Study 1 - User Poll

6. Finally for the script section we execute the query and output a success or
failure message according to the success of the query. Note that we're using
some HTML font tags to make errors appear in red and success messages appear
in blue.

// Execute query
$result = @mysgl query($query);

// If query failed...
if (!$result)

// Display error
print "Could not insert

w+poll
\n";
} else {

print "Poll
I-added
\n";

}

7. We then close the link to the MySQL server and use the closing PHP tag to
signify the end of the PHP code.

mysgl close($link);
}
?>

8. Now we create a basic HTML form to input all our data:

<form action="addpoll.php" METHOD="post">
<table border="1" cellspacing="2" cellpadding="3">

<tr>
<td>Question</td>
<td><input type="text" name="question"

k1+size="50"></td>
</tr>
<tr>

<td>Option 1</td>
<td><input type="text" name="optionl"

w&size="50"></td>
</tr>
<tr>

<td>Option 2</td>
<td><input type="text" name="option2"

%+size="50"></td>
</tr>
<tr>

<td>Option 3</td>
continues overleaf

Foundation PHP for Flash

<td><input type="text" name="option3"
size="50"></td>

</tr>
<tr>

<td colspan="2">
<input type="hidden" name="action" value="add">
<input type="submit" value="Add Poll">

</td>
</tr>

</table>
</form>

</body>
</html>

9. The only particularly interesting point to note above is the following line:

<input type="hidden" name="action" value="add">

We use this hidden input field to set the $action variable so that when the
form is submitted, the PHP code is invoked (as detailed earlier).

Also, note that the action attribute for the form points to the same script -
addpoll.php.

<form action="addpoll.php" METHOD="post">

10. This will give all you an HTML form like the following, which you can use to add
polls.

Case Study 1 - User Poll

Summary
So, that's our first case study completed this fine evening - and we didn't even spill any
of those strong PHP cocktails down our best clothes!

By now you should be gaining some kind of impression about how PHP provides a serious
amount of backstage power, beefing up those oh-so-familiar web tools like HTML and
Flash. Hopefully you will also be relaxing into the way of all things PHP, and not worrying
when things appear to get complicated - I think you should know by now that it's all very
easy, really!

Well, onward and upward. I've got to plan what I'm going to be doing after I finish this
book, so a Flash and PHP calendar would go down a treat...

Case Study 2 -
Event Planner11

What we will build in this chapter

•

	

An expandable Flash interface for our calendar application

•

	

Reusable scripts to setup our database connections and define
our functions

•

	

A script to fetch the events from our database and pass them
to our Flash movie

•

	

An HTML-embedded administration module to add new
events to the database

Foundation PHP for Flash

I f you're anything like me then you'll subscribe to the theory that memory capacity (of the
human variety) is inversely proportional to the amount of time you spend in front of your
computer - leaving me with the memory capacity of a goldfish!

I f this all sounds a little familiar to you then you're in need of the next application we're
going to build - an online events calendar.

Although this project was born out of necessity, it's still worth looking around to see if you
can pick up some ideas from other online calendars, if you can find them. My inspiration
for this application was taken from an old personal organiser program I had on my
Commodore Amiga.

Let's take a look at the basic steps our application will go through. Note that all this is
presented without concern for implementation, meaning that we don't say where we load
the data from, how we load it in or even what we load it into. This is generally a good idea
when you're designing an application as it allows you to take the same general design and
implement it using other technologies.

Anyway, enough waffle and on with those steps. In this calendar application, we'll want to...

•

	

Set year to view as current year
•

	

Load number of events for each month of the year
•

	

Display calendar to user
•

	

When user picks a given month, load the event details for that month
•

	

Display that month's events to the user
•

	

User hits a button to return to step 2

I n addition to all this we'd like to give the user the ability to view events from previous
years and events that are happening in future years - especially for all those forward
planners out there.

Also, once the user gets to stage 5 above it might be nice to enable them to move on to
view the events of adjacent months without having to return to the main calendar display.
Without this functionality our calendar would be a little too rigid. We want it to be user
friendly, and not merely usable!

Planning It All Out
I t's time to get handy with the old pen and paper and start thinking about what our user
i nterface will look like. We need to take into account all the steps the application should
go through and make sure that there is adequate provision for them.

Looking at the list of steps we came up with in the previous section we can see that we're
going to require two main sections for our user interface.

Case Study 2 - Event Planner

The first, known as the Year View, will basically show the number of events in each month
of the currently selected year. We'll need to incorporate some method by which the user
can select the year, and we also need to provide a way for the user to tell the Flash movie
which month they would like to view event details for.

With all this in mind, we might come up with something like the following sketch...

This includes all of the features we require from the Year View. Each of the twelve boxes
displays the month name and the number of events for that month, and will have a button
covering them so that the user can just click on the month they want to view. We can use
that to load the details for the relevant month. We also have the Back and Forward
buttons to enable the user to browse through the years.

Once the user has selected the month they want to view event details for, our movie will
go off and fetch the events. When everything's loaded we need some mechanism for
displaying the events to the user.

Enter the Month View...

Foundation PHP for Flash

Here we've got a multiline text box to hold all of the events for the chosen month, and
we've got some new Back and Forward buttons to allow the user to move through the
months without going back to the Year View. We've also got a button to take the user back
to the Year View i f they want it and some nice scroll buttons linked to the main text box.

I n addition to these two main sections we'll also have a loading screen or two and a section
for displaying errors. Since these are fairly passive parts of the user interface it isn't
essential that they be designed before we actually build them. However, this is as much a
matter of personal taste as anything, so if you want to put in a design for these then go
with your own personal flow!

Having designed the user interface we should have a pretty clear idea of the kind of
information we're going to need to store and, having honed our database skills in the
previous few chapters, we're going to use MySQL as our storage solution of choice.

So, what kind of information do we want to store? How about the following list for
starters...

• Date of event
• Title for event
•

	

Main event information

It would also be nice to have a mechanism for uniquely identifying a given event. You
might think on first glance that the date will be just fine for this but we could well end up
with multiple events on the same day. This makes the date unsuitable for uniquely
i dentifying an event so we have to invent an extra item of information to do this for us.

With the above list in mind we should come up with a table that looks something like the
following:

Table: events	
Column Name Data Type Description
eventlD I nteger This will be our primary key for the table. We

year I nteger

can use this to uniquely identify a given
event.

The year the event is set for

month I nteger The month the event is set for

day String The day the event is set for

title String The title text for the event

event String The main text that will describe the event

Case Study 2 - Event Planner

Storing the different components of the event date separately allows us to only select the
items in the table that we're interested in, rather than having to select them all and then
filter through which ones are relevant and which are not.

Having gone through our design process it's time to roll up our sleeves and start getting
our hands dirty.

As usual we'll start off by building the foxy Flash front end, creating the scripts that'll act
as the muscle behind the application once we've got an idea of what's required of them
from Flash.

Charting the Days in Flash...
Since we've already sketched out the main sections for this Flash movie before getting to
this stage it shouldn't take us too long to polish the whole user interface off. That said,
we're going to have to use some ninja Flash moves to get everything to work as it should
so we might stretch our knowledge of Flash a little in this chapter.

First things first, we're going to be using our friend the onClipEvent handler for this
application so we'll have to enclose the entire user interface in a movie clip.

1. Select Insert > New Symbol from the main menu or press CTRL+F8 to create the
movie clip. Call it Events Calendar and hit the OK button.

2. Having got that sorted, our next step, as always, is to create the layer and frame
structure for the movie clip.

Foundation PHP for Flash

You should know the drill by now - use the screenshot below as a guide.

You'll probably recognize the motion tweens from previous applications but
we'll get to these in a moment. We'll also come back and take a look at the
ActionScript on the frames above in detail as we deal with each section of the
movie clip.

As usual, the Window BG layer contains the background for the window. This
has been carried over from the concept drawings we created earlier so there
shouldn't be any surprises here.

Case Study 2 - Event Planner

As you can see I've left a fairly decent client area for the interface and I've
accommodated the button bar at the bottom as per the designs we mocked up
earlier.

3. Dealing with the Load Year frame first of all, the motion tween on the Section
Items layer is ... yep, you guessed it ... the fading out of the clock face animation
that I've been using since Chapter 1.

4. We've also got some ActionScript on frame 1 of the Actions layer. It is here that
we'll need to invoke the PHP script to fetch the number of events for each
month of the current year.

Let's take a look at the ActionScript and then we'll discuss exactly what it does.

// If no year selected
if (!year)

// Set year to current
now = new Date();
year = now.getFullYear();

// Setup action and call script...
action = "geteventcounts";
loadVariables("fetchevents.php", this, "POST");

// Halt movie clip
stop();

Foundation PHP for Flash

When the movie clip is first loaded there will be no currently selected year. If
this is the case then we use the new Date object to fetch the current year
according to the local time system.

Once that's done we set the action we want our script to perform and invoke
the script using a call to loadVariables. Finally, we halt the movie clip until
data has been received - although that functionality is provided by an
onClipEvent handler we've yet to create.

5. Moving on to the Show Year frame we encounter our first items on the Button
Bar layer.

As you can see we've got a small text box in the middle of the button bar, and
by giving it a variable name of year it will automatically tie in with the variable
we first created in the previous step, displaying the currently selected year.

6. We also have Back and Forward buttons here, so go ahead and add the
following code:

//Back
on (release) {

// Load previous year
year-;
gotoAndPlay ("Load Year");

and

//Forward
on (release) {

// Load next year
year++;
gotoAndPlay ("Load Year");

Case Study 2 - Event Planner

Because the job of loading the currently selected year is performed on the Load
Year frame, all we have to do with these buttons is to appropriately alter the
currently selected year and then play that frame.

Foundation PHP for Flash

7. Now we come to possibly the most complex aspect of the entire movie clip.
Basically we now need to create the boxes that represent each of the months
in the currently selected year, displaying how many events are in each.

We could have done this in the same way as we built the User Poll interface in
the first case study; creating 12 text boxes to hold the month names, 12 text
boxes to hold the event count for that month and then 12 buttons which set
the month variable appropriately and invoked loadvariables.

However, given that we've done that kind of thing once, I thought it'd be good
to push the boundaries of our Flash knowledge. Basically, we're going to use a
generic movie clip for each of the month boxes, using ActionScript to assign the
appropriate values. Now this is the stuff real Flash bloods use!

8. First up we draw a rectangle, mine being slightly darker than the window
background so that it shows up better. We then need to add a couple of simple
dynamic text boxes to display the relevant information for the month.

9. Next we need to have some kind of button that the user can click on to select
the current month. This sounds to me like an ideal place to reuse the invisible
button we developed in the previous case study. I've made a small modification
to mine, namely that the color for the Over state is a semi-transparent white
rather than semi-transparent blue.

Case Study 2 - Event Planner

10. The code we'll use for this button may not make too much sense at the moment
but once we follow the next step it will. I promise! The code for the button is:

on (release) {
// Set month to load to current
parent.month = this.month;

// Load month details
.parent.gotoAndPlay("Load Month");

11. Now we need to convert the whole of this month box into a suitable movie clip.
Select the box, the text boxes and the new invisible button and select Insert >
Convert to Symbol or hit the F8 key to convert the whole lot into a movie clip.
Give it an appropriate name (such as Month Box) and hit the OK button.

Foundation PHP for Flash

12. Finally we need to duplicate the instance of our Month Bar movie clip so that
we have our rows of four to represent the twelve months of the year.

We also need to give each of
these instances a meaningful
i nstance name so that we can
refer to them from our
ActionScript.

13. Starting with the top left corner and working your way left to right and top to
bottom, name the instances as shown above so that you have instances ranging
from monthO (top left) through month 11 (bottom right). Names ranging from
0 to 11 may seem a little strange but there's a good reason for it, which we'll
discover in a moment.

14. Now that these are all movie clip instances within our Events Calendar movie
clip the ActionScript on the invisible button should make sense.

on (release)
// Set month to load to current

Case Study 2 - Event Planner

_parent.month = this.month;

// Load month details
_parent.gotoAndPlay("Load Month");

Basically, _parent refers to the parent of the current movie clip instance, anc
i n this case this is our Events Calendar movie clip. So you can see now that we're
setting the month variable in the parent movie clip equal to the same variable
in the current movie clip. Then we tell the parent movie clip to go and play the
Load Month frame, which, cunningly, we'll use to load the currently selectec
month!

How does each of our Month Box instances know which month it represents ,

Follow me and all shall be revealed...

We need to define the ActionScript for the Show Year frame. We know that by
the time we get here we have loaded all of the event counts for the currentl}
selected year from the PHP script since we stopped the movie in the Load Yeai
frame. This is because we're using an onClipEvent (data) handler to get ii
going again.

15. So it's time to set up the movie clips we've just created with meaningful data
Take a look at the following ActionScript code...

// Define month names
months = new Array ("January", "February", "March", "April",
"May", "June", "July", "August", "September", "October",
"November", "December");

// For each month movie clip...
for (count = 0; count < 12; count++)

// Set month number
this["month" add count] .month = count;

// Set month name
this["month" add count].monthName = months [count];

// Set number of events for month
this ["month" add count].eventCount = this["eventCount" add

count] ;

// Halt the movie clip
stop();

Foundation PHP for Flash

16. The first thing we do here is to create an array of month names called months.

I f you remember we named our Month Box instances starting from 0, and the
reason for this is that the first element in an array is at index 0 - meaning that
there's a direct correlation.

We then use a for l oop to process each month in turn, setting the month and
monthName variables within the relevant Month Box instance to their
appropriate value.

Notice that we're using this ["month" add count] to reference each
i nstance of our Month Box movie clip in turn.

17. We also use a similar technique to get the event count for the current month,
setting the eventCount variable of each Month Box instance accordingly. The
variables that will be loaded in from the PHP script will be named thus:

eventCountO
eventCount1

eventCountll

So we're using this ("eventCount" add count) to fetch the correct value
from the current timeline. Finally we round off by stopping the movie clip.

Back when we created the invisible button for the Month Box movie clip we
referenced a frame called Load Month in the ActionScript. This frame will ask
our PHP script to fetch the event details for the currently selected month, as
determined by which button was pressed.

Case Study 2 - Event Planner

18. This frame is very similar to the Load Year frame, with the exception that the
ActionScript on the Actions layer is a little different.

// Setup action and call script...
action = "geteventdetails";
loadVariables ("fetchevents.php", this, "POST");

// Halt the movie clip
stop () ;

All that we've changed here is the value of the action variable, getting the PHP
script to fetch the event details rather then event counts.

19. We now come to the business end of the application; the Show Month frame.
The Button Bar layer contains a few features that we designed in right from the
start.

Here you can see we've got a simple dynamic text box for displaying the
currently selected month and year. Unlike the similar text box on the Show Year
frame we'll have to use some ActionScript to construct this text but we'll come
to that in a moment.

Notice that we've also got on this layer some Back and Forward buttons as in
the Show Year frame. However, the ActionScript on these has been edited to
reflect that fact that we now want to load the adjacent months rather than
previous and next years.

Foundation PHP for Flash

// Back
on (release) {

// Load previous month
month-;

// If this was first month in year
if (month<O) {

// Load last month of previous year
month = 11;
year-;

gotoAndPlay ("Load Month");

and

//Forward
on (release) {

// Load next month
month++;

// If this was last month of year
if (month >= 12) {

// Load first month of next year
month = 0 ;
year++;

gotoAndPlay ("Load Month");

Case Study 2 - Event Planner

You can see that when the user clicks the relevant button on the first and last
months of the year, they will actually be taken to the end/beginning of the
previous/following year. This allows the user to browse through several years of
event details without having to return to the Year View.

20. On the Section Items layer for this frame we have the various elements that go
to make up the user interface for the Month View.

The most important factor to notice about the above screenshot is the fact that
we've selected HTML for the text options of the display text box. We'll be using
this feature to emphasize certain parts of the event text, namely the day on
which events occur.

We've also got some scroll buttons linked to the display text box. These use the
scroll property of the text box to scroll the text.

21. Finally, we have our Back to Year View button, which, cunningly enough, takes
us back to the year view.

on (release) {
// Return to Year View for current year
gotoAndPlay("Load Year");

22. Now we come to the real meat in the Flash sandwich - the ActionScript that
takes the information returned from our PHP script and formats it nicely for

Foundation PHP for Flash

display in the display text box. We want to add this to the Show Month frame,
on the Actions layer.

We'll go through this ActionScript bit by bit to make sure that we understand
what's going on.

23. First of all, we use our old months array to fetch the month name for the
currently selected month, and then we tack it onto the end of that the currently
selected year. This all gets stored and displayed in the dateName text box.

// Construct datename
dateName = months[month] add " " add year;

24. We then check to make sure at least one event has been returned for the
current month. If not, we set our display text box to inform the user of the fact.

// If there are no events for chosen month...
if (eventCount == 0) {

// Inform the user
display = "No events for this month";

25. If there was at least one event returned for the current month then the first
thing we need to do is to clear the display text box. We then initialize a
variable that we'll use to keep track of which day of the month the previous
event was for. We'll use this to make sure that we only display one date if there
i s more than one event for a given day.

} else {
// Otherwise clear display textbox
display = "";

// Init var to hold day of month for prey event
prevDay = 0;

26. We then use a for loop to process all the events returned for the given month.
We assign some generic variables the value of the event detail variables we'll

Case Study 2 - Event Planner

return from our PHP script, allowing us to use them throughout the remainder
of the for loop.

// For each event returned...
for (count=O; count<eventCount; count++) {

// Fetch event info into generic vars
day = this ["event" add count add "day"];

title = this["event" add count add "title"];
event = this ("event" add count add "event"];

27. We then bring our prevDay variable into play, making sure that we only print
out one day of the month for multiple events.

// If this day is different to the prey...
if (day != prevDay) {

// Display day in large letters
display = display add "<font color=\"#ffffff\"

size=\"16\">" add day add "
";

// Remember current day
prevDay = day;

28. Now add the standard event information to the display text box, making sure
to emphasize the event title in bold.

// Add event information to textbox
display = display add "" add title add

w "
";
display = display add event add "

";

29. Finally, we stop the movie where it is, allowing the user to control where they
go from here.

// Halt the movie clip
stop O ;

Foundation PHP for Flash

30. The final frame we need to look at is the Error frame. This is where we'll display
any errors that occur during the course of the application.

31. dust before we go. we need to drag a copy of our Events Calendar movie clip
from the Library to the main stage and attach the following ActionScript to
handle incoming data:

Case Study 2 - Event Planner

That's it for the Flash front end. Now it's time to flex our newly-grown code muscles!

Building the PHP Back End
Having constructed our nice swanky user interface we need to turn our attention to the
PHP scripts that'll tie everything together.

We have four scripts in total to build, although the first two are pretty standard and we've
covered them before. There should be nothing now you don't understand in these scripts,
because all the component functions and statements have been covered earlier in the
book. OK, let's get into these scripts...

The common.php Script
Since we're going to need more than one script for this application, we'll again use a
separate script to hold any configuration information and common functions. The code
presented here is exactly the same as in the previous case study, aside from the fact that
we've changed the value of the $table variable to reflect the current application.

For this reason I'm just going to list the new script here with the usual comments. If you
skipped the last case study then either go to the back of the class or flip back a few pages
and read the explanation there!

// Database details
$dbHost = "localhost";
$dbUser = "user";
$dbPass = "pass";
$dbName = "phpforflash";
$table = "events";

// Common functions
function dbConnect O {

// Access global variables
global $dbHost;
global $dbUser;
global $dbPass;
global $dbName;

// Attempt to connect to database server
$link = @mysgl connect($dbHost, $dbUser, $dbPass);

// If connection failed...
continues overleaf

Foundation PHP for Flash

if (!$link) {
// Inform Flash of error and quit
fail("Couldn't connect to database server" ,

// Attempt to select our database. If failed...
if (!®mysgl select_db($dbName)) {

// Inform Flash of error and quit
fail("Couldn't find database $dbName");

return $link;

function fail($errorMsg) {
// URL-Encode error message
$errorMsg = urlencode($errorMsg);

// Output error information and exit
print "&result=Fail&errormsg=$errorMsg";
exit;

The eventssetup.php Script

Next we need to build the setup script to create the database and table structure for our
application. Again, the script here is very similar in structure to the one we built in the
previous case study, with only the line where we define the table creation query actually
being changed!

I f the code needs any further explanation then take a look at the dissection of the setup
script for Chapter 10.

// Include config file
include(`common.php');

// Attempt to connect to database server
$link = @mysgl connect($dbHost, $dbUser, $dbPass);

// If connection failed...
if (!$link) {

Case Study 2 - Event Planner

// Inform user of error and quit
print "Couldn't connect to database server";
exit;

}

// Attempt to create database
print "Attempting to create database $dbName
\n";
if(!@mysgl create_db($dbName)) {

// Inform user of error
print "# Couldn't create database
\n";

} else {
// Inform user of success
print "# Database created successfully
\n";

}

// Attempt to select database
print "Attempting to select database $dbName
\n";
if(!@mysgl select db($dbName)) {

// Inform user of error and exit
print "# Couldn't select database
\n";
exit;

} else {
// Inform user of success
print "# Database selected successfully
\n";

}

print "Attempting to create table $table
\n";

$query = "CREATE TABLE $table
event ID INTEGER AtYPO INCREMENT PRIMARY KEY,
year INTEGER,
month INTEGER,
day INTEGER,
title VARCHAR(255),
event TEXT)";

$result = @mysgl_query($query);

if (!$result) {
// Inform user of error
print "# Error creating table
\n";
print mysgl error();

} else {
// Inform user of euccess
print "# Table created successfully
\n";

continues overleaf

Foundation PHP for Flash

print "End of setup";

The fetchevents.php Script
1. Moving swiftly on we come to the real mover and groover of the operation. This

script will handle all of the interaction between our Flash front end and the
MySQL database server where our event information is stored.

Although you've met all of the elements in this script before and could probably
find your way around the code yourself, we'll go through this once together just
to make sure that we understand what it's doing!

I f you feel like you're ready to take off those water wings, then feel free to have
a stab at creating the script yourself using the design information we've already
covered in this chapter, go for it! You can always come back if you get stuck!

2. As always, the first thing we need to do is connect to the database server. In
order to do this, we first include our common.php file so that we have access to
all the database connection details and common functions.

<?
// Include config file
include("common.php");

3. We then use one of these functions, dbConnect, to connect to the database
server and select our desired database.

// Connect to database
$link = dbConnect();

4. Next up, we need to determine which action the Flash movie has requested of
the script. Depending on the value of the $action variable, which is passed
from our Flash movie, we call the relevant function or return error information
if the value is unknown.

Note that the $year and $month variables will be passed in from our Flash
movie.

// Determine which action to take
switch($action) {

// Get event counts for year view

Case Study 2 - Event Planner

case "geteventcounts":
getEventCounts($year);
break;

// Get event details for month view
case "geteventdetails":

getEventDetails($year, $month);
break;

default:
// Output error info to Flash and quit
fail("Unknown action $action");
break;

5. Finally, we do our good deed for the day and close the (ink to the database
server.

// Close database connection
mysgl close($link);

Foundation PHP for Flash

6. We now move on to the functions we've just mentioned. First up, we've got our
getEventcounts function that will be used to fetch the number of events for
each month of a given year. Here, we're just making sure that we've got access
to the global variable that holds the table name for the application:

function getEventCounts($year)
// Register global variables
global $table;

7. We then need to build our query to fetch all of the events for the given year.

// Build query to fetch all events for year.
$query = "SELECT month FROM $table WHERE year=$year";

I
Note here that we're only selecting the month column for each event.
We've done this to make sure that the SFT.RCr query is as efficient as
possible, as we're only actually going to use the month information in this
function.

\1	 "I

8. Once we've built the query we need to actually execute it and test to make sure
that it was executed successfully. We've been using this piece of code for a while
now so it should be familiar to you:

// Execute query
$result = @mysgl query($query);

// If the query failed...
if (!$result)

// Output error information to Flash and quit
fail("Unable to fetch event information");

9. I f everything went okay we need to set up some method of counting the
number of events returned for each month. Here we're simply initializing a
si mple 12-element array, with each element representing the count for the
relevant month:

// Setup array to hold event counts
$eventCounts = array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

Case Study 2 - Event Planner

10. Next we go through each of the events returned by the query, subtracting the
month i nformation. We then use this value to increment the relevant element
of our $eventCounts array.

// For each event returned...
while ($event = mysgl fetch_array($result)) {

// Extract the month for the event
$month = $event [`month'];

// Increment the relevant element of our array
$eventCounts [$month] ++;

11. We then loop through each of the elements in our $eventCounts array,
outputting the information back to our Flash movie

The variables we return will be the eventCountl, eventCount2 (...and so on)
that we discussed back when we were building the Flash front end.

// For each month of the year...
for ($count = 0; $count < 12; $count++) {

// Output event count information to Flash
print "&eventCount" . $count .

r+$eventCounts[$count];

12. The final thing we need to do for the getEventCounts function is to report
back to our Flash movie that the operation was a success.

// Output success
print "&result=Okay";

13. The getEventDetails function will be used to fetch the actual event details
for a given month and year. As with the previous function, the first thing we
need to do is to make sure that we've got access to the global variable that
holds the name of the table for the application.

function getEventDetails($year, $month) {
// Register global variables
global $table;

14. We then build our query to select all of the events for the given month of the
given year.

// Build query to fetch all events for month of year.

continues overleaf

Foundation PHP for Flash

$query = "SELECT * FROM $table WHERE year=$year
AND month=$month ORDER BY day ABC";

The interesting thing to note about this query is that we're using an ORDER BY

clause to make sure that the events are returned in chronological order. By
specifying that earlier events should be returned first, we ensure that our
calendar information displays properly in Flash, with events for the 11th day of
the month being shown before events for the 17th!

15. The next step is to execute the query we've just built and handle any errors that
crop up.

// Execute query
$result = ®mysgl query($query);

// If the query failed...
if (I$result) {

// Output error information to Flash and quit
fail("Unable to fetch event information");

16. We then initialize a variable that, although slightly innocent looking at the
moment, will play an important part in our script.

// Initialise count for output
$count = 0;

We'll use this variable to keep track of which event we're currently processing.
and to output the event information into a unique variable when it's sent back
to Flash. If this doesn't make absolute sense just now, then hopefully the next
few snippets of code will make things a little clearer.

17. We set up a while loop to fetch each of the returned events. For each one, we
then extract the event information into some variables, using stripslashes

where appropriate to remove automatically added escape characters.

// For each event returned...
while($event = mysgl fetch array($result

// Extract the event information
$day = $event[`day'];
$title = stripslashes($event[`title']);
$event = stripslashes($event[`event']);

Case Study 2 - Event Planner

Note here that we're not bothering to extract year or month information
for the current event. The reason for that is the fact that the Flash movie
must already know the year and month for these events since it passed
that information to us in the first place.

1\1 	 I/
18. The next thing to do for each of the events returned is to output the

information back to Flash. Notice how our mysterious $count variable is being
used here to ensure that each event's information is output in sequentially
named variables.

// Output information to Flash
print "&event" . $count . "day=" . $day;
print "&event" . $count

	

"title=" .
tourlencode($title);

print "&event"

	

$count

	

"event=" .
tourlencode($event);

19. The final stage of the while loop is incrementing our $count variable ready for
the next go around the loop. The advantage of this method is that, once all of
the events have been processed, $count will contain the total number of events
processed.

// Next event
$count++;

20. The very final act of this function is to use our $count variable to tell the Flash
movie how many events we have returned to it, followed by a simple output to
indicate the success of the operation ... and that's the end of the script too!

// Output number of events to Flash
print "&eventCount=$count";

// Output success
print "&result=Okay";

The addevent.php Script
Lastly, we need some way of actually getting the event information into the database in
the first place - otherwise our application is a perfect example of uselessness!

Foundation PHP for Flash

As with the previous case study, we're going to be building the user interface for this
section using quick and easy HTML code since only the admin peeps will see it! This form
could easily be replicated in Flash, so if you're feeling adventurous then feel free to give
it a bash!

1. The code is pretty much self-explanatory, so I'll just list the script as is. That said,
there are a couple of points in the script that'll need some closer discussion.
These have been highlighted in bold and will be discussed at the end.

<html>
<head>

<title>Add Event</title>
</head>
<body>
Add Event

// If the form has been submitted...
if ($action == "add") {

// Include config file
include("common.php");

// Connect to database
$link = dbConnect();

// Correct 2 digit years
if ($year < 60) {

$year += 2000;
} else if ($year < 100) {

$year += 1900;

// Adjust month by 1
$month-;

// Convert newlines to
 tags
$event = nl2br($event);

// Remove extra CR/LF characters
$event = eregi replace("[\n\r]+",

	

$event);

// Build query to insert new event
$query = "INSERT INTO $table (year, month, day, title,

event)
VALUES($year, $month, $day, `$title',

` $event')";

Case Study 2 - Event Planner

// Execute query
$result = mysgl query($query);

// If the query was successfull
if ($result)

// Output success msg
print "Event

added
\n";

else

// Otherwise, inform user of failure
print "Couldn't add

event
\n";

mysgl close($link);

?>

<form action="addevent.php" METHOD="post">
<table border="l" cellspacing="2" cellpadding="3">

<tr>
<td>Date</td>
<td>

Day <input type="text" name="day"
size="2">

Month <input type="text" name="month"
size="2">

Year <input type="text" name="year" size="4">
</td>

</tr>
<tr>

<td>Title</td>
<td><input type="text" name="title"

size="50"></td>
</tr>
<tr>

<td>Event</td>
<td><textarea name="event" cols="50"

rows="5"></textarea></td>
</tr>
<tr>

continues overleaf

Foundation PHP for Flash

<td colspan="2">
<input type="hidden" name="action" value="add">
<input type="submit" value="Add Event">

</td>
</tr>

</table>
</form>

</body>
</html>

2. The first section of the code that needs closer inspection is the following...

// Correct 2 digit years
if ($year < 60) {

$year += 2000;
} else if ($year < 100) {

$year += 1900;

Here we're simply making sure that years that have been entered into the form
using just two digits actually get converted into four digit years.

To do this I've had to define some sensible cut-off points. Using the above code,
i f the user enters a 2 digit year between o and 59 we assume that they mean a
date in the current century, adding 2000 to convert it to a full 4 digit year. In
the same way, if a user enters a 2 digit year between 60 and 99 we assume that
they're referring to the previous century, and add 1900.

Of course, if the year entered is 100 or greater then it will be taken literally as
the full year and requires no manipulating.

3. Next up we need to look more closely at the following snippet of code...

// Adjust month by 1
$month-;

Here we're adjusting the month entered into the form, decrementing it. This
may seem a little weird until you consider that in a lot of the code for this
application we're using arrays, and that the first index of an array is o, not 1.
I ndeed, if you remember when we were building the Flash movie we mentioned
that we were numbering our months starting from zero to fit in with the arrays.

Now when a user goes to enter date information, it would be a little awkward
to ask them to subtract one from the date they're entering - it would just look
plain weird having my birthday being displayed as [27] [01] [1979] when I
was born in February!

Case Study 2 - Event Planner

To resolve this situation we simply decrement the submitted month and store
that value in our database!

4. The final section of code that may require closer examination is the following...

// Convert newlines to
 tags
$event = nl2br($event);

// Remove extra CR/LF characters
$event = eregi replace("[\n\r]+",

	

$event);

What this code does is to insert an HTML linebreak (
) tag just after each
newline character (\n) in the submitted $event variable using the nl2br

function. Although we haven't met this function up until now, it's simple enough
i n its operation that we can accept it for what it is - or rather what it does.

The next step is to remove any extra characters that may be interpreted by Flash
as an end of line character, including the newline characters themselves.

We need to do this because Flash will interpret both newline (\n) and carriage
return (\r) characters as end of line markers, and if we don't whip them out we
will end up with double spaced event text - not good!

That's it, your nice new addevent.php script should look something like the following
when loaded through your web browser:

Foundation PHP for Flash

Summary
Well, that's all for this case study. We've taken another application from concept through
to realization - and a useful application it is too!

Before you go take a well-deserved break you might want to consider some features that
are missing from the application presented here. The only things I can think of are actually
on the admin side, as it would be nice to be able to edit and delete the events should it
prove necessary. This should be well within your capabilities and would only involve
extending the addevent.php script presented here.

Don't worry! Experiment!

Case Study 3 -
Forum

What we'll build in this chapter

•

	

A masterplan of how this complex project will take shape

• A full Flash interface for the forum, allowing users to read and
write posts, reply to existing threads and even register their
details

• Scripts to handle posts, threads and registration details,
storing information in our MySQL database and retrieving it
when needed

Foundation PHP for Flash

You've probably been too busy building cool applications to notice, but our long journey
through PHP is coming to an end. As a grand finale to the book we'll be building that most
sought-after of applications - a message board system! Yes, it's time for the Flash Forum
I've been promising you since ... well, since the back cover!

This will be a culmination of the techniques we've covered the whole way through the
book. We'll also be using some intermediate to advanced ActionScript techniques on the
Flash side of things, but when this crops up I'll explain exactly what we're doing and why
we're doing it! Oh yes, we're mixing with the big boys now!

But before we can go anywhere we need to talk about a few concepts that we'll be using
i n this case study.

•

	

Post
A post is a single message on our message board.

•

	

Thread
A thread is a collection of posts on a single topic. For example, if I posted a
question on the average lifespan of monkeys, that and all the replies to that
message would make up a single thread.

By using the concept of threads we can group related posts together, allowing
us to present them to the user as complete discussions.

•

	

Forum
A forum is a collection of threads. Some message boards have many forums,
each with a general topic under which threads can be grouped. The message
board that we're going to build in this chapter only supports a single forum and
so in this instance, our case study can be described as both. Two for the price
of one - now I can't say fairer than that, can I?

Case Study 3 - Forum

With this in mind, let's take a look at the basic steps our application will go through. Note
that all this is presented without concern for implementation, meaning that we don't say
where we load the data from, how we load it in or even what we load it into. This is
generally a good idea when you're designing an application as it allows you to take the
same general design and implement it using other technologies.

So, what we need to do is:

•

	

Fetch list of threads for forum
•

	

Display forum to user
•

	

When user selects a thread, fetch list of posts for that thread
•

	

Display thread to user
•

	

Enable user to hit back button to return to forum view

I n addition we need to handle the registration of new users, and we have to allow users
to post new threads and reply to existing ones.

Drawing Up a Masterplan
I t's time to get handy with the old pen and paper again and start thinking about what our
user interface will look like. We need to take into account all the steps the application
should go through (as we just outlined) and make sure that there is adequate provision
for them.

Looking at the list of steps we came up with in the previous section we can see that we're
going to require five main sections for our user interface:

•

	

Forum View
•

	

Thread View
•

	

Post New
•

	

Post Reply
•

	

Register

We'll deal with each of these in turn.

Forum View
The Forum View will show a list of threads for the forum. In addition to displaying the
threads, we need to allow the user to refresh the view to check for new threads in the
forum. Also we need to have a think about the user's ability to post a new thread in the
forum, and come up with some convenient way for the user to get to the registration
section.

Foundation PHP for Flash

Of course it's obvious what we need, isn't it? We need a button bar! This will be a small
section at the bottom of the interface that contains the buttons for controlling everything
we could possibly want to do with this application.

Let's take a look at a rough sketch...

That's pretty much all we need, I'd say. What we've got here is exactly what we said we
wanted.

The bulk of the area for the section is taken up with the list of threads in the forum. Now,
we could be so popular that we have more threads than we can display on the screen at
any one time, so we're going to have to add some kind of scrolling facility to enable the
user to scroll down through the list of threads. That sounds to me like a practical Flash
issue, so let's consign it to the Pending pile and worry about it later.

Of course it's totally up to us how we present our information, but I think it would be
handy to adopt some conventional forum layouts, so we don't have to be concerned about
inventing the wheel before we can get rolling. To this end I've used the sorts of columns
you see in most forums: the topic under discussion, whoever started the thread, the
number of replies, and the date of the last post.

Adopting this convention at least helps us figure out exactly what information we want to
be storing in our database. You'll also note that I've taken on board another forum
standard: the most recent posting goes first. That little feature is entirety down to how we
play with the information in our database - we could arrange it how we want - but
convention is our friend at this early stage. You gotta learn the rules to break 'em!

Case Study 3 - Forum

One last thing to note is our button bar at the bottom. I'm very proud of this. This bar will
contain different buttons depending on the section of the application that the user is
visiting. For example, a Post Reply button would not make any sense in the Forum View
since the user needs to first select a thread to reply to. It's all very logical, but it's going
to make all the difference to our final application.

Thread View

So that's the Forum View out of the way. Next we've got our Thread View. This will show
all of the posts that belong to the thread that has been selected by the user. Again, we're
going to want to display some appropriate buttons on the button bar to provide the
necessary facilities for this section.

To my way of thinking, the Thread View is going to look pretty similar to the Forum View.
There's no need to go overboard on our design variation, because that could make things
l ook swampy. Here's my take on it:

In a way I suppose we have zoomed in on the previous table, concentrating on the
individual postings of the selected thread. The left hand side of each post gives
i nformation on the user who made that post as well as when it was posted. The right hand
side consists entirely of the message posted.

Foundation PHP for Flash

Although not demonstrated here, it's extremely worthwhile pointing out
that, while threads are shown with the newer ones towards the top, it is
generally accepted that posts should be shown in true chronological order
(the order in which they were posted). I f you find that a little strange then
try reading the next paragraph backwards and see how much sense it
makes! By displaying the posts in order, the user can follow the
conversation from start to finish.

The Refresh button of the button bar has been swapped for a Back button, and this will
take us back to the Forum View if the user clicks on it. We've also got an extra button -
Post Reply. When the user hits this button they'll be able to post a reply to the current
thread. Notice that we've still got our Post New button so the user doesn't have to return
to the Forum View to post a new thread. Now that's what I call ergonomic satisfaction!
Anyway, moving on...

Post New
Now that we know how our users are going to view the message board we need to design
the user interface where they can post new threads.

This view will consist of a simple form built in Flash, and a handful of buttons in the button
bar. There's nothing particularly special to worry about here so let's take a look...

Case Study 3 - Forum
You can see here all of the form elements we'll need to provide for the user to post a new
thread on our message board. This form pretty well represents an amalgamation of the
main elements of each of the three tables for our message board.

First of all we have the username and password that will be used to make sure that the
user is registered, and these details will be checked against those on file to ensure that the
user has the permission to post on the boards.

Finally we have a spaces for the title of the thread and the main message. We need both
of these details because not only are we creating a new thread but we'll also need to
create a new post to go with that thread.

You can also see that we have the Submit Thread button on the button bar to invoke the
posting process, a Cancel button just in case the user has a change of heart, and a Register
button so the user can easily rectify the problem of having not yet registered.

Post Reply

The user interface for the Post Reply section is almost exactly the same as that for the Post
New section. The reason behind this is that we need to provide the same basic information
for each.

The only notable difference is that the thread title is no longer an editable text box. If the
user has chosen to reply to a thread, they've got to stick to it! If they want to start their
own thread, let them do it in the proper window! What we want to do is stamp the existing

Foundation PHP for Flash

thread title up there for all to see so the more forgetful users remember what they're
replying to!

Note that we've also switched the Submit Thread button for a Submit Reply button and
we'll need to perform different actions on here to perform the desired operation.

Register
The Register section of the application will be where our users will come to sign up for the
message board. The bare minimum of information we'll need to handle is:

• username
• password
•

	

e-mail address

You can go to town and add as many things as you like to this but we'll stick with the basics
for now. So, without further ado let's have a look at what kind of sketch that conjures:

You can see that this section of our application is looking pretty threadbare by design.
There are all sorts of extra things you might want to insert in here, and in particular some
kind of Terms & Conditions that the user must agree to if they want access to the forums
would be a good idea!

Arranging Our Tables
I'd say we've been pretty good to brainstorm the user interface so thoroughly before
trying to do anything more advanced. Now we don't have to worry about whether it's
going to work as a concept, and we can code with confidence. We should have a pretty
clear idea of the kind of information we're going to need to store and, having practised
our database manoeuvres in the previous case study, we're going to use MySQL as our
storage solution of choice.

So, what kind of information do we want to store? How about the following list for starters:

Users
•

	

Username
•

	

Password
•

	

Title
•

	

E-mail Address

Posts
•

	

User who creates post
•

	

Message body
•

	

The date the post was created

Threads
•

	

Topic of thread
•

	

User who created the thread
•

	

The number of replies to the original post
•

	

The date of the last post in thread

Since we need to keep information on so many different things I thought it wise to split
the above into logical tables (Users, Posts, and Threads). With this in mind we should come
up with tables that look something like the following:

Case Study 3 - Forum

Table: forumUsers
Column Name Data Type Description

userlD I nteger This will be our primary key for the table. We
can use this to uniquely identify a given user.

username String The username for the user

password String The password for the user

email String The email address for the user

title String A title for the user, just as Administrator

Foundation PHP for Flash

You may have noticed looking through these tables that they are all related in some way
or another. For example, in the above forumPosts table, we're using the primary key of
the f orumThreads table (threadlD) to identify to which thread a given post belongs. In
the same table we use userlD to identify the author of a given post.

We can visualize these relationships with the diagram below...

Table: forumThreads
Column Name Data Type Description

threadlD Integer This will be our primary key for the table. We use
this to uniquely identify a given thread.

userlD I nteger This is the userlD of the user who created the
thread.

topic String The topic for the thread

replies I nteger The number of replies to the original post in the
thread

lastPost I nteger The date of the last post made in this thread, stored
as a Unix timestamp.

Table: forumPosts
Column Name Data Type Description

postlD I nteger This will be our primary key for the table. We can
use this to uniquely identify a given post.

threadlD I nteger This is the threadlD of the thread to which the
post belongs.

userlD I nteger This is the userlD of the user who created the
post.

message String This is the main message body of the post.

posted I nteger The date the post was made, stored as a Unix
timestamp.

Case Study 3 - Forum

The Flash Movie: A Few Thoughts
Having done all the planning bits we need to do, it's time to go back to that Pending pile
and start building the Flash movie that'll run the whole show!

The movie we'll develop for this Flash forum will be somewhat more complicated than the
previous movies we've developed, due to the nature of what we're trying to do. That said,
every step in this tutorial is explained with the "why" as well as the "how" so you should
be okay!

Again, it's best not to get carried away with all this, so first off we need to exercise
discipline by musing over exactly how we're going to visually represent the list of threads
for the forum and the list of posts for a given thread. Although there are many ways in
which this could be accomplished, by far the most polished is using the attachMovie

method, which first surfaced in Flash 5.

We'll use attachMovie to create an instance of a given movie clip from the library for
each thread or post that we need to be displayed.

The syntax for attachMovie i s as follows:

someMovieClip.attachMovie(idName, newname, depth);

This function will attach an instance of the movie clip from the Library with an identifier
of idName to the movie clip someMovieclip. The new instance of idName will be called
newname, and we can use depth to control the depth of the movie clip.

The depth property is very handy to be aware of in Flash. If you try to
create more than one movie clip instance at a given depth then you'll
overwrite the old one with each new one you add -instances cannot share
a depth! Keeping this in mind is guaranteed to save headaches at a later
date.

When I first met attachMovie I thought that in the idName slot I could enter my movie
clip's name (the one I'd already defined in the Symbol Properties dialog). How wrong I was.
The fact is you have to enter an exciting new district of Flash, known as Symbol Linkage.
If you're at a loss as to what I'm going on about, let me explain.

Normally if a movie clip appears in the library but is not used anywhere in the Flash file
then it is not included in the SWF file when you publish your Flash movie. However, in
Flash 5 we can specify that certain movie clips should be exported regardless of whether
they're used in the movie. This technique is known as Symbol Linkage.

Foundation PHP for Flash

What we have to do when we submit a
movie for Linkage is specify an I dentifier for
that movie:

It is through this Identifier that we can reference it using attachMovie. So you see how
i t all comes together?

I'm not going to get into the mechanics of how we build the thread and post lists just now
- I'll leave that to their proper section - but you should be aware that we'll be using this
technique in our movie so you can get comfortable with it before we start chucking it
about.

I nterestingly, building the thread and post lists in this way brings up another point - if
we've got more threads than can be displayed then won't they overlap our nicely crafted
window?

The answer to this question is that they would ... but only if we let them. What we're going
to do is use a blank movie clip (we'll call this our canvas) onto which we can attach (using
attachMovie) the thread, or post movie clips as appropriate for each view. All we need
do after that is mask the canvas so that only the portion we desire is visible.

Case Study 3 - Forum

Take a look at the diagram below to see what I mean:

You can see that when the canvas is taller than the visible area (or mask), it's not all visible.
If we want to scroll down to see whatever's at the bottom of the canvas then we need to
decrease the y property of the canvas movie clip until the very bottom of the canvas is
within our viewable area.

This is a relatively straightforward process and won't take more than a line or two of
ActionScript to accomplish.

Building The Forum in Flash

Having got the preliminary head scratching out of the way we can turn our attentions to
getting our keyboards dirty. Yes, it's time to create the main Flash file. Of course there will
be problems along the way - we're always going to have to keep on our coding toes - but
at least we can now jab confidently at those keys, rather than hesitantly dabbling our way
through weak ideas!

I think you've got the picture. So:

1. First things first, we're going to be using our old friend the onclipEvent
handler for this application so we'll have to enclose the entire user interface in
a movie clip.

Foundation PHP for Flash

Create the movie clip give it a suitable name and hit the OK button.

2. We now need to create the layer and frame structure for the movie clip.
Although this one's a bit of a monster you should be able to identify with the
frame labels for the different sections since we built mock-up shots of them
earlier_

3. As usual, our Window BG layer contains the background for the application

Case Study 3 - Forum

4. The Section Items layer of the Load Forum movie clip contains my favorite little
clock face animation to give the user some feedback that the data is actually
loading.

5. The final thing we need to take care of for the Load Forum section is the
ActionScript on the Actions layer.

This is where we'll be calling the PHP script to fetch the list of threads for the
forum. We're also going to define a function here that we'll be using throughout
the movie.

// Create random number to append to URL
randNum = math. random()*1000000000;

// Call PHP script to fetch fonun information
loadVariables ("viewforum.php?" add randNum, this);

// Halt the movie clip until data loaded
stop () ;

As far as the loading of the forum goes, that's all there is to it. Basically we're
just setting up a random number to append to the URL of the PHP script so that
the web browser doesn't serve us up a cached version of the file output. The
reasons for this were of course outlined way back in Chapter 1.

What we do is add this random number onto the end of the url portion of the
loadVariables call to viewforum.php (which we'll be looking at later on).
Then we halt the movie clip so it doesn't go anywhere while the information is

Foundation PHP for Flash

loading. We'll set up an onClipEvent handler to get it going again right at the
end of this section.

6. Lastly for this frame we define a function that takes a single argument
(threadlD) and calls the viewthread.php script passing the desired thread ID
along as it goes.

// ************[FUNCTION HEADER]***************
// * viewThread()
// * Loads the thread with the specified threadlD

function viewThread (threadlD) {
// Create random number to append to URL
randNum = Math. random()*1000000000;

// Load thread
loadVariables ("viewthread.php?threadlD=" add threadlD add

"&" add randNum, this);

// Wait for data to load
gotoAndStop ("Load Thread");

Notice that we're using our random number trick again to prevent
caching -just one of those things in life you wonder how you did without!

1\1 	 I/
7. We now tell the movie clip to go to and wait on the Load Thread frame. This is

so that once the movie clip is started again (when all of the data has been
loaded) we move directly into the Thread View.

8. Okay, let's have a look at the Forum View frame. Here we encounter our first
entry on the Button Bar layer.

The code for the above buttons is as follows:

Refresh
on (release) {

gotoAndPlay("Load Forum"

Refresh

Case Study 3 - Forum
Post New
on (release) {

gotoAndPlay("Post New");

Register
on (release) {

gotoAndPlay("Register");

These are all pretty straightforward - the bracketed definitions ensure we are
taken to the relevant frame on the timeline.

9. We now need to add our "canvas" onto which we'll be attaching movie clips. As
I said before a canvas is simply an empty movie clip so create one by pressing
CTRL+F8. Give it the name of Canvas and hit the OK button.

Symbol Properties

	

_ f

Name I C •y n -:. n_

	

OK

Behavior: C: Movie Clip

	

Cancel
r Button
r Graphc

	

Help

Once you've created the movie clip return to the timeline of our Message Board
Panel movie clip.

10. Making sure that the Canvas layer is selected on the Forum View frame, drag a
copy of our new Canvas movie clip from the Library onto the stage. Since the
movie clip is empty it will appear as a small white circle. Select this circle and
position it near the top left corner of the main section of our movie clip.

Foundation PHP for Flash

Ensuring that our instance of Canvas is
still selected we need to give it an
i nstance name so we can refer to it from
ActionScript.

I've called it trrrum(auras because we'll want two instances of Canvas, one for
the Forum %w%% frame and one for the Thread View frame.

11. Copy and paste this instance onto the Canvas layer of the Thread View frame
and fix its instance name as thread(anvas.

12. Moving on, it's time to create the mask on the Canvas Mask layer. This, as we
noted, will enable us to hide the bits of Canvas we don't want to see. Ensuring
that the Canvas Mask layer is selected, pick a nice contrasting color (it doesn't
really matter which) to that of the Window BG layer and draw a large rectangle
almost completely covering the main area of our application.

13. Having done that make sure that the layer is
selected as a mask by right clicking on the
layer name (or CTRL+CLICK for Mac) and
selecting Mask.

Case Study 3 - Forum
The mask and the canvas will disappear and their layers will become locked. Just
use the layer icons to get at them again if you need to.

14. Before we go anywhere else we need to construct the movie clip that will be
attached to the forumCanvas to form the thread list. To achieve this we need to
create three movie clips, all of which will require exactly the same width, with
the center point positioned at the top left corner.

Forum Header

15. The first of the three we are going to tackle is the Forum Header. Its only real
function is to show the column names for the Forum View display but it also
caps the thread list off nicely. Create a movie clip similar to the following and
name it Forum Header

Note that the center point of the movie clip is in the top left corner. This is a
necessity due to the method we'll be using to build the Forum View so make
sure that this is the case.

Forum Footer

16. The purpose of this clip is to provide a nice bottom to the thread list rather than
just cutting off at the end of the last thread. Create a movie clip like the
following and name it Forum Footer.

Forum Thread

17. This is the main movie clip that will be attached to our canvas many times to
show all of the threads in the forum. For this we'll need the invisible button we
built in the previous case study, so go and pinch it from there if you don't fancy
creating it from scratch again.

First of all we'll create the background and the lines representing the columns.
This is best copied from the Forum Header movie clip as we'll want to be
consistent with our column widths.

Foundation PHP for Flash

18. We then need to add some text boxes on top of it to hold the thread
information:

19. Finally we need to add an invisible button that covers the whole thread area.
This will allow the user to click on the thread of their choice to view it.

20. ...and we need to add the code for the button too...

on (release) {
parent. parent.threadlD = threadlD;
parent. parent.topic = topic;
parent ;parent.viewThread(threadlD);

In this code the parent. parent section is necessary because this
movie clip will be nested inside the Canvas movie clip, which in turn is
nested inside the Message Board Panel movie clip - whose timeline we
want to reference.

Case Study 3 - Forum
So what we're doing here is setting two variables on the timeline of our Message
Board Panel movie clip and then calling the viewThread () function we set up
earlier - cool, huh?

Once all of these movie clips have been created we need to set their Symbol
Linkage properties to make sure that they're exported with the movie clip when
we publish it.

21. For each of the Forum Header, Forum Footer, and Forum Thread movie clips,
right-click and select Linkage. Select the Export this symbol radio button and
enter the following Identifiers respectively...

• Forum Header
• Forum Footer
•

	

Forum Thread

22. We can now return to the Section Items layer for the Forum View movie clip
and add some scroll buttons. Add the following code to the buttons:

Scroll Up
on (release) {

if (forumCanvas. j < -140) {
forumCanvas._y += 20;

Scroll Down
on (release) {

if (forumCanvas.y + forumCanvas. height > 110) {
forumCanvas._y -= 20;

This will allow us to scroll the canvas to view threads that are "off the page".

23. Now we come to a real meaty chunk of ActionScript on the Actions layer of the
Forum View frame. This ActionScript actually builds the Forum View from the
variables that will be passed in from our PHP script.

First we hide the canvas so the user doesn't see the thread list being built:

// Hide the forum canvas
forumCanvas. visible = false;

24. We then use attachrovie to attach an instance of our Forum Header movie
clip to the forumCanvas movie clip.

Foundation PHP for Flash

// Attach a header MC to the canvas and set title
forumCanvas.attachMovie("Forum Header", "header", 255);

25. Since instances attached using attachMovie are always added with their center
point at position (0,0) in the movie clip we need to keep track of the current
height of the canvas and therefore what _y value we need to give our next
movie clip. We're taking one away from the height of the forum header here to
make sure there aren't any gaps when we attach the next movie clip instance.

// Set variable to keep track of where to put next
// MC on the canvas
nextY = forumCanvas.header. height - 1;

26. We then loop through each of the threads returned from the PHP script,
attaching an instance of our Forum Thread movie clip and setting the (x,y)
position accordingly.

// For each thread returned from PHP script...
for (count=O; count<threadCount; count++) {

// Attach a thread MC to the canvas
forumCanvas.attachMovie("Forum Thread", "thread" add

count, count);

// Set X and Y positions for thread MC
forumCanvas["thread" add count]. _x = 0;
forumCanvas["thread" add count]. -Y = nextY;

27. Now we take all of the items for this thread and copy them into the instance of
Forum Thread we've just created. This will fill in the text boxes and set some
variables that aren't visible such as the threadlD

// Set thread details
forumCanvas["thread" add count].threadlD = this ["thread"

r+ add count add "ID"];
forumCanvas["thread" add count].topic = this["thread" add

k-count add "Topic"];
forumCanvas["thread" add count].topicStarter =

`+this["thread" add count add "TopicStarter"];
forumCanvas["thread" add count].replies = this["thread"

add count add "Replies"];
forumCanvas["thread" add count].lastPost = this ["thread"

k-add count add "LastPost"];

28. The final thing we do is to update our nextY variable, adding on the height of
the newly attached movie clip instance so we know where to put the next
instance.

// Set next MC to be put just below this on canvas
nextY += forumCanvas["thread" add count]. _height - 1;

29. Once all of the threads have been processed we add an instance of our Forum
Footer movie clip on to the bottom of the thread list.

// Attach a footer to the canvas and it's position
forumCanvas.attachMovie("Forum Footer", "footer", count);
forumCanvas.footer. _x = nextX;
forumCanvas.footer._y = nextY;

30. We can now show the canvas, and we halt the movie clip where it stands.

// Show thread canvas
forumCanvas. visible = true;

// Halt movie clip
stop O ;

31. Moving on to the Load Thread frame, this is the same as the Load Forum frame
i n all but for the ActionScript on the Actions layer:

// Halt the movie clip
stop() ;

Since we've written the function earlier to load the thread for us all we have to
do is to stop here.

32. The Thread View frame is very similar to the Forum View frame, and we've
already got our threadCanvas movie clip on the Canvas layer.

Before we get to the ActionScript we need to add another button. If you look
at the sketches we made earlier, you'll see that we want to add a Post Reply
button for this frame with the following ActionScript:

on (release) {
gotoAndPlay ("Post Reply");

This simply whisks us away to the appropriate section of our movie clip.

33. Before we go anywhere else we need to create the movie clips that will be
attached to the threadCanvas to form the post list. Once again we've got three
movie clips to create - all once more with the same width and top-left center
point.

Case Study 3 - Forum

Foundation PHP for Flash

Thread Header

34. First on the list is the Thread Header movie clip. It's slightly different to the
Forum Header because we've only got two columns and there's a text box at the
top that will be used to show the thread topic. Again it also caps the post list
off nicely. Create a movie clip similar to the following and name it Thread
Header.

Again, note that the center point of the movie clip is in the top left corner.
This is a necessity due to the method we'll be using to build the Thread
View so make sure that this is the case.

Thread Footer

35. Once again it's aesthetics I have on my mind. The only purpose of this clip is to
provide a nice bottom to the post list rather than just cutting off at the end of
the last post. Create a movie clip similar to the following and name it Thread
Footer.

Forum Post

36. This is the movie clip that we'll be giving the attachMovie treatment to,
smattering it all over our canvas, thereby showing all the posts in the chosen
thread. First we'll create the background and the lines representing the
columns. This is best copied from the Thread Header movie clip as we'll want
to be consistent with our column widths.

Case Study 3 - Forum

37. We then need to add some text boxes to hold the post information:

38. Finally we need to add the scroll buttons
to allow us to scroll the message:

Foundation PHP for Flash

39. Add to that the ActionScript for the buttons:

Scroll Up
on (release) {

message. scroll++;

Scroll Down
on (release) {

message. scroll-;

Once all of these movie clips have been created we need to set their Symbol
Linkage properties to make sure that they're exported with the movie clip.

For each of the Thread Header, Thread Footer, and Forum Post movie clips,
right-click and select Linkage. Select the Export this symbol radio button and
enter the following identifiers...

• Thread Header
• Thread Footer
•

	

Forum post

40. Now we add the ActionScript on the Actions layer. It's basically the same as the
previous code and it's pretty well commented, but if you're unsure look back at
the Forum View section.

// Hide the thread canvas
threadCanvas. visible = false;

// Attach a header MC to the canvas and set title
threadCanvas.attachMovie("Thread Header", "header", 255);
threadCanvas.header.topic = topic;

// Set variable to keep track of where to put next
// MC on the canvas.
nextY = threadCanvas.header. height - 1;

// For each post in thread...
for (count=O; count < postCount; count++) {

// Attach post MC to canvas
threadCanvas.attachMovie("Thread Post", "post" add count,

count);

// Set X and Y positions for post MC
threadCanvas["Post" add Count]. x = 0;

Case Study 3 - Forum

threadCanvas["Post" add Count]. _y = nextY;

// Set post details
threadCanvas["post" add Count].author = this ["post" add

count add "Author"];
threadCanvas["post" add Count].userTitle = this("post" add

count add "UserTitle"];
threadCanvas["post" add Count] .date = "Posted: " add

this["post" add count add "Date"];
threadCanvas["post" add Count] .message = this["post" add

count add "Message"];

// Set next MC to be put just below this one on canvas
nextY += threadCanvas["post" add count]. height - 1;

// Add footer to canvas and set position
threadCanvas.attachMovie("Thread Footer", "footer", count);
threadCanvas.footer._x = 0;
threadCanvas.footer. Y = nextY;

// Show thread canvas
threadCanvas e visible = true;

// Halt movie clip
stop () ;

!! COFFEE BREAK !!
If you're looking for a convenient place to stop and have a rest then this
is it. I'm having one anyway!

Finishing Off Our Forum in Flash

We now have just a handful of sections left to do! The first of those is the Post New
section. This is where new threads will be created - or at least where we'll get PHP to
create the thread. This section is little more than a simple Flash form with a button or two
thrown in for good measure.

Foundation PHP for Flash

1. Create the text boxes on the Section Items layer as shown below:

2. Now we need to add the scroll buttons for the message text box, including the
obligatory ActionScript:

Scroll Up
on (release) {

message. scroll++;

Scroll Down
on (release) {

message.scroll-;

Case Study 3 - Forum

3. We also need to create the buttons on the Button Bar layer...

4. ...and the code for them...

Submit Thread
on (release) {

loadVariables("postnew.php", this, "POST");
gotoAndPlay ("Load Forum");

Cancel
on (release) {

gotoAndPlay ("Load Forum");

The script on the Actions layer for this frame is a simple stop action.

5. The Post Reply frame is very much the same as the previous one with the
exception that the text field for the Thread Title is no longer editable and the
button bar has a Submit Reply button instead of a Submit Thread button.

Foundation PHP for Flash

The ActionScript on the buttons is:

Submit Reply
on (release) {

loadVariables("postreply.php", this, "POST"
gotoAndPlay ("Load Thread");

Cancel
on (release) {

gotoAndPlay ("Load Thread");
Î

6. Moving on to the Register frame, we again have a very simple Flash form here
as shown below:

7. The buttons on the Button Bar layer have changed too, now reduced to Register
and Cancel functions.

The code for the Register button is:

on (release) {
if (username

	

password

	

password2
~ ~ email == "") {

Case Study 3 - Forum

errorMsg = "Passwords do not match";
gotoAndPlay("Error");

} else {

if (password != password2) {
errorMsg = "Passwords do not match";
gotoAndPlay("Error");

} else {
loadVariables("register.php", this, "POST");
gotoAndPlay("Load Forum");

}
}

}

What this code does is check that the required form elements have been fil
out. If not then we set an error message and go to the Error frame.

If the required fields are filled out then we check to make sure that b
passwords entered are the same. This is a security measure to make sure t
users haven't typed in the wrong thing by mistake. Since they're unlikely
make the same mistake twice in a row this is a good way of trapping errors

I f everything is fine then we call the register.php script and then return
the Load Forum frame.

The Cancel button just takes you straight back to the Forum View

on (release) {
gotoAndPlay("Load Forum");

}

8. The script on the Actions layer is, again, a simple stop action.

Foundation PHP for Flash

9. The last frame we need to deal with is the Error frame. This frame is an easy
single text box, single button affair.

The only thing we really need worry about on this frame is the ActionScript on
the Back button on the Button Bar layer. This takes us straight back to the main
Forum View - which is a nice familiar place if we're having problems!

on (release) {
gotoAndPlay ("Load Forum);

One final thing to note! The ActionScript on the Actions layer - another simple
stop action!

Just before we go we need to drag a copy of our Message Board Panel movie clip from
the Library to the main stage and attach the following ActionScript to handle incoming
data:

The PHP Scripts
I n this section we're going to create the PHP scripts that run behind the fancy Flash front-
end.

We've got a whole seven PHP scripts to develop in this section and before we get started
we're just going to return to our good habits of taking a breather and spending a minute
or two looking at what each one will do.

The scripts we'll be creating are:

cc®on. php
This script will contain configuration information and common functions to be
used across the other scripts.

setup.php
Before we can begin playing with our application we'll need to make sure that
the database exists (and we are going to have to create it if necessary) and
attempt to create all of the tables that our application requires.

viewfortmm. php
We'll require a separate script to fetch the list of threads in the forum for
display in our Flash movie. The sole focus of this script is to perform that
operation.

viewthread.php
Similar to viewforum.php, this script will fetch all of the posts for a given
thread.

postnew.php
When the time comes for the user to post a new thread in our message board
we'll need some PHP code to process that data. This script will handle the
posting of new threads.

postreply.php
Similarly to the previous, this script will handle the posting of replies to existing
threads.

register.php
Last, but by no means least, we need to provide some way for our users to
register for access to the message board. This script will take care of registering
users.

You'll notice that these scripts are fairly specialized, and if you were thinking that we could
have done it all in just two or three scripts then you'd be right. However, writing small.

Case Study 3 - Forum

Foundation PHP for Flash

specialized scripts like these means that the script becomes far more legible and easy to
understand, and it also means that we don't end up executing any unnecessary code.

On with the show...

The common.php Script

As with the previous multi-script applications, we're going to store all our database details
and common functions in a single file and use the include function to add them in to
each of the remaining scripts

1. The first part of the script is exactly the same as we've developed before so I'll
leave you to your own devices to unpick it - there are comments in there and
you can always skip back to the full explanation in Case Study 1 if you're a bit
stuck!

// Database details
$dbHost = "localhost";
$dbUser = "user";
$dbPass = "pass";
$dbName = "phpforflash";

// Common functions
function dbConnect O {

// Access global variables
global $dbHost;
global $dbUser;
global $dbPass;
global $dbName;

// Attempt to connect to database server
$link = ®mysgl connect($dbHost, $dbUser, $dbPass);

// If connection failed...
if (!$link) {

// Inform Flash of error and quit
fail("Couldn't connect to database server");

// Attempt to select our database. If failed...
if (!@mysgl select_db($dbName)) {

// Inform Flash of error and quit
fail("Couldn't find database $dbName");

return $link;
}

function fail($errorMsg) {
// URL-Encode error message
$errorMsg = urlencode($errorMsg);

// Output error information and exit
print "&result=Fail&errormsg=$errorMsg";
exit;

}

2. For the purposes of our message board application we've also added another
function to this file - a function to validate a user's username and password
against the details in the database. Continue to add to the script you already
have here.

function auth($username, $password) {

You can see from this line that our function is called auth and that we'll be
passing the username and password details into it in order to have them
validated.

3. Let's perform some simple encryption on the password that's been provided.
The reason we need to do this is that we're going to be storing an encrypted
version of the password that the user supplies when they sign up, and in order
to compare the supplied password with the details in the database we need to
encrypt it.

// Encrypt the password
$crypt = md5($password);

The md5 function uses an established algorithm to create what is known as an
md5 hash and is applied to strings. You can think of this hash as a unique but
one-way encrypted version of the original string

4. Once we've got our encrypted password we need to build the query to see if
any of the entries in our forumusers table match the supplied details.

// Build query
$query = "SELECT userlD FROM forumUsers WHERE

username = ` $username' AND password = ` $crypt "' ;
continues overleaf

Case Study 3 - Forum

Foundation PHP for Flash

5. We then execute the query and test the return value of the mysgl query()
function to see if we found a match. If a match was found in the database then
the userlD of the matching row is extracted from the results. If no match was
found then we set $userlD to -1 so that we can detect that the user is not
authorised.

// Execute the query
$result = mysgl query($query);

// If we found a match...
if (mysgl num rows($result) == 1) {

// Extract user ID from the results
$user = mysgl fetch_array($result);
$userlD = $user[`userlD'];

} else {
// Otherwise set username to -1
$userlD = -1;

}

6. Finally for the function we return the value of our $userlD variable to the
calling function.

// Return user ID
return $userlD;

}

7. We're also going to add one more function that we can use to check the validity
of e-mail addresses. We're going to use a complex regular expression for this
but fortunately it was the one we dissected in Chapter 5.

function checkEmail($email)
{

// Define regular expression
$regexp =

	

[a-z0-9-] + (\. [a-zo-9-] +) *@ [a-zo-9-1 + (\. [a-
z0-9-]+)*(\. [a-z]{2,3})$";

if (eregi($regexp, $email)) {
return true;

}
else
{

return false;
}

}

Case Study 3 - Forum

Basically this function will return true i f the e-mail appears to be valid and
false otherwise. We won't use this function until the very last script we
develop but it's a worthwhile function having around if ever you need it!

The setup.php Script
Next up we need to build the setup script to create the database and table structure for
our application. Again, the script here is very similar in structure to the one we built in the
first case study, with the only exception being that we need to create three tables instead
of just the one.

I f the code needs any further explanation then take a look at the dissection of the setup
script for Case Study 1.

// setup.php
// Case Study 3 - Foundation PHP for Flash

// Include config file
include(`common.php');

// Attempt to connect to database server
$link = @mysgl connect($dbHost, $dbUser, $dbPass);

// If connection failed...
if (!$link) {

// Inform user of error and quit
print "Couldn't connect to database server";
exit;

}

// Attempt to create database
print "Attempting to create database $dbName
\n";
if(!@mysgl create_db($dbName)) {

// Inform user of error
print "# Couldn't create database
\n";

} else {
// Inform user of success
print "# Database created successfully
\n";

}

// Attempt to select database
print "Attempting to select database $dbName
\n";
if(!@mysgl select _db($dbName)) {

// Inform user of error and exit
continues overleaf

Foundation PHP for Flash

print "# Couldn't select database
\n";
exit;

} else
// Inform user of success
print "# Database selected successfully
\n";

}

print "Attempting to create tables
\n";

// Attempt to create users table
$query = "CREATE TABLE forumUsers

userlD INTEGER AUTO-INCREMENT PRIMARY KEY,username VARCHAR(20),
password VARCHAR(40),
title VARCHAR(30),
email VARCHAR(255))";

$result = @mysgl_query($query);

if (!$result)
// Inform user of error
print "# Error creating forumUsers table
\n";
print mysgl error();

} else (
// Inform user of euccess
print "# forumUsers table created
\n";

}

// Attempt to create threads table
$query = "CREATE TABLE forumThreads

threadlD INTEGER AUTO INCREMENT PRIMARY KEY,
userlD INTEGER,
topic VARCHAR(100),
replies INTEGER DEFAULT 0,
lastPost INTEGER)";

$result = cmysgl_query($query);

if (!$result) (
// Inform user of error
print "# Error creating forumThreads table
\n";
print mysgl error();

} else
// Inform user of euccess
print "# forumThreads table created
\n";

// Attempt to create users table
$query = "CREATE TABLE forumPosts

post ID INTEGER AUTO-INCREMENT PRIMARY KEY,
threadlD INTEGER,
userlD INTEGER,
message MEDIUMTEXT,
posted INTEGER)";

$result = @mysgl query($query);

if (!$result) {
// Inform user of error
print "# Error creating forumPosts table
\n";
print mysgl error();

} else {
// Inform user of euccess
print "# forumPosts table created
\n";

}

print "End of setup";

?>

The viewforum.php Script
Now we're beginning to move on to the more involved PHP scripts. The viewforum.php

script will be solely concentrated on fetching all of the thread in the forum for display in
Flash.

Now that you've become a regular PHP master you should be able to figure out the bits
that we've already met before. To this end I won't go back over things that we've already
encountered several times, and I'll provide a brief explanation of what that section of code
it doing.

1. As usual we kick off the script by loading in our configuration file, connecting
to our database server and selecting the desired database for our application.

// Include config file
include(`common.php');

Case Study 3 - Forum

Foundation PHP for Flash

// Connect to database
$link = dbConnect();

2. We then build the query to fetch all of the threads in our forum. Notice that
we're using an ORDER BY clause to make sure that newer threads are returned
first.

// Build query to fetch forum
$query = "SELECT * FROM forumThreads ORDER BY lastPost
DESC";

3. We next attempt to execute our query, outputting an error message and
quitting if anything goes wrong.

// Execute query
$result = mysgl_query($query);

// If query failed...
if (!$result) {

// Inform Flash of error and quit
fail("Couldn't list threads from database");

I f everything goes well then we fetch the number of threads in the forum using
the mysgl num rows function. If you remember from Chapter 9 this function
will return the number of results in a given resultset following the execution
of a SELECT command.

// Find out how many threads in this forum
$threadCount = mysgl num rows($result);

4. We then add the thread count as our first variable to be sent back to Flash.
Notice that we're only adding this to a variable at the moment - we'll be adding
yet more to it before we finally output it!

// Setup our variable to hold output
$output = "&threadCount=$threadCount";

5. We then start up a for loop to process each of the threads returned by the
SELECT command.

// For each thread returned...
for ($count = o; $count < $threadCount; $count++)

6. I n this loop we fetch the next thread from the MySQL resultset i nto an array
using the mysgl fetch array function.

We the use this array to set some meaningfully named variables. This includes
removing the slashes from any elements that may require it, and using the
strftime function to convert the Unix timestamp that represents the time and
date on which the thread was created.

// Extract post details from database
$thread = mysgl fetch array($result);

$threadlD = $thread[`threadlD'];
$userlD = $thread[`userlD'];
$topic = stripslashes($thread[`topic']);
$replies = $thread[`replies'];
$lastPost = strftime("%d/%m/%y %H:%M",

-$thread[`lastPost']);

7. This next section may look a little strange but it's really just another query being
executed, this time to fetch the username of the author of the current thread.
We need a separate query to do this because we're only storing the userlD of
the user in the forumThreads table, and we use that value to SELECT the
correct user in the forumUsers table.

// Build and execute query to fetch username of the
// user who created this thread
$query = "SELECT username FROM forumUsers WHERE userlD

$userlD";
$result2 = @mysgl query($query);

// Extract user information from results...
$user = @mysgl fetch_array($result2);
$username = $user[`username'];

8. The last thing we need to do for each thread is to add the details to our
$output variable, ready to go back to our Flash movie. If you remember when
we were creating the ActionScript for the Forum View frame of the Flash movie
we discussed what format the output of our script would take so that we could
handle the information effectively in Flash. You should be able to see that the
code below matches that format!

// Add thread details to output
$output ._ "&thread" . $count . "ID=" . $threadlD;
$output

	

"&thread"

	

$count . "Topic=" .
k+urlencode($topic);

$output .= "&thread" . $count . "TopicStarter=" .
c,u thniip, o,er(eat

Case Study 3 - Forum

Foundation PHP for Flash

r+urlencode ($username) ;
$output

	

"&thread" . $count

	

"Replies=" . $replies;
$output ._ "&thread"

	

$count . "LastPost="

	

$lastPost;

9. Finally for this script we send the output we've been storing up back to Flash.
In addition to this we add a variable to let Flash know that the operation was a
success and then close the link to the MySQL server.

// Output all threads in one go
echo $output;

// Inform Flash of success
print "&result=Okay";

// Close link to database server
mysgl close($link);

The viewthread.php Script

It's now time to build the script that will fetch all of the posts for a specified thread. This
i s the script that will be called when the user clicks on one of the threads in the Forum
View.

Again we'll have met a lot of this code before so explanations may be a little thin on the
ground in places. If you're unsure of anything then flip back to the relevant chapter in the
book!

1. As usual we kick off the script by loading in our configuration file and then
connecting to our database server and selecting the desired database for out
application. This should be old hat to you by now and you'll be seeing this little
snippet of code in your sleep!

// Include config file
include(`common.php');

// Connect to database
$link = dbConnect U;

2. We then need to build the query to pull all of the posts for the chosen thread
(as identified by the $threadlD variable that is passed from our Flash movie)
and return them to Flash.

// Build query to fetch thread
$query = "SELECT * FROM forumPosts WHERE threadlD =
$threadlD ORDER BY posted ASC";

3. We then attempt to execute our query as usual, outputting an error message
and quitting if anything goes wrong.

// Execute query
$result = @mysgl_query($query);

// If query failed...
if (!$result) {

// Inform Flash of error and quit
fail("Couldn't fetch posts from database");

4. I f everything goes well then we fetch the number of posts in the thread using
the mysgl num rows function.

// Find out how many posts in this thread
$postCount = @mysgl num rows($result);

5. We then add our post count as our first variable to be sent back to Flash.

// Setup our variable to hold output
$output = "&postCount=$postCount";

6. Next we start up a for l oop to process each of the posts returned by the
SELECT command.

// For each post returned...
for ($count = 0; $count < $postCount; $count++)

7. The first thing we need to do in this loop is to fetch the next post from the
MySQL resultset i nto an array using the mysgl fetch array function.

// Extract post details from database
$post = mysgl fetch array($result);

$userlD = $post[`userlD'];
$message = stripslashes($post[`message']);
$posted = strftime("%d/%m/%y %H:%M", $post [`posted']);

Case Study 3 - Forum

Foundation PHP for Flash

Once more we set the relevant variables. This includes removing the slashes
from any elements that may require it, and using the strftime function to
convert the Unix timestamp.

8. You should recognize this little piece of code from the previous script. This is
fetching the details of the user who created the post, using the $userlD stores
in with the current post in the forumPosts forum.

// Build and execute query to fetch username and
// title of the author of this post
$query = "SELECT username, title FROM forumUsers WHERE

kouserID = $userlD";
$result2 = @myysgl query($query);

// Extract user information from results
$user = @mysgl fetch_array($result2);
$username = $user [`username'] ;
$userTitle = $user(`title');

9. Rounding off each post we need to add the details to our $output variable,
ready to go back to our Flash movie.

// Add post details to output
$output .= "&post"

	

$count . "Author=" .
%*urlencode($username);

$output ._ "&post"

	

$count

	

"Date=" .
r+urlencode($posted);

$output .= "&post"

	

$count . "UserTitle=" .
r+urlencode($userTitle);

$output ._ "&post"

	

$count

	

"Message=" .
1-urlencode($message);

10. Finally send the output we've been storing up back to Flash. In addition to this
we add a variable to let Flash know that the operation was a success and then
close the link to the MySQL server.

// Output all posts in one go
echo $output;

// Inform Flash of success
print "&result=Okay";

// Close link to database server
mysgl close($link);

Case Study 3 - Forum

The postnew.php Script
Having sorted the scripts that'll handle the viewing aspects of the application it's time to
turn our attention to those that'll be inserting and manipulating the table data.

The first of these to fall under the microscope is the postnew.php script. This script will
work hand in hand with the Post New section of our Flash movie to facilitate the creation
of new threads on the message board.

1. Hands up all those who recognise this next bit of code! That'll be everyone then!
Let's move on shall we...

// Include config file
include(`common.php');

// Connect to database
$link = dbConnectO;

/111
Just think if we hadn't created the common. php file how many times you'd
have typed out all that database connectivity stuff+

2. Once we've connected to the database we can use the auth function that we
wrote way back when we were developing the common.php file to verify that
the details provided from the Flash movie match those of a registered user.

// Attempt to authorize user with database
$userlD = auth($username, $password);

Just to recap, if this function finds a match in the database for the
supplied details then the userlD of the matching user is returned. If no
match is found then the function will return a value of -1...

3. We can check for this value to determine whether or not user authentication
was successful. If no match was found for the details supplied then we output
our error message to Flash and quit.

Foundation PHP for Flash

// If authorisation failed...
if ($userlD == -1) {

// Inform Flash and quit
fail("Invalid username and/or password");

4. Next we fetch the current time as a Unix timestamp, as used in our queries to
provide the date and time at which the new thread and post were created.

// Fetch the current time
$posted = time();

5. We then set about building the first of two queries necessary in this script. This
particular query will perform the task of creating a new thread.

// Build query to insert new thread
$query = "INSERT INTO forumThreads (userlD, topic, lastPost)
VALUES ($userlD, `$topic', $posted)";

We then attempt to execute this query. If this operation fails then the thread
could not be inserted. We inform Flash of this error and quit.

// Attempt to execute query
if(!mysgl query($query)) {

fail("Error inserting thread");

6. We now come to a MySQL related function we haven't met before (mainly
because it didn't really fit in anywhere else). The mysgl insert_id function is
a clever little bean indeed. It'll return the last integer generated for a column
specified as AUTO INCREMENT using the current database connection.

// Fetch the threadlD of the new thread
$threadlD = mysgl insert id();

I n our case the threadlD column of the forumThreads table is designated as
AUTO_INCREMENT, and we use mysgl insert id after successfully inserting
the new thread (as just described) so that we can use the $threadlD when
adding the new post to go with the new thread (which we'll sort out next).

7. It's now time to build our query to insert the new post into the forumPosts

table. We use the $threadlD that we captured using mysgl insert_id i n the
previous section to associate this new post with the newly created thread.

// Build query to insert new post
$query = "INSERT INTO forumPosts (threadlD, userlD, message,

Case Study 3 - Forum

posted) VALUES($threadlD, $userlD, '$message', $posted)";

8. We then attempt to execute this query. If this operation fails then the post could
not be inserted, and we inform Flash of this error and quit.

// Attempt to execute query
if(!mysgl_query($query)) {

fail("Error inserting post");

9. To round off the script we inform Flash of our success and close the link to the
MySQL database.

// Inform Flash of success
print "&result=Okay";

// Close link to database server
mysgl close($link);

I
Well, it's five down and two to go. Some scripts are probably becoming
old hat to you already, but doesn't that show just how much you've picked
up in a relatively short space of time!

1-1 	

The postreply.php Script

This script will handle all of the requests to add a reply to an existing thread. It is very
si milar in operation to the postnew.php function because of the nature of what they both
do - add posts to the forum! The main difference is that this script updates a row in the
forumThreads table rather than creating a new one since, if we're replying to a thread,
it must already exist!

1. We start with our old friends.

// Include config file
include(`common.php');

// Connect to database
$link = dbConnect();

continues overleaf

Foundation PHP for Flash

// Attempt to authorise user with database
$userlD = auth($username, $password);

// If authorisation failed...
if ($userlD == -1) {

// Inform Flash and quit
fail("Invalid username and/or password");

Once we've connected to the database we again use the auth function to verify
that the details provided from the Flash movie match those of a registered user.
I f not we inform Flash of the error and quit!

2. Next we fetch the current time as a Unix timestamp.

// Fetch the current time
$posted = time();

3. We then build and execute the query to insert the new post into the
forumPosts table, outputting error information if necessary. This is exactly the
same as the code from the previous script, only this time the $threadlD

variable is provided by the Flash movie.

// Build and execute query to insert new post
$query = "INSERT INTO forumPosts (threadlD, userlD, message,
posted) VALUES($threadlD, $userlD, `$message', $posted)";

if(!mysql_query($query)) {
fail("Error inserting thread");

4. Then we build and execute the query to update the details of the thread in
forumThreads specified by $threadlD. Basically we're adding one to the
number of replies for the thread and updating the lastPost timestamp.

// Build and execute query to update reply count for thread
$query = "UPDATE forumThreads SET replies = replies + 1,
lastPost = $posted WHERE threadlD = $threadlD";

if(!mysgl query($query)) {
fail("Error inserting thread");

5. To round off the script we inform Flash of our success and close the link to the
MySQL database.

// Inform Flash of success
print "&result=Okay";

// Close link to database server
mysgl close($link);

?>

Just the one left to go...!

The register.php Script

// Include config file
include(`common.php');

// Connect to database
$link = dbConnect();

1. Our aim with this next piece of script is to set up a title that will be given to
new users who sign up. A user's title appears under their name in the Thread
View and is generally used as an indication of their status on the board. For our
purposes we're just going to use a single title for all users aside from the
administrator account we created earlier, so you can change this to whatever
takes your fancy!

// Set up title for new users
$title = "Code Junkie";

Back when we were developing the auth function in the comnon.php script we
said that we would be storing the password in the database in encrypted form.
We chose (well, okay, I chose) to go with the md5 hash function as it's simple to
use and provides good one-way encryption.

Thus, before we can go any further we'll need to encrypt the password supplied
to the script form the Flash movie.

// Encrypt password
$crypt = md5($password);

Case Study 3 - Forum

Foundation PHP for Flash

Next we check to make sure that the e-mail address supplied is a valid one using
our checkEmail function from common.php.

// If email is invalid...
if (!checkEmail($email)) {

// Output error to Flash and quit
fail("Invalid email address");

2. We then need to make sure that the specified username doesn't already exist in
the forumUsers table. If it does then we report the error back to the Flash end
and quit!

// Build query to search for duplicate usernames
$query = "SELECT * FROM forumUsers WHERE
username=' $username' " ;

if(!mysgl query($query)) {
fail("Couldn't search database for duplicates");

// If a match was found...
if (mysgl num rows($query) != 0) {

// Inform Flash of error and quit!
fail("Username $username already registered");

3. I t is then time to build the query to insert the new user into the forumUsers

table. Notice that we're using $crypt i nstead of $password so that we store
the encrypted version of the original password and that, because it's still a
string, we need the single quotes around it!

// Build query to add user
$query = "INSERT INTO forumUsers (username, password, title,
email) VALUES (`$username', `$crypt', `$title', `$email,)";

if(!mysgl query($query)) {
fail("Username $username already exists");

4. Finally we report our success to Flash and close the connection to the database
server.

// Inform Flash of success
print "&result=Okay";

Case Study 3 - Forum

// Close link to database server
mysgl close ($link);

That's it - all of the scripts are finished, and you should now be able to upload and run
them.

So, that's about everything we should be able to muster from the previous chapters. How
does it feel to be nifty at PHP? Actually, I've got to tell ya. I know exactly how it feels: pretty
darned good! So let's have a quick resume of what we did in that final case study:

•

	

We were very sensible and planned exactly what we were going to do before
filthying up the keyboard

• We considered exactly which technologies would help us out - namely MySQL
and Flash - and which parts of those technologies would be the most
appropriate

•

	

We constructed all of the interface elements in Flash, paying particular attention
to making the whole thing user friendly

•

	

We rattled through the seven PHP scripts that provide the functionality to the
whole thing

What we have developed there (and throughout this book) is the classic pattern for
developing a PHP-powered Flash application; it's planning, followed by framework, and
finally the electricity behind the whole thing.

I hope that this crescendo is going to inspire you to go off and make waves in the PHP
world!

I nstalling PHP
and MySQLA

Installation: It's Easy PHPeasy!

This is a guide to installing the software you will need to tackle the

tutorials in this book. Obviously there can be teething problems when it

comes to installing any type of software and the chances of anticipating

every one of them are pretty slim. However, this installation section will

mop up the vast majority of installation spills. For further information,

check out the online documentation that comes with your software, and

browse the various web sites and forums (listed in the resources section at

the back of this book). Check also for installation updates and

troubleshooters on our site www.phpforflash.com .

Yes, I know you're just going to dive in anyway and hope for the best - and
let's face it, that's usually the fruitful option - but it's handy to be aware
in case things go pear-shaped.

There are also some set-up tools listed in Appendix C, and these tools
can even install PHP, MySQL and Apache for you!

http://www.phpforflash.com

440

I nstalling Apache & PHP for Windows
To some, the thought of installing PHP may seem a daunting task. Now, add to that the
perceived complexities of an Apache web server and you can almost smell the fear.

And do you know what I'm going to say now? Exactly what you want me to. It's not so
hard. Think of it. If you're the sort of person that can sift through a bunch of computer
titles and opt for a classy book on PHP, then the task of installing this stuff is just peanuts.
To really nail it down, we'll cover the entire process of installing both Apache and PHP on
Windows step by step.

Users of the Windows platform may be surprised to discover that both Apache and PHP
are free for both commercial and non-commercial use. This fact alone has contributed to
the success of both Apache and PHP - not to mention the functionality offered by both
products. It's a winning combination!

Before you can begin the installation you need to make sure you have the latest versions
of the software. You can download these directly from the developer's web sites, shown
below:

Downloading Apache
http://httpd.apache.org/dist/httpd/binaries/win32/

The current version at the time of writing is 1.3.20. Version 2.0.16 is due to be released
shortly.

We'll be using 1.3.20 as it's been around for some time now and has proven stability.
Download the Win32 binary version of the software; this is a windows specific version,
providing amongst other things a nice friendly installation wizard.

Downloading PHP
http://www.php.net/downloads.php

The current version at the time of writing is 4.0.6, and with each new release comes
i mprovements and of course the inevitable bug fixes. For this reason it's important to keep
your PHP installations up to date where possible. Plus it's free so there's no reason not to
get the latest one!

There are two types of installation files available from the PHP web site:

PHP 4.0.6 zip package [4,859Kb] 23 June 2001
(CGI binary plus server API versions for Apache, AOLserver, ISAPI and NSAPI. MySQL
support built-in, many extensions included, packaged as zip)

Foundation PHP for Flash

http://httpd.apache.org/dist/httpd/binaries/win32/
http://www.php.net/downloads.php

PHP 4.0.6 installer [755Kb] - 23 June 2001
(CGI only, MySQL support built-in, packaged as Windows installer to install and configure
PHP, and automatically configure IIS, PWS and Xitami, with manual configuration for other
servers. N.B. no external extensions included)

For the purposes of this chapter we'll be getting our hands a little bit dirty and using the
zip package and installing PHP manually. This isn't nearly as scary as it sounds and it means
we become more familiar with how PHP is organised than we would with a point-and-click
installer - which can only be a good thing!

Assuming that you downloaded both Apache and PHP installation files from their
respective sites successfully we're ready to begin our installation.

I nstalling Apache Web Server for Windows

1. To begin, double click the installation file to start the Installation wizard.

The image above shows the Apache Installation wizard, displaying the version of
Apache we're about to get friendly with. Click Next to continue with the
i nstallation.

I nstalling PHP and MySQL

2. Next you'll see the Apache License Agreement screen. Read through the
agreement before you accept. Because Apache is freely available the restrictions
of the agreement apply mainly to those wanting to re-distribute the Apache
software but as with all software it's important to read the terms and conditions
of use.

Foundation PHP for Flash

I nstalling PHP and MySQL

3. You should pay close attention to this screen especially if you intend to use your
Apache server as a production web server.

The Windows version of Apache is not considered by its developers to be a
production-ready product. Firstly, the code has not been optimized for
performance, and secondly there are a few remaining security issues, however
for development purposes it's fine.

4. OK, that's the initial froth out of the way - here's the interesting bit of the
installation. The image above shows the Server Information screen. This is where
you'll configure your web server.

Replace the contents of the text boxes with your settings, your server name,
your domain and so on.

Î
We use the mail function in PHP in Chapter 3, so be sure to enter your
proper mail address.

5. The final part of the Server Information screen allows you to install the server
icons and start-up options for all users, either on a shared system or simply for
the current user. If you select the Run as a service for All Users on an NT or
Windows 2000 system the Apache server runs as a service in the background
and you don't need to worry about starting the server before you can use it.

Foundation PHP for Flash

I f you are using Windows 95/98/ME you can select either of the options -
however Apache will not run as a service and will need to be started manually.
You can replicate the functionality offered by running the web server as a
service by adding the apache.exe to your start-up menu, that way it will start
every time you start your computer.

6. Click Next and you'll be presented with the screen below:

On the previous screen you provided all the information the Apache installer
requires to complete a successful installation. The above screen displays the
Setup Type options, and unless you want remove the Apache documentation I
recommend you select the Complete option.

7. Click Next to select where your web server will be installed. Note that by default
i t will be installed to C: \Program Files\Apache Group\. I t's as good a place
as any and I recommend you use the default path where possible as it will make
troubleshooting easier if something does go wrong at a later date.

8. Click Install and the installer will go off and do its worryingly will-it-won't-it
thing for a moment. When it's stopped all its toil, click Finished. Well done! Your
first Apache Web Server install is complete. That's all there is to it, contrary to
popular belief I'm sure you'll agree that it was easy.

9. Now for the acid test: Does our web server actually work?

I nstalling PHP and MySQL

Open a browser window and type http://localhost i nto the address field.
localhost i s a way of referring to the local machine - in this case our Apache
web server.

I f all went well you'll see the Apache test page in your browser:

10. I f your browser looks like the one above, perform one final, crucial step: Sit
back, put your hands behind your head and smile smugly. Your Apache install
was completely successful.

http://localhost

Foundation PHP for Flash

Troubleshooting Tips
I f you don't see the Apache test page then you need to check that your web server is
running. When running Apache not as a service you'll see it running on your Windows
task bar (see image below).

I t's important to remember that all modifications to the conf file require a restart of the
web server.

I f you don't see Apache running in your task bar, you can start it from the Start »
Programs Menu » Apache httpd Server.

I t's worth noting that if you start the server manually the DOS command line window will
remain on screen while the web server is running, please don't sit waiting for the DOS
window to vanish: it won't.

I f you installed Apache on WindowsNT\2000 as a service then check that the Apache
service is running in Control Panel > Services (NT) Control Panel > Administration >
Services(Windows2000). If the service is not running start the service and then try
connecting to localhost in your browser again.

I f you're still having problems with your web server you'll find lots of support information
on the Apache website at http://www.apache.org . And if you were wondering, yes we all
think that's going to be us, sulkily traipsing off to the support site when it hasn't worked.
Don't worry! You'll be fine...

http://www.apache.org

I nstalling PHP and MySQL

I nstalling PHP on Apache for Windows

As we've already successfully completed the Apache web server installation your
confidence levels should be sky high right now, so while we're on a roll let's dive straight
i nto installing PHP.

1. Double click the PHP4 installation file we downloaded earlier; you'll need Winzip
or something similar to extract the files. For ease of use we'll extract them to
c:\php.

2. I f all went well the contents of c:\php should look something like the image
above.

3. Now, I don't know about you, but I feel that when you start messing about with
the files themselves, you're crossing a definite boundary. After all, one can get
very used to double-clicking stuff and having it all unpack before our very eyes.
Wouldn't it be nice if suitcases had that facility?

Anyway, I digress. We are going to have to sort our own underwear and put
them in the right drawers when it comes to PHP. But that's no need to get
jumpy. It's really no big deal.

Foundation PHP for Flash

4. First up we need to rename the file php.ini.dist to php.ini and drag it
over to our main windows directory (it'll be called C:\WINDOWS or
C:\WINNT for NT based systems.).

5. Now, copy the files mscvrt.dll and php4ts.dll to your Windows system
directory - for example C:\WINDOWS\SYSTEM or C:\WINNT\SYSTEM32 for
NT based systems.

The file mscvrt.dll i s used by many Windows applications and therefore may
already exist in your system directory, if this is the case only copy the file over
the existing one if the file included with the PHP installation is newer than the
existing one. If in doubt, always leave the existing one.

6. OK, we're almost there, so far we've installed the Apache web server and PHP4.
What we need to do now is tell Apache that we have installed PHP on our
system and where it can be found.

For this we need to go to the directory where we installed the Apache web
server C:\Program Files\Apache Group\apache\conf and open the file
httpd.conf.

We need to modify this file. I know, I know, it's another threshold we're passing,
but it's only one little change, and it is absolutely necessary. Moreover, you can
use any simple old text editor such as Notepad to do it.

Once open we need to find the section shown below:

ScriptAlias: This controls which directories contain
server scripts.
ScriptAliases are essentially the same as Aliases, except
that
documents in the realname directory are treated as
applications and
run by the server when requested rather than as documents
sent to the client.
The same rules about trailing "/" apply to ScriptAlias
directives as to
Alias.

7. At the end of the section shown above we need to add the following lines:

ScriptAlias /cgi-bin/ "C:/Program Files/Apache
Group/apache/cgi-bin/"
ScriptAlias /php/ "C:/php/"

I nstalling PHP and MySQL

The paths in quotes should represent the paths where you installed Apache and
PHP. This may be different to that shown above depending on where you
installed the applications.

Note the use of forward slashes'/"where normally in windows you would
use back slashes

	

this stems back to Apaches UNIX roots.

	 J

8. Now find the section shown below:

AddType allows you to tweak mime.types without actually
editing it, or to
make certain files to be certain types.

For example, the PHP 3.x module (not part of the Apache
distribution - see
http://www.php.net) will typically use:

#AddType application/x-httpd-php3 php3
#AddType application/x-httpd-php3-source phps

At the end of the section shown above we need to add the following lines:

AddType application/x-httpd-php php
AddType application/x-httpd-php php4

This tells apache what file extensions to treat as PHP files in this case anything
that ends in php or . php4.

9. Now find the section shown below:

Action lets you define media types that will execute a
script whenever
a matching file is called. This eliminates the need for
repeated URL
pathnames for oft-used CGI file processors.
Format: Action media/type /cgi-script/location
Format: Action handler-name /cgi-script/location

At the end of this lot we need to add the following line:

Action application/x-httpd-php /php/php.exe

http://www.php.net

Foundation PHP for Flash

10. OK, let's recap on what we've achieved so far. By modifying the httpd fconf
file we've told Apache about our PHP installation, we've also now told Apache
what file extensions to treat as PHP files.

11. I t's now time to test our installation. If Apache is already running manually or
as a service you need to stop it and then restart it for the modifications we've
just made to take effect.

We need a simple PHP script to test our installation. Feel those nerves jangling!
Below is a sample script, this is about as simple as PHP scripts get.

12. Create a new file in your text editor and type the following into the file.

<? phpinfo O ; ?>

13. Save this file as phpinfo.php i nto the root directory of our web server. If you
followed the installation instructions to the letter this will be C:\Program
Files\Apache Group\apache\htdocs.

14. Open a web browser window and type the following into the address field.

http://localhost/phpinfo.php

The image below shows the results of running our phpinfo.php script.

http://localhost/phpinfo.php

I nstalling PHP and MySQL

15. I f your browser window looks like the one shown then you're onto a winner.
Assume the position of self-satisfaction.

Note how the localhost in the address just replaces the long file path
to your web root.

Troubleshooting
I f your installation failed, here's couple of things to try:

Check that all modifications made to the httpd.conf file use the forward slash syntax
instead of the normal backslash:

ScriptAlias /cgi-bin/ " C:/Program Files/Apache/Apache
Group/Apache/cgi-bin "

Ensure that you restarted the web server after making changes to the configuration file.
Changes to the configuration only take effect when you restart the web server.

If you're still having problems you can get support from the developer's web sites:

•

	

Apache - www.apache.org

•

	

PHP - www.php.net

And also don't underestimate the usefulness of the supplied documentation and
installation READMEs, or of our own support forums.

http://www.apache.org

Foundation PHP for Flash

Installing Apache & PHP for UNIX
I n this section we'll cover installing the Apache web server and PHP on a UNIX operating
system.

I'll be using LINUX for the installation, but for most flavors of UNIX the installation process
i s identical. Only the installation file is operating system specific so Solaris, HPUX and IRIX
users should feel equally at home.

We'll start by installing Apache, as a UNIX user you should be familiar with the Apache web
server. In the UNIX world it has legendary status, beating off many of its commercial rivals
to sit at the top of the web server tree of popularity.

Before we can begin the installation we need to make sure we have the latest versions of
the software. The best way to do this is to visit the developer's site and start downloading.

Downloading Apache
http://httpd.apache.org/dist/httpd/binaries/
The current version at the time of writing is 1.3.20. Version 2.0.16 is currently in beta
testing and will be released shortly.

We'll be using 1.3.20 as it's been around for some time now and has proven stability.

If you visit the URL shown above you'll be presented with a list of folders containing
Apache Web Server installation files for almost every operating system known to man.
Select the relevant one for your OS.

The Installation
1. Once we've downloaded the file we need to copy it into the directory where we

want to install the software. We do this using the command below.

cp apache 1.3.20.tar.gz /usr/local

2. Now we need to change directory to where we copied our installation file.

cd /usr/local/

You'll notice that the file we downloaded has the gz extension this means that
the file has been zipped up (compressed). Before we can use this file we need
to uncompress the file using the command below.

gunzip apache 1.3.20.tar.gz

http://httpd.apache.org/dist/httpd/binaries/

Installing PHP and MySQL

3. Now we have the unzipped file apache_1. 3.20. tar (an archive file) we need
to untar it, expanding it to its original structure:

tar -xvf apache_1.3.20.tar

Your screen will be filled with the contents of the archive file as it's unarchived,
and it should only take a moment to complete.

4. We now have the Apache web server directory structure we need for the rest
of the installation. We first need to change directory to the parent directory that
the archive created.

cd apache 1.3.20

5. From here we can begin to build our installation using the command below.

. /configure --prefix=/usr/local/apache 1.3.20 --enable-
module=so

I
Note: If your apache _1.3.20 directory resides elsewhere then this should
be reflected in the command above.

6. Your system will then start the configure script, checking the configuration and
creating the make files needed for the installation. During this process your
screen will fill with output from the configure script. After a tense moment or
two you'll be returned to the prompt. Hey, trust me!

7. We now need to run the make files created by the configure script.

make

This process also creates a substantial amount of output to the screen but a
moment or two later when the process is complete you'll be returned to the
prompt.

8. To complete the installation process we need to type make install at the
prompt.

make install

This does pretty much what it says - it actually installs the Apache web server
from the files we have created with the commands used earlier.

Foundation PHP for Flash

As with the previous commands, it takes a few moments to complete the
installation, you will see the install progressing via the screen output and on
completion you'll be returned once again to the prompt.

9. Before we can use our web server we need to make a few changes to the
configuration. For this we need to edit the httpd. conf file, which is located in
the conf directory. If you followed the install to the letter, your path to the
httpd.conf is shown below.

/usr/local/apache_1.3.20/conf/

Open the httpd.conf file in your text editor of choice.

We need to find the ServerAdmin setting in the file and change the e-mail
address to your e-mail address.

ServerAdmin you@youraddress.address

10. Next we need to find the ServerName line of the file

ServerName new.host.name

We'll change the value of the server name to localhost. Once you've made
these changes, save the file and it's time to test our installation!

11. Fortunately our Apache install comes complete with a couple of utilities for
starting and stopping our web server. To start the web server ensure you're in
the Apache installation directory

/usr/local/apache_1.3.20

12. At the command prompt type the following:

. /bin/apachectl start

I f all is well you'll see a message in the output to screen that reads

httpd started

13. To stop the web server simply type:

. /bin/apachectl stop

14. To test our installation, we must firstly make sure the web server has been
started. We then need to open a web browser to connect to our web server.

I nstalling PHP and MySQL

I n the address field of the web browser we need to type the following:

httpd://localhost

...where localhost refers to the ServerName we set in the httpd f conf file
earlier.

I f all is well then you'll be presented with the Apache test page, an example of
which is shown below. And that, my dear friends, is your lot.

Foundation PHP for Flash

I nstalling PHP on UNIX
I nstalling PHP4 on UNIX contrary to popular belief isn't difficult at all. I mean to say, we've
j ust installed the Apache web server without any problems so installing PHP should be a
walk in the park!

There are three ways of installing PHP4 on Apache for UNIX. Details of each method -
along with the pros and cons - are listed below.

CGI-Binary
This option is not advised for UNIX users, although one of the most popular methods for
Windows users, running PHP in this way is a drain on server memory and CPU resources.
The CGI-binary method brings with it poor server performance, hence the reason we will
not be covering this installation method here.

Static Module
I nstalling PHP in this manner keeps resource usage to a minimum; PHP appears as just
another Apache module keeping performance to a maximum. The downside of installing
PHP as a static module is that if you wish to add additional PHP functionality such as
MySQL support you will have to recompile both PHP and the Apache web server. It's not
the end of the world but it's not something you'd want to do everyday, a little forward
planning will eliminate the need to do this very often.

Dynamic Module
This is the best method of installing PHP and it's the method we'll be using in this chapter.
The dynamic method has all the pluses of the static module with one additional feature.
Because the module is dynamic, when you change the configuration of PHP you need only
recompile PHP, you no longer need to recompile Apache, a restart of the web server is all
that's required.

The latest version of PHP for your operating system can be downloaded from the
developers web site.

Downloading PHP
PHP is available from - http://www.php.net/downloads.php

The current version at the time of writing is 4.0.6, with each new release comes improved
stability and of course the inevitable bug fixes, for this reason it's important to keep your
PHP installations up to date where possible.

You need to download the full source version of PHP - the largest of the available
downloads - which include the entire source code plus extensions.

http://www.php.net/downloads.php

Installing PHP and MySQL

Starting Installation

Assuming you have downloaded the appropriate installation file we'll begin the
i nstallation.

1. We'll start by copying the installation file to the directory we want to install the
software, to keep things simple we'll use /usr/local

cp php-4.0.6.tar.gz /usr/local/

2. As with the Apache file, our PHP installation file is in compressed format (.gz).
Before we can uncompress the file we first of all move to the directory where
we copied the file.

cd /usr/local

3. Then we use the gunzip command to uncompress the file.

gunzip php-4.0.6.tar.gz

4. We now have an archive file (.tar), we'll use the command below to unarchive
the file.

tar -xvf php-4.0.6.tar

Following the above command, the contents of the archive will be extracted;
this process will create the directory structure and files we need for the rest of
the installation.

5. Change directories to the newly created PHP directory:

cd php-4.0.6

Once inside the PHP directory we can start the build process, which is almost
identical to the Apache process.

NOTE: Users wishing to add MySQL support to the PHP installation may
do so using the configure command below where mySQLpath is the path
to your MySQL installation for example /usr/locaL1mysgl.

. /configure --with-
apxs/usr/local/apache/apache 1.3.20/bin/apxs

Foundation PHP for Flash

6. Once the configure process is complete you'll be returned to the prompt.
Type:

make

After a short while and lots of screen output you'll be returned to the prompt.

7. Here we type:

make install

A few moments later and again lots of output to the screen you'll be returned
to the prompt.

8. Next, you... Oh, wait. That's it! We have completed our PHP installation, which
really could not be a whole lot simpler.

9. However, before we can test our installation we need to tell Apache that we
have installed PHP. It's really not too much to ask, is it? We do this by modifying
the httpd f conf file which can be found in the conf directory of your Apache
installation - for example /usr/local/ apache_1.3.20/conf.

10. Once open, locate the lines below:

AddType application/x-httpd-php php
AddType application/x-httpd-php phps

We need to uncomment the lines by removing the "#" symbol from both lines.
These lines define the file extensions apache needs to recognise as PHP files so
that they can be passed to the PHP parser for processing.

Remember that when you make any changes to the web server's configuration
i t needs to be restarted before the changes take effect so let's restart the web
server using the commands we learned earlier.

11. Ensure you're in the Apache parent directory /usr/local/apache-1.3.20 and type
the following commands to stop and then restart the web server.

. /bin/apachectl stop

. /bin/apachectl start

12. Now let's just test the PHP installation. In order to do this we'll create a very
simple PHP file. In your chosen text editor (trusty old Wordpad or some such
applicationette) type the following:

<? phpinfo() ?>

13. Save the file as phpinfo.php and move it into the web server's root directory.

/usr/local/apache 1.3.20/htdocs/

14. If we now open a web browser and in the address field type...

http://localhost/phpinfo.php

...we'll see the PHP information page which includes all the information about
our PHP installation (shown below).

I nstalling PHP and MySQL

Troubleshooting
I n the unlikely event that you don't see the above screen when you test the PHP
i nstallation, below are a couple of trouble shooting tips that may cure your problem.

Check the file permissions on your phpinfo.php file. Users of your web site must have
the permission to execute the file. For development purposes you can change the
permissions using the following command.

chmod 755 phpinfo.php

http://localhost/phpinfo.php

Foundation PHP for Flash

Note: A full explanation of the chmod function is beyond the scope of this
book, for more information chmod consult your manual pages using the
command man chmod.

Also check that you have carried out all the changes to the httpd. conf file as discussed
earlier, ensure that ALL the lines discussed have been uncommented.

Ensure that you restart the web server every ti me you make changes to the configuration
file. Changes made to the configuration do not take effect until the web server is
restarted.

Check, recheck and then check again the paths entered into the configuration file. This is
one of the most popular causes of failure.

If you've checked all of the above and you're still experiencing problems installing either
Apache Web Server or PHP then you can get support from the developer's web sites and
the online documentation.

Apache - www.apache.org
PHP - www.php.net

Apache and PHP for Mac OS X
Users fortunate enough to have the all-singing, all-dancing Mac OS X installed on their
machine may or may not be aware that you already have both the Apache web server and
PHP 4 installed on your machine.

You can start and stop your Apache web server using the Sharing option in System
Preferences (see image below).

Max OS X users wishing to take advantage of PHP can do so by making some very simple
modifications to the httpd.conf file usually found in /etc/httpd/.

1. Open the file in a terminal window using "vi" or similar if you prefer to use
something else. We need to find the following fine (n our file.

LoadModule php4 module

http://www.apache.org

I nstalling PHP and MySQL

Note: You need to be "root" to make the changes to the file.
	 J

The line is currently commented out and is therefore ignored by Apache, to
activate it we need to remove the '#' symbol from the beginning of the line.

2. Next, find the following lines and again remove the '#' symbol from the
beginning of each line.

AddModule mod_php4.c
AddType application/x-httpd-php php
AddType application/x-httpd-php phps

3. When all the lines have been modified, save the file and restart the web server
so that the changes can take effect.

4. To test our PHP installation we need to create a simple PHP file. Create a new
file in your chosen text editor and enter the following line of PHP code into it.

<? phpinfoO ?>

5. Save the file as phpinfo.php to your own web site directory, for example if
your user name is mickeym your directory will be /users/mickeym/sites.

6. Once saved, we can test the file in a web browser by entering the following text
into the address field replacing of course mickeym with your user name.

http://127.0.0.1/-mickeym/phpinfo.php

http://127.0.0.1/-mickeym/phpinfo.php

Foundation PHP for Flash

Troubleshooting
There's not much to go wrong here, all the hard work was done by the OS X install, all you
have to worry about is the modifications to the configuration file so make sure that you
have made changes correctly.

Always ensure that you restart the web server following modifications to the web server,
changes to the configuration will only take effect when you restart.

I f you're still experiencing problems, take a look at the developer's web sites for support
and online help.

Apache - www.apache.org
PHP - www.php.net

http://www.apache.org

Installing PHP and MySQL

Installing, Configuring and Running MySQL on Win32
Before we can start using MySQL we first need to install and configure it on our system.
The instructions given here assume that you're using the pre-compiled Win32
binary version of MySQL. The latest version at the time of writing is 3.23, and you can
download all the necessary files direct from the MySQL website at
http://www.mysql.com/downloads/index.html.

Installation
The installation files for MySQL come packaged in a ZIP file so the first thing we'll need to
do is unzip them to a temporary directory. For this you can use a tool like WinZip, (a trial
version of which is available from www.winzip.com).

Once the files have been unzipped you'll need to locate and run the setup.exe file. This
will start an install wizard that will guide you through the rest of the installation procedure.

During the install process you will be asked where on your system you would like MySQL
i nstalled. It's a good idea to install it to the default c:\mysql\ directory suggested for the
sake of compatibility with other software and ease of configuration for MySQL itself!

7-
Installation instructions for other operating systems and platforms can be
found in the online MySQL documentation at http: //www.mysgl . can

Once the wizard has completed its task and MySQL has been installed, it's time to find out
how to control the MySQL daemon from within Windows.

http://www.mysql.com/downloads/index.html.
http://www.winzip.com

Foundation PHP for Flash

The MySQL Daemon
The MySQL daemon - perhaps we should call it mysgid from here - can be thought of as
a listening device. It is a program whose job is to sit around and listen for client requests
for our MySQL server. When such a request is received, mysgid will fetch the required
i nformation and return a response to the calling client.

So, the first thing we need to do is to start mysgid. Firstly, you will need to navigate to
your chosen installation directory for MySQL. That's the one we just suggested as being
c:\mysql\. You should see a directory structure along the lines of the one shown below:

Open the bin directory and locate and double-click on the mysqld.exe file to unleash the
MySQL beast. Note that mysgid runs as a background process and there will be no out-
wardly visible sign that it's running. The easiest way to ensure that it is doing what it's told
i s to check the Windows Task Manager by pressing CTRL-ALT-Des on your keyboard - you
should see an entry labelled mysgid. Alternatively, you can use the MySQL monitor pro-
gram, which will be covered in the next section.

Installing PHP and MySQL

To stop mysgld gracefully you will need to open up an MS-DOS Command Prompt and
navigate to your MySQL directory (so, type "cd \mysql" if you've been following these
i nstructions to the letter). Next, type the below, followed by the ENTER key.

bin\mysqladmin shutdown

Use the Windows Task Manager again to confirm that mysgld has indeed been shut
down.

Note that you could have used the Windows Task Manager to kill the process but this can
have some unpredictable results. At best, mysgld will be shut down and you will keep all
of your data intact - at worst, you could scramble your databases and your data would be
toast!
On Windows NT and 2000 machines you should install mysgld as a service as follows:

mysgld -nt -install

You can now start and stop mysgld as below:

NET START mysgl
NET STOP mysgl

Note that in this case you can't use any other options for mysgld! You can remove the
service as follows:

mysqld -nt -remove

MySQL Monitor
Although it has a fairly grand name, the MySQL monitor is little more than a console
interface to MySQL. It does, however, allow you to perform almost all MySQL related tasks,
including the creation and manipulation of databases, tables and data.

To start the MySQL monitor you will again need to open an MS-DOS Command Prompt
and navigate to the MySQL directory (again, "cd \mysql"). Then, type the below code,
followed by the ENTER key.

bin\mysql

I f the MySQL monitor can connect to the MySQL daemon then you will see something like
the following output:

Foundation PHP for Flash

I f the mysgld program isn't running when you attempt to start the MySQL monitor then
you will see something like the following output.

C:\mysql>bin\mysql
ERROR 2003: Can't connect to MySQL server on 'localhost' (10061)

I f you get this output then mysgld is not running on the local machine. Please return to
the previous section on starting the MySQL daemon and try again.

To escape from the MySQL Monitor simply type exit followed by the ENTER key. You will
be returned to the command prompt.

None Shall Pass: MySQL Security
MySQL has a strict set of security features. You can restrict who can access your databases,
where they can access from, which databases they can access, what they can do with the
databases and much more. This is an extremely important feature to get to grips with if
you're going to be letting the general public loose on your servers.

However, such configuration has been known to fill whole books even bigger than this
one. For this reason we will not be discussing the security features of MYSQL in this
section. However, if you're interested in the security aspects of MySQL then check
www.phpforflash.com, for more information.

Well folks, that should see you right. Remember that the installation process for the
simplest of applications can seem a little daunting. But if you got PHP on your machine,
then you really should know no fear! Don't forget that as with the other technologies
we've installed, there is a comprehensive set of documentation supplied and online.

PHP and
Object-Oriented
ProgrammingB

I n this appendix, I will introduce you to some more advanced programming
techniques that have not been covered so far in this book. The main area
that I'm going to cover is Object-Oriented Programming, although I'm
going to cover some other interesting functions and techniques along the
way.

Hopefully, this appendix should trigger some ideas of your own, and rather
than going into too much depth it should encourage you to find out more
about object orientation in PHP.

At the end of this appendix, I'll be taking you through a very simple object
oriented shopping basket system.

OOPS!
Just to give you a bit of background, Object-Oriented Programming (OOP) is
a style of programming first introduced in the Sixties with the Simula
language. Since then, more and more object-oriented languages have
appeared on the scene and nowadays most commercial languages are based
around OOP principles, such as Java, C++ and Visual Basic.

But what exactly is Object-Oriented Programming?

Well, in any program there are variables that hold data, and functions that
perform some kind of operation using those variables. In traditional
programming these variables and functions are thought of as separate
entities. In OOP however, variables and functions can be grouped together
in distinct modules, called classes.

A class is made up of any number of properties (data) and methods
(functions). Once you have defined a class, you can make any number of
objects that belong to that class, much as you can create any number of
variables of the integer data type.

PHP itself is not a true Object-Oriented language, but, as it allows
programming in an object-oriented style, we'll assume that it is one.

Foundation PHP for Flash

OOP by Example
I n OOP, we can look at programming in a similar way to the way in which we view the
world around us. We are surrounded by self-contained objects, with which we interact on
a day-to-day basis.

Your computer is an object, your car, your television, even your friends down the pub are
objects. All of these objects have a number of properties and functions that they can
perform, sometimes at your request and sometimes just on their own accord. Your car
starts when you turn the ignition, your computer loads a program, and your friends fall
over when you've bought them enough drinks.

What's important is that you don't need to know about the complex internal workings of
all of these things. You don't need to be a mechanic to start your car, you don't need to
be a programmer to work a computer, and you certainly don't need to be a genius at
biology to calculate how many beers it would take to make your friends fall over.

This concept underlies OOP, and to help you get to grips with it, we're going to look at
the theoretical example of a television set.

Properties
I f we look at a television set, apart from catching a few interesting shows occasionally, we
can see that all televisions share some common properties. Let's just list a few of them:

•

	

Make - The manufacturer of our television
•

	

Channel - What station the television is currently tuned in to.
•

	

Volume - How loud the sound is.
•

	

State (On / Off) - Whether the set is turned on or off at the moment.

PHP and Object-Oriented Programming

I n OOP we would call these properties of the class Television. The syntax for declaring
this in PHP would be:

class Television {
var $make;
var $channel;
var $volume;

f-

In order to use classes in a PHP script, you must first define them, and list
all of their properties and methods.

So, we've defined the properties of our Television class, but how do we actually use it?
Well, the answer is that we can't until we've defined its methods.

Methods
Let's took at the kinds of actions we could perform on our Television:

•

	

Change the channel
•

	

Turn the volume up
•

	

Turn the volume down
•

	

Turn the set on or off

On any television set, these options are generally
easy to find on the remote control, and we can
change the channel just by pressing a button.

But, if you look at the code above, one of the
properties of Television is make, and there
definitely isn't a button on any television that I
know of to change its make! Only some of an
object's properties can be changed, whilst others
remain constant.

Foundation PHP for Flash

I f we add these methods to our Television definition, we get:

class Television {
// Class properties
var $volume;
var $channel;
var $make;

// Class methods
function increaseVolume() {

//Add one to the current volume

$this->volume++;

function decreaseVolume() {
//Subtract one from the current volume

$this->volume-;

function setChannel($newChannel) {
//Set channel to newChannel
$this->channel = $newChannel;

function getChannel() {
//Just return the current channel

return $channel;

?>

As you can see, defining the methods for a particular class is the same as defining any
other function in PHP. We use the function keyword and declare the function within curly
braces.

You've probably also noticed that the function declarations appear within the class
definition - inside its curly braces. This is very important, because if you declare them
outside of the class, they just won't work!

In our first method, increaseVolume, we are attempting to increment the current
volume value by one. You'll recall the ++ operator we've used in previous chapters, but
you may not be familiar with the term $this.

PHP and Object-Oriented Programming

$this i s a special variable that refers to the current instance of a class. Each copy of the
Television object has its own set of variables that are not shared with other
Television objects. We use the $this keyword to state that we are interested in only
the current object.

The other piece of notation that might be unfamiliar is the "->" operator. In PHP, we use
this to access properties and methods of objects. So, in our example, $this->channel

refers to the channel variable of the current Television object.

The remaining functions are very similar, and change the value of their respective variables
as you might anticipate - decreaseVolume subtracts one from the current volume,
setchannel sets the value of the $channel property, while getchannel simply returns
the value of the current channel.

This is quite a difficult concept to get your head around at first, so let's just have a look
at an example of our Television i n action.

I nstantiation
$myIV = new Television;

$myTV->setChannel(2);

$anotherTV = new Television;
$anotherTV->setChannel(4);

print "My TV . " . $myTV->getChannel()."
\n";
print "The other TV : " . $anotherTV->getChannelO ;

I f we take it from the top, we've got a Television object called $myTV. Whenever we
want to make an object in PHP, we use the new operator. This is a little bit different from
how we would normally create a variable, and is called instantiation - we are creating an
instance of the class Television, just like in Flash!

OK, then we call the setchannel method of $myrv. I f you have a look at the code for
our Television class, all this method does to set the value of $channel to the argument
of setchannel. We could achieve exactly the same thing by forgetting about the
setchannel method, and doing this:

//This is really bad practise!!
$myTV->channel = 2;

?>

Foundation PHP for Flash

This would work, but it is very bad practise. Working in this kind of way is like rooting
around inside your real-world television, finding the bit of electronics that changes the
channel, and crossing the wires!

Generally in OOP, you should always use access functions li ke setChannel and
getchannel i nstead - the equivalent of having some nice buttons and knobs on the front
of your television. We do this so that we can ensure that, no matter who uses our code,
they will use it in the way that it has been designed. This improves the general reusability
and robustness of our code, and makes us happy designers!

Right, if we rewind to the example, you'll see that we create another Television, call it
$anotherTV, and set its channel to 4.

What this means is that we've now set two Televisions to two different channels, which
may seem simple. However, this is one of the most powerful features of OOP. If you
wanted to do the same thing in a traditional way, the script would be very complicated.
We would probably have to set up some kind of array, and loop through each to get a
similar result.

Constructors
Usually when we instantiate a class, it is important to set some of the new object's
properties to an initial value, or to run certain functions.

I n the case of our Television class, we have so far omitted to mention the $make

property. As we said previously, the make of a TV should be constant once it has been
manufactured, and we shouldn't be able to change it.

To make sure our Television class behaves in a similar way, we define a constructor.
We add the following function to our class definition:

function Television ($theMake) {
$this->make = $theMake;

A constructor is a function that is always run when an instance of a class is first created.
I t must have exactly the same name as the class, and you can define whatever parameters
you like for it.

I f we were using the above constructor, we would have to adapt our code for making a
new Television object to the following:

$myTV = new Television ("A well-known brand");
$myrV->setChannel(2);

PHP and Object-Oriented Programming

$anotherTV = new Television("A competitor brand");
$anotherTV->setChannel(4);

All this does is set the value of $make in $myThirdTV to A well-known brand, and
$anotherTVto A competitor brand.

Inheritance
Well, that's the basics of OOP over and done with. Don't worry if you haven't quite
understood all of it - we're working towards a real-world example at the end of this
appendix.

There are a few other points to note about OOP, and they are somewhat more advanced,
and the first is called inheritance. We won't be using this in our example, but it's a very
i mportant part of OOP, and is something that you might find very useful in your future
PHP projects.

I f you imagine a family tree of televisions, right at the top we have the humble
Television class we've been working on, and underneath that are a number of different
types of television - the Black & White Television, the Widescreen Television, Color
Televisions, Color Widescreen Televisions, and so on.

To state the obvious all of these types of televisions are based around the simple
Television, but with specific peculiarities. For instance, Black & White Televisions only
show pictures in black & white, Widescreen Televisions can switch between widescreen and
1 6x9 modes.

Let's assume that we wanted to make a new class for Widescreen Televisions. Most of the
functionality is exactly the same as a normal Television, with just a few additions.

We could simply copy and paste the code from the Television class, and add the extra
functionality that we need. This would work fine, but what happens if we discover that
we've made a mistake in some of our original Television code? We would have to
amend it in two different places, because we have copied and pasted from it. And if in the
future we wanted more and more different types of television, this method would
replicate any errors over and over.

A much better approach would be to re-use the bits of the Television class that we
need, and just add on the extra functionality. And guess what? OOP is perfect for this.

class WideScreenTelevision extends Television {
var mode;

function WideScreenTelevision($theMake) {
continues overleaf

Foundation PHP for Flash

$this->make = $theMake;
$this->mode = true;

}

function toggleWideScreenMode() {
$this->mode = !$this->mode;

}

I n this example, I have defined a new class WideScreenTelevision which extends the
Television class. The word extends i s a special keyword, and means that the new class
being defined has access to all of the methods and properties of the parent class, in this
case the Television class.

So, the new class can use all of Television's methods and functions as well as all of any
new ones it declares.

I n my example. I've implemented a simple switch that flips the television between
Widescreen mode and Normal mode.

I t might interest you to note that you can't extend a class in PHP and remove any of its
methods or properties. This is something that is possible in other object oriented
programming languages, but not PHP.

Let's Go Shopping!
So, by now you should have at least a passing understanding of what objects do, what they
are for, and how they are implemented. I'm now going to take you through an example of
how to use objects in practice, with an example of a simple shopping basket.

Most online shops in the world are based around a surprisingly similar system for buying
goods. I'm sure you're familiar with buying online but, if not, the process is as follows:

•

	

The user visits the site, and is presented with a virtual shopping basket which
will hold their purchases.

•

	

The user moves around the web site until the product they are interested in is
found.

•

	

Usually, there is an Add to basket button next to the product, and the user clicks
this.

•

	

The user's choice is recorded in the shopping basket.

PHP and Object-Oriented Programming

•

	

The user then carries on looking around the store, perhaps adding more and
more objects to the basket.

• Once the user is happy with the products in their basket, they hit the Checkout
button, enter a few credit card details and, hey presto, their purchases land up
on their doorstep within a few days.

Maybe you bought this book by doing just that!

This process seems quite simple, but there are a number of complex issues lurking in the
shadows.

The whole process relies on the fact that the web site can remember the user, and
distinguish between one user and another. So far we have come across one simple way of
recording a user's information with the use of cookies in Chapter 6. In the following
example, we will extend this concept and show you a useful implementation.

When implementing a shopping basket in Flash, some developers record a user's
purchases in Flash variables. This is all well and good, but Flash variables have a life span
limited to one viewing of a particular web site. In some instances, should you press the
Refresh button mid-purchase, you would lose all of these purchases because Flash would
reset all of its variables.

So it's a good idea to store any variables that need to last an entire 'session' (one visit to
a site) on the server.

We could do this by setting a cookie on the user's computer with a unique user ID, and
then storing all of the purchases in a MySQL database. This is a good solution, but it can
be too complicated for some uses.

A simpler approach is to use something called a session variable, which is a variable that
we can access consistently from one script to another. We will be using that once we have
designed the structure of our application, which we'll start now...

I
It's worth mentioning at this point that at the time of going to press, there
are bugs in the Macintosh Internet Explorer implementation of the Flash
plug-in which will cause this example to fail. I would recommend using
Netscape for this example if you are developing on a Macintosh.

Foundation PHP for Flash

Creating a Shopping Basket

We'll start with the Flash, and the screenshot below shows what we are aiming for. The
section on the left is a list of products that we'd have on our web site, and the section on
the right will hold our selections.

By clicking on one of the items in the left-hand window, it will be added to our basket,
and the contents of the basket will be displayed in the window on the right.

There is also an Empty Basket button, which allows our users to realize they don't have the
bucks to spend. Finally, there's a box to display the total cost of the items in the basket.

The Flash Bit
1. As with the other applications we've built, we're going to put everything in a

movie clip, so let's make one. Call it Shopping Basket, and press OK.

2. The timeline for this movie is going to be very simple, and as we have done in
previous examples, we'll separate the form and the background graphics onto
two separate layers.

Recreate the layer structure below:

PHP and Object-Oriented Programming

3. The next step is to create the background graphics for our shopping basket. I've
used the same style as I have been using throughout the book, but you can use
any style you like. Either way, here's what mine looks like:

4. Now we need to add the form elements onto the Form Elements layer. Use this
diagram as an outline:

Foundation PHP for Flash

5. Now we need to add the ActionScript for our buttons. Start with the scroll bars
for both text areas - you can probably copy and paste these from the Cookie
Cutter example in Chapter 6.

6. Now we need to create the Empty button. Create a new button symbol, or even
better, copy and paste a button from a previous example.

The ActionScript for this button is very simple, because we are going to declare
the removeAll function later on in our code:

on (release)
removeAl l () ;

7. Now drag an instance of our Shopping Basket on to the main timeline. We're
going to define the functions that our Shopping Basket is to perform by
attaching some actions to it:

onClipEvent(load)
status = "Loading products...";
LoadVariables("products.php", • this, "POST");

action = I'll;
LoadVariables("basket.php", this, "POST");

This first part of the onClipEvent (load) function displays the message
Loading products... in the status bar, and then loads products.php, which will
i nstall a list of products into the left hand area of our Flash movie. We then set
the variable action to a blank string and load basket. php to retrieve the
contents of the basket, should we be coming back to our movie having added
items to the basket on a previous visit.

PHP and Object-Oriented Programming

8. Now have a look at this chunk of code:

function addItem(parameters)

	

{
action = "addItem";
status = "Adding product to basket...";

properties = parameters ;split("I");
description = properties [0];
price = properties [1];

LoadVariables("basket.php", this, "POST");

The function addItem i s called when the user clicks on one of the products in
the left hand window. This is done by using a very useful trick. Assuming that
you have some knowledge of basic HTML, you will be familiar with what a
hyperlink looks like:

Click here

When you click on this link in a web browser, you will be taken to the URL (web
address) www.somewhere.com . It is also possible to do other more interesting
things with the URL area of a link, and in Flash we can have special links that
can call ActionScript functions. The format for a hyperlink which can call an
ActionScript function is:

Click here

When the user clicks on this link, it will invoke a function called myFunction,

with myParameter as an argument: the equivalent of a button with the
following ActionScript:

on(release) {
myFunction(myParameter);

You might be wondering why this is useful. Well, it means that we can have links
inside HTML text boxes in our Flash applications. All will become clear when you
see it in action.

An extension of this is to send multiple parameters to your function. You can
do this by using an arbitrary separator, such as the "I" character, and split up
the parameter afterwards in Flash. So, if we have a look at our function again,
we can use the split function to achieve this:

properties = parameters. split("l");

http://www.somewhere.com
http://www.somewhere.com

Foundation PHP for Flash

description = properties[0];
price = properties(l];

9. Anyway, that's enough beating around the bush. The next function,
removeitem i s also called in this way, but only requires one parameter - we wilt
look at this in the PHP.

function removeItem(theItem) {
action = "removeItem";
status = "Removing product from basket...";
itemNumber = theItem;
LoadVariables("basket.php", this, "GET");

10. The last function is removeAll, which as its name suggests, will empty the
shopping basket.

function removeAll() {
action = "removeAll";
status = "Removing all items...";
LoadVariables("basket.php", this, "GET");

PHP and Object-Oriented Programming

The PHP Bit
Phew! That's the Flash side of things over and done with, so it's time we had a look at the
PHP script. In its simplest form, a shopping basket class needs only one property - an array
of purchases. In terms of methods, we will need the following:

•

	

A constructor (to make a new basket)

•

	

A function to add an item to the basket

•

	

A function to remove an item from the basket

•

	

A function to empty the entire basket

•

	

A function to print out the contents of the basket

•

	

And finally a function to get the total price for the items in the basket

We're also going to create a new class called item, which will hold all the necessary
information for an item in our shop.

An item can be as simple or as complicated as necessary for your site, but in this case we're
just going to store a textual description of the item and a price. These two variables will
be the properties of this class.

The methods for our item class are very few indeed:

•

	

A constructor, with which we will set price and description

•

	

A function to get the price of an item

•

	

A function to get the description

So, let's have a look at this in PHP. You'll need to make a text file in the same directory as
your Flash movie, and it needs to contain the following PHP script:

// Basket and Item classes

// The item class
class Item {

var $description; // A textual description
// of the item

var $price;

	

// The numeric price
// of the item

continues overleaf

Foundation PHP for Flash

// Class constructor
function Item($description, $price) {

$this->price = $price;
$this->description = $description;

// Get the price of the item
function getPrice() {

return $this->price;

// Get the description of the item
function getDescription() {

return $this->description;

// Basket class
class Basket {

// Class properties

var $items; // This property will hold all of
// the contents of the basket.
// Each item in this array will
// be an instance of Item.

// Class Methods

// Constructor Function
function Basket() {

// Set up $items as an array
$this->items = array();

// Add an item to the basket
// $description: A description of the
// $price: The price of the item to add
function addItem($description, $price) {

// Create a new instance of the Item object
$newItem = new Item($description, $price);

// Add the object to the $items array
$this->items[] = $newItem;

1
// Remove a specific item from the basket

// $itemNumber: The array number of the item
function removeItem($itemNumber) {
// Remove this item from the $items array
unset($this->items($itemNumber]);

// Remove all items from the basket
function removeAll () {
// To do this, we reset the $items array
$this->items = array();

// Print out the contents of the basket for Flash
function getContents() {

// Print out the total cost of the items
print "&basketTotal=".$this->getTotalPrice();

// Rewind the $items array back to the beginning
reset ($this->items);

// Check if there are any items in the basket,
if (count($this->items) > 0) {

print `&basketList=';

// Loop through the items in the basket
while (list($itemNumber, $currentItem)=each($this-

lm+>items)) {
// Print out the item's price and description

print `<p>'.$currentltem->price.'
- '.$currentltem->description.'</p>';

else {
// If there are no items in the basket,

// print a message saying so

print '&basketList=<p>Your basket is empty.</p>';

// Get the total price of the objects in the basket
function getTotalPrice() {

$total = 0;

// Rewind the $items array back to the beginning

continues overleaf

PHP and Object-Oriented Programming

Foundation PHP for Flash

reset ($this->items);

// Loop through the items in the basket
while(list($null, $currentItem) = each($this->items))

// Get the price of the current item and add it to
the total

$total += $currentItem->price;

// Return the total price of the items
return $total;

?>

Okay, go get a pair of scissors - we're going to cut this into pieces, and I'll explain each
piece as we go.

1. I've started off by declaring our Item class, which is quite simple - it consists of
two properties: $description and $price; two methods: getDescription
and getPrice; and finally the constructor: the function Item.

2. We can create a new Item with a simple constructor, for example:

$anExampleItem = new Item("A pair of shoes",
4015.99) ;
?>

This piece of code creates a new instance of the Item class with the description
set to "A pair of shoes ,, and a price of 15.99. OK, so let's all stop laughing
about the average cost of my shoes.

The Item class is quite simple, and is more or less just a method of holding data
in an efficient way. It would be relatively straightforward to adapt our Item class
to include more information for each product - product IDs, sizes, colors, etc.
And because we're using OOP, we can do this without affecting our Basket
class!

3. So, on to the Basket class. At first glance this can look quite complicated, but
don't let that deter you. By breaking it down into its constituent parts it
becomes very intuitive.

The first thing is to have a look at the class properties, and in this case, there is
just the one - $ items, which is an array of instances of the Item class. This
stores all of the item objects that are added to the basket.

The constructor is also quite simple, and does not accept any parameters:

function Basket() {
// Set up $items as an array
$this->items = array();

The only thing to note is that when you have an array in a class you must always
create it in your constructor function. The same thing also applies to any other
types of variables that you want to set - always do this in the constructor.

4. Let's have a look at the addltem function. It takes two parameters -
$description and $price. Using these two variables, it first creates a new
Item object and then adds it to the items array.

function addItem($description, $price) {
// Create a new instance of the Item object
$newItem = new Item($description, $price);

// Add the object to the $items array
$this->items[] = $newItem;

5. The next logical method to look at is how to remove items once they have been
added:

function removeItem($itemNumber) {
// Remove this item from the $items array
unset($this->items($itemNumber));

This is a little bit more complex than addltem, and uses a function we haven't
come across before: unset.

What unset does is remove an item from an array based on its position in the
array. So unset ($this->items (3)) would remove the fourth item in the
items array, because array items are always numbered from zero.

6. Let's look now at the removeAll method:

function removeAll() {
// To do this, we reset the $items array
$this->items = array();

PHP and Object-Oriented Programming

Foundation PHP for Flash

This method resets the items array, effectively emptying it of its contents.

7. Now, let's have a look at what happens when our user has finished shopping:

function getContents() {
// Print out the total cost of the items

print "&basketTotal=".$this->getTotalPrice();

// Rewind the $items array back to the beginning
reset ($this->items);

// Check if there are any items in the basket,
if (count($this->items) > 0) {

print '&basketList=';

// Loop through the items in the basket
while (list($itemNumber,

$currentItem)=each($this->items)) {
// Print out the item's price and description

print '<p>'.$currentItem->price.'
r+- '.$currentItem->description.'</p>';

else {
// If there are no items in the basket,

// print a message saying so

print '&basketList=<p>Your basket is empty.</p>';

In our Flash movie, we've defined the basket area as HTML, so that we can
control formatting and layout. This function first prints out the total value of
the basket and then returns it as the variable basketTotal. I t then loops
through each item in the items array, printing out each one as a line of text with
the description in bold.

I f the basket is empty, it sets basketList to <p>Your basket is empty. </p>
8. The last method in our Basket class is getTotalPrice, which unsurprisingly

returns the total of all of the items that are currently in the basket.

function getTotalPrice() {
$total = 0;

// Rewind the $items array back to the beginning

PHP and Object-Oriented Programming

reset ($this->items);

// Loop through the items in the basket
while(list($null, $currentItem) = each($this-

w+>items)) {
// Get the price of the current item and add

%*it to the total
$total += $currentItem->price;

// Return the total price of the items
return $total;

I've implemented this by looping through each item in the items array, and
adding its price to the $total variable, then returning it.

9. Now that we've defined our classes, we need to finish off with the code that will
actually interact with our Flash movie. This involves those session variables we
were talking about. Copy the following code into basket.php:

// Start session variables and register the variable
// $myBasket as a session variable

session starto;
session register(myBasket);

// If this is the first time running this script,
// make $myBasket into an instance of the class "Basket"

if (!isset($myBasket)) {
$myBasket = new Basket;

Earlier in this appendix I said that we would introduce another system for
remembering the contents of the user's basket. The piece of code above uses a
session variable to create that memory. A session variable, as we established, is
a variable that can be used from one script to another and over a period of
time, without having to declare it every time we wish to use it.

The first line sets up PHP so it is able to use session variables. It is necessary to
do this before any other output has been initiated - before you send any
variables back to Flash, and also before any white space occurs in your script. It
i s a common mistake to accidentally print out an occasional line break or space
before using session variables, which will cause your script to fail in the same
way as this occurs when using cookies.

Foundation PHP for Flash

I t's not really important to understand fully how session variables work, but you
can think of them in the same way as cookies. A small piece of information is
recorded, which is then matched up to data stored on the server. You can store
any variable as a session variable, including an object such as our basket.

Once sessions are enabled, we use the session_register function to state
that we want to declare the variable $myBasket as a session variable. Note that
we don't use the dollar (s) symbol when registering a session variable.

10. I t may seem a little bit counter-intuitive, but after we set up our session variable,
we have to make sure that it is an instance of our Basket class. We first check
to see if the variable is set using the isset function, and if it is not set we create
a new instance of the class. The reason we do this after all of the session stuff
i s that we will only need to do this once, so we need to check for an existing
session variable before we set up a new one, which would actually over-write
the existing variable should it already exist.

11. The final part of the script is a switch statement that controls what to do in
certain situations. Rather than having separate files for adding to, removing
from and displaying the basket, we use the same file, but set the variable
$action to choose between them.

// Now for the actions
switch ($action) {

case "addItem":
$myBasket->addItem($description, $price);
break;

case "removeAll":
$myBasket->removeAll();
break;

case "removeItem":
$myBasket->removeItem($itemNumber);
break;

$myBasket->getContents O ;

?>

As you'd expect, we call the appropriate function depending on the value of
$action, and afterwards call getContents so that the contents of the basket
are always kept up to date.

12. OK, that's the hard bit finished with. Now all we need to do is set up some
example products to use with our applications. You need to copy the following
code into a file called products.php.

PHP and Object-Oriented Programming

// Set up the products in two arrays

$productName[]="Shoes";
$productPrice[] = 45;

$productName[]="Shirt";
$productPrice(] = 15;

$productName[J="Socks";
$productPrice[] = 5;

$productName[]="Shorts";
$productPrice[] = 25;

$productName[J="Skirt";
$productPrice[] = 35;

// Now output these variables for Flash

print "&productsList=";

for ($counter=0; $counter < count($productName);
'-$counter++) (

print '<p><a href="asfunction:
r+addItem,'.$productName[$counter].'I'.$productPrice[$counter
10].1 . >

'.$productName[$counter].' -
I+£'.$productPrice[$counter].'</p>';

?>

This code is a very simplified way of doing things. Strictly speaking, in the real world you
would probably want to store the product information in a MySQL database, but we're not
really dealing with MySQL in this chapter, we're concentrating on OOP instead, so I'm just
using two arrays - one to hold the names of the products, and the other to hold their
prices.

The for loop at the end of the script simply loops through the arrays and prints them out
to Flash in the productsList variable, corresponding to the text area on the left in our
movie. Again, it's an HTML text area, so we have to make sure we format the output with
<p> and tags.

Foundation PHP for Flash

Here is where we use the asfunction URL that I discussed earlier, and this is the part of
the script that allows the user to click on an item and add it to the basket. For example,
a line that is output from this script is:

<p>Shirt -
£45</p>

Once you've finished coding up the two scripts, run the SWF file from a web server, and
admire the results. Also, try reloading the Flash movie, or visiting another web site and
going back to it to see the shopping basket stay constant over a number of visits.

Summary
We've covered some pretty advanced PHP subjects in this appendix, and hopefully it will
have triggered a few ideas and shown you that a lot can be achieved with the language.

You've taken your first steps into Object-Oriented Programming, but there is plenty more
to learn on the subject. You can read more on the many Flash and PHP resource web sites,
a few of which are listed in our Resources section.

You'll notice that I left one major area of functionality out of our shopping basket
application - the remove function. I've written the ActionScript function and the PHP
function, but I've deliberately left the rest to you as a challenge. Another area you might
want to look into is storing quantities of products, rather than just having a list.

My advice to you is to look through a few more tutorials and read as much as possible on
the subject - object orientation can really help you make robust, reusable and timesaving
code.

ResourcesC
I thought this would be a pretty good place to spread the word about some
helpful resources on the web. I'd like to think that by the time you get to
the end of this book, your mind is buzzing with ideas and you're on the hunt
for fresh inspirations.

I f so, take yourself to some of the following places and look for web pages
with the file extension php.

Foundation PHP for Flash links
www.phpforflash.com

www.friendsofed.com

Author's homepage
www.codejunkie.co.uk

Sotware homepages
www tphp. net

www.mysql.com

www.apache.org

www.macromedia.com

www.zend.com

http://www.phpforflash.com
http://www.friendsofed.com
http://www.codejunkie.co.uk
http://www.mysql.com
http://www.apache.org
http://www.macromedia.com
http://www.zend.com

Foundation PHP for Flash

Setup Tools
www.phpgeek.com/phptriad.php

www.f i repages.com . au/dev4. htm

These sites offer special installation and setup packages, installing PHP, MySQL and Apache
on your system with a minimum of fuss.

Also try http://mysgl.com/doll/n/Installing.html for installation instructions for MySQL on
Unix.

PHP Editors
http://soysa 1.free.fr/PH PEd

www.phpide.de

Easy to use (and free) PHP code editors.

PHP Street Corners and Forums
Know that you are not alone in your newfound PHP patronage. If you want to check out
the development patterns of like-minded souls, and perhaps take on a few hints and tips
about where to go from here, check out some of the following links:

www.phpbuilder.com

http://phphead.com

www.phpstarter.com

http://thephploft.com

PHP Web Resources
www.phpworld.com

Newsy, comprehensive PHP site, offering articles, information and feedback.

http://back-end.org
This site offers a separate application aimed at intermediate PHPers (that's you!)

http://www.phpgeek.com/phptriad.php
http://repages.com
http://mysgl.com/doll/n/Installing.html
http://soysa
http://1.free.fr/PH
http://www.phpide.de
http://www.phpbuilder.com
http://phphead.com
http://www.phpstarter.com
http://thephploft.com
http://www.phpworld.com
http://back-end.org

Resources

http://php.resourceindex.com
Bringing attention to everything that's new in the PHP world, with plenty of
complete scripts and useful tips.

http://screaming-penguin.com
Ah, the Temple of the Screaming Penguin - a valuable site dedicated to open
content, open information and open source, which is exactly where we have
pitched ourselves by getting involved with PHP and MySQL!

http://sou rceforge. net
More commitment to open source development, claiming the largest repository
of open source code and applications.

www.scriptsearch.com
A great resource for all code-loving designers, offering scripts on every language
i n the coding rainbow, with an extensive section on PHP.

www.webmonkey.com/programming/php
Resources on everything web-related, including a great PHP section, with
tutorials and tips.

Hosting

	

Supporting PHP
r To publicly display your new piece of dynamic art, you'll need a web host that supports

PHP and MySQL (support for these usually comes as a pair). They can also supply you with
the user information you'll need to insert into your scripts to access the database. There
are any number of companies out there that offer PHP-inclusive web space.

The PHP for Flash web site at
www.phpforflash.com is hosted by Xcalibre
Communications, who have built up many of
their back-end systems using PHP. They also fully
support MySQL and can be found at
www.xcalibre.co.uk or www.webhoster.co.uk.

You could also try the following:

www.successfulhosting.net
www.phpwebsites.com
www.1 stcom.com
www.phphost.com

For a comprehensive list, plus some reviews of the services, check out:

http://hosts.php.net/msgboard/

http://php.resourceindex.com
http://screaming-penguin.com
http://sou
http://www.scriptsearch.com
http://www.webmonkey.com/programming/php
http://www.phpforflash.com
http://www.xcalibre.co.uk
http://www.webhoster.co.uk
http://www.phpwebsites.com
http://stcom.com
http://www.phphost.com
http://hosts.php.net/msgboard/

I ndex

The index is arranged hierarchically, in alphabetical order, with symbols
preceding the letter A. Many second-level entries also occur as first-level
entries. This is to ensure that users will find the information they require
however they choose to search for it.

A
ActionScript 91. See also loadVariables
(tutorial)

camel notation 41
frame loops 23
l oadVariables command 15
similarities to PHP 40
strings 114

alignment specifier 121
American date formats 191
ampersand symbol (&) 98
anchor characters 143

$ anchor 143
^ anchor 143

Apache 2, 440. See also installing Apache
and PHP for UNIX. See also Apache and
PHP for Mac OS X

connecting to PHP 448
default installation path 444
downloading Apache 440
installation 441. See also Appendix A
i nstallation troubleshooting 446
modifying httpd.conf file 448
not production-ready product 443
Server Information screen 443
test page 445
versions 440

Apache and PHP for Mac OS X
i nstallation troubleshooting 462
modifying httpd.conf file 460
PHP installation testing 461

arguments 96, 98
arithmetic operators (list) 49
arrays. See also user authentication system
(tutorial)

array construction 65, 66
array index notation 65
arsort function 75
asort function 75
count function 68
each function 69
foreach loop 71
list function 69
l ooping through non-sequential arrays 69
l ooping through sequential arrays 67
multi-dimensional arrays 72
reset function 70

rsort function 75
sort function 74
sorting arrays 74
sparse arrays 66
string value indices 66

arsort function 75
asort function 75
assignment operator (=) 50
attachMovie method 397
automatic global variable creation in PHP
185

B
backslash character 115
bounds145
bracket expressions 148
break keyword 60, 200
browser caches 18

C
C (programming language) 5, 91
C++ 251
camel notation 41
case-sensitivity of PHP 42
character classes 148,149
character escaping 115

non-printable character representation
(table) 119

character ranges 148
Codd, Dr E F 253
code. See also Tell-a-Friend (tutorial)

coding style 41
functions 91
non-reusable code 90
redundant code 90
unmanageable code 90

cohesion of functions 99
commenting code 42
Commodore Amiga 352
comparison operators (list) 51
compound operators (list) 52
concatenation operator (.) 48
constructor functions 256
content management system (tutorial)

$newsText variable 306
Add News button 300
adding by-line of news item 306

adding form elements 195
break keyword 200, 201
case block 201
Cookie Cutter movie clip 194, 198
cookieCount text box 200
cookieList text box 196
foreach loop 199
Form Elements layer 195
further development 203
Get Cookies button 196
Kill Cookie button 197
onClipEvent(data) handler 198
PHP script 199
removing cookies 202
scroll buttons 196
. scroll property 196
Set Cookie button 197
setcookie function 201
status variable 196, 197, 198
switch statement 201
Unix timestamp 201

cookies 9, 178, 259. See also cookie cutter
(tutorial)

$HTTP COOKIE_VARS array 185, 192
cookies versus global variables 178
deleting cookies 192
disadvantages and limitations 179,183, 184,
208
domain attributes 181, 192
expiry dates 180, 187, 190
path attributes 181, 192
secure attributes 181, 192
Secure Socket Layer (SSL) protocol 181, 193
security considerations 179
setcookie function 182, 183
shopping cart applications 178
Unix timestamp 187, 189

count function 68
CREATE command 255
CREATE TABLE command 258
curly braces 254

D
data storage and retrieval 208. See also
mailing list (tutorial)
data types in PHP 47
databases. See also news section database
(tutorial)

adding random number to URL of PHP file
296
additions 310
addnews.fla 298
addnews.php 302, 307
Background layer 297, 299
checking username and password 308
connecting to database server 304
creating text boxes and buttons 299
Data Entry frame 299
database connection code 308
database selection 305
defining database connection details 304,
307
Display frame 297, 298
Error frame 301
fetchnews.php 304
i nitializing variables 305
i nserting news item into database 309
Loading frame 296, 297, 300
mysgl close function 307, 309
mysq tconnect function 304
mysgl_fetch array function 306
mysgl_query function 305, 309
mysq) select db function 305
News Admin Panel movie clip 302
news display Flash movie 295
News Panel movie clip 296, 298
news.fla 295
newssetup.php 302
PHP setup script 302
Section I tems layer 299
SELECT command 305
strftime function 306
stripslashes function 306
Success frame 301
time function 309
Unix timestamp 309
while loop 306

conversion specifications 121
alignment specifier 121
padding specifier 121
precision specifier 122
type specifier 122
width specifier 122

cookie cutter (tutorial)
$cookieDuration variable 201
$HTTP COOKIE VARS array 199

F
fclose function 213
feof function 230
fgetc function 219
fgets function 220
file function 222
file_exists function 230
Flash. See also loadVariables (tutorial). See
also download registration form (tutorial)

attachMovie method 397
cookies versus global variables 178
depth property 397
links inside HTML text boxes in Flash appli-
cations 263
l oading dynamic data into Flash movies 15
l oadVariables command 16
movie Identifiers 398
onClipEvent handler 19
passing data to server-side scripts 24, 26
PHP for Flash designers 1
PHP for Flash forum 14
Symbol Linkage 397

fopen function 209, 225
binary mode 211
file handle 210
filename 210
include_path 212
mode parameter 211
mode values (table) 211
passive mode ftp 210
reasons for failure to open 232

for loop 63
foreach loop 71, 186
format string 121
forum (case study)

$crypt variable 436
$output variable 427, 430
$threadCount variable 426
$threadlD variable 429, 432, 434
$userlD variable 422, 430, 431
application steps 389
attachMovie method 397, 407, 408, 410
auth function 421, 434, 435
Back button 392, 418
basic concepts 388
building the forum in Flash 399
button bar 390
Button Bar layer 402, 415, 416, 418
Cancel button 393, 417

creating databases 255
database theory 254
manipulating databases and tables 265
MySQL 2
relational databases 253
SQL (Structured Query Language) 252

depth property 397
do ... while loops 62
dollar symbol (S) 44
domain attributes 181, 192
doubles 47
download registration form (tutorial)

clock face animation 29
creating database 32
creating Display section 30
data entry form 27
database structure 31
downloadlog table 32
Flash front-end sections 26
Loading frame 29
l oadVariables command 29
onClipEvent handler 30
POST method 29
register.fla 27
register.php 33
register setup.php 32
Section Items layer 28, 29
server-side scripts 31
submit button 29
textbox settings and maximum values 29

DROP command (SQL) 264
E
each function 69
echo function 8, 44, 120
empty function 83
epoch 187
ereg and eregi functions 152
ereg replace and eregi replace functions
154
error messages 213
escape characters 61
exit statement 83
explode function 126

string separators 126

Canvas layer 403, 404, 409
Canvas Mask layer 404
Canvas movie clip 403, 406
checkEmail function 422, 436
common.php 419, 420
Error frame 417, 418
Flash movie 397
Forum Footer movie clip 405, 407, 409
Forum Header movie clip 405, 407
Forum Post movie clip 410
Forum Thread movie clip 405, 407, 408
Forum View frame 402, 403, 407
Forum View movie clip 389, 407
forumCanvas instance 404, 407
forumPosts table 396, 430, 434
forums 388
forumThreads table 396, 427, 432
forumUsers table 395, 421, 427, 436
i nclude function 420
i nformation stored (list) 395
i nvisible button 406
Load Forum frame 417
Load Forum movie clip 401
Load Thread frame 402, 409
md5 function 421, 435
Message Board Panel movie clip 400, 403,
406,418
message text box 414
mysgl close function 428, 430, 435, 437
mysgl_fetch array function 427, 429
mysgl insert id function 432
mysgl_num_rows function 426, 429
mysgl_query function 422
nextY variable 408
password encryption 421, 435
PHP scripts (list) 419
post information text boxes 411
Post New button 392
Post New movie clip 392, 413
Post Reply button 392
Post Reply frame 415
Post Reply movie clip 393
postnew.php 419, 431
postreply.php 419, 433
posts 388
posts shown in true chronological order 392
randNum function 401
Refresh button 392

Register button 393, 416
Register movie clip 394
register.php 419, 435
scroll buttons 407, 411, 414
Section Items layer 407, 414
SELECT command 426, 429
setting Symbol Linkage properties 407, 412
setup.php 419, 423
strftime function 427
Submit Reply button 394, 415
Submit Thread button 393
Thread Footer movie clip 410
Thread Header movie clip 410
thread information text boxes 406
Thread View frame 404, 409
Thread View movie clip 391
threadCanvas instance 404, 409
threadlD variable 408
threads 388
Unix timestamp 427, 432, 434
user interface sections (list) 389
username and password 393, 421
viewforum.php 401, 419, 425
viewThread function 402, 407
viewthread.php 419, 428
Window BG layer 400, 404

fpassthru function 215
outputting image not found image 217
outputting images 216

fputs function 224
frame loops 23. See also loadVariables
(tutorial)
fread function 218
Reek function 228
ftell function 230
functions. See also Tell-a-Friend (tutorial).
See also text highlighter (tutorial)

ampersand symbol (&) 98
arguments 96, 98
cohesion of functions 99
echo function 8, 44, 120
ereg and eregi functions 152
ereg replace and eregi replace functions

154
explode function 126
external files 99
fclose function 213
feof function 230

fgetc function 219
fgets function 220
file function 222
file_exists function 230
fopen function 209
fpassthru function 215
fputs function 224
fread function 218
fseek function 228
ftell function 230
functions in PHP 91, 93, 152
fwrite function 224
i mplode function 127
i nclude function 99
i ncrement function 94
loose coupling of functions 99
mktime function 191
naming conventions 98
outputDetails function 96
parameters 96
passing data 96, 98
print function 120
printf function 121, 123
rawurldecode function 126
rawurlencode function 126
regular expressions 142
require function 100
return keyword 97, 98
returning data from functions 97
rewind function 228
selection statements 98
setcookie function 182
split function 156
spliti function 156
sprintf function 121, 123
square function 97, 100
strftime function 225
string-related functions 120
stripslashes function 134
stristr function 131
strlen function 130
strstr function 130
strtolower function 132
strtotime function 191
strtoupper function 132
str_replace function 131
substr function 128
time function 10, 187

updateCount function 95
urldecode function 126
urlencode function 124
variable lifetime 95
variable scope 94

fwrite function 224
writing to binary files 224

G

GET method 25
Google search engine 25

global variables
security implications of data passed in via
GET and POST 94

Gutman, Andi 6

H

hostname 277
HTML 99

li nks inside HTML text boxes in Flash appli-
cations 263

httpd.apache.org 440

1

IBM 252
if statements 53
if..else.. statements 55
if..elseif..else statements 56
IIS (Internet Information Service) 2
implode function 127
include function 100
i ncrement function 94
i nheritance 257
INSERT command 265
i nstalling Apache and PHP for Unix

adding MySQL support to PHP installation
457
Apache test page 455
Apache web server directory structure 453
apache_1.3.20.tar 453
CGI-Binary method 456
configure process 458
configure script 453
copying Apache into directory 452
copying PHP into directory 457
downloading Apache 452

http://httpd.apache.org

downloading PHP 456
Dynamic Module method 456
gunzip command 457
.gz extension 452, 457
httpd.conf file 458
i nstallation testing 458
i nstallation troubleshooting 459
LINUX 452
make install 453, 458
modifying httpd.conf file 454
opening web browser 454
PHP directory 457
PHP information page 459
PHP installation methods (list) 456
ServerAdmin setting 454
ServerName 454
starting and stopping web server 454
Static Module method 456
unarchiving PHP file 457
uncompressing Apache file 452
uncompressing PHP file 457
untarring Apache file 453

i nstalling PHP 440
adding lines to Apache file 448
extracting files to c:\php 447
i nstallation testing 450
i nstallation troubleshooting 451
modifying httpd.conf file 448, 450
mscvrt.dll 448
PHP 4.0.6 installer 441
PHP 4.0.6 zip package 440
php.ini 448
php.ini.dist 448
php4ts.dll 448
Windows platform 440
Windows system directory 448

installing, configuring and running MySQL
on Win32 463

MySQL daemon 464
MySQL monitor 464, 465
mysqld.exe 464
setup.exe file 463
unzipping installation files 463
version 3.23 463

i nstantiation 255
i ntegers 47
I nternet

online shopping 259

I nternet Explorer
bugs in Macintosh implementation 259

isset function 83
iteration. See looping

J
Java 251

Lerdorf, Rasmus 5
limit argument 126
Linux 253, 452
list function 69
loading variables from PHP (tutorial)

creating PHP file 46
lvtest.php 46
lvtest onclip.fla 45
urlencode function 46

loadVariables (tutorial)
Actions layer 22
Button layer 17
converting to movie clip 21
creating text file 18
Display frame 22, 24
frame loop 24
Load Data button 22
Loaded variable 24
Loading keyframe 22
l oadVariables command 22
(vtest.fla 17, 21
l vtest.txt 18, 24
onClipEvent handler 23
Text variable 18
Textbox layer 17
Window BG layer 17

loadVariables command. See also
loadVariables (tutorial). See also download
registration form (tutorial)

browser caches 18
passing data to server-side scripts 18, 24
POST and GET methods 25
syntax of command 15, 24
variables argument 24

local variables 94
logical operators (list) 51
loop control variable 62, 64
looping 60. See also user authentication

system (tutorial)
do-while loops 62
for loops 63
foreach loop 71
loop control variable 62, 64
looping through non-sequential arrays 69
looping through sequential arrays 67
multi-dimensional arrays 73
post-test loops 62
while loops 61

loose coupling of functions 99

M
mailing list (tutorial)

$action variable 244, 245
$matchFound variable 239, 240
$subscribers array 239, 241
$subsFile variable 245, 246
adding form elements 234
adding PHP script 237
admin interface 242
background 234
checking username and password 245
Error frame 236
error message 238
errorMsg variable 236
explode function 237, 239, 246
fail function 238, 240
fetching current time and date 240
fetchList function 246, 248
file function 237, 239, 241, 246
foreach loop 239, 241, 246, 248
fputs function 241
HTML form code 243
isSubscribed function 240
Loading frame 235
mail function 248
Mailing List movie clip 233
newline character (\n) 241
sendEmail function 245, 247
sending email to subscribers 248
separator character (1) 237, 241, 246
strftime function 247
stripslashes function 247
strtolower function 238
submit buttons 244
Subscribe button 235
subscribe function 239, 240

subscriber.dat file 242, 249
Success frame 236
success function 239
switch statement 238
Textboxes layer 234
Unix timestamp 247
unset function 241
unsubscribe function 239, 241

Math.random commannd 19
md5 hash function 421
minimum and maximum range values for
regular expressions 145
mktime function 191
mode parameter 211
modulus operator (%) 49
movie identifiers 398
multi-dimensional arrays 72
MySQL 2, 31, 252. See also news section
database (tutorial). See also news database
(tutorial). See also content management
system (tutorial). See also forum (case
study)

AUTO- I NCREMENT data-type element 260
CHAR(n) data-type 259
CREATE TABLE command 258
data-type elements (list) 260
data-types 258, 259
DATETIME data-type 259
DEFAULT def_value data-type element 260
error suppression operator (@) 278
history of MySQL 253
hostname 277
important features of MySQL 253
installation. See Appendix A and Appendix C
installing, configuring and running MySQL on
Win32 463
I NTEGER data-type 259
interfacing with MySQL from PHP 275
MEDIUMTEXT data-type 259
MySQL monitor 256, 284, 465
MySQL security features 466
mysgl affected rows function 290
mysgl close function 279
mysgl connect function 277
mysgl_create db function 283, 287
mysgl drop db function 285
mysgl fetch array function 292
mysgÎ free result function 293

mysgl i nsertid function 432
mysgi_num_rows function 293
mysgl_query function 286, 290, 292
mysgl select db function 281
NOT NULL I NULL data-type element 261
open source 253
PHP and MySQL 31
PRIMARY KEY data-type element 260
proprietary data-types 259
relational model of MySQL 254
relationships 254
REPLACE command (MySQL) 268
TEXT data-type 259
TIMESTAMP data-type 259
USE command 257
user base 253
username and password 277
VARCHAR(n) data-type 259

N
naming conventions 40, 99

camel notation 41
negation operator (-) 50
Netscape 178, 259
new operator 255
news archive (tutorial)

AdvancedSearch function 169, 173
Background layer 1 61
break keyword 170
Button layer 159
CheckBox movie clip 158, 162. 163
checked and unchecked box images 159
checked variable 1 60
count function 1 69
doCase variable 163, 169
doCriteria variable 162, 167, 170
fetchnews.php script 167
Flash interface 158
Form Elements layer 162
I mages layer 159
i nclude function 167
i nvisible button 159, 164
modifications 175
news.php script 166
NewsDisplay movie clip 164
newsltems array 1 69
outputting search results to Flash 168
SearchBox movie clip 158, 160, 163

searchResults variable 165, 168, 172
Simple and Advanced tabs 161
SimpleSearch function 169
stristr function 171
strlen function 172
strstr function 170
Submit button 162
un-escaping special characters 167

news database (tutorial)
creating tables 286
data strings 291
displaying contents of news table 293
i nserting row into database 290
time function 291

news section database (tutorial)
adding rows to news table 268
author field 262
body column 263
creating news table 261
I NSERT command 266
I NTEGER data-type 262, 263
MEDIUMTEXT data-type 263
newslD column 262, 268
primary key 262
SHOW TABLES command 263
title column 262
VARCHAR(n) data-type 262

Notepad 3, 448

0
object-oriented programming (OOP) 251.
See also television set (example). See also
shopping basket (tutorial)

access functions 256
classes 251
constructor functions 256
defining methods for classes 254
extending classes 258
i nheritance 257
methods 251, 253
objects 251
properties 251, 252

onClipEvent handler 19. See also
loadVariables (tutorial)

events handled (list) 20
syntax 1 9

online events calendar (case study)
Saction variable 365. 374

$count variable 378, 379
$event variable 383
$eventCount variables 377
SeventCounts array 376, 377
Stable variable 371, 376
$year and $month variables 374
addevent.php script 379, 383
admin user HTML interface 380
animation fade-out motion tween 357
Back and Forward buttons 359, 365
Back to Year View button 367
Button Bar layer 358, 365
client area 357
common.php script 371
database and table structure 372
database server connection 374
dateName text box 368
dbConnect function 374
decrementing month values 382
display text box 368, 369
display text box scroll buttons 367
Error frame 370
eventCount variable 364
eventlD primary key 354
events and data types (table) 354
Events Calendar movie clip 355, 362, 370
events-fetching ActionScript 357
eventssetup.php script 372
fetchevents.php script 374
Flash front end 355
getEventCounts function 376, 377
getEventDetails function 377
i nformation display ActionScript 368
i nvisible button 360, 362
Load Month frame 364
Load Year frame 357, 359
Month Box movie clip 361, 364
month information text boxes 360
month selection button 360
month variable 363, 364
Month View section 353
Month View user interface elements 367
monthO to month llinstances 362, 364
monthName variable 364
months array 364, 368
mysgl close function 375
mysql_query function 376, 378
new Date object 358

nl2br function 383
PHP back end 371
prevDay variable 369
project description 352
_scroll property 367
Section Items layer 357, 367
SELECT query 376
Show Month frame 365, 368
Show Year frame 358
stripslashes function 378
two digit to four digit years conversion 382
user interface design 352
Window BG layer 356
year variable 359
Year View section 353

online shopping 259
operators 49

arithmetic operators (list) 49
assignment operator (=) 50
comparison operators (list) 51
compound operators (list) 52
l ogical operators (list) 51
modulus operator (%) 50
negation operator (-) 50
operands 49

OR symbol (1) 147
Oracle 276
outputDetalls function 96

P

padding specifier 121
parameters 96
passive mode ftp 210
path attributes 181, 192
pattern matching 142
Pert 5
PHP. See also www.phpforflash.com . See
also installing PHP. See also installing
Apache and PHP for UNIX. See also Apache
and PHP for Mac 05 X

$this variable 254
++ operator 254
-> operator 255
Apache 2, 440
API (Application Programming Interface) 5
arithmetic operators (list) 49
arrays 65
assignment operator (=) 50

http://www.phpforflash.com

automatic global variable creation 185
backslash character 115
camel notation 41
case sensitivity of PHP 42
character escaping 115
client page request process 7
closing files 213
code editors. See Appendix C
coding style 40
commenting code 42
community forums. See Appendix C
comparison operators (list) 51
compound operators list) 52
concatenation operator (.) 48
cookie support in PHP 178, 181
cookies 9
curly braces 254
data storage and retrieval 208
data types in PHP 47
displaying files 215
dollar symbol ($) 44
double-quoted strings 118
doubles 47
downloading PHP 440
dynamic content 7
error messages 213
error suppression operator (@) 278
executing SQL queries with PHP 286
extending classes not possible 258
file handling functions 208. See also mailing
list (tutorial)
Form Interpreter 5
function keyword 254
functions in PHP 91, 93, 152
history of PHP 5
hosting companies supporting PHP. See
Appendix C
i mporting code from external files 90
i nitialising and using variables in PHP 43
i nstallation 440. See also Appendix A
i nstantiation 255
i ntegers 47
i nterfacing with MySQL from PHP 276
iteration S3
l ogical operators (list) 51
modulus operator (%) 50
MySQL 2
MySQL-related functions 276

naming conventions 40
navigating within files 228
negation operator (-) 50
new operator 255
non-printable character representation
(table) 119
object-oriented programming (OOP) 251
object-oriented support. See Appendix B
open source 2
opening files 209
operators 49
Oracle 276
PHP and MySQL 31
PHP for Flash designers 1
PHP for Flash forum 14
plus symbol (+) 48
quotations within strings 115
reading from files 217
regular expression functions 152
regular expressions 142
resources. See Appendix C
SELECT query 292
selection 53
semi-colons 8
server-side scripting language 5
setup tools. See Appendix C
si milarities to ActionScript 40
single-quoted strings 115
SQL Server 276
string concatenation 48
string concatenation operator (.) 116
strings 47, 114, 120
syntax identical to ActionScript 92
text editors 3
user-defined functions 90
using classes in PHP scripts 253
variable names 42, 44
variables 10, 43
versions 5, 6, 440
weakly typed language 47, 66
web resources. See Appendix C
writing to files 224
Zend engine 6

plus symbol (+) 48
POST method 25. See also download regis-
tration form (tutorial)
post-test loops 62
pre-test loops 62

precision specifier 122
print function 120
printf function 121, 123
PWS (Personal Web Server) 2

Q
quantifying character sequences 147

R
range notation 148
rawurldecode and rawurlencode functions
126
RDBMS (Relational Database Management
System) 252
regular expressions 422. See also news
archive (tutorial)

anchor characters 143
bounds 145
bracket expressions 148
character classes 148, 149
character ranges 148
e-mail validation expression breakdown 150
escaping special characters using backslash
symbol 149
minimum and maximum range values for
regular expressions 145
OR symbol (1) 147
pattern matching 142
PHP regular expression functions 152
quantifying character sequences 147
range notation 148
true wildcard character (.) 146
wildcard modifiers (*, + and?) 144

relational databases 253
REPLACE command (MySQL) 268
require function 99
reset function 70
return keyword 93, 97, 98
rewind function 228
rsort function 75

secure attributes 181, 192

Secure Socket Layer (SSL) protocol 181, 193
selection 53

i f statements 53
i f..else.. statements 55
i f..elseif..else.. statements 56
switch statements 57

selection statements 98
semi-colons 8
server-side scripts 5, 6

client page request process 7
session variables 259, 271
setcookie function 182, 183
shopping basket (tutorial)

$action variable 272
$description property 268, 269
$items property 269
$myBasket variable 272
$price property 268, 269
$total variable 271
addltem function 263, 269
asfunction URL 274
background graphics 261
Basket class 269, 272
Basket function 269
basket.php 262, 271
basketTotal variable 270
Empty button 260, 262
Form Elements layer 261
getContents method 270, 273
getDescription method 268
getPrice method 268
getTotalPrice method 271
I nternet Explorer Flash bugs 259
i sset function 272
Item class 268
I tem function 268
methods of Item class (list) 265
methods of shopping basket (list) 265
online shopping process 259
PHP script 265
products.php 262, 273
productsList variable 274
remove function 274
removeAll function 264, 270
removeltem function 264, 269
scroll bars 262
session variables 271
session register function 272

Shopping Basket movie clip 260
switch statement 272
unset function 269

shopping cart applications 178
SimpleText 3
sort function 74
sparse arrays 66
split function 156
spliti function 156
sprintf function 121, 123
SQL (Structured Query Language) 252. See
also content management system (tutorial)
See also news database (tutorial). See also
news section database (tutorial)

CREATE command 255
CREATE TABLE command 286
Data Definition Language (DDL) statements

286
Data Manipulation Language (DML)
statements 286, 290
DELETE command 270
DROP command 264
executing SQL queries with PHP 286
history of SQL 252
I GNORE option 266
I NSERT command 265
LOW_PRIORITY option 266
SELECT command 270,292
UPDATE command 269

SQL Server 276
square function 98, 100
statements

i f statements 53
if..else.. statements 55
i f..elseif..else.. statements 56
switch statements 57

status variable 196
strftime function 225
strings 47. See also text highlighter (tutori-
al). See also regular expressions. See also
news archive (tutorial)

backslash character 115
character escaping 115
concatenation operator (.) 48
conversion specifications 121
double-quoted strings 118
echo statement 118
format string 121

limit argument 126
matching quotation marks 114
non-printable character representation
(table) 119
plus symbol (+) 48
quotations within strings 115
single-quoted strings 115
string concatenation 48
string concatenation operator (.) 116
string manipulation functions 114
string separators 126
string-related functions 120
using variables in strings 117

stripslashes function 134
stristr function 131
strlen function 130
strstr function 130
strtolower function 132
strtotime function 191
strtoupper function 132
str replace function 131
substr function 127
Suraski, Zeev 6
switch statements 57

break keyword 60
Symbol Linkage 397
System R 252

T
TCX 253
television set (example)

$anotherTV object 256
$make property 256
$myTV object 255
channel variable 255
decreaseVolume method 255
defining constructor function 256
getChannel method 255
methods 253
properties 252
setChannel method 255

tell-a-friend (tutorial)
$comments variable 108
$mailFrom variable 108
$mailMessage variable 107
$mailSubject variable 108
$mailTo variable 108
$recipientEmail variable 109

user authentication system (tutorial)
$count variable 83
$matchFound variable 84
Back button 79
data display text box 79
empty function 83
errorMsg variable 79
exit statement 83
Flash login interface 77
for loop 83
i f statement 82
i sset function 83
Loading frame 78
Logged In frame 79
Login button 78
Login frame 78
message variable 79
onClipEvent handler 80
PHP login engine script 80
text boxes 78
usernames, passwords and messages arrays
81
Window BG layer 78

user poll (case study)
$action variable 344, 346, 348
$choice variable 344
$poll array 342
$poIIID variable 344
$posted variable 346
addpoll.php script 345
admin section in HTML 317
animation fade-out motion tween 326
back-end outline (table) 319
back-end scripts 318
Bar BG layer 321
Bar layer 321
Bar movie clip 322, 323
calculating poll percentages 332
common.php script 335, 341, 343
cookies preventing multiple voting 316, 340,
342, 344
Data frame 327, 329
data input HTML form 347
database 336,339
dbConnect function 335, 338, 341, 343, 346
Error frame 333
fail function 336, 337, 339, 341
fetching latest poll in table 341

$recipientName variable 109
$response variable 109
$senderName variable 107
$siteContact variable 107
$siteName variable 107
$siteURL variable 107
Actions window 106
Back button 105
Data Entry frame 104
Flash front-end 102
i nitializing variables 107
Loading frame 105
IoadVariables submit button 105
mail function 109
onClipEvent handler 106
Section Items layer 104
sending the e-mail 108
sending variables using POST method 105
tell a friend form movie clip 103
text boxes 104
thank you text box 105
Window BG layer 103

text editors
Notepad 3
SimpleText 3

text highlighter (tutorial)
$criteria variable 137
$source variable 137
creating form elements 136
Go button 136
layer and frame structure 135
l oadVariables function 137
result text box 136
str replace function 137
Window BG layer 136

time function 10, 187
true wildcard character (.) 146
type specifier 122

V

Unix timestamp 187
American date formats 191
strtotime function 191

UPDATE command 269
updateCount function 95
urldecode function 126
urlencode function 46, 124
USE command 257

fetchpoll.php script 327, 340, 343, 344
foreach loop 342
form elements text boxes 330
i nclude function 335
i ncoming data handling ActionScript 333
i nserting new poll into table 346
invisible button timeline 328
I nvisible Buttons layer 328, 329
IastPollID cookie 342

V

Load Poll frame 326
Load Vote frame 330
mysgl close function 340, 343, 347
mysgl create db function 339
mysgl fetch array function 342
mysqt_query function 340
outputting results to Flash 345
Percent Bar movie clip 320, 323, 330, 331
PHP scripts 334
Poll View elements 318
project description 314
registering global variables 335
result variable 342
Result View elements 318
scaling percent bar 322
Section Elements layer 327
Section Items layer 326, 330, 331
setPos function 324, 333
setup.php script 338
strftime function 342
text boxes for poll information 327
time function 346
Unix timestamp 342, 346
user interface 317, 320, 328
User Poll movie clip 325, 333
View Results frame 332, 333
vote.php script 343
votes variables 332
Window BG layer 326
_xscale property 322, 324

variables 10. See also loading variables
from PHP (tutorial)

cookies versus global variables 178
dollar symbol ($) 44
echo statement 118
global variables 94
i nitializing and using variables in PHP 43

local variables 94
parameters 96
session variables 259, 271
using variables in strings 117
values 43
variable lifetime 95
variable names 42, 44
variable scope 94
variables argument 24

Visual Basic 251

W
weakly typed languages 47, 66
web servers

Apache 2, 440
IIS (Internet Information Service) 2
PWS (Personal Web Server) 2

web sites
online shopping 259
remembering visitor information 178
static pages 7

while loops 61
width specifier 122
wildcard modifiers (a, + and ?) 144
Wordpad 458
www.apache.org 446
www.friendsofed.com 3
www.google.com 25
www.mysgl.com 463
www.php.net 80, 120, 440, 451
www.phpforflash.com 3, 14, 80, 209, 310
www.webhoster.co.uk 471
www.xcalibre.co.uk 471

X
Xcalibre Communications 471

http://www.apache.org
http://www.friendsofed.com
http://www.google.com
http://www.mysgl.com
http://www.phpforflash.com
http://www.webhoster.co.uk
http://www.xcalibre.co.uk

	intro.pdf
	About the authors
	page 2
	Table of contents
	page 4
	page 5
	page 6
	page 7
	Introduction
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

	Chapter 1 - Dynamic data for Flash
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	intro.pdf
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

	Chapter 2 - Getting strarted with PHP
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46

	Chapter 3 - Making PHP work for you
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Chapter 4 - PHP information handling
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

	Chapter 5 - Looking for patterns
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35

	Chapter 6 - Remembering visitor information
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

	Chapter 7 - Tapping into external files
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43

	Chapter 8 - Introducing the database
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Chapter 9 - Integrating PHP with MySQL
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36

	Chapter 10 - Case Study 1 - User poll
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37

	Chapter 11 - Case Study 2 - Event planner
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

	Chapter 12 - Case Study 3 - Forum
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51

	A - Installing PHP and MySQL
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

	B - PHP and OOP
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	C - Resources
	page 1
	page 2
	page 3

	index
	A - B - C
	C - D
	E - F
	F -
	F - G - H - I
	I - J -
	J - M -
	M - N - O
	O - P -
	P -
	P - Q - R - S
	S - T
	T - U -
	U - V - W - X
	End page

	Chapter 2 - Getting strarted with PHP
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46

	Chapter 3 - Making PHP work for you
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Chapter 4 - PHP information handling
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

	Chapter 5 - Looking for patterns
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35

	Chapter 6 - Remembering visitor information
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

	Chapter 7 - Tapping into external files
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43

	Chapter 8 - Introducing the database
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Chapter 9 - Integrating PHP with MySQL
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36

	Chapter 10 - Case Study 1 - User poll
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37

	Chapter 11 - Case Study 2 - Event planner
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

	Chapter 12 - Case Study 3 - Forum
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51

	A - Installing PHP and MySQL
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

	B - PHP and OOP
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	C - Resources
	page 1
	page 2
	page 3

	index
	A - B - C
	C - D
	E - F
	F -
	F - G - H - I
	I - J -
	J - M -
	M - N - O
	O - P -
	P -
	P - Q - R - S
	S - T
	T - U -
	U - V - W - X
	End page

	2: 2
	Texte2: 1
	Texte3: 2
	Texte4: 3
	Texte5: 5
	Texte6: 7
	Texte7: 9
	Texte8: 10
	Texte9: 11
	Texte10: 12
	Texte11: A
	Texte12: B
	Texte13: C
	Texte1: 12
	Texte14: Ripped by
	Texte15:

