a” Jun-ichiro-itojun Hagino

IPV 6

| Network
4 Programming




IPv6 Network Programming



This page intentionally left blank



IPv6 Network Programming

Jun-ichiro itojun Hagino

Amsterdam ¢ Boston ¢ Heidelberg * London ¢ New York ¢ Oxford
Paris * San Diego ¢ San Francisco ¢ Singapore * Sydney * Tokyo

ELSEVIER

DIGITAL
PRESS



a3
S/

Elsevier Digital Press
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining
Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on
acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
ISBN: 1-55558-318-0

For information on all Elsevier Digital Press publications visit our Web site at
www.books.elsevier.com

04 05 06 07 08 09 10987 654321

Printed in the United States of America



Contents

Preface vii
About This Book ix
Write Portable Application Programs ix
Be Security Conscious When Writing Programs ix
Terminology and Portability X
| Introduction 1

.1 A History of IPv6 and Its Key Features I
1.2 Transition from IPv4-Only Internet to IPv4/v6 Dual Stack Internet
1.3 UNIX Socket Programming

1.4 IPv6 Architecture from a Programmer’s Point of View 10
2 IPv6 Socket Programming 13
2.1 AF_INET6: The Address Family for IPvé 13
2.2 Why Programs Need to Be Address-Family Independent? 14
23 Guidelines to Address-Family Independent Socket Programming 17
3 Porting Applications to Support IPvé 27
3.1 Making Existing Applications IPvé Ready 27
3.2 Finding Where to Rewrite, Reorganizing Code 27
3.3 Rewriting Client Applications 29

34 Rewriting Server Applications 31




vi

Contents

I &6 m™ m ©O 0O W

Tips in IPv6 Programming

4.1
4.2
43
44
4.5
4.6
4.7
4.8

Parsing a IPv6 Address out of String
Issues with “:” As a Separator

Issues with an IPv4 Mapped Address
bind(2) Ordering and Conflicts

How IPv4 Traffic Gets Routed to Sockets
Portability across Systems

RFCs 2292/3542, Advanced API

Platform Support Status

A Practical Example

5.1
5.2
5.3

Server Program Example—popa3d
Further Extensions

Client Program Example—nail

Coming updates to IPv6 APlIs

RFC2553 “Basic Socket Interface Extensions for IPv6"

RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC2292 “Advanced Sockets API for IPv6"

49

49
49
50
51
52
52
54
54

59

59
62
62

8l

83

125

165

RFC3542 “Advanced Sockets Application Program Interface (API) for IPv6" 233

IPv4-Mapped Address APl Considered Harmful
IPv4-Mapped Addresses on the Wire Considered Harmful
Possible Abuse Against IPvé Transition Technologies

An Extension of format for IPv6 Scoped Addresses

Protocol Independence Using the Sockets API

References

311

317

323

333

345

355




Preface

Here in Japan, it looks like the Internet is deployed everywhere. Not a day will go by
without hearing the word Internet. However, many people do not know that we are
very close to reaching the theoretical limit of IPv4. The theoretical limit for the
number of IPv4 nodes is only 4 billion—much fewer than the world’s population.

People in trains and cars send email on their cellphones using small numeric key-
pads. Most of these devices are not connected to the real Internet—these cellphones do
not speak the Internet Protocol. They use proprietary protocols to deliver emails to the
gateway, and the gateway relays the emails to the Internet. Cellular operators are now
trying to make cellphones a real VoIP device (instead of “email only” device) to avoid
the costs of operating proprietary phone switches/devices/gateways and to use inexpen-
sive IP routers.

There are a lot of areas where the Internet and the Internet Protocol have to be
deployed. For instance, we need to enable every vehicle to be connected to the IP
network in order to exchange information about traffic congestion. There are plans to
interconnect every consumer device to the Internet, so that vendors can collect infor-
mation from the machines (such as statistics), as well as provide various value-added
services.

Also, we need to deploy IP to every country in the world, including highly popu-
lated areas such as China, India, and Africa, so that everyone has equal opportunity to
access the information on the Internet.

To deploy the Internet Protocol to wider domains, the transition from IPv4 to
IPvG6 is critical. IPv4 cannot accommodate the needs discussed previously, due to the

limitation in address space size. With IPv6 we will be able to accomodate 3.4 x 10%
nodes to the Internet—it should be enough for our lifetime (I hope).

vii




viii

Preface

The IPv6 effort was started in 1992, in the INET92 conference held in Kobe,
Japan. Since then, we have been making a huge amount of effort to help the transition
happen. Fortunately, it seems that the interest in IPv6 has reached the critical mass,
and the transition to IPv6 is now a reality. Many ISPs in Japan are offering commercial
IPv6 connectivity services, numerous vendors are shipping IPv6-enabled operating
systems, and many IPv6-enabled products are coming. If you are not ready yet, you
need to hurry up.

The transition to IPv6 requires an upgrade of router software and host operating
systems, as well as application software. This book focuses on how you can modify
your network application software, based on the socket API, to support IPv6. When
you write a network application program, you will want the program to be IPv6-
capable, so that it will work just fine on the IPv6 network, as well as the IPv4 network.
After going through this book, you will be able to make your programs IPv6-ready. It
will also help you port your IPv4-capable application to become IPv6-capable at the
same time.

In this book, we advocate address-family independent socket layer programming
for IPv6 transition. By following the instructions in the book, your code will become
independent from the address family (such as AF_INET or AF_INETG). This is the
best way to support IPv6 in your program, compared with other approaches (such as
hardcoding AF_INETG into the program).

I would like to thank the editor for the Japanese edition of the book, Ms. Eiko
Akashima, and translator for the Japanese edition of the book, Ms. Ayako Ogawa (the
original manuscript of the book is in English, even though it was first published
in Japan). On the technical side, I would like to thank Mr. Craig Metz, who generously
permitted us to include his paper on address-family independent programming, as well
as the members of the WIDE/KAME project, who have made a lot of useful sugges-
tions to the content of the book.

Jun-ichiro itojun Hagino
Tokyo, Japan




About This Book

This book tries to outline how to write an IPv6-capable application on a UNIX socket
API, or how to update your IPv4 application to be IPv6-capable. The book tries to
show portable and secure ways to achieve these goals.

Write Portable Application Programs

There are a large number of platforms that support socket API for network program-
ming. When you write an application on top of socket API, you will want to see your
program work on as many platforms as possible. Therefore, portability is an important
factor in application programming. As many of you already know, there are many
UNIX-like operating systems, as well as non-UNIX operating systems that implement
socket APIs. For instance, Windows XP does implement socket API; Mac OS X uses
BSD UNIX as the base operating system and provides socket API to the users (Apple
normally recommends the use of Apple APIs). So the book tries to recommend port-
able ways of writing IPv6-capable programs.

Be Security Conscious When Writing Programs

Security is a great concern these days in the Internet—if you are a network administra-
tor, I guess you are receiving tons of spam, email viruses, and vendor advisories every
day. To secure the Internet infrastructure, every developer has to take a security
stance—to audit every line of code as much as possible, to use proper AP, and write a
correct and secure code. To achieve this goal, in this book, efforts are made to ensure
correctness of the examples. The examples presented in this book are implemented
with security stance. Also, the book tries to lead you to write secure programs. For
instance, the book recommends against the use of some of the IPv6 standard APIs;




Terminology and Portability

unfortunately, there are some IPv6 APIs that are inherently insecure, so the book tries
to avoid (and discourage) the use of such APIs.

This book does not try to cover every aspect of IPv6 technology—the book con-
strains itself to the IPv6-capable programming on top of socket API. There are
numerous reading materials on IPv6 technology, so readers are encouraged to read
them before starting to work on this book.

Also, the book assumes a certain level of expertise in socket API programming.
The book does not try to explain every aspect of socket API programming; please read
the material listed in the References for an introductory description to socket API.

Terminology and Portability

This section describes notations and terminologies used in this book. Here we also dis-
cuss porting issues of examples when you are using operating systems that are not

4.4BSD variants.
Terminology

System calls and system library functions are usually denoted by UNIX manpage chap-
ters: socket(2) or printf(3).

“Nodes” means any IP devices. “Routers” are any nodes that forward packets for
others. “Hosts” are nodes that are not routers (however, in this book, we don’t really
need to make distinctions between them).

Portability of Examples

The examples in the book compile and run on latest *BSD releases. I tried to make the
examples as correct as possible.

If you are planning to use the examples on other platforms, here are some tweaks
dependent on OS implementations.
Solaris, Linux, Windows XP

struct sockaddr has no sa_len member. Therefore, it is not possible to get the size of a
given sockaddr when the caller of the function passed a pointer to a sockaddr. The only
ways to work around this problem are:

1. To always pass around the length of sockaddr separately on function calls:




Terminology and Portability

X

struct sockaddr *sa;
int salen;

foo(sa, salen)

To have a switch statement to determine length of sockaddr. With this
approach, however, the application will not be able to support sockaddrs with
unknown address family.

struct sockaddr *sa;
int salen;

switch (sa->sa family) {
case AF_ INET:
salen = sizeof (sockaddr in);
break;
case AF_INET6:
salen = sizeof (struct sockaddr iné6) ;
break
default:
fprintf (stderr, “not supported\n”) ;
exit (1) ;
/*NOTREACHED* /

Missing Type for Variables

In some cases, your platform may not have the type declaration used in this book. In
such cases, use the following:

If socklen_t is not defined—such as older *BSD releases:

Use unsigned int instead.

If in_port_t is not present:

Use u_intl6_t.

If u_int8_t, u_intl6_t, and u_int32_t are not found:

If your system has /usr/include/inttypes.h (which is defined in the recent C

language standard), you may use uint8_t, uint16_t, or uint32_t, respectively,
after #include <inttypes.h>.




This page intentionally left blank



Introduction

A History of IPv6 and Its Key Features

In 1992, the IETF (http://www.ietf.org/) became aware of a global shortage of IPv4
addresses and technical obstacles in deploying new protocols due to limitations
imposed by IPv4. An IPng (IP next generation) effort was started to solve these issues.
The discussion is outlined in several RFCs, starting with RFC 1550. After a large
amount of discussion, in 1995, IPv6 (IP version 6) was picked as the final IPng pro-
posal. The IPv6 base specification is specified in RFC 1883 and revised in RFC 2460.

In a single sentence, IPv6 is a reengineering effort against IP technology. Key fea-
tures are as follows.

Larger IP Address Space

IPv4 uses only 2732 bits for IP address space, which allows only (theoretically) 4 bil-
lion nodes to be identified on the Internet. Four billion may look like a large number;
however, it is less than the world’s population. Moreover, due to the allocation (in)effi-
ciency, it is not possible to use up all 4 billion addresses.

IPv6 allows 27128 bits for IP address space, (theoretically) allowing
340,282,366,920,938,463,463,374,607,431,768,211,456 (340 undecillion) nodes
to be uniquely identified on the Internet. Larger address space allows true end-to-end
communication, without NAT or other short-term workarounds against IPv4 address
shortage. (In these days, NAT has been a headache to new protocol deployment and
scalability issues, and we really need to decommission NAT for the Internet to grow

further.)




2 I.I A History of IPv6 and lts Key Features

i1.1.2 Deploy More Recent Technologies

After IPv4 was specified 20 years ago, we saw many technical improvements in net-
working. IPv6 covers a number of those improvements in its base specification,
allowing people to assume that these features are available everywhere, anytime. Recent
technologies include, but are not limited to, the following:

»  Autoconfiguration—With IPv4, DHCP is optional. A novice user can get into
trouble if visiting an offsite without a DHCP server. With IPv6, the stateless
host autoconfiguration mechanism is mandatory. This is much simpler to use

and manage than IPv4 DHCP. RFC 2462 has the specification for it.

m Security—With IPv4, IPsec is optional and you need to ask the peer if it sup-
ports IPsec. With IPv6, IPsec support is mandatory. By mandating IPsec, we
can assume that you can secure your IP communication whenever you talk to

IPVvG6 peers.

n  Friendly to traffic engineering technologies—IPv6 was designed to allow better
support for traffic engineering such as diffserv' or RSVP2. We do not have sin-
gle standard for traffic engineering yet; so the IPv6 base specification reserves a
24-bit space in the header field for those technologies and is able to adapt to
coming standards better than IPv4.

»  Multicast—Multicast support is mandatory in IPv6; it was optional in IPv4.
The IPv6 base specifications extensively use multicast on the directly connected
link. It is still questionable how widely we will be able to deploy multicast (such
as nationwide multicast infrastructure), though.

m  Better support for ad hoc networking—Scoped addresses allow better support for
ad hoc (or “zeroconf”) networking. IPv6 supports anycast addresses, which can
also contribute to service discoveries.

1.1.3 A Cure to Routing Table Growth

The IPv4 backbone routing table size has been a big headache to ISPs and backbone
operators. The IPv6 addressing specification restricts the number of backbone routing
entries by advocating route aggregation. With the current IPv6 addressing specifica-
tion, we will see only 8,192 routes in the default-free zone.

L
I diffserv: short for “differentiated services.” It is an IETF standard that classifies packets into a couple of classes and
performs rough bandwidth/priority control.

2. RSVP: an IETF standard for bandwidth reservation.




A History of IPv6 and Its Key Features 3

1.1.4

1.1.5

1.1.6

1.1.7

1.1.8

Simplified Header Structures

IPvG6 has simpler packet header structures than IPv4. It will allow vendors to imple-
ment hardware acceleration for IPv6 routers easier.

Allows Flexible Protocol Extensions

IPv6 allows more flexible protocol extensions than IPv4 by introducing a protocol
header chain. Even though IPv6 allows flexible protocol extensions, IPv6 does not
impose overhead to intermediate routers. It is achieved by splitting headers into two
flavors: the headers intermediate routers need to examine and the headers the final des-
tination will examine. This also eases hardware acceleration for IPv6 routers.

Smooth Transition from IPv4

There were a number of transition considerations made during the IPv6 discussions.
Also, there is a large number of transition mechanisms available. You can pick the most
suitable one for your network during the transition period.

Follows the Key Design Principles of IPv4

IPv4 was a very successful design, as proven by the large-scale global deployment. IPv6
is a new version of IP, and it follows many of the design features that made IPv4 very
successful. This will also allow smooth transition from IPv4 to IPv6.

And More

There are number of good books available about IPv6. Be sure to check these if you are
interested.

Protocol Header Chain

IPv6 defines a protocol header chain, which is a way to concatenate extension
headers repeatedly after the IPv6 base header. With IPv4, the IPv4 header is adja-
cent to the final header (like TCP). With IPv6, the protocol header chain allows
various extension headers to be put between the IPv6 base header and the final

header.

IPv6 header J'—V Routing header J—V Fragment header J—+ Fragment of TCP

Next Header = Routing Next Header = Fragment Next Header = TCP header + data

| Chapter |




[.2 Transition from IPv4-Only Internet to IPv4/v6 Dual Stack Internet

1.2 Transition from IPv4-Only Internet to IPv4/v6 Dual
Stack Internet

1.2.1

Today, most of the nodes on the Internet use IPv4. We will need to gradually intro-
duce IPv6 to the Internet and hopefully make all nodes on the Internet IPv6-capable.

To do this, the IETF has carefully designed IPv6 migration to be seamless. This is
achieved by the following two key technologies:

m  Dual stack

m  Tunneling

With these technologies, we can transition to IPv6 even though IPv4 and IPv6 are
not compatible (IPv4-only devices and IPv6-only devices cannot talk with each other
directly). We will go into the details soon.

It is expected that we will have a long period of IPv4/v6 dual stack Internet, due to
the wide deployment of IPv4 devices. For instance, some of the existing devices, such
as IPv4-capable game machines, may not be able to be upgraded to IPv6.

Therefore, in this book, we would like to focus on the issues regarding the transi-
tion from IPv4-only Internet to IPv4/v6 dual stack Internet and the changes in socket
API programming,.

Dual stack

At least in the early stage of IPv6 deployment, IPv6-capable nodes are assumed to be
IPv4-capable. They are called “IPv4/v6 dual stack nodes” or “dual stack nodes.” Dual
stack nodes will use IPv4 to communicate with IPv4 nodes, and use IPv6 to com-
municate with IPv6 nodes. It is just like a bilingual person—he or she will use English
when talking to people in the States, and will use Japanese when talking to Japanese

people.

The determination of protocol version is automatic, based on available DNS
records. Because this is based on DNS, and normal users would use fully qualified
domain name (FQDN) in email addresses and URLs, the transition from IPv4 to
IPv6 is invisible to normal users. For instance, assume that we have a dual stack
node, and we are to access http://www.example.com/. A dual stack node will behave as
follows:

m  [f www.example.com resolves to an IPv4 address, connect to the IPv4 address.
In such a case, the DNS database record for www.example.com will be as
follows:




[.2 Transition from IPv4-Only Internet to IPv4/v6 Dual Stack Internet 5

1.2.2

www.example.com. IN A 10.1.1.1

If www.example.com resolves to an IPv6 address, connect to the IPv6 address.

www . example.com. IN AAAA 3ffe:501:ffff::1234

If www.example.com resolves to multiple IPv4/v6 addresses, IPv6 addresses
will be tried first, and then IPv4 addresses will be tried. For example, with the
following DNS records, we will try connecting to 3ffe:501:ffff::1234, then
3ffe:501:ff::5678, and finally 10.1.1.1.

www.example.com. IN AAAA 3ffe:501:ffff::1234
www . example.com. IN AAAA 3ffe:501:ffff::5678
www.example.com. IN A 10.1.1.1

Since we assume that IPv6 nodes will be able to use IPv4 as well, the Internet will

be filled with IPv4/v6 dual stack nodes in the near future, and the use of IPv6 will
become dominant.

Tunneling

Even when we have IPv4/v6 dual stack nodes at two locations (e.g., home and office),
it may be possible that the intermediate network (ISPs) are not IPv6-ready yet. To
circumvent this situation, RFC 2893 defines ways to encapsulate an IPv6 packet into
an IPv4 packet. The encapsulated packet will travel IPv4 Internet with no trouble,
and then decapsulate at the other end. We call this technology “IPv6-over-IPv4
tunneling.”

For example, imagine the following situation (see Figure 1.1):

We have two networks: home and office.
We have an IPv4/v6 dual stack host and router at both locations.

However, we have IPv4-only connectivity to the upstream ISP.

In this case, we can configure an IPv6-over-IPv4 tunnel between X and Y. An IPv6

packet from A to B will be routed as follows (see Figure 1.2):

The IPv6 packet will be transmitted from A to X, as is.

X will encapsulate the packet into an IPv4 packet.

The IPv4 packet will travel the IPv4 Internet, to Y.

Y will decapsulate the packet and recover the original IPv6 packet.
The packet will reach B.

| Chapter |




6 I.3 UNIX Socket Programming

_
Figure 1.1
IPv4/v6 dual stack - MENMERRERES -
network, separated . -
by IPv4-only a [Fvd 5 Fwd
Internet. = -
] -
Dual sfack router X _ _ Dual stack rowter Yy
IPvd ' v IPvd (v
Dwal stack host A Ei Qi Ciual stack hosl 5
Home Office
—_—
. IPvi
Figure 1.2
IPv6-over-IPv4 - S -
tunnel. U LJ
B H
Dwal stack router X ([—— SSSE) ol stack router v
IPvd | vii IPvd /v
Dzl s1act nost A Qi Ei Diual slack nosl 5
Home Office

From a programmer’s point of view, tunneling is transparent: It can be viewed as a
simple IPv6 point-to-point link. Therefore, when writing IPv6-capable programs, you
can ignore tunneling.

1.3 UNIX Socket Programming

This section briefly describes how UNIX systems abstract network accesses via socket
interface. If you are familiar with UNIX sockets, you can skip this section. Also, the




I.3 UNIX Socket Programming 7

section does not try to be complete—for the complete description, you may want to
check the reading material listed in the References.

With only a few exceptions, UNIX operating systems abstract system resources as
files. For instance, the hard disk device is abstracted as a file such as /dev/rwdOc. Even
physical memory on the machine is abstracted as a file, /dev/mem. You can open(2),
read(2), write(2), or close(2) files, and files already opened by a process are identified
by an integer file descriptor.

int fd; /* file descriptor */
char buf [128];

fd = open(“/tmp/foo”, O RDONLY, 0);
if (fd < 0) {

perror (“open”) ;

exit (1) ;

/*NOTREACHED* /

}

if (read(fd, buf, sizeof (buf)) < 0) {
perror (“read”) ;
exit (1) ;
/*NOTREACHED* /

}

close (f4d) ;
exit (0) ;

Accesses to the network are also abstracted as special kinds of files, called sockets.
Sockets are created by a socket(2) system call. Sockets are a special kind of file descrip-
tor, so they are represented as an integer and can be terminated by using close(2). On a
socket(2) call, you need to identify the following three parameters:

m  Protocol family—AF_INET identifies IPv4.
. Type of socker—SOCK_STREAM means connetion-oriented socket model.
SOCK_DGRAM means datagram-oriented socket model.

®  Protocol type—such as IPPROTO_TCP or IPPROTO_UDP.

For the Internet protocol, there are two kinds of sockets: connection-oriented
and connectionless sockets. Connection-oriented sockets abstract TCP connections, and
connectionless sockets abstract communication over UDP. Type of socket and protocol

type has to be consistent; SOCK_STREAM has to be used with IPPROTO_TCP.

Note: There are transport layer protocols other than TCP/UDP proposed in the
IETF, such as SCTP or DCCP. They are also abstracted as connection-oriented or

connectionless sockets.

| Chapter |




I.3 UNIX Socket Programming

int s; /* socket */

/*
* AF INET: protocol family for IPv4
* SOCK_STREAM: connection-oriented socket
* IPPROTO_TCP: use TCP on top of IPv4
*/
s = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;
if (s < 0) {
perror (“socket”); exit(1);
/*NOTREACHED* /
}
close(s) ;

While read(2) or write(2) is possible for sockets, we normally need to supply more
information, such as peer’s address, to get the data stream to reach the peer. There are
additional system calls specifically provided for sockets, such as sendmsg(2), sendto(3),
recvmsg(2), and recvfrom(3).

Since we need to identify the peer when accessing the network, we need to denote
it either by:

m  Using connect(2) to make the socket a connected socket. The peer’s address
will be kept in the system, and you can use read(2) or write(2) after connect(2).

m  Using sendto(3) or sendmsg(2) to denote the peer every time you transmit data
to the socket.

For connection-oriented (TCP) sockets, there are two sides: client side, which
makes active connection, and server side, which awaits connection from the client
passively. connect(2) is mandatory for the client side. bind(2), listen(2), and accept(2)
are mandatory for the server side. (See Figure 1.3.)

For connectionless (UDP) sockets, connect(2) is not mandatory. To receive traffic

from other peers, bind(2) is mandatory. (See Figure 1.4.)

To denote TCP/UDP endpoints, IP address and port number are necessary. To
carry the endpoint information, we use a C structure called “sockaddr” (short for
“socket addresses”). sockaddr for IPv4 is defined in the following code segment. Fields
that appear on wire (sin_port and sin_addr) are in network byte order; other fields are
in host byte order.

/*

* Note: the definition is based on 4.4BSD socket API.

* Linux/Solaris has no sin len field.

*/

struct sockaddr in {
u_int8_t sin_len; /* length of sockaddr */
u_int8 t sin family; /* address family */




I.3 UNIX Socket Programming 9

— >
Figure 1.3

Communication
over connection-
oriented sockets.

—
Figure 1.4

Communication
over connectionless
sockets.

Server
socket | Create 3 sooet

bind  Associate port numbsr o ihe sockst

listen | SEStING ready to accept connection
Client | establishment requests

i e accept  Elock unll the receint of Incoming connection
Lreais 3 sockel | establshment ragues:

Eslatlish 3 connection  Conmect

I
Trarsmit data jrequests) | s2nd -—-.E'.i'*_{_‘___*
TECY  Recelve 033 [requests)

‘,_,-"E"'/alﬁ/ send  Transmit dats {resulls)
Recelve 0ata (resuits) Telw

Connection reguest

socket | Creats @ societ

bind  Associate port number to ihe sociat

recvirom 3 \

Client Slack untll the recelpt of data (reguess)
Cragie asockst  socked

Transmit data reguests)  sendio — *

‘/D’m_f,”"
Aecelve da3ta (resuls) recvirom

semdte  Transmit dats (results)

u_intlé_t sin port; /* TCP/UDP port number */
struct in_addr sin_addr; /* IPv4 address */
int8 t sin zero[8]; /* padding */

}i

Normally, users will denote the peer’s address either as a host name (e.g.,
www.example.org) or as a numeric string representation (e.g., 10.2.3.4). Mapping
between host names and IP addresses is registered in theDNS database, and there are
APIs to query the DNS database, such as gethostbyname(3) or gethostbyaddr(3).

There are also functions to convert IP address in numeric string representation

| Chapter |




10 I.4  IPv6 Architecture from a Programmer’s Point of View

into binary representation, such as struct in_addr (inet_pton(3)) and vice versa
(inet_ntop(3)).

1.4 1IPv6 Architecture from a Programmer’s
Point of View

From a programer’s point of view, IPv4 and IPv6 are almost exactly the same; we have
an IP address (size differs: 32 bit and 128 bit) to identify nodes (actually network inter-
faces) and a TCP/UDP port number to identify services on the node.

There are several points that programmers need to know:

m  In both cases, users normally will use DNS names, rather than IP addresses, to
identify the peer. For instance, users use http://www.example.com/ rather than

http://10.2.3.4/.

m  [Pv4 addresses are presented as decimals separated by dots, such as 10.2.3.4.
IPv6 addresses are presented as hexadecimals separated by colons, such as
3fte:501:ffff:0:0:0:0:1. Two continuous colons can be used to mean continu-
ous zeros—for example, 3ffe:501:fff:0:0:0:0:1 is equal to 3ffe:501:ffff:: 1.

m  To avoid ambiguity with the separator for the port number, the numeric IPv6
address in a URL has to be wrapped with a square bracket: htep://
[3ffe:501:ffff::1]:80/. Again, however, users won’t, and shouldn’t need to, use a
numeric IPv6 address in URLs. DNS names should be used instead.

m In IPv4, we used variable-length subnet masks, such as /24 (netmask
Oxfftf00), /28 (0xftttttt0), or /29 (OxfHHtS). Variable-length subnet mask
was introduced to reduce IPv4 address space use; however, it has certain draw-
backs: It limits how many devices you can connect to your subnet, and you will
need to change subnet mask, or renumber the subnet, when the number of
devices goes too high. In IPv6, we always use /64 as the subnet mask. Therefore,
it is guaranteed that up to 2% devices can be connected to a given subnet. (See
Figures 1.5 and 1.6.)

m  InIPv4, a node normally has a single IPv4 address associated with it. In IPv6, it
is normal to have multiple IP addresses onto a single node. More specifically,
IPvG6 addresses are assigned to interfaces, not to nodes. An interface can have

multiple IPv6 addresses.

m  In IPv4, there were three communication models: unicast, broadcast, and mul-
ticast. Unicast is for one-to-one communication, broadcast is for one-to-all
communiation on a specific broadcast medium (e.g., an ethernet link), and
multicast is for one-to-many communication with a specific set of nodes
(within a multicast group). With IPv6, broadcast is deprecated and integrated




I.4  IPv6 Architecture from a Programmer’s Point of View

—
Figure 1.5

Variable-length
subnet mask in
1Pv4. If we try ro
connect more nodes
to subnet B on the
diagram’s left side,
we have to
renumber subnet
B’s network address
to 10.1.2.16/28 to
accommodate
them.

—
Figure 1.6

IPv6 uses a fixed
64-bit subnet
mask. There is no
need to renumber
even when you
connect more nodes
to an IPv6 subnet.

10121 10126 12 1.L1 PLE2S
Subret & Subret &

3 i 5
10 L2022 B ; POLE 229 ‘ =

Addrezs Renumbaring
|subnat ]

o [ - ocir

Subret B | | _____________ ] >< Subret B [
WLZEY S VL2 162E O

J LN e L1214 1 181117 LM Wecie e [ Mok |

Cannot accommodate more nodes on subnet B

Each IPv6 subnet can accommodate 27264 nodes
A,

Submet A -
Affa:c0l EEEF:1234:: /64

rovter [N

sEfm.c0l . EEfFF 1235 : /54 FEEFAFAFSETaETaEa

into multicast, and broadcast is no longer needed. For instance, to transmit a
packet to all nodes on a specific broadcast medium, we use an IPv6 link-local
all-nodes multicast address, which is ff02::1. IPv6 introduces anycast as a new
communication model, which is one-to-one communication, where the desti-
nation node can be chosen from multiple nodes based on “closeness” from the
source.

m  InIPv4, with a private address as the only exception, unicast addresses are glob-

ally unique. In IPv6, there are scoped IPv6 addresses, namely, link-local IPv6
addresses. These addresses are defined to be unique across a given link. Link-
local address is under the fe80::/10 prefix range. Since uniqueness of a link-

| Chapter




I.4  IPv6 Architecture from a Programmer’s Point of View

local address is limited in a certain link (such as Ethernet segment), you can see
the same link-local address used in multiple places.

Note: There was another kind of scoped address, site-local address, defined in the speci-
fication. However, it is soon to be deprecated so you do not need to worry about it.

For more details, you may want to check other IPv6-related reading materials,
such as those listed in the References.




IPv6 Socket Programming

2.1

AF_INET6: The Address Family for IPv6

As we have seen in Chapter 1, on the socket API we use a constant AF_INET to iden-

tify IPv4 sockets. Also, to identify IPv4 peers on the socket we have used C structure,
called sockaddr_in.

To handle IPv6 on the socket API, we use a constant called AF_INETG6. The

expression is as follows:

s = socket (AF_INET, SOCK STREAM, IPPROTO TCP) ;
This could be rewritten as:

s = socket (AF_INET6, SOCK_STREAM, IPPROTO TCP) ;
to initialize an IPvG socket into variable s.

The following code shows the definition of sockaddr_in and sockaddr_in6:

Definition of sockaddr in:
struct sockaddr in {

u_int8 t sin_len; /* length of sockaddr */
u_int8_t sin_family; /* address family */
u_intlé_t sin port; /* TCP/UDP port number */
struct in_addr sin_addr; /* IPv4 address */

int8_t sin_zero([8]; /* padding */

}i

Definition of sockaddr in6:
struct sockaddr iné {

u_int8_t siné_len; /* length of this struct (socklen t) */
u_int8_t sin6_family; /* AF_INET6 (sa_family t) */
u_intlé_t siné_port; /* Transport layer port */




14 2.2 Why Programs Need to Be Address-Family Independent?

u_int32 t siné flowinfo; /* IP6 flow information */
struct iné_addr siné_addr; /* IP6 address*/
u_int32 t sin6_scope_ 1id; /* scope zone index*/

To identify IPv6 peers on the socket API, we use a C structure called

sockaddr_in6. For instance, to issue operations such as connect(2) on a socket created
with AF_INETG6 specified, we use sockaddr_in6.

Compared with sockaddr_in, sockaddr_in6 adds two fields: sin6_flowinfo and
sin6_scope_id. Standardization of sin6_flowinfo is not finished yet; therefore, this
book does not go into its details. We discuss sin6_scope_id in detail later in the book.

2.2 Why Programs Need to Be
Address-Family Independent?

In this book we advocate address-family independent socket layer programming for
IPv6 transition. By following the instructions in the book, your code will become inde-
pendent from the address family (such as AF_INET or AF_INETO).

Here are several reasons for taking this direction:

m  Tosupport the IPv4/v6 dual stack environment, programs must be able to han-
dle both IPv4 and IPv6 properly. If you hardcode AF_INET or AF_INET6
into your programs, your program ends up not working properly in the
IPv4/v6 dual stack environment.

. We would like to avoid rewriting network applications when a new protocol
becomes available. It includes both the IP layer (as with IPv7—there are
currently no plans, but we don’t know about the future) as well as the trans-
port/session layer (similar to using SCTP instead of TCP). For instance, in
some systems, it could be possible that your program becomes capable of sup-
porting AppleTalk by using address-family independent APIs.

m  We have enough tools for address-family independent programming, such as
sockaddr_storage, getaddrinfo(3), and getnameinfo(3).

m  Ifyou hardcode address family into your program, your program will not func-
tion if the operating system kernel does not support the address family. With a
program independent of address family, you can ship a single source/binary for
any operating system kernel configuration.

m  From my experience, it is cleaner and more portable to write a program this
way than to write a program in an IPv6-only manner.




2.2 Why Programs Need to Be Address-Family Independent? I5

m  APIs such as gethostbyname2(3) do not provide support for scoped IPv6
addresses.

Program 2.1 presents a program that hardcodes IPv4 assumptions. Bold portions
depend on IPv4 or on IPv4 API assumptions.

Other reading material may recommend to just replace AF_INET into
AF_INETG6 and sockaddr_in into sockaddr_in6, as in Program 2.2. However, the
approach has multiple drawbacks.

First, with gethostbyname2(3), you can only connect to IPv6 destinations, not
[Pv4 destinations. In an IPv4/v6 dual stack environment, FQDN can be resolved into
multiple IPv4 addresses as well as multiple IPv6 addresses. Clients should try to con-
tact all of them, not just the IPv6 ones.

Second, IPv6 supports scoped IPv6 addresses, as discussed earlier. With the use of
gethostbyname2(3), we cannot handle scoped IPv6 addresses, since gethostby-
name2(3) does not return scope identification.

Third, by hardcoding AF_INETG6 the code will work only on IPv6-enabled ker-
nels, since a kernel without IPv6 support does not usually have AF_INET6 socket
support. If you want to ship a single binary that works correctly on IPv4-only, IPv6-
only, and IPv4/v6 dual stack kernel without recompilation, address-family independ-
ence is needed.

Fourth, the code is not future-proven. In the future, when a new protocol comes
up, we would like to avoid rewriting exising applications. IPv6 transition is costly, so
we would like to solve other problems together with the IPv6 transition; therefore, let
us make sure we won’t need to upgrade our networking code ever again.

Finally, from our experience, by writing applications in an address-family inde-
pendent manner, you can maintain higher portability and stability of your
applications. Therefore, this book does not recommend hardcoding AF_INETG.

Program 2.1  Original program, which is IPv4-only.

/*

* original code

*/

struct sockaddr in sin;
socklen t salen;

struct hostent *hp;

/* open the socket */
S= SOCket(AFiINET, SOCK_STREAM, IPPROTOiTCP);
if (s < 0) {

perror (“socket”) ;

| Chapter 2




2.2 Why Programs Need to Be Address-Family Independent?

exit (1) ;
/*NOTREACHED* /
1
/* DNS name lookup */
hp = gethostbyname (hostname) ;
if (thp)
fprintf (stderr,
“host not found\n”) ;
exit (1) ;
/*NOTREACHED* /

if (hp->h length != sizeof (sin.sin addr)) {
fprintf (stderr, “invalid address size\n”) ;
exit (1) ;
/*NOTREACHED* /
}
memset (&sin, 0, sizeof (sin)) ;
sin.sin family = AF_ INET;
salen = sin.sin len = sizeof (struct sockaddr in);
memcpy (&sin.sin addr, hp->h addr, sizeof (sin.sin_addr)) ;
sin.sin port = htons (80);
/* connect to the peer */
if (connect (s, (struct sockaddr *)&sin, salen) 0) {
perror (“connect”) ;
exit (1) ;

Program 2.2 Program rewritten to support IPvé with AF_INET6 hardcoded—THIS
METHOD IS NOT RECOMMENDED

/*
* AF_INET6 code - the book recommend AGAINST rewriting applications
* like this.
*/

struct sockaddr in6 siné;

socklen t salen;

struct hostent *hp;

/* open the socket - IPv6 only, no IPv4 support */
s = socket (AF_INET6, SOCK STREAM, IPPROTO TCP) ;
if (s < 0) {
perror (“socket”) ;
exit (1) ;
/*NOTREACHED* /
}
/* DNS name lookup - does not support scope ID */
hp = gethostbyname2 (hostname, AF_INET6) ;
if (thp) {
fprintf (stderr, “host not found\n”) ;
exit (1) ;
/*NOTREACHED* /




2.3 Guidelines to Address-Family Independent Socket Programming 17

if (hp->h length != sizeof (sin6.siné addr)) {
fprintf (stderr, “invalid address size\n”);
exit (1) ;
/*NOTREACHED* /

}

memset (&sin6, 0, sizeof (siné6)) ;

sin6.sin6_family = AF_INET6;

salen = sin6.sin6_len = sizeof (struct sockaddr ine6) ;

memcpy (&sin6.sin6_addr, hp->h addr, sizeof (siné6.sin6_addr)) ;
sin6.sin6é_port = htons(80) ;

/* connect to the peer */

if (connect (s, (struct sockaddr *)&siné, salen) 0) {
perror (“connect”) ;
exit (1) ;

2.3 Guidelines to Address-Family Independent
Socket Programming

2.3.1

So, how can we make our program address-family independent? This section enumer-
ates important tips to be followed to achieve this goal.

Using sockaddrs for address representation

To support IPv4/v6 dual stack from your program, you first need to be able to handle
IPv4 and IPvG6 addresses in your program.

Traditionally, IPv4-only programs used struct in_addr to hold IPv4 addresses.
However, since the structure does not contain an identification of address family, the
data is not self-contained.

/*
* this example is IPv4-only, and we cannot identify address family
* from the data itself. foo() cannot distinguish the address
* family of the given address.
* inet_addr(3) is not recommended due to the lack of failure handling.
*/
extern void foo (void *) ;
struct in_addr in;

if (inet aton(“127.0.0.1", &in) != 1) {
fprintf (stderr, “could not translate address\n”);
exit (1) ;

}

foo (&in) ;

Novice programmers even mistakenly use int or u_int32_t to hold IPv4 addresses.
This is not a portable way, since int can be of a different size (e.g., 64 bits), and from a

| Chapter 2




18 2.3 Guidelines to Address-Family Independent Socket Programming

programmer’s point of view it is not apparent that the variable in is holding an IPv4

address.

/* THIS IS A VERY BAD PRACTICE */
extern void foo(int) ;
int in;

in = htonl (0x7£000001); /* 127.0.0.1 */
foo(in) ;

To handle IPv4 and IPv6 addresses, it is suggested you use sockaddrs, such as
sockaddr_in or sockaddr_in6, always. With sockaddrs, the data contains the identifi-
cation of address family, so we can pass around the address data and know which
address family it belongs to.

When passing pointers around, use struct sockaddr *, and let the called function

handle it.

extern int foo (struct sockaddr *);

int
main (argc, argv)
int argc;
char **argv;
struct sockaddr in sin;
/* setup sin */
foo((struct sockaddr *)&sin);
int
foo (sa)

struct sockaddr *sa;

switch (sa->sa family)
case AF INET:
case AF_INET6:
/* do something */
return O;
default:
return -1; /*not supported*/




2.3 Guidelines to Address-Family Independent Socket Programming 19

_
Figure 2.1

Disambiguate the
peer when there are
multiple adjacent
scape zones.

When you need to reserve room for a sockaddr (as for recvfrom(2)), use struct

sockaddr_storage. It is specified that struct sockaddr_storage is big enough for any
kind of sockaddrs.

sockaddr_in6 is larger than sockaddr; therefore, if there is a possibility to hold
sockaddr_in6 into a memory region, it is not sufficient to use sockaddr to reserve
memory space.

void

foo(s, buf, siz)
int s;
char *buf;
size_t siz;

struct sockaddr_ storage ss;
socklen t sslen;

sslen = sizeof (ss);
recvfrom(s, buf, siz, (struct sockaddr *)&ss, &sslen);

There is another important reason for using sockaddr. Due to the scoped IPv6
addresses, the IPv6 address (128 bits) does not uniquely identify the peer.

In Figure 2.1, from node B, we can see two nodes with fe80::1: one on Ethernet
segment 1, another on Ethernet segment 2. To communicate with node A or node C,
node B has to disambiguate between them with a link-local address—specifying a 128-
bit address is not enough—you need to specify the scope identification (in link-local
case, specifying the outgoing interface is enough). sockaddr_in6 has a member named
sin6_scope_id to disambiguate destinations between multiple scope zones.

String representation of a scoped IPv6 address is augmented with scope identifier
after % sign, such as fe80::1%etherl. Scope identification string (etherl part) is
implementation-dependent. getaddrinfo(3) will translate the string into a sinG_

scope_id value.
Mode A Mode C

Stharnet segment 1 Ei Ei Exhemes: segment 2

ether( etbarl =

fegl::l f=Bl:1

Kode B

Communicate wih node C by specifying "fedl: 1 tethert”

| Chapter 2




20

2.3 Guidelines to Address-Family Independent Socket Programming

In other words, even though sin_addr (or struct in_addr) identifies the IPv4 peer
uniquely enough, sin6_addr (or struct in6_addr) alone is not sufficient to identify an
IPvG6 peer. We always have to specify sockaddr_in6 to identify an IPvG6 peer.

2.3.2 Translating Text Representation into sockaddrs

To get sockaddrs from a given string host name (either FQDN or numeric), we have
been using gethostbyname(3), inet_aton(3), and inet_pton(3). We also used get-
servbyname(3) and strtoul(3)' to grab a port number.

/*
* NOTE: in FQDN case, foo() gets the first address on the DNS database.
* it is not a good practice - we should try to use all of them
*/
const struct sockaddr *
foo (hostname, servname)
const char *hostname;
const char *servname;

struct hostent *hp;

struct servent *sp;

static struct sockaddr_ in sin;
char *ep;

unsigned long ul;

/* initialize sockaddr in */

memset (&sin, 0, sizeof (sin)) ;

sin.sin_ family = AF_INET;

/* the following line is not needed for Linux/Solaris */
sin.sin_len = sizeof (struct sockaddr_in) ;

/* get the address portion */
hp = gethostbyname (hostname) ;

if (hp) {
if (sizeof (sin.sin_addr) != hp->h length) {
fprintf (stderr, “unexpected address length\n”) ;
exit (1) ;
/*NOTREACHED* /

}

memcpy (sin.sin_addr, hp->h addr, sizeof (sin.sin_addr));

} else {
if (inet pton(AF INET, hostname, &sin.sin addr) != 1) {
fprintf (stderr, “%s: invalid hostname\n”) ;
exit (1) ;
/*NOTREACHED* /

Note: atoi(3) is not robust enough against errors; therefore, the use of atoi(3) is discouraged in this book.




2.3 Guidelines to Address-Family Independent Socket Programming 21

/* get the port number portion */
Ssp = getservbyname (servname, “tcp”);

if (sp)
sin.sin port = sp->s_port;
else {
errno = 0;
ep = NULL;
ul = strtoul (servname, &ep, 10);
if (servname[0] == '\0’ || errno != 0 || tep ||
*ep != '\0’ || ul > Oxffff) {
fprintf (stderr, “%s: invalid servname\n”) ;
exit (1) ;
/*NOTREACHED* /

}

sin.sin port = htons(ul & Oxffff);

return (const struct sockaddr *)&sin;

As you can see, the operation is cumbersome; programmers have to cope with
FQDN case and numeric case separately. The strtoul(3) portion is very hard to get
right. Moreover, gethostbyname(3) is not thread safe. And finally, this example does
not support IPv6 at all; the code only supports IPv4.

So, we switch to the getaddrinfo(3) function. getaddrinfo(3) will translate FQDN
and numeric representation of host name and will also deal with port name/number.
getaddrinfo(3) also fills in arguments to be passed to socket(2) and bind(2) calls and
makes our program more data-driven (rather than hardcoded logic). Of course, getad-
drinfo(3) deals with IPv6 addresses. The definition of getaddrinfo(3) is presented in
RFC 2553, section 6.4.

The previous example can be rewritten as follows. As you can see, it is much sim-

pler and has no IPv4 dependency.

/*
* NOTE: in FQDN case, foo() gets the first address on the DNS
* database. it is not a good practice - we should try to use all of
* them
*/
const struct sockaddr *
foo (hostname, servname)
const char *hostname;
const char *servname;

struct addrinfo hints, *res;
static struct sockaddr storage ss;

int error;

memset (&hints, 0, sizeof (hints));

| Chapter 2




22

2.3 Guidelines to Address-Family Independent Socket Programming

hints.ai socktype = SOCK STREAM;
error = getaddrinfo (hostname, servname, &hints, &res);
if (error) ({

fprintf (stderr, “%s/%s: %$s\n”, hostname, servname,
gai_strerror (error)) ;
exit (1) ;
/*NOTREACHED* /
}
if (res->ai_addrlen sizeof(ss)) {
fprintf (stderr, “sockaddr too large\n”) ;
exit (1) ;
/*NOTREACHED* /

}

memcpy (&ss, res->ai_addr, res-ai_addrlen);
freeaddrinfo (res) ;

return (const struct sockaddr *)é&ss;

getaddrinfo(3) is very flexible and has a number of modes of operation. For
instance, if you want to avoid DNS lookup, you can specify AL NUMERICHOST
in hints.ai_flags, as follows. With AI_ NUMERICHOST, getaddrinfo(3) will accept

numeric representation only.

memset (&hints, 0, sizeof (hints));
hints.ai_socktype = SOCK_STREAM;
hints.ai flags = AI_ NUMERICHOST;
error = getaddrinfo (hostname, servname, &hints, &res);

getaddrinfo(3) normally returns addresses suitable to be used by the client side of
TCP connection. If the NULL is passed as the host name, it will return struct addrinfo,
corresponding to loopback addresses (127.0.0.1 and ::1).

/* the result (res) will have 127.0.0.1 and ::1 */
memset (&hints, 0, sizeof (hints));
hints.ai socktype = SOCK STREAM;
error = getaddrinfo (NULL, servname, &hints, &res);

By specifying AI_PASSIVE, we can make getaddrinfo(3) return wildcard address
(0.0.0.0 and ::) instead, so that we can use the returned value for opening listening
sockets for the server side of the TCP connection.

/* the result (res) will have 0.0.0.0 and :: */
memset (&hints, 0, sizeof (hints));
hints.ai_socktype = SOCK_STREAM;

hints.ai flags = AI PASSIVE;

error = getaddrinfoTNULL, servname, &hints, &res);




2.3 Guidelines to Address-Family Independent Socket Programming 23

2.3.3

getaddrinfo(3) handles IPv6 address strings with scope identification, so program-

mers do not need to do anything special to handle scope identification.

Translating Binary Address Representation into Text

For printing binary address representation, we have been using functions such as
inet_ntoa(3) or inet_ntop(3). When an FQDN (reverse lookup) is desired, we used
gethostbyaddr(3).

struct in addr in;

/* not thread safe */
printf (*address: %s\n”, inet ntoa(in)) ;

struct in_addr in;
char hbuf [INET ADDRSTRLEN] ;

/* thread safe */

if (inet ntop (AF_INET, &in, buf, sizeof (buf)) != 1) {
fprintf (stderr, “could not translate address\n”);
exit (1) ;
/*NOTREACHED* /

}

printf (“address: %s\n”, hbuf);

struct in_addr in;
struct hostent *hp;

/* DNS reverse lookup - not thread safe */

hp = gethostbyaddr (&in, sizeof (in)), AF_INET);

if (thp) {
fprintf (stderr, “could not reverse-lookup address\n”) ;
exit (1) ;
/*NOTREACHED* /

}

printf (“FQDN: %s\n”, hp->h name) ;

For port number, we used to access sin_port directly and used getservbyport(3) to

translate the port number into string representation (such as ftp for port 21).

struct sockaddr in sin;
struct servent *sp;

sp = getservbyport (sin.sin port, “tcp”);
if (sp)
printf (“port: %s\n”, sp->s_name);
else
printf (“port: %u\n”, ntohs(sin.sin port)) ;

| Chapter 2




24

2.3 Guidelines to Address-Family Independent Socket Programming

With our new approach, we will always use getnameinfo(3) and pass a pointer to
sockaddr to it. getnameinfo(3) is very flexible and supports both numeric address rep-
resentation as well as FQDN representation (with reverse address lookup). Also,
getnameinfo(3) can translate port number into string at the same time. getnameinfo(3)
supports both IPv4 and IPv6, and you do not need to distinguish between the two
cases. The last argument would control the behavior of getnameinfo(3). The definition
of getnameinfo(3) is in RFC 2553, section 6.5.

struct sockaddr *sa;

/* salen could be sa-sa_len with 4.4BSD-based systems */
char hbuf[NIiMAXHOST]; sbuf [NIiMAXSERV];

int error;

/* get numeric representation */
error = getnameinfo(sa, salen, hbuf, sizeof (hbuf),
NI_NUMERICHOST ‘ NI_NUMERICSERV);
if (error) {
fprintf (stderr, “error:
exit (1) ;
/*NOTREACHED* /

}

printf ("addr: %$s port: %s\n", hbuf, sbuf)

/*
* get FQDN representation when possible
* if not, get numeric representation
*/
error = getnameinfo(sa, salen, hbuf, sizeof (hbuf),
0);

if (error) ({
fprintf (stderr, “error: %s\n”, gai strerror(error)) ;
exit (1) ;
/*NOTREACHED* /

}

printf (“*addr: %s port: %s\n", hbuf, sbuf);

/* must get FQDN representation, or raise error */
error = getnameinfo(sa, salen, hbuf, sizeof (hbuf), NULL, O,
NI_NAMEREQD) ;
if (error) ({
fprintf (stderr, “error: %s\n”, gai_ strerror (error)) ;
exit (1) ;
/*NOTREACHED* /

}

printf (YFQDN: %s\n”, hbuf);

getnameinfo(3) generates the scoped IPv6 address string notation as necessary;
you do not need to worry about scope identifier in the sin6_scope_id member.




2.3 Guidelines to Address-Family Independent Socket Programming 25

2.3.4 APIs We Should No Longer Use

Now, we have decided to use sockaddr as our address representation. Therefore, we
should not use any of the APIs that take struct in_addr or struct in6_addr, such as the

following:

inet_addr, inet_aton, inet_lnaof, inet_makeaddr,
inet_netof, inet_network, inet_ntoa, inet_ntop,
inet_pton, gethostbyname, gethostbyname2, gethostbyaddr,
getservbyname, getservbyport

We should never pass around struct in_addr (address) or u_int16_t/in_port_t
(port number) alone. Data structures should be self-descriptive; otherwise, the caller
would have trouble identifying if the address is for IPv4 or IPv6. By passing around
sockaddrs, we can be sure that the caller knows which address family to use, since the
address family is available in sa_family member.

The following code fragment will damage us in the future, when we need to sup-
port other address families; we should not write code such as this.

struct sockaddr *sa;

/*
* you cannot support other address families with this code
*/
switch (sa->sa_family) {
case AF_INET:
port = ntohs(((struct sockaddr in *)sa)->sin port);
break;
case AF_INET6:
port = ntohs(((struct sockaddr iné *)sa)->sin6é port) ;
break;
default:
fprintf (stderr, “unsupported address family\n”) ;
exit (1) ;
/*NOTREACHED* /

We should use something like the following code instead. It is a bit cumbersome,
but it will make your code future-proven.

struct sockaddr *sa;

socklen t salen; /* sa-sa_len on 4.4BSD systems */
char sbuf [NI_MAXSERV] ;

char *ep;

unsigned long ul;

| Chapter 2




2.3 Guidelines to Address-Family Independent Socket Programming

/*
* use getnameinfo(3) to grab the port number from the sockaddr,
* and make the program address family independent
*/
error = getnameinfo(sa, salen, NULL, 0, sbuf, sizeof (sbuf),
NI_NUMERICSERV);
if (error) {
fprintf (stderr, “invalid port\n”) ;

exit (1) ;
/*NOTREACHED* /
1
errno = 0;
ep = NULL;
ul = strtoul (sbuf, &ep, 10);
if (sbuf[0] == ’\0’ || errno !=0 || l!ep || *ep != ’\0’ || ul>Oxffff)
fprintf (stderr, “invalid port\n”) ;
exit (1) ;
/*NOTREACHED* /

}

port = ul & Oxffff;

{




Porting Applications to Support IPv6

3.1 Making Existing Applications IPv6 Ready

Now, we have leanrned how to program IPv6-capable applications with socket-based
APl—making it address-family independent by using getaddrinfo and getnameinfo.
In this section we will discuss how to rewrite existing applications to be address-family
independent. The key thing is to identify where to rewrite, and then to reorganize code
to be address-family independent.

3.2 Finding Where to Rewrite, Reorganizing Code

To find out where to rewrite, you will need to find IPv4-dependent function calls, as
well as IPv4-dependent data types.

grep gethostby *.
grep inet_aton *.
grep sockaddr_ in
grep in_addr *.c

* *x Q Q
5 % o+
* 0o

o° o° o° o°

Unfortunately, if the application is incorrectly written and passes around 32-bit
binary representation of IPv4 address in int or u_int32_t, we won’t find any use for

in_addr but will still need to identify which variable holds IPv4 addresses.

If socket API calls are made from a single *.c file, it is easy to port. Otherwise, you
will need to check how IPv4-dependent data is passed around, and fix all of them to be
independent of protocol family. In some cases, IPv4-dependent data types are used in
struct definitions and/or function prototypes. In such cases, we need to reorganize the
code to be address-family independent.

The following example illustrates a fragment of an IPv4-dependent application.

27




3.2 Finding Where to Rewrite, Reorganizing Code

/*
* The data structure is IPv4-dependent
*/
struct foo {
struct sockaddr in dst;

}i

/*
* The function prototype is IPv4-dependent
*/
struct foo *
setaddr (in)
struct in addr in;

struct foo *foo;

foo = malloc(sizeof (*foo0)) ;
if (!foo)

return NULL;
memset (foo, 0, sizeof (*foo));

foo->dst.sin family = AF INET;

/* Linux/Solaris does not need the following line */
foo->dst.sin_len = sizeof (struct sockaddr_in) ;
foo->dst.sin addr = in;

return foo;

Changes to struct definition are easier; you need either to change everything to
struct sockaddr_storage or have a struct addrinfo *, if you need to handle multiple
addresses. Changes to function prototype are much more difficult. In some cases, it is
okay to pass around struct sockaddr *. In other cases, it is wiser to pass around struct
addrinfo *, if you need to handle multiple addresses. Or, it may be easier to pass around
string representation (const char *) and change where the name resolution is made (i.e.,

call to getaddrinfo(3)).

After the rewrite, without multiple address support, the code fragment should be
as follows:

/*
* The data structure is address family independent
*/
struct foo {
struct sockaddr storage dst;

}i
/*

* The function prototype is address family independent.
* on 4.4BSD systems, it is not necessary to pass salen separately
* as we have sa->sa_len.




3.3 Rewriting Client Applications 29

*/

struct foo *

setaddr (sa, salen)
struct sockaddr *sin;
socklen_t salen;

struct foo *foo;

if (salen > sizeof (foo->dst))
return NULL;

foo = malloc(sizeof (*foo)) ;
if (!foo)

return NULL;
memset (foo, 0, sizeof (*foo));

memcpy (&foo->dst, sa, salen);
return foo;

}

In any case, be careful not to introduce memory leaks due to changes from scalar
type passing (e.g., struct in_addr) to pointer passing (e.g., struct addrinfo *).

If you are shipping binaries to others, your code has shared library dependencies; if
you are using 32-bit binary representation in files such as databases, you have to be
careful making changes. We may end up breaking binary backward compatibility due
to struct definition changes. For instance, the IPv6 patch for Apache Webserver 1.3
series changes internal struct definition to hold sockaddr_storage, instead of struct
in_addr. The structures are part of the Apache module API, so third-party Apache
modules touched these structures. Therefore, the IPv6 patch for Apache makes it
incompatible (in source-code level, not just binary level) with third-party modules.
The IPv6 patch to Apache 1.3 can be found at ftp://ftp.kame.net/pub/kame/misc/ or
http://www.ipng.nl/.

3.3 Rewriting Client Applications

A typical TCP client application is illustrated in Program 3.1. The sample program
supports IPv4 only.

The program takes two arguments, host and port, and connects to the specified
port on the specified host and grabs traffic from the peer. For instance, if test.exam-
ple.org is running chargen service, you can connect to the service by the following
command line.

% ./test test.example.org chargen

| Chapter 3




30 3.3 Rewriting Client Applications

The program can take the numeric port number as the third argument.

o

% ./test test.example.org 19

If you want to test this on your machine, open the chargen service on your
inetd.conf and send the HUP signal to inetd so that it would re-read inetd.conf.

% sudo vi /etc/inetd.conf ... enable chargen service

% grep chargen /etc/inetd.conf ... check the content of inetd.conf
chargen stream tcp nowait nobody internal

chargen stream tcpé nowait nobody internal

#chargen dgram udp wait nobody internal

#chargen dgram udpé6 wait nobody internal

% ps auxww |grep inetd

root 260 0.0 0.2 84 756 ?? Ss 5:22PM 0:00.01 /usr/sbin/inetd -1

% sudo kill -HUP 260 ... make inetd(8) re-read inetd.conf
% netstat -an |grep 19

tcp 0 0 *.19 * ok LISTEN

tcp6 0 0 *.19 *x LISTEN

Note: The chargen service could be abused by malicious parties to chew up the band-
width of your Internet connectivity. Therefore, care must be taken when your test
target machine is connected to the Internet (such as filtering connection to chargen
port from outside at the router).

One of the defects in the previous sample program was that the program does not
try to connect to all available destination addresses when the specified host name
resolves to multiple IP addresses. Program 3.2 tries to connect to all addresses resolved,
and uses the first one that accepts the connection.

In the sample program, there are a lot of IPv4 dependencies hardcoded in the
program, as follows:

m  scruct sockaddr_in is used

m  hbufissized INET_ADDRSTRLEN, which is the maximum string length for
an IPv4 address

m  gethostbyname(3) is used

m  socket(2) call uses hardcoded AF_INET

m  socket(2) call hardcodes IPPROTO_TCP for SOCK_STREAM
®  inet_ntop(3) is used with hardcoded AF_INET




34 Rewriting Server Applications 31

3.4

The bold portion of Program 3.2 shows the IPv4 dependencies. We need to get
rid of these dependencies by using getaddrinfo(3), as presented in the previous
section.

The result of the rewrite is presented in Program 3.3.

Notice that the code to handle port name/number is simplified, because
getaddrinfo(3) will handle both string and numeric cases for you. Also, the
socket(2)—connect(2) loop is greatly simplified, because it is now data-driven (instead
of based on hardcoded logic). socket is opened and closed multiple times, based on the
address resolution result from getaddrinfo(3). There are no IPv4/IPv6 dependencies in
the program—in fact, the program will continue to work even if we have some other
protocol to support. For instance, glibc (in the past), as well as the NRL IPv6 stack,
returned AF_UNIX sockaddrs as a result of getaddrinfo(3).

Rewriting Server Applications

There are two major ways to run server on a UNIX system: via inetd(8) or as a stand-
alone program.

To provide a service to both IPv4 and IPv6 clients, we need to open two listening
sockets: one for AF_INET and one for AF_INET6. There are several ways to achieve
this:!

1. Make the application IPv6-capable. Configure inetd(8) to invoke the applica-
tion on both the AF_INET and AF_INETG6 connections.

2. Run an application that handles multiple listening sockets. This can be
achieved by using select(2) or poll(2).

3. Run two instances of the application: one for AF_INET and another for
AF_INETO.

In the first and second cases, we will be able to avoid hardcoding address family
into the application. In the last case, an additional command-line option is necessary
for switching listening sockets between AF_INET and AF_INET6. Hence, the appli-
cation will not be address-family independent. I recommend following either the first
or second item.

RFC 2553 presents another way to provide a service to both protocols by using an IPv4 mapped address on an
AF_INET6 socket (accepting IPv4 connection via AF_INET6 socket). Due to the security drawbacks, portability
drawbacks, and additional complexity, | do not recommend it. We will discuss this issue further later in the text.

| Chapter 3




32

34 Rewriting Server Applications

3.4.1

3.4.2

Rewriting Applications Invoked via inetd(8)

A typical TCP server application invoked via inetd(8) is presented in Program 3.4. The
program gets invoked by inetd(8) and transmits “hello <addr>\n" to the client.
inetd.conf(5) has to be configured as follows:

test stream tcp nowait nobody /tmp/test test

Program 3.4 supports IPv4 only.

To make applications invoked via inetd(8), we just need to remove IPv4 depend-
ency from the program. Program 3.5 shows the address-family independent variant of
Program 3.4.

inetd.conf(5) has to be configured as follows, so that we can accept connections
from the IPv4 client as well as the IPv6 client:

test stream tcp nowait nobody /tmp/test test
test stream tcpé nowait nobody /tmp/test test

Handle Multiple Sockets in a single Application

A typical TCP server application that listens to a socket by itself is illustrated in Pro-
gram 3.6. The program takes one argument for port, listens to the specified port, and
transmits “hello <addr>\n” to the client. The sample program supports IPv4 only.

To handle multiple sockets in single application, we need to use select(2); we can’t
just use blocking accept(2) to wait for a connection. If we use accept(2) for a certain
socket, the operation will block until an incoming connection reaches the socket; we
cannot handle other sockets until then. By using getaddrinfo(3) with AI_PASSIVE
flag, we will be able to get all the addresses to which we should listen.

Program 3.7 illustrates an address-family independent application that listens to
multiple sockets. The application takes a single command-line argument as a port, and
listens to all wildcard addresses returned by getaddrinfo(3) on the specified port. Nor-
mally, the application will listen to AF_INET and AF_INETG6 wildcard addresses
(0.0.0.0 and :3).

The following code segment shows the behavior of the system when we invoke the
sample program:

% ./test 9999 ... start the application
listen to :: 9999

listen to 0.0.0.0 9999

*z




34 Rewriting Server Applications 33

% netstat -an | grep 9999 ... see on which port the application is
listening

tcp 0 0 *.9999 * Lk LISTEN

tcp6 0 0 *.9999 *Lx LISTEN

The use of select(2) is not specific to IPv6 support. A program that deals with mul-
tiple sockets (or file descriptors, I should say) must use either select(2) or poll(2).

3.4.3 Running Multiple Applications for Muiltiple Protocol
Family Support

If, due to some constraints, the use of select(2) or poll(2) is not possible, you can run
two instances of applications—one for AF_INET socket and another for AF_INET6
—to serve both IPv4 and IPv6 peers. Program 3.8 shows an application that listens to
either the AF_INET wildcard address or the AF_INETG6 wildcard address, based on

the command-line argument.

% ./test -6 9999 ... run the application on AF_INET6 socket
listen to :: 9999

*z

% netstat -an | grep 9999

tcp6 0 0 *.9999 *Lx LISTEN

% ./test -4 9999 ... run another instance of the application on

AF _INET socket
listen to 0.0.0.0 9999

Z

% netstat -an | grep 9999

tcp 0 0 *.9999 *Lx LISTEN
tcp6 0 0 *.9999 *Lx LISTEN

3.4.4 The Use of IPV6_V6ONLY

In the previous examples, we used setsockopt(IPPROTO_IVP6, IPV6_V60ONLY)
right after opening an AF_INETG socket. This is necessary for security reasons.

In RFC 2553, it is specified that an AF_INETG6 socket can accept IPv4 traffic as
well, using a special form of address IPv6 called “IPv4 mapped address.” If you run
getpeername(2) on such an AF_INET6 socket, it would return an IPv6 address
(sockaddr_in6) :ffff:x.y.z.u, when the real peer is x.y.z.u (sockaddr_in). Due to the
way the current standard documents are written, the behavior is a source of security
concern. We will discuss this topic further in the next chapter.

Therefore, we explicitly disable the behavior by using setsockopt (IPPROTO_
IPV6, IPV6_V60ONLY). By issuing the call, we can disable this behavior; AF_INET6
socket will receive actual IPv6 traffic only. Since the socket option is rather new, the

examples wrap the setsockopt(2) calls by #ifdef IPV6_V6ONLY. Therefore, on plat-

| Chapter 3




34

34 Rewriting Server Applications

forms without IPV6_V6ONLY support, we cannot protect the program from the
security issue. The IPV6_V6ONLY socket option is introduced in 2553bis, which is
an updated version of RFC 2553.

Program 3.1  client-gethostby.c: TCP client example—connect to a server specified by
host/port and receive traffic from the server.

/*
* client by gethostby* (IPv4 only)
* by Jun-ichiro itojun Hagino. in public domain.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <arpa/inet.h>

int main _ P((int, char *¥));

int

main(argc, argv)
int argc;
char **argv;

struct hostent *hp;

struct servent *sp;
unsigned long lport;
u_intlé t port;

char *ep;

struct sockaddr_in dst;

int dstlen; ssize t 1;

int s;

char hbuf[INET_ADDRSTRLEN];
char buf[1024];

/* check the number of arguments */
if (argc != 3) {
fprintf (stderr, “usage: test host port\n”);
exit (1); /*NOTREACHED*/
}
/* resolve host name into binary */
hp = gethostbyname (argv[1l]) ;
if (thp) {
fprintf (stderr, “%s: %$s\n”, argv[1l], hstrerror(h_errno)) ;
exit (1) ;




34 Rewriting Server Applications

35

/*NOTREACHED* /

if (hp->h length != sizeof (dst.sin addr)) {
fprintf (stderr, “%s: unexpected address length\n”, argv[1l]);
exit (1) ;
/*NOTREACHED* /

}

/* resolve port number into binary */

sp = getservbyname (argv[2], “tcp”);
if (sp)

port = sp-s_port & Oxffff;
} else {

ep = NULL; errno = 0;
lport = strtoul (argv[2], &ep, 10);

if (l*argv[2] || errno || l'ep || *ep) {
fprintf (stderr, “%s: no such service\n”, argv[2]);
exit (1) ;
/*NOTREACHED* /

}

if (lport & ~Oxffff) {
fprintf (stderr, “%s: out of range\n”, argv[2]);
exit (1) ;
/*NOTREACHED* /

port = htons(lport & Oxffff);

}

endservent () ;

/* try the first address only */

memset (&dst, 0, sizeof (dst));

dst.sin_family = AF_INET;

/* linux/Solaris does not need the following line */
dst.sin len = sizeof (struct sockaddr in);

memcpy (&dst.sin_addr, hp->h addr, sizeof (dst.sin_ addr));
dst.sin port = port;

dstlen = sizeof (struct sockaddr in);

s= SOCket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (s < 0)

perror (“socket”) ;

exit (1) ;

/*NOTREACHED* /

inet_ntop (AF_INET, hp->h addr, hbuf, sizeof (hbuf));
fprintf (stderr, “trying %s port %u\n”, hbuf, ntohs (port)) ;

if (connect (s, (struct sockaddr *)&dst, dstlen) < 0) {
perror (“connect”) ;
exit (1) ;
/*NOTREACHED* /

| Chapter




36

34 Rewriting Server Applications

while ((

Program 3.2

1 = read(s, buf, sizeof(buf))) > 0)
write (STDOUT_FILENO, buf, 1); close(s);
exit (0) ;

/*NOTREACHED* /

client-gethostby-multiaddr.c: Updated program to connect to all the

addresses returned by DNS address resolution, instead of the first one returned.

/*
* client
Jun-ichi

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

int main

int
main (arg

by gethostby*, multiple address support (IPv4 only) * by
ro itojun Hagino. in public domain. */

<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<netdb.h>
<stdio.h>
<errno.h>
<unistd.h>
<string.h>
<stdlib.h>
<arpa/inet.h>

__P((int, char **));

c, argv)
int argc;
char **argv;

struct hostent *hp;
struct servent *sp;
unsigned long lport;
u_intlé_t port;

char *ep;

struct sockaddr in dst;
int dstlen; ssize t 1;
int s;

char hbuf[INET_ADDRSTRLEN];
char buf[1024];

char **ap;

/* check the number of arguments */

if (argc !'= 3) {
fprintf (stderr, “usage: test host port\n”);
exit (1) ;
/*NOTREACHED* /

}

/* resolve host name into binary */

hp = gethostbyname (argv[1]) ;




34 Rewriting Server Applications

37

if (thp) {
fprintf (stderr, “%s:
exit (1) ;
/*NOTREACHED* /

$s\n”,

if (hp->h length != sizeof (dst.sin addr)) {
fprintf (stderr, “%s: unexpected address length\n”,
exit (1) ;
/*NOTREACHED* /

}

/* resolve port number into binary */

sp = getservbyname (argv([2], “tcp”);
if (sp) {
port = sp->s_port & Oxffff;
} else {
ep = NULL;
errno = 0;
lport = strtoul (argv[2], &ep, 10);
if (l*argv[2] || errno || l'ep || *ep) {
fprintf (stderr, “%s: no such service\n”,
exit (1) ;
/*NOTREACHED* /
}
if (lport & ~Oxffff) {
fprintf (stderr, “%s: out of range\n”,
exit (1) ;
/*NOTREACHED* /
}
port = htons (lport & Oxffff);
}
endservent () ;

s = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;
if (s < 0) {

perror (“socket”) ;

exit (1) ;

/*NOTREACHED* /

argv[1l], hstrerror (h_errno)) ;

argv[1]) ;

argv[2]);

argv[2]);

/* try all the addresses until connection goes successful */

hp->h addr list; *ap; ap++) {
*ap, hbuf, sizeof (hbuf));

for (ap =
inet_ntop (AF_INET,
fprintf (stderr,

0, sizeof(dst));
AF INET;

memset (&dst,
dst.sin family =

/* linux/Solaris does not need the following line */

dst.sin_len = sizeof (struct sockaddr in);
memcpy (&dst.sin addr, hp->h addr,
dst.sin port = port;

dstlen = sizeof(struct sockaddr in);

sizeof (dst.sin addr));

Chapter

“trying %s port %u\n”, hbuf, ntohs(port));

3



34 Rewriting Server Applications

if (connect(s, (struct sockaddr *)&dst, dstlen) < 0)
continue;

while ((1 = read(s, buf, sizeof(buf))) > 0)
write (STDOUT FILENO, buf, 1); close(s);
exit (0);
/*NOTREACHED* /
}
fprintf (stderr, “test: no destination to connect to\n”);
exit(1);
/*NOTREACHED* /

Program 3.3  client-getaddrinfo.c: Make the program address-family independent.

/*
* client by getaddrinfo (multi-protocol support)
* by Jun-ichiro itojun Hagino. in public domain.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

int main _ P((int, char **));

int

main (argc, argv)
int argc;
char **argv;

struct addrinfo hints, *res, *resO;
ssize t 1;

int s;

char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];
char buf[1024];

int error;

/* check the number of arguments */

if (arge !'= 3) {
fprintf (stderr, “usage: test host port\n”);
exit (1) ;
/*NOTREACHED* /

Resolve hostnames into sockaddr_in6

by getaddrinfo(3), before calling
/* resolve address/port into sockaddr*/ <-socket (2) system call
memset (&hints, 0, sizeof (hints))




34 Rewriting Server Applications

39

+->

+->

Use getnameinfo(3)
to translate addresses

hints.ai socktype = SOCK STREAM;

error = getaddinfo(argv([l], argv[2], &hints, &resoO);
if (error) {
fprintf (stderr, “%s %s: %s\n”, argv[l], argv[l],
gai strerror(error)); continue;
exit (1) ;
/*NOTREACHED* /

———————————————————————— Based on the result of getaddrrinfo(3),
the code works in data-driven manner

/* try all the sockaddrs until connection goes successful */

for (res = res0O; res; res = res->ai next) {

error = getnameinfo(res->ai_addr, res->ai_addrlen, hbuf,

sizeof (hbuf), sbuf, sizeof (sbuf),
NI _NUMERICHOST | NI _NUMERICSERV) ;

into printable string

Program 3.4
/*

* server invoked via inetd
* by Jun-ichiro itojun Hagino.

if (error) {

fprintf (stderr, "%s %s: %$s\n", argll], argv[l],
gail_ sterror (error)) ;
continue
}
fprintf (stderr, “trying %s port %s\n”, hbuf, sbuf);

s = socket (res->ai_family, res->ai_socktype,
res->ail protocol) ;

if (s < 0)
continue;

if (connect(s, res-ai_addr, res-ai_addrlen) > 0) {
close(s) ;
s = -1;
continue;

while ((1 = read(s, buf, sizeof (buf)))
write (STDOUT_ FILENO, buf, 1);

< 0)
close (s) ;

exit (0) ;
/*NOTREACHED* /

fprintf (stderr, “test: no destination to connect to\n”);
exit (1) ;

/*NOTREACHED* /

server-inetd4.c: TCP server invoked from inetd(8).

(IPv4 only)
in public domain.

| Chapter



34 Rewriting Server Applications

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.hs>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>

int main _ P((int, char *¥));

int

main(argc, argv)
int argc;
char **argv;

struct sockaddr in from;
socklen_t fromlen;
char hbuf[INET_ADDRSTRLEN];

/* get the peer’s address */

fromlen = sizeof (from) ;

if (getpeername (0, (struct sockaddr *)&from, &fromlen) < 0) {
exit (1) ;
/*NOTREACHED* /

1

if (from.sin family != AF_INET ||

fromlen != sizeof (struct sockaddr in)) ({

exit (1) ;
/*NOTREACHED* /

if (inet_ntop (AF_INET, &from.sin addr, hbuf, sizeof (hbuf)) ==
NULL) {
exit (1) ;
/*NOTREACHED* /

write (0, “hello ", 6);
, hbuf, strlen(hbuf)) ;

. ™\n”, 1);

write
write
exit (

O ~ —~ —~
~ O O O

Program 3.5 server-inetd6.c: Make server-inetd4.c address-family independent.
/ *
* gerver invoked via inetd (multi-protocol support)

* by Jun-ichiro itojun Hagino. in public domain.

*/




34 Rewriting Server Applications

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.hs>
#include <string.h>
#include <netdb.h>
#include <arpa/inet.h>

int main _ P((int, char *x));

int

main(argc, argv)
int argc;
char **argv;

struct sockaddr storage from; <--Usesockaddr_storage so that we
socklen t fromlen; have enough room for sockaddrs
char hbuf [NI_MAXHOST] ; with any address family

/* get the peer’s address */
fromlen = sizeof (from) ;
if (getpeername (0, (struct sockaddr *)&from, &fromlen) < 0) {
exit (1) ;
/*NOTREACHED* / Use getnameinfo(3) to translate
addresses into printable string

if (getnameinfo((struct sockaddr *)&from, fromlen, |
hbuf, sizeof (hbuf), NULL, 0, NI NUMERICHOST) != 0) {

exit (1) ;
/*NOTREACHED* /

}

write (0, “hello ”, 6);

write (0, hbuf, strlen(hbuf)) ;

write (0, “\n”, 1); exit(0);

Program 3.6  server-single.c: A standalone TCP server that listens to an IPv4 port.
/*

* gserver with single listening socket (IPv4 only) * by Jun-ichiro
itojun Hagino. in public domain. */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.hs>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

| Chapter




42

34 Rewriting Server Applications

#include <string.h>
#include <stdlib.h>
#include <arpa/inet.h>

int main _ P((int, char **));

int

main (argc, argv)
int argc;
char **argv;

struct servent *sp;

unsigned long lport;

u_intlé_t port; char *ep;

struct sockaddr_in serv;

int servlen; struct sockaddr in from;
socklen_t fromlen;

int s;

int 1s;

char hbuf [INET ADDRSTRLEN] ;

if (argc != 2) {
fprintf (stderr, “usage: test port\n”);
exit (1) ;
/*NOTREACHED* /

1

sp = getservbyname (argv[1l], “tcp”);

if (sp)

port = sp->s_port & Oxffff;
else {
ep = NULL; errno = 0;
lport = strtoul (argv[1l], &ep, 10);

if (t*argv[l] || errno || !ep || *ep) ({
fprintf (stderr, “%s: no such service\n”,
exit (1) ;
/*NOTREACHED* /

}

if (lport & ~Oxffff)

fprintf (stderr, “%s: out of range\n”, argv[1l]);

exit (1) ;
/*NOTREACHED* /

port = htons (lport & Oxffff);

}

endservent () ;

memset (&serv, 0, sizeof (serv));

serv.sin family = AF INET;

/* linux/Solaris does not need the following line */
serv.sin len = sizeof (struct sockaddr in);

serv.sin port = port;

servlen = sizeof (struct sockaddr in);




34 Rewriting Server Applications

43

s = SOCket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (s < 0) {

perror (“socket”) ;

exit (1) ;

/*NOTREACHED* /

if (bind (s, (struct sockaddr *)&serv, servlen) < 0) {
perror (“*bind”) ;
exit (1) ;
/*NOTREACHED* /
}
if (listen(s, 5) < 0) {
perror (“listen”) ;
exit (1) ;
/*NOTREACHED* /

}

while (1) {
fromlen = sizeof (from) ;

ls = accept(s, (struct sockaddr *)&from, &fromlen);
if (1s < 0)
continue;
if (from.sin family != AF INET ||
fromlen != sizeof (struct sockaddr in)) ({
exit (1) ;
/*NOTREACHED* /

if (inet_ntop (AF_INET, &from.sin addr, hbuf,

sizeof (hbuf)) == NULL) {
exit (1) ;
/*NOTREACHED* /
}
write(ls, “hello ”, 6);
write(ls, hbuf, strlen (hbuf));
write(ls, “\n”, 1);
close(ls);
}
/*NOTREACHED* /

Program 3.7 server-getaddrinfo.c: Update server-single.c to be address-family
independent.

/*

* gerver with multiple listening socket based on getaddrinfo

* (multi-protocol support)

* by Jun-ichiro itojun Hagino. in public domain.

*/

| Chapter




44

34

Rewriting Server Applications

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define MAXSOCK 20
int main _ P((int, char **));

int

main(argc, argv)
int argc;
char **argv;

struct addrinfo hints, *res, *resO;

int error;

struct sockaddr_ storage from;

socklen t fromlen;

int 1s;

int s[MAXSOCK] ;

int smax;

int sockmax;

fd_set rfd, rfdo;

int n;

int i;

char hbuf [NI_MAXHOST], sbuf [NI_MAXSERV];
#ifdef IPV6_V6ONLY

const int on = 1;

#endif
if (arge !'= 2) {
fprintf (stderr, “usage: test port\n”);
exit (1) ;
/*NOTREACHED* /
1
memset (&hints, 0, sizeof (hints)); <--Obtain the list of

hints.ai_socktype = SOCK_STREAM;
hints.ai flags = AI_PASSIVE;

addresses to be used with

bind(2) by using

error = getaddrinfo (NULL, argv[1], getaddrinfo(3)

&hints, &reso);
if (error) {

fprintf (stderr, “%s: %s\n”, argv[l],
)

gai_strerror (error)
exit (1) ;
/*NOTREACHED* /

7




34 Rewriting Server Applications

45

smax = 0;

sockmax = -1;

for (res = res0O; res && smax rMAXSOCK; res = res->ai next) {
s [smax] = socket (res-ai family, res-ai socktype,

res->ail_protocol) ;
if (s[smax] < 0)
continue;

/* avoid FD_SET overrun */

if (s[smax] = FD SETSIZE)
close (s [smax]) ;
s[smax] = -1;
continue;

#ifdef IPV6_V6ONLY

#endif

if (res->ai_family == AF INET6 &&
setsockopt (s [smax], IPPROTO IPVé,
sizeof (on)) < 0) {
perror (“bind”) ;
s[smax] = -1;
continue;

IPV6_V6ONLY, &on,

if (bind(s[smax], res-ai_addr, res-ai_addrlen) 0) {
close(s[smax]) ;
s[smax] = -1;
continue;

}

if (listen(s[smax], 5) 0)
close(s[smax]); sl[smax] =
continue;

error = getnameinfo(res-ai_addr, res-ai_addrlen, hbuf,
sizeof (hbuf), sbuf, sizeof (sbuf),
NI_NUMERICHOST | NI_NUMERICSERV) ;

if (error) {
fprintf (stderr,
exit (1) ;
/*NOTREACHED* /

“test: %s\n”, gail strerror (error)) ;

}

fprintf (stderr, “listen to %s %s\n”, hbuf, sbuf) ;

if (s > sockmax)

sockmax =

[smax]
s [smax] ;
smax++;

if (smax == 0) {

| Chapter 3




34 Rewriting Server Applications

fprintf (stderr, “test: no socket to listen to\n”);
exit (1) ;
/*NOTREACHED* /

}

FD ZERO (&rfdo) ;
for (i = 0; 1 < smax; i++)
FD_SET (s[i], &rfdo);

while (1) {

rfd = rfdo;
n = select(sockmax + 1, &rfd, NULL, NULL, NULL);
if (n < 0) {

perror (“select”) ;

exit (1) ;

/*NOTREACHED* /
}
for (i = 0; i < smax; i++) {

if (FD ISSET(s[i], &rfd)) {
fromlen = sizeof (from) ;

ls = accept(s[i], (struct
sockaddr *)&from &fromlen) ;
if (1ls < 0)
continue;
write(ls, “hello\n”, 6);
close(ls) ;

}

/*NOTREACHED* /

Program 3.8 server-getaddrinfo-single.c: TCP server application that listens to a single
socket. Address family (protocol) can be switched by a command-line argument.

/*
* gerver with single listening socket (IPv4/v6 switchable)
* by Jun-ichiro itojun Hagino. in public domain.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.hs>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.hs>
#include <arpa/inet.h>

int main _ P((int, char **));




34 Rewriting Server Applications

int

main (argc, argv)
int argc;
char **argv;

struct addrinfo hints, *res;
int error;
struct sockaddr storage from;
socklen t fromlen;
int 1s;
int s;
char hbuf [NI_MAXHOST], sbuf [NI_MAXSERV] ;
int ch;
int af = AF_INET6;
#ifdef IPV6_V6ONLY
const int on = 1;

#endif Switch address family based on a command
line argument
while ((ch = getopt(argc, argv, “46")) != -1) {
switch (ch) {
case '4':
af = AF INET;
break;
case '6':
af = AF_INET6;
break;
default:
fprintf (stderr, “usage: test [-46] port\n”);
exit (1) ;
/*NOTREACHED* /
}
}
argc -= optind;

argv += optind;

if (argc !'= 1) {

printf (stderr, “usage: test port\n”);

exit (1) ;

/*NOTREACHED* /
}
memset (&hints, 0, sizeof (hints)); <--Obtain wildcard address
hints.ai family = af; for the address fam ily
hints.ai_socktype = SOCK_STREAM; specified by the
hints.ai_flags = AI_PASSIVE; command

error = getaddrinfo (NULL, argv[0], &hints, &res);
if (error) {
fprintf (stderr, “%s: %s\n”, argv[0],
gail_strerror (error)) ;
exit (1) ;
/*NOTREACHED* /

if (res->ai next) {

| Chapter




48 34 Rewriting Server Applications

fprintf (stderr, “%s: multiple address
returned\n”, argv([0]);

exit (1) ;

/*NOTREACHED* /

s= socket (res->ai family, res-ai socktype, res-ai protocol) ;
if (s < 0) {
perror (“socket”) ;

exit (1) ;
/*NOTREACHED* /
}
#ifdef IPV6_V6ONLY
if (res-ai_family == AF_INET6 &&

setsockopt (s, IPPROTO_IPV6, IPV6 V6ONLY, &on, sizeof(on)) < 0) {
perror (“bind”) ;
exit (1) ;
/*NOTREACHED* /

}

#endif

if (bind(s, res-ai_addr, res-ai_addrlen) 0) {
perror (“bind”) ;
exit (1) ;
/*NOTREACHED* /

if (listen(s, 5) < 0) {
perror (“listen”) ;
exit (1) ;
/*NOTREACHED* /

error = getnameinfo(res->ai addr, res->ai addrlen, hbuf,
sizeof (hbuf), sbuf, sizeof (sbuf),
NI_NUMERICHOST | NI_NUMERICSERV) ;

if (error) {
fprintf (stderr, “test: %$s\n”, gai strerror (error)) ;
exit (1) ;
/*NOTREACHED* /

}

fprintf (stderr, “listen to %s %s\n”, hbuf, sbuf);

while (1) {
fromlen = sizeof (from) ;

ls = accept(s, (struct sockaddr *)&from, &fromlen) ;
if (1s < 0)
continue;
write(ls, “hello\n”, 6);
close(ls) ;
}
/*NOTREACHED* /




Tips in IPv6 Programming

4.1 Parsing a IPv6 Address out of String

While writing IPv6-capable applications, you will encounter situations where you
need to extract a numeric IPv6 address from a given string (such as a URL). Unlike an
IPv4 numeric address, an IPv6 numeric address is very difficult to express with regular
expression; it can have 0 to 32 hexadecimal digits (09 and a—f), as well as 2 to 7 colons
in between. In the case of a scoped IPv6 address, it is suffixed by “%scopeid.” For some
of the address forms defined in the IPv6 addressing architecture, we can use an IPv4
numeric address form in the last 32 bits (e.g., :fft:10.1.2.3).

For reference, the following URL has a regular expression to accept an IPv6
numeric address (it is highly complicated):

http://orange.kame.net/dev/cvsweb.cgi/kame/kame/kame/v6regex/scanner.l

Therefore, it is not worth it to write a regular expression to pick up IPv6 addresses.
Just use getaddrinfo(3) against the fragment of string, probably with AI_
NUMERICHOST.

4.2 Issues with ¢ As a Separator

In many applications, “:” is used as a separator between the host address and the port
number, as in the following configuration directive in Apache:

ListenAddress address:port

The syntax does not work with an IPv6 address, since colons are used in an IPv6
numeric address representation.

The easiest workaround is to modify syntax to use space as the separator:

49




50

4.3 Issues with an IPv4 Mapped Address

4.3

ListenAddress address port

Note that you cannot use slashes as a separator, since address/number is used for

identifying address prefixes.

Another way is to forbid the use of a numeric IPv6 address in the address portion;
however, this may be too restrictive in some cases.

If you really need to use a colon as the separator, you will want to follow the
practices in RFC 2732: Use square brackets to surround the address portion:

ListenAddress [address] :port

This may complicate the parser code a bit, but it will allow a numeric IPv6 address
to be used safely in the syntax.

Issues with an IPv4 Mapped Address

Dut to several reasons, there are numerous portability and security issues in an IPv6
API. Some of them are due to the lack of standards; some of them are purely deploy-
ment issues. This section tries to summarize the most important security issue you will
encounter: an IPv4 mapped address. Note that if you follow the guidelines presented
in the previous sections, you will be able to avoid most of the problems.

In RFC 2553, it is specified that an AF_INETG6 socket can accept IPv4 traffic as
well, using a special form of address IPv6 called “IPv4 mapped address.” If you run
getpeername(2) on such an AF_INETG6 socket, it would return an IPv6 address
(sockaddr_in6) :ffff:x.y.z.u, when the real peer is x.y.z.u (sockaddr_in). Due to the
way the current standard documents are written, this behavior is a source of major
security concerns.

The most critical problem of all is that there is no way for applications to detect if
the peer is actually using IPv4 (and the operating system kernel is translating address
for the API), or if the peer is actually using an IPv4 mapped address in an IPv6 packet.
Because of the ambiguity, there are several possible threats, including:

® A malicious party could circumvent access control on the AF_INETG6 socket
by sending real IPvG traffic containing an IPv4 mapped address. Applications
will be tricked to believe that the traffic is from an IPv4 peer and will mistak-
enly grant access.

m If the application uses the peer’s address obtained by getpeername(2) to
respond to the client (many of the UDP services, such as DNS server), a
malicious party could cause the application to generate unwanted an IPv4
traffic by embedding an IPv4 mapped address into an IPvG6 source address field.




4.4 bind(2) Ordering and Conflicts 51

The response (on the AF_INETG6 socket) toward thelPv4 mapped address will
be translated into an IPv4 packet by the kernel API and will result in unwanted
IPv4 traffic.

Also, an IPv4 mapped address increases complexities in access control code in
the application. For instance, if you want to filter out traffic from the 10.0.0.0/8 net-
work, it is not enough to reject traffic from the 10.0.0.0/8 on an AF_INET socket; you
will need to reject traffic from ::ffff:10.0.0.0/104 on the AF_INETG6 socket as well.
Normal application writers are not aware of this complexity. They would believe
that by turning off the AF_INET listening socket, they could reject any IPv4 traf-
fic—but it’s not true. The application running on the AF_INETG socket still accepts
IPv4 traffic.

The complexity not only impacts applications, but also the operating system ker-
nel code. For instance, the FreeBSD 4.x kernel has been having problems dealing with
multiple AF_INET and AF_INETG6 sockets; by issuing bind(2) system calls in certain
order, applications could hijack a TCP/UDP port from others. The problem has
already been fixed; however, it illustrates the impact of the complexity due to the IPv4
mapped address.

Therefore, we conclude that the API itself is flawed, and we should avoid the use of
this feature of the API as much as possible. For this purpose, examples presented in pre-
vious chapters always recommend opening both the AF_INET and AF_INETG6
sockets separately, in order to accept IPv4 and IPv6 traffic separately. Some of the
operating systems (OpenBSD and NetBSD) took a security stance and disabled the
IPv4 mapped address feature by default.

More details on this topic are available in the Internet drafts included in the
appendices:

draft-itojun-ipv6-transition-abuse-01.txt
draft-itojun-v6ops-v4mapped-harmful-01.txt

draft-cmetz-v6ops-v4mapped-api-harmful-00. txt

Unfortunately, we still need to worry about the IPv4 mapped address issue, even if
we open separate sockets for AF_INET and AF_INETG6, because of the operating sys-
tem differences caused by the lack of, or ambiguity of, the IPv6 API standards.

4.4 bind(2) Ordering and Conflicts

On some of the existing operating systems, bind(2) to AF_INET port will conflict
against bind(2) to AF_INETG6 on the same port. On such systems, since either of the

| Chapter 4




52 4.5 Portability across Systems

sockets could fail to bind(2), it is not possible to serve IPv4 clients and IPv6 clients
via separate sockets. The latest standard (RFC 2553 and the POSIX spec relevant to
it) does not dictate what kind of behavior is the correct one, so the behavior varies by
system.

By setting the IPV6_V6ONLY socket option to 1, as suggested in the previous
chapters, the problem should be worked around. Unfortunately, since the socket
option was introduced very recently (in RFC 2553bis, RFC 2553 revised), not many
systems provide this option. Moreover, the wording in the revised spec is not totally
clear about bind(2) conflict issues.

Therefore, the worst-case scenarios on platforms that reject two bind(2) requests
are as follows:

®  Open the AF_INET6 socket only, and rely upon IPv4 mapped address behav-
ior (accept IPv4 traffic by using the AF_INETG socket). This way your applica-

tion will be vulnerable to various attacks.

m  Open the AF_INETG6 socket only, and reject any traffic from an IPv4 mapped
address. By doing so, you will serve IPv6 clients only; IPv4 clients will get
rejected.

m  Open the AF_INET socket only. You will serve IPv4 clients only; IPv6 clients
will get rejected.

4.5 How IPv4 Traffic Gets Routed to Sockets

On some of the existing operating systems, when the AF_INET6 and AF_INET lis-
tening sockets are present, IPv4 traffic gets routed to the AF_INETG6 socket (using an
IPv4 mapped address), not the AF_INET socket. As a result, the AF_INET socket
would get no traffic. On such systems, it is critical to apply necessary access controls
against an IPv4 mapped address on an AF_INETG6 socket.

Again, IPV6_V60ONLY may be used to work around this issue; however, it may

not be available on your system.

4.6 Portability across Systems

As mentioned in earlier chapters, there are behavioral differences between operating
systems. This section describes portability issues and issues caused by the differences.
Here we also discuss how an application programmer could cope with the issues.




4.6 Portability across Systems 53

4.6.1

4.6.2

4.6.3

Handling of an IPv4 Mapped Address

As mentioned in the previous section, there are various interpretations to the handling
of an IPv4 mapped address, and system behavior varies by vendors. The best work-
around we can perform is to open the AF_INET and AF_INETG6 sockets separately,
and use AF_INET for IPv4 and AF_INETG for IPv6. Turn on the IPV6_V60ONLY
socket option on the AF_INETG socket explicitly, to avoid mistakenly using the IPv4
mapped address on an AF_INETG socket. Also, it is a good practice to use getad-
drinfo(3) with the AI_PASSIVE flag to get the list of possible listening sockets, instead
of hardcoding wildcard addresses such as 0.0.0.0 or : :.

Socket Options

Socket options such as setsockopt(2)/getsockopt(2) operations are normally different
on the AF_INET and AF_INETG6 sockets. Some systems do support AF_INET socket
options on the AF_INETG6 socket, and some do not. For instance, the IP_TOS socket
option is meaningful for IPv4 traffic. Some systems support IP_TOS only for
AF_INET sockets, and some support it for AF_INET6 sockets as well. There are no
standards for socket options, so we cannot blame either side.

Therefore, it is safer to assume that your system does not support IPv4 socket
options on AF_INETG6 sockets, and use AF_INET for IPv4 traffic and AF_INET®6 for
IPv6 traffic. By following guidelines supplied in the previous chapters, the case is
already covered.

Lack of API Functions

Because getaddrinfo(3) and getnameinfo(3) are relatively new APIs, they may not be
available on older systems. If you want your software package to function on older sys-
tems as well, you will want to ship tiny implementations of getaddrinfo(3) and
getnameinfo(3) with your software package, and use these as needed.

To detect if a function is present or not on a particular system, the GNU autoconf
works very well. The GNU autoconf system provides a way to generate a “configure”
shell script, which will detect system differences and generate appropriate Makefile
from a template, Makefile.in. If you put the following statement into configure.in (the
input file to GNU autoconf), GNU autoconf will:

® Do nothing, if getaddrinfo is supplied by the operating system.

m  Add getaddrinfo.o into $LIBOB]S in the configure script, which will be used
when generating Makefile from Makefile.in.

| Chapter 4




54

4.8 Platform Support Status

4.7

4.8

4.6.4

AC_REPLACE_FUNCS (getaddrinfo)

Therefore, getaddrinfo.c will be compiled only if the function is not supplied by
the system.

Lack of Address Family

On many of the operating systems, it is possible to strip down kernel size by removing
functionalities; some administrators would remove IPv6 functionality from the oper-
ating system kernel. Removal of IPv6 functionality usually means that the system does
not have AF_INETG6 support at all. Even under such situations, you will want your
application to function correctly, avoiding recompilation of the application (you will
want to ship a single binary that works on IPv4-only, IPv6-only, and the IPv4/v6 dual
stack kernel). If you follow the guidelines presented in the previous chapters, your
application will work correctly on any of the kernels, since your application does not
hardcode any constants, such as AF_INETG6 or AF_INET. If you port applications to
IPv6 by hardcoding AF_INET6, you will be in trouble running your software on the
IPv6-less kernel.

RFCs 2292/3542, Advanced API

If your application involves raw IP sockets (e.g., ping(8)) and/or IP options handling
via setsockopt(2), you will need to check the IPv6 advanced API, defined in RFCs
2292/3542. Because of header structure differences, such as introduction of exten-
sion header chain, RFCs 2292/3542 present an API very different from the IPv4

counterpart.

This book does not go into details of the RFCs 2292/3542 API. The RFCs are
provided in the appendices.

Availability of RFCs 2292/3542 APl is not widespread, unfortunately. Also, RFCs
2292 and 3542 are not compatible at all. KAME-based platforms support the REC
2292 API as of this writing, while Solaris the supports the RFC 3542 API. Contact
vendors for the support status on other platforms.

Fortunately, only a limited number of applications, such as ping(8) or
traceroute(8), have to deal with RFCs 2292/3542. Normal applications such as ftp(1)
need only deal with RFC 2553 in most cases.

Platform Support Status

Since IPv6 is a new protocol, the level of support varies by platforms. Here’s a status of
implementation as of October 2002 (subject to change).




4.8 Platform Support Status 55

4.8.1

4.8.2

4.8.3

4.8.4

4.8.5

NetBSD

NetBSD supports IPv6 since version 1.5, using the KAME IPv6 stack. On NetBSD,
IPv4 mapped address behavior is turned off by default for security (the IPV6_
VG60ONLY socket option is on by default). We suggest setting the IPV6_V6ONLY
socket option explicitly to on for security and portability.

OpenBSD

OpenBSD supports IPv6 since version 2.7, using the KAME IPv6 stack. On
OpenBSD, IPv4 mapped address behavior is not supported, and the IPV6_V60ONLY

socket option is a no-op.

FreeBSD

FreeBSD supports IPv6 since version 4.0, using the KAME IPv6 stack. On FreeBSD
4 x, IPv4 mapped address behavior is enabled by default (the IPV6_V60ONLY socket
option is off by default)—hence, security problems described in the previous sections
are present. By setting the IPV6_V60ONLY socket option explicitly to on you can
avoid the security problems.

On FreeBSD, current and 5.x, IPv4 mapped address behavior is turned off by
default for security (the IPV6_V60ONLY socket option is on by default). We suggest
setting the IPV6_V6ONLY socket option explicitly to on for security and portability.

BSD/OS

BSD/OS supports IPv6 since version 4.1. Version 4.1 uses the NRL IPv6 stack, and
versions 4.2 and beyond use the KAME IPv6 stack.

On BSD/OS 4.3, IPv4 mapped address behavior is enabled by default (the
IPV6_V60ONLY socket option is off by default)—hence, security problems described
in the previous sections are present. By setting the IPV6_V6ONLY socket option
explicitly to on you can avoid the security problems.

Mac 0SS X

Mac OS X supports IPv6 starting with version 10.2. IPv6 support in version 10.2 is
considered a “developer’s release”—no GUI, no support in most of GUI-based appli-
cations (e.g., Internet Explorer), and so on.

Both ftp(1) and telnet(1) support IPv6. But ssh(1) and sshd(8) do not support
IPv6. IPv6-ready ssh binaries are available at ftp://ftp.kame.net/pub/kame/misc/.

| Chapter 4




56

4.8 Platform Support Status

4.8.6

4.8.7

4.8.8

4.8.9

There are a couple of bugs in the 10.2 library that could affect implementers: getad-
drinfo(3) does not parse scoped IPv6 numeric address form, such as fe80::1%en0.

On Mac OS 10.2, IPv4 mapped address behavior is enabled by default (the
IPV6_V60ONLY socket option is off by default)—hence, security problems described
in the previous sections are present. By setting the IPV6_V60ONLY socket option
explicitly to on you can avoid the security problems.

In addition to socket-based APIs, Apple also provides higher-level APIs, called
Core Foundation libraries, for GUI-based applications. CFNetwork is a URL-based
API, and therefore IPv6 support is embedded within the library. CFReadStream
and CFWriteStream APIs abstract data stream exchanged between two nodes.
CFNetServices provides access to name resolution functions, including Rendezvous
(on-link name resolution based on multicast DNS, as well as DNS-based service
discovery).

Windows 95/98/Me

It seems that there is no plan from Microsoft to support IPv6 on these platforms. There
are third-party IPv6 stacks available from Trumpet software and Hitachi.

Windows 2000

Windows 2000 does not support IPv6. There are experimental releases of IPv6 stacks
provided by Microsoft research.

Windows XP

Windows XP supports IPv6; however, it is disabled by default. It can be enabled by
invocation of “ipv6 install” on the command line. Applications such as Internet
Explorer do support IPv6, since they use URL-based (proprietary) libraries.

Windows CE

Windows CE will support IPv6 in the next release.

4.8.10 Windows .Net Programming Environment

The Windows .Net programming environment provides .Net sockets (System.Net.
Sockets), which is a URL-based class library. The version currently shipping with
Windows is IPv4-only; however, it is scheduled to make the API dual stack—capable.




4.8 Platform Support Status 57

4.8.11 Linux

Linux supports IPv6 starting withkernel version 2.2. However, the specification con-
formance is low, since the stack was based on an old revision of the IPv6 specification.
There are ongoing efforts to update IPv6 support in Linux (the USAGI project).

The level of applications/libraries support varies by Linux distributions; some
distribution ships a larger number of IPv6-enabled applications than others. Some dis-
tribution ships with better library support (glibc) than others.

Using  http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-distribu-
tions.html will help you to understand the level of IPv6 support your Linux distribu-
tion has.

4.8.12 Solaris

Solaris supports IPv6 since version 2.7. On Solaris, IPv4 mapped address behavior is
enabled by default (the IPV6_V6ONLY socket option is off by default)—hence, secu-
rity problems described in the previous sections are present.

| Chapter 4




This page intentionally left blank



A Practical Example

5.1 Server Program Example—popa3d

popa3d is a free, redistributable POP3 server. It supports invocation from inetd, such
as server-inetd4.c ( see Program 3.4), and standalone invocation, such as server-single.c
(see Program 3.6). Version 0.5.1 is not IPv6 ready, so it would be a good candidate for
our example.

The actual code is not shown here. You can grab the code from: http://www.open-

wall.com/popa3d/ or http://www.ascii.co.jp/books/ipv6-api/popa3d-before/.

5.1.1 Identifying Where to Rewrite

Now, you have your popa3d source code in your current directory.

% tar zxf popa3d-0.5.l1.tar.gz
cd popa3d-0.5.1

o°

Let us identify which source code you will need to rewrite.

% grep in_addr *. [ch]

standalone.c: if ((sock = socket (AF_INET, SOCK STREAM,
IPPROTO_TCPT)) < 0)

standalone.c: addr.sin_family = AF_INET;

virtual.c: if (length != sizeof(sin) || sin.sin family != AF INET

virtual.c = ) return NULL;

% grep in_addr *. [ch]

standalone.c: addr.sin addr.s addr) struct in addr addr)

/* Source IP address */

standalone.c: addr.sin_addr.s_addr = inet_addr (DAEMON_ADDR) ;

standalone.c: addr.sin addr.s addr)

standalone.c: inet ntoa(addr.sin_addr

standalone.c:
)) i

59




60

5.1 Server Program Example—popa3d

standalone.c: inet ntoa(addr.sin addr)) ;
standalone.c: inet ntoa(addr.sin_addr)) ;
standalone.c: inet ntoa(addr.sin_addr)) ;
standalone.c: sessions[j] .addr = addr.sin addr;
virtual.c: return inet ntoa(sin.sin_addr) ;

% grep sockaddr in *.[ch]

standalone.c: struct sockaddr in addr;

virtual.c: struct sockaddr in sin;

o

% grep hostent *. [ch]

So, it seems that what we need to rewrite are standalone.c and virtual.c. Let us
check these source codes.

Modifying virtual.c

virtual.c provides virtual home directory functionality, with which you can split users’
spool files into multiple files based on the POP server’s IP address contacted by the
client. The code will be used when POP_VIRTUAL is defined in params.h. IPv4-

dependent code is in lookup(), as follows:

static char *lookup (void)

{

struct sockaddr in sin;
int length;

length = sizeof (sin);

if (getsockname (0, (struct sockaddr *)&sin, &length)) {
if (errno == ENOTSOCK) return “”;
log_error (“getsockname”) ;
return NULL;

}
if (length != sizeof(sin) || sin.sin family != AF INET)
return NULL;

return inet ntoa(sin.sin addr) ;

To make this codepath address-family independent, we would need to:

m  Use sockaddr_storage instead of sockaddr_in to getsockname(2), even if the
socket is not AF _INET.

m  Use getnameinfo(3) instead of inet_ntoa.

The end result will be as follows:

static const char *lookup (void)
struct sockaddr_storage ss;
int length;
int error;




5.1 Server Program Example—popa3d 6l

static char hbuf [NI_MAXHOST] ;

length = sizeof (ss);

if (getsockname (0, (struct sockaddr *)&ss, &length)) {
if (errno == ENOTSOCK) return “”;
log_error (“getsockname”) ;
return NULL;

}

error = getnameinfo ((struct sockaddr *)é&ss, length, hbuf,
sizeof (hbuf), NULL, 0, NI_NUMERICHOST); if (error) {
/* logging? */
return NULL;

}

return hbuf;

I've added “const” to the return type of the function, since the function returns a
ointer to the statically allocated memory region.
P y y Ieg

If you check function virtual_userpass() carefully, the return value from lookup()
will be used to construct the pathname of the email spool file. Beware that under some
operating systems colons and the % sign used in the IPv6 numeric address specification
could be troublesome (e.g., Apple HES uses a colon as the directory pathname
separator).

Modifying standalone.c

popa3d can be invoked via inetd or as a standalone daemon process. With
POP_STANDALONE defined to 0 in params.h, popa3d assumes that it will be
invoked via inetd. With POP_STANDALONE defined to 1, popa3d can be invoked
via inetd or as a standalone daemon (needs -D command-line argument). standalone.c
basically handles the case when poppa3d is invoked as a standalone daemon. (See Pro-

grams 5.1 and 5.2.)
standalone.c hardcodes AF_INET assumption in multiple places:

m It opens the AF_INET socket via the socket(2) call.
m It uses sockaddr_in as an argument to bind(2).

m It uses inet_addr(3) and inet_ntoa(3) to deal with string representation

address.

m  Sessions[] array contains in_addr to hold a peer’s address.

Also, standalone.c listens to single socket only.

| Chapter 5




62 5.2 Further Extensions

Now, we need to make a couple of design decisions:

m  Whether to listen to multiple sockets and use poll(2)/select(2), or listen to a
single socket and run multiple instances of popa3d

m  What we should do about sessions[].addr

Here, we made the following decisions:

m  Make popa3d listen to a single socket only, and switch the address family using
a command-line argument: -4 or -6.

m  Use string representation of the address for session[].addr. The member is used
to rate-limit access from the same address; therefore, the format (binary or
string) does not matter if we can uniquely identify the peer.

The results of the rewrite are shown in Programs 5.3 and 5.4. They are also available
from the following locations:

http://www.ascii.co.jp/books/ipv6-api/popa3d-before/standalone.c
http://www.ascii.co.jp/books/ipv6-api/popa3d-before/startup.c
hetp://www.ascii.co.jp/books/ipv6-api/popa3d-before/virtual.c
http://www.ascii.co.jp/books/ipv6-api/popa3d-after/standalone.c
http://www.ascii.co.jp/books/ipv6-api/popa3d-after/startup.c
http://www.ascii.co.jp/books/ipv6-api/popa3d-after/virtual.c

5.2 Further Extensions

When we rewrote standalone.c, we decided to use single address-family specified via
command-line argument (-4 or -6). You may want to extend standalone.c to open
multiple sockets, based on the return value from getaddrinfo(3) AI_PASSIVE case,
and deal with multiple sockets using poll(2) or select(2) API. By doing so you will
eliminate the need for additional command-line arguments.

This part is left as an exercise for the readers.

5.3 Client Program Example—nail

nail is a free, redistributable email client, based on BSD Mail (well known as
/bin/mail). It supports POP3 for acceessing incoming emails in remote mailboxes, as
well as SMTP for delivering outgoing emails.

The actual code is not shown here. You can grab the code from: htep://
omnibus.ruf.uni-freiburg.de/~gritter/ or http://www.ascii.co.jp/books/ipv6-api/ nail-

before/.




5.3 Client Program Example—nail 63

5.3.1 Identifying Where to Rewrite

Now, you have your nail source code in your current directory.

% tar zxf nail-10.3.tar.gz
cd nail-10.3

o°

Let us identify which source code you will need to rewrite:

% grep AF_INET *. [ch]

pop3.c: if ((sockfd = socket (AF_INET, SOCK STREAM, 0)) == -1) {
pop3.c: servaddr.sin family = AF_INET;
smtp.c: if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) == -1) {

smtp.c: servaddr.sin family = AF_INET;

o

% grep in_addr *. [ch]

pop3.c: struct in_addr **pptr;

pop3.c: pptr = (struct in _addr **)hp->h addr list;

pop3.c: memcpy (&servaddr.sin_addr, *pptr, sizeof (struct in_addr));
smtp.c: struct in_addr **pptr;

smtp.c: pptr = (struct in addr **) hp->h addr list;

smtp.c: memcpy (&servaddr.sin addr, *pptr, sizeof (struct in addr));

o

% grep sockaddr_in *. [ch]

pop3.c: struct sockaddr in servaddr;
smtp.c: struct sockaddr in servaddr;
% grep hostent *.[ch] pop3.c: struct hostent *hp;
smtp.c: struct hostent *hent;

smtp.c: struct hostent *hp;

o

% grep gethostby *. [ch]

pop3.c: if ((hp = gethostbyname (server)) == NULL) {
smtp.c: hent = gethostbyname (hn) ;
smtp.c: if ((hp = gethostbyname (server)) == NULL) ({

It seems that what we need to rewrite are pop3.c and smtp.c. Let us check these
source codes.
Modifying pop3.c

pop3.c provides accesses to incoming emails in remote mailboxes via the POP3
protocol.

IPv4-dependent code is in pop3_open(). The code is as follows (very simplified,
and most of the code is translated into comments).

static enum okay pop3_open(xserver, mp, use ssl, uhp)
const char *xserver; struct mailbox *mp;

const char *uhp;

struct sockaddr in sin;
struct hostent *hp;

| Chapter 5




64

5.3 Client Program Example—nail

char *portstr = use ssl ? “pop3s” : “pop3", *cp;
char *server = xserver;

if ((cp = strchr(server, ':’)) != NULL) ({
portstr = &cpl1l];
/*
* convert portstr into numeric using strtol,
* chop off part after colon from “server”.

*/
} else {
/*
* use the default port.
* convert portstr into numeric using getservbyport (3) .
*/
}
if ((hp = gethostbyname (server)) == NULL)

/* error */
return STOP;

}

pptr = (struct in addr **)hp->h addr list;

if ((sockfd = socket (AF_INET, SOCK STREAM, 0)) == -1) {
/* error */
return STOP;

}

memset (&servaddr, 0, sizeof servaddr) ;

servaddr.sin family = AF_INET;

servaddr.sin port = port;

memcpy (&servaddr.sin addr, *pptr, sizeof (struct in addr));

if (connect (sockfd, (struct sockaddr *)&servaddr, sizeof
/* error */
return STOP;

}

mp-mb_sock = sockfd;
return OKAY;

To make this codepath address-family independent, we would need to:

m  Use getaddrinfo(3) instead of gethostbyname(3) for address resolution.

®  Avoid any hardcoded accesses to IPv4 APIs (e.g., AF_INET, sockaddr_in,
etc.).

m  Make the function try to connect all the addresses returned by DNS name reso-
lution function, rather than try the first one only.

One issue we need to check is the use of the colon as a separator of a string. The
variable xserver would contain a string to specify POP3 protocol access to TCP port
1234 on server.example.com:

server.example.com:1234




5.3 Client Program Example—nail 65

Fortunately, the function does not allow numeric IPv4 address representation;
therefore, we can forget about numeric IPv6 address support, where colons will
become ambiguous to strchr(3).

The end result will be as follows:

static enum okay pop3 open (xserver, mp, use_ssl, uhp)
const char *xserver;
struct mailbox *mp;
const char *uhp;

int sockfd;

struct addrinfo hints, *res0, *res;
char *server = (char *)xserver;

int error;

if ((cp = strchr(server, ’':’)) != NULL) ({
portstr = &cpll];
/*
* chop off part after colon from “server”.
*/

memset (&hints, 0, sizeof (hints));

hints.ai_socktype = SOCK_STREAM;

if (getaddrinfo(server, portstr, &hints, &res0) != 0) {
/* error */
return STOP;

sockfd = -1;
for (res = res0O; res; res = res->ai next) {
sockfd = socket (res->ai family, res->ai_ socktype,
res->ail_protocol); if (sockfd 0)
continue;
if (connect (sockfd, res->ai_addr, res->ai addrlen)
1= 0) {
close (sockfd) ;
sockfd = -1;
continue;

}

break;

}

if (sockfd < 0) {
/* error */ freeaddrinfo (reso0) ;
return STOP;

}

freeaddrinfo (reso0) ;

mp->mb_sock = sockfd;

return OKAY;

| Chapter 5




5.3 Client Program Example—nail

Modifying smtp.c

IPv4 dependent functions here are:
smtp_mta()
nodename()

smtp_mta() is pretty much the same as pop3_open() in pop3.c, and rewriting it
will be straightforward once you have rewritten pop3_open(). nodename() is as
follows:

char *nodename (void)

static char *hostname;
char *hn;
struct utsname ut;
struct hostent *hent;
if (hostname == NULL)
uname (&ut) ;
hn = ut.nodename;
hent = gethostbyname (hn) ;
if (hent != NULL) ({
hn = hent->h name;
hostname = (char *)smalloc(strlen(hn) + 1);
strcpy (hostname, hn) ;
return hostname;

We need to avoid the use of gethostbyname(3), since gethostbyname(3) is IPv4-
only. After the rewrite, the program will look like this:

char *nodename (void)
static char *hostname;
char *hn;
struct utsname ut;
struct addrinfo hints, *res = NULL;

if (hostname == NULL) {

uname (&ut) ;

hn = ut.nodename;

memset (&hints, 0, sizeof (hints));

hints.ai socktype = SOCK STREAM;

hints.ai_flags = AI_CANONNAME;

if (getaddrinfo(hn, NULL, &hints, &res) == 0) {
if (res->ai_canonname)




5.3 Client Program Example—nail

67

Here we

hn

res- >ai_canonname H

}

hostname
strcpy (hostname,

(char *)smalloc (strlen(hn) + 1);

hn) ;

}

if (res)
freeaddrinfo (res) ;

return hostname;

use getaddrinfo(3) with an empty service name (port number), which

is NULL. What we really need is res->ai_canonname, which is equivalent to
hent->h_name. We do not need to handle port number at all. We actually are not
really interested in any of ai_socktype or ai_protocol; however, it is mandatory to con-

figure ai_socktype when we specify numeric or NULL in the second argument.
Therefore, we put SOCK_STREAM into ai_socktype.

You can find the actual source code, before and after the rewrite, at the following

locations:

htep://www.ascii.co.jp/books/ipv6-api/nail-before/pop3.c

http://www.ascii.co.jp/books/ipv6-api/nail-before/smtp.c

http://www.ascii.co.jp/books/ipv6-api/nail-after/pop3.c

htep://www.ascii.co.jp/books/ipv6-api/nail-after/smtp.c

Program 5.1
/*

* Standalone POP server:

standalone.c in popa3d package (before modification).

accepts connections, checks the anti-flood

limits,

* logs
*/

#include

#if POP_.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

and starts the actual POP sessions.

“params.h”
STANDALONE

<stdio.h>
<unistd.h>
<stdlib.h>
<string.h>
<signal.h>
<syslog.h>
<time.h>
<errno.hs>
<sys/times.h>
<sys/types.h>
<sys/wait.h>

| Chapter 5




5.3 Client Program Example—nail

#include <sys/socket.h>
#include <netinet/in.hs>
#include <arpa/inet.h>

#if DAEMON_LIBWRAP

#include <tcpd.h>

int allow_severity = SYSLOG PRI ILO;
int deny severity = SYSLOG PRI HI;
#endif

/*
* These are defined in pop_root.c.
*/
extern int log_error (char *s);
extern int do_pop_ startup(void);
extern int do_pop_ session(void) ;

typedef sig atomic_t a_int;
typedef volatile a int va int;

/*
* Active POP sessions. Those that were started within the last

* MIN_DELAY seconds are also considered active (regardless of their

* actual state), to allow for limiting the logging rate without

* throwing away critical information about sessions that we could have
* allowed to proceed.

*/
static struct {
struct in addr addr; /* Source IP address */
a_int pid; /* PID of the server, or 0 for none */
clock t start; /* When the server was started */
clock t log; /* When we’ve last logged a failure */

} sessions[MAX SESSIONS] ;

static va_int child blocked; /* We use blocking to avoid races */
static va_int child pending; /* Are any dead children waiting? */
/*

* SIGCHLD handler; can also be called directly with a zero signum.
*/
static void handle_child(int signum)
{
int saved errno;
int pid;
int i;

saved_errno = errno;
if (child blocked)
child pending = 1;

else {
child pending = 0;




5.3 Client Program Example—nail

69

while ((pid = waitpid(0, NULL, WNOHANG)) < 0)
for (i = 0; i MAX SESSIONS; i++)

if (sessions[i].pid == pid) {
sessions[i] .pid = 0;
break;

if (signum) signal (SIGCHLD, handle child) ;
errno = saved_errno;

#if DAEMON_LIBWRAP
static void check access(int sock)

{

struct request_info request;

request_init (&request,
RQ DAEMON, DAEMON_LIBWRAP IDENT,
RQ FILE, sock,
0);

fromhost (&request) ;

if (lhosts _access(&request)) {
/* refuse() shouldn’t return... */
refuse (&request) ;
/* ...but just in case */
exit (1) ;

}
}

#endif

#if POP_OPTIONS

int do_standalone (void)

ftelse

int main(void)

#endif

{
int true = 1;
int sock, new;
struct sockaddr_in addr;
int addrlen;
int pid;
struct tms buf;
clock_t now;
int i, j, n;

if (do_pop startup()) return 1;

if ((sock = socket (AF_INET, SOCK _STREAM, IPPROTO_ TCP))

return log error (“socket”) ;
if (setsockopt (sock, SOL_SOCKET, SO REUSEADDR,
(void *)&true, sizeof (true)))




5.3 Client Program Example—nail

return log error (“setsockopt”) ;

memset (&addr, 0, sizeof (addr)) ;

addr.sin family = AF_INET;

addr.sin addr.s_addr = inet_addr (D AEMON_ADDR) ;

addr.sin_port = htons (DAEMON_PORT) ;

if (bind(sock, (struct sockaddr *)&addr, sizeof (addr)))
return log error (“bind”) ;

if (listen(sock, MAX BACKLOG))
return log error (“listen”);

chdir (“/"); setsid() ;
switch (fork()) {
case -1:

return log error (“fork”);

case 0:
break;

default:
return O;

setsid() ;

child blocked = 1;
child pending = 0;
signal (SIGCHLD, handle child) ;
memset ( (void *)sessions, 0, sizeof (sessions)) ;
new = 0;

while (1) {
child blocked = 0;
if (child pending) handle child(0);

if (new < 0)
if (close(new)) return log error (“close”);

addrlen = sizeof (addr) ;
new = accept (sock, (struct sockaddr *)&addr, &addrlen);

*

I wish there was a portable way to classify errno’s... In this case,
it appears to be better to risk eating up the CPU on a fatal error
rather than risk terminating the entire service because of a minor
* temporary error having to do with one particular connection attempt.

*/

*  F

if (new < 0) continue;

now = times (&buf) ;




5.3 Client Program Example—nail 71

child blocked = 1;

j =-1; n=0;
for (i = 0; i MAX SESSIONS; i++) {
if (sessions[i].start now)
sessions[i] .start = 0;
if (sessions[i].pid ||
(sessions [i] .start &&
now - sessions[i].start < MIN DELAY * CLK TCK))
if (sessions[i].addr.s_addr ==
addr.sin_addr.s_addr)
if (++n = MAX SESSIONS_PER SOURCE) break;
} else
if (3 <0) J = 1i;

if (n >= MAX_ SESSIONS_PER SOURCE) {
if (!sessions[i].log ||
now < sessions[i].log ||
now - sessions[i].log = MIN DELAY * CLK_TCK) ({
syslog (SYSLOG PRI HI,
“%s: per source limit reached”,
inet ntoa(addr.sin_addr)) ;
sessions[i] .log = now;

}

continue;

if (3 < 0) {
syslog (SYSLOG_PRI_HI, “%s: sessions limit reached”,
inet ntoa(addr.sin_addr)) ;
continue;

switch ((pid = fork())) {
case -1:
syslog (SYSLOG PRI _ERROR, “%s: fork: %m”,
inet ntoa(addr.sin_addr)) ;
break;
case 0

if (close(sock)) return log error (“close”);

#if DAEMON-LIBWRAP
check_access (new) ;

#endif
syslog (SYSLOG PRI LO, “Session from %s”,

inet ntoa(addr.sin_addr)) ;

return do_pop session() ;
if (dup2(new, 0) < 0) return log error ("dup2");
if (dup2(new, 1) < 0) return log error ("dup2");
if (dup2(new, 2) < 0) return log error ("dup2");
if (close (new)) return log error("close");
return do pop_ session() ;

| Chapter 5




5.3 Client Program Example—nail

default:
sessions[j] .addr = addr.sin_addr;
(va_int)sessions[j] .pid = pid;
sessions[j] .start

= now;
sessions[j].log = 0;

#endif

Program 5.2 startup.c in popa3d package (before modification).
/*

* Command line option parsing.

*/
#include “params.h”
#if POP_OPTIONS

#include <unistd.h>
#include <stdio.h>
#include <stdlibs>

/* pop_root.c */
extern int do_pop_startup (void) ;
extern int do_pop session(void) ;

/* standalone.c */
extern int do_standalone (void) ;

#ifdef HAVE PROGNAME
extern char *__ progname;
#define progname _ progname
#else

static char *progname;
#endif

static void usage (void)

{

fprintf (stderr, “Usage: %s [-D]\n”, progname) ;

exit (1) ;

int main(int argc, char **argv) {
int c;
int standalone = 0;

#ifndef HAVE PROGNAME
if (! (progname = argv[0]))
progname = POP_SERVER;
#endif




5.3 Client Program Example—nail

73

}

#endif

Program 5.3
modified).
/*
* Stand
* limit

*/

#include

#if POP_

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#if DAEM
#include
int allo

while ((c = getopt(argc, argv, “D”)) != -1) {
switch (c) {
case 'D’:
standalone++;
break;
default:
usage () ;
}
}
if (optind != argc) usage() ;
if (standalone)
return do_standalone() ;
if (do_pop startup()) return 1;

return do pop_ session() ;

standalone.c in popa3d package (after modification: bold portions are

alone POP server:
S,

accepts connections, checks the anti-flood
logs and starts the actual POP sessions.

“params.h”
STANDALONE

<stdio.h>
<unistd.h>
<stdlib.h>
<string.h>
<signal.h>
<syslog.h>
<time.h>
<errno.h>
<netdb.h>
<sys/times.h>
<sys/types.h>
<sys/wait.h>
<sys/socket.h>

<netinet/in.h>

<arpa/inet.h>
ON_LIBWRAP

<tcpd.h>

w_severity = SYSLOG PRI _LO;

Chapter 5




74

5.3 Client Program Example—nail

int deny severity = SYSLOG PRI HI;
#endif

/*
* These are defined in pop_ root.c.
*/
extern int log error(char *s);
extern int do_pop_startup (void) ;
extern int do_pop session(void) ;
extern int af;

typedef sig atomic_t a_int;
typedef volatile a int va int;

/
Active POP sessions. Those that were started within the last

MIN _DELAY seconds are also considered active (regardless of their
actual state), to allow for limiting the logging rate without
throwing away critical information about sessions that we could have
allowed to proceed.

P T T

static struct {
char addr [NI_MAXHOST]; /* Source IP address */

a_int pid; /* PID of the server, or 0 for none */
clock t start; /* When the server was started */
clock _t log; /* When we’ve last logged a failure */

} sessions[MAX SESSIONS] ;

static va_int child blocked; /* We use blocking to avoid races */
static va_int child pending; /* Are any dead children waiting? */
/*

* SIGCHLD handler; can also be called directly with a zero signum.
*/
static void handle_child (int signum)
{
int saved _errno;
int pid;
int 1i;

saved_errno = errno;

if (child blocked)

child pending = 1;
else {

child pending = 0;

while ((pid = waitpid (0, NULL, WNOHANG)) > 0)
for (i = 0; i MAX SESSIONS; i++)
if (sessions[i].pid == pid) {
sessions[i] .pid = 0;
break;




5.3 Client Program Example—nail

75

if (signum) signal (SIGCHLD, handle child) ;

errno = saved_errno;

#if DAEMON_LIBWRAP
static void check access(int sock)

{

struct request info request;

request_init (&request,
RQ DAEMON, DAEMON LIBWRAP IDENT,
RQ FILE, sock,
0);

fromhost (&request) ;

if (lhosts_access (&request)) ({
/* refuse() shouldn’t return... */
refuse (&request) ;
/* ...but just in case */
exit (1) ;

}
}

#endif

#if POP_OPTIONS
int do_standalone (void)
#else
int main(void)
#endif
{
int true = 1;
int sock, new;
struct sockaddr storage addr;
int addrlen;
int pid;
struct tms buf;
clock_t now;
int i, j, n;
struct addrinfo hints, *res;
char hbuf [NI_MAXHOST] ;
char sbuf [NI_MAXSERV] ;

int error;
if (do_pop_ startup()) return 1;

if ((sock = SOCket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
return log_ error (“socket”) ;

| Chapter




76

5.3 Client Program Example—nail

snprintf (sbuf, sizeof (sbuf), “%u”, DAEMON PORT) ;
memset (&hints, 0, sizeof (hints));
hints.ai socktype = SOCK STREAM;
hints.ai family = af;
hints.ai flags = AI PASSIVE;
error = getaddrinfo (NULL, sbuf, &hints, &res);
if (error)
return log error (“getaddrinfo”) ;

sock = socket(res-ai family, res-ai socktype, res-ai protocol);
if (sock < 0) {

freeaddrinfo(res) ;

return log error (“socket”);

if (setsockopt (sock, SOL_SOCKET, SO REUSEADDR,
(void *)&true, sizeof (true))) {
freeaddrinfo (res) ;
return log error (“setsockopt”) ;

#ifdef IPV6_V6ONLY

#endif

if (res->ai_ family == AF_INET6 && setsockopt (sock,
IPPROTO_IPV6, IPV6 V6ONLY, (void *)&true, sizeof(true))) {
freeaddrinfo(res);
return log_error (“setsockopt”);

if (bind(sock, res-ai addr, res-ai_addrlen)) {
freeaddrinfo (res) ;
return log error (“bind”) ;
}
freeaddrinfo (res) ;
if (listen(sock, MAX BACKLOG))
return log_error (“listen”);

chdir(“/"); setsid();
switch (fork()) ({
case -1:

return log_error (“fork”);

case 0:

break;
default:

return 0;
}
setsid() ;

child blocked = 1;




5.3 Client Program Example—nail

77

child pending = 0;
signal (SIGCHLD, handle child) ;

memset ( (void *)sessions, 0, sizeof (sessions));
new = 0;

while (1) {
child blocked = 0;
if (child pending) handle child(0) ;

if (new > 0)
if (close(new)) return log error (“close”);

addrlen = sizeof (addr) ;
new = accept (sock, (struct sockaddr *)&addr, &addrlen) ;

error = getnameinfo((struct sockaddr *)&addr, addrlen,
hbuf, sizeof (hbuf), NULL, 0, NI NUMERICHOST) ;
if (error)
i /* XXX */

I wish there was a portable way to classify errno’s... In this case,
it appears to be better to risk eating up the CPU on a fatal error

* rather than risk terminating the entire service because of a minor
* temporary error having to do with one particular connection attempt.

*/

if (new 0) continue;
now = times (&buf) ;
child blocked = 1;

j =-1; n = 0;
for (1 = 0; i MAX SESSIONS; i++) {
if (sessions[i].start now)

sessions[i] .start = 0;
if (sessions[i].pid ||

(sessions[i] .start &&

now - sessions[i].start MIN DELAY * CLK TCK)) {

if (strcmp(sessions[i] .addr, hbuf) == 0)
if (++n = MAX SESSIONS PER SOURCE)
break;

else
if (J < 0) j = 1i;

if (n >= MAX_SESSIONS PER_SOURCE)
{ 1f (!sessions[i].log ||
now < sessions[i].log ||
now - sessions[i].log = MIN DELAY *
CLK_TCK) {

| Chapter 5




78 5.3 Client Program Example—nail

syslog (SYSLOG PRI HI,
“%s: per source limit reached”,
hbuf) ;
sessions[i] .1log = now;

}

continue;

if (3 < 0) {
syslog (SYSLOG PRI HI, “%s: sessions limit

reached”,
hbuf) ;
continue;
}
switch ((pid = fork())) {
case -1:
syslog (SYSLOG PRI _ERROR, “%s: fork: %m”, hbuf);
break;
case 0:

if (close(sock)) return log error(“close”);
#if DAEMON_LIBWRAP
check_access (new) ;

#endif
syslog (SYSLOG _PRI_LO, “Session from %s”,
hbuf) ;
if (dup2(new, 0) < 0) return log error ("dup2");
if (dup2(new, 1) < 0) return log error ("dup2");
if (dup2(new, 2) < 0) return log_error ("dup2");
)

if (close (new)) return log error("close");
return do_pop_ session() ;
default:
strlcpy(sessions[j] .addr, hbuf,
sizeof (sessions[j].addr));
(va_int)sessions[j].pid = pid;
sessions[j] .start = now;
sessions[j].log = 0;

}

#endif

Program 5.4  startup.c in popa3d package (after modification: bold portions are
modified).
/*
* Command line option parsing.

*/

#include “params.h”




5.3 Client Program Example—nail

79

#if POP_OPTIONS

<sys/socket.h>
<unistd.h>
<stdio.h>
<stdlib.h>

#include
#include
#include
#include

/* pop_root.c */
extern int do pop_startup (void) ;
extern int do_pop_session(void) ;

/* standalone.c */
extern int do_standalone (void) ;

#ifdef HAVE PROGNAME

extern char *_progname;

#define progname _ progname #else
static
#endif

char *progname;

int af = AF INET;

static

{

void usage (void)

%s

fprintf (stderr,
exit (1) ;

“Usage:

int main(int argc,
int c¢;
int standalone = 0;
#ifndef HAVE PROGNAME
if (! (progname =
progname =

char **argv) {

argv[0]))
POP_SERVER;
#endif

while ((c =
switch

getopt (argc,
(c) |
"D’
standalone++;
break;
4’
af = AF_INET;
break;
"6’
af = AF_INET6;
break;

argv,

case

case

case

default:
usage () ;

[-DI\n",

progname) ;

"D46")) 1= -1) {

| Chapter




80

5.3 Client Program Example—nail

}

#endif

if (optind != argc)
usage () ;

if (standalone)
return do_standalone() ;

if (do_pop startup()) return 1;
return do pop_ session() ;




Coming updates to IPv6 APIs

In the IETF and IEEE (Posix committee), there are efforts to revise IPv6-related APIs.
Updates to RFC2553 is available as REC3493. The only major change is the inclu-
sion of IPV6_VG60ONLY socket option. In this book we have already described
IPV6_V60ONLY, and sample programs made use of it.

RFC2292/3542 defines advanced IPv6 API, as discussed previously.

RFC2553 and RFC2292 are not very useful with respect to manipulation of
traffic class/flow label value on the IPv6 header. RFC3542 document defines ways
to specify/inspect traffic class value. The API for flow label value is still unspecified,
as the semantics for flow label itself is still under discussion (draft-ietf-ipv6-flow-
label-07.txt). The following appendices contain:

B
RFC2553 “Basic Socket Interface Extensions for IPv6”

C
RFC3493 “Basic Socket Interface Extension for IPv6”

D
RFC2292 “Advanced Sockets API for IPv6”

E
RFC3542 “Advanced Sockets API for IPv6”

F
IPv4-Mapped Address API Considered Harmful

8l




82

Coming updates to IPv6 APls

draft-cmetz-v6ops-vdmapped-api-harmful-00.txt

can be obtained from ftp://ftp.itojun.org/pub/paper/

G
IPv4-Mapped Addresses on the Wire Considered Harmful
draft-itojun-v6ops-v4dmapped-harmful-01.txt

can be obtained from ftp://ftp.itojun.org/pub/paper/

H
Possible Abuse Against IPv6 Transition Technologies
draft-itojun-ipv6-transition-abuse-01. txt

can be obtained from ftp://ftp.itojun.org/pub/paper/

|
An Extension of Format for IPv6 Scoped Addresses
draft-ietf-ipngwg-scopedaddr-format-02.txt

The document is now integrated into draft-ietf-ipv6-scoping-arch-00.txt, how
ever, the authors felt that the revision is more suitable for this book. Therefore, the
revision is included here.

J
Protocol Independence Using the Sockets API

The paper was presented at USENIX annual conference, June 2000. The paper is
included here under permission from USENIX and the author, Mr Craig Metz. The
original paper can be found at the following URL: http://www.usenix.org/events/
usenix2000/freenix/metzprotoocl.html




RFC2553 “Basic Socket Interface Extensions
for IPv6”

83




RFC2553 “Basic Socket Interface Extensions for IPvé"

Network Working Group R. Gilligan
Request for Comments: 2553 FreeGate
Obsoletes: 2133 S. Thomson
Category: Informational Bellcore

J. Bound
Compaq

W. Stevens
Consultant
March 1999

Basic Socket Interface Extensions for IPv6

Status of this Memo

This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved

Abstract

The de facto standard application program interface (API) for TCP/IP
applications is the "sockets” interface. Although this API was
developed for Unix in the early 1980s it has also been implemented on
a wide variety of non-Unix systems. TCP/IP applications written
using the sockets API have in the past enjoyed a high degree of
portability and we would like the same portability with IPv6
applications. But changes are required to the sockets API to support
IPv6 and this memo describes these changes. These include a new
socket address structure to carry IPv6 addresses, new address
conversion functions, and some new socket options. These extensions
are designed to provide access to the basic IPv6 features required by
TCP and UDP applications, including multicasting, while introducing a
minimum of change into the system and providing complete
compatibility for existing IPv4 applications. Additional extensions
for advanced IPv6 features (raw sockets and access to the IPv6
extension headers) are defined in another document [4].




RFC2553 “Basic Socket Interface Extensions for [Pv6" 85

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Table of Contents

Lo Introduction couu. e 3
2. Design Considerations................cciiiniieuennnnnnnnnin. 3
2.1 What Needs to be Changed.................................... 4
2.2 Data TyYPeS. ottt 5
2.3 Headers. . .ottt e e 5
2. 4 S TUCHUT S, oottt e e ety i e 5
3. Socket Interface............ ... iiiuiiiiiie i, 6
3.1 IPv6 Address Family and Protocol Family..................... 6
3.2 IPv6 Address Structure...............c..ouiiuieeeneennnnnai.. 6
3.3 Socket Address Structure for 4.3BSD-Based Systems........... 7
3.4 Socket Address Structure for 4.4BSD-Based Systems........... 8
3.5 The Socket Functions........cc.ooviiiiuireiiiiinnneniiannnnn.. 9
3.6 Compatibility with IPv4 Applications....................... 10
3.7 Compatibility with TPvd Nodes................covvueeeo ... 10
3.8 IPv6 Wildcard Address...............ccoiieiineeannaann.. 11
3.9 IPv6 Loopback Address...............cciiiiiiinnainiaannn. 12
3.10 Portability Additions...............cooviiiii e, 13
4. Interface Identification.............coiviirennnneronnnnenns 16
4.1 Name—to—Index..... .o, 16
4.2 Index—toName...........oiioiii it 17
4.3 Return All Interface Names and Indexes..................... 17
4.4 Free Memory. ... ....ooonnii e 18
5. Socket Options.......oouniii i e 18
5.1 Unicast Hop Limit........ooiiu i iiiniiiiisenannennnnnnenss 18
5.2 Sending and Receiving Multicast Packets.................... 19
6. Library Functions. .. .........ouiiiiimiemni i, 21
6.1 Nodename-to-Address Translation...................cvvuunn.. 21
6.2 Address—To-Nodename Translation............................ 24
6.3 Freeing memory for getipnodebyname and getipnodebyaddr..... 26
6.4 Protocol-Independent Nodename and Service Name Translation. 26
6.5 Socket Address Structure to Nodename and Service Name...... 29
6.6 Address Conversion Functions............................... 31
6.7 Address Testing Macros...............c.uiuiuuumnneeunnnnnn.. 32
7. Summary of New Definitions.............covuuveeeunnnnnnnn.. 33
8. Security Considerations...............ccovviiriunneennnnnn.. 35
9. Year 2000 Considerations...............covvuuiinnnnnnennnn,, 35
Changes From RFC 2133, ... ... ... . . . ittt ieainrennnnns, 35
Acknowledgments. . .. uuue et e e 38
References. ..o e e 39
AUThOTs’ AdAIeSSes. . ... ..ouirini e e 40
Full Copyright Statement.................couiiieeiiunenannani.. 41
Gilligan, et. al. Informational fPage 2]

|  Appendix B




86

RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

1.

Introduction

¥hile IPv4 addresses are 32 bits long, IPv6 interfaces are identified
by 128-bit addresses. The socket interface makes the size of an IP
address quite visible to an application: virtually all TCP/IP
applications for BSD-based systems have knowledge of the size of an
IP address. Those parts of the API that expose the addresses must be
changed to accommodate the larger IPv6 address size. IPv6 also
introduces new features (e.g., traffic class and flowlabel), some of
which must be made visible to applications via the API. This memo
defines a set of extensions to the socket interface to support the
larger address size and new features of IPv6

Design Considerations

There are a number of important considerations in designing changes
to this well-worn API:

— The API changes should provide both source and binary
compatibility for programs written to the original API. That
is, existing program binaries should continue to operate when
run on a system supporting the new API. 1In addition, existing
applications that are re-compiled and run on a system supporting
the new API should continue to operate. Simply put, the API
changes for IPv6 should not break existing programs. An
additonal mechanism for implementations to verify this is to
verify the new symbols are protected by Feature Test Macros as
described in IEEE Std 1003.1. (Such Feature Test Macros are not
defined by this RFC.)

The changes to the API should be as small as possible in order

to simplify the task of converting existing IPv4 applications to
IPv6.

— Where possible, applications should be able to use this API to
interoperate with both IPv6 and IPv4 hosts. Applications should
not need to know which type of host they are communicating with.

— IPv6 addresses carried in data structures should be 64-bit
aligned. This is necessary in order to obtain optimum
performance on 64-bit machine architectures

Because of the importance of providing IPv4 compatibility in the API
these extensions are explicitly designed to operate on machines that
provide complete support for both IPv4 and IPv6. A subset of this
APT could probably be designed for operation on systems that support
only IPv6. However, this is not addressed in this memo.

Gilligan, et. al. Informational [Page 3]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

2.1 What Needs to be Changed
The socket interface API consists of a few distinet components:
- Core socket functions.
- Address data structures.
— Name-to—address translation functions.
= Address conversion functions.

The core socket functions -— those functions that deal with such
things as setting up and tearing down TCP connections, and sending
and receiving UDP packets —- were designed to be transport
independent. Where protocol addresses are passed as function
arguments, they are carried via opaque pointers. A protocol-specific
address data structure is defined for each protocol that the socket
functions support. Applications must cast pointers to these
protocol-specific address structures into pointers to the generic
“sockaddr” address structure when using the socket functionms. These
functions need not change for IPv6, but a new IPv6-specific address
data structure is needed.

The "sockaddr_in” structure is the protocol-specific data structure
for IPv4. This data structure actually includes 8-octets of unused
space, and it is tempting to try to use this space to adapt the
sockaddr_in structure to IPv6. Unfortunately, the sockaddr_in
structure is not large enough to hold the 16-octet IPv6 address as
well as the other information (address family and port number) that
is needed. So a new address data structure must be defined for IPv6.

IPv6 addresses are scoped [2] so they could be link-local, site,
organization, global, or other scopes at this time undefined. To
support applications that want to be able to identify a set of
interfaces for a specific scope, the IPv6 sockaddr_in structure must
support a field that can be used by an implementation to identify a
set of interfaces identifying the scope for an IPv6 address.

The name-to-address translation functions in the socket interface are
gethostbyname () and gethostbyaddr (). These are left as is and new
functions are defined to support IPv4 and IPv6. Additicnally, the
POSIX 1003.g draft [3] specifies a new nodename—to-address
translation function which is protocol independent. This function
can also be used with IPv4 and IPv6.

Gilligan, et. al. Informational [Page 4]

| Appendix




RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

The address conversion functions —— inet_ntoa() and inet_addr() -——
convert IPv4 addresses between binary and printable form. These
functions are quite specific to 32-bit IPv4 addresses. We have
designed two analogous functions that convert both IPv4 and IPv6
addresses, and carry an address type parameter so that they can be
extended to other protocol families as well.

Finally, a few miscellaneous features are needed to support IPv6.

New interfaces are needed to support the IPv6 traffic class, flow
label, and hop limit header fields. New socket options are needed to
control the sending and receiving of IPv6 multicast packets.

The socket interface will be enhanced in the future to provide access
to other IPv6 features. These extensions are described in [4].

2.2 Data Types

The data types of the structure elements given in this memo are
intended to be examples, not absolute requirements. Whenever
possible, data types from Draft 6.6 (March 1997) of POSIX 1003. 1g are
used: uintN_t means an unsigned integer of exactly N bits (e.g.,
uintl6_t). We also assume the argument data types from 1003. lg when
possible (e.g., the final argument to setsockopt() is a size_t
value). Whenever buffer sizes are specified, the POSIX 1003.1 size_t
data type is used (e.g., the two length arguments to getnameinfo(}).

2.3 Headers

When function prototypes and structures are shown we show the headers
that must be #included to cause that item to be defined.

2.4 Structures

¥hen structures are described the members shown are the ones that
must appear in an implementation. Additional, nonstandard members
may also be defined by an implementation. As an additional
precaution nonstandard members could be verified by Feature Test
Macros as described in IEEE Std 1003.1. (Such Feature Test Macros
are not defined by this RFC.)

The ordering shown for the members of a structure is the recommended

ordering, given alignment considerations of multibyte members, but an
implementation may order the members differently.

Gilligan, et. al. Informational [Page 5]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

3. Socket Interface

This section specifies the socket interface changes for IPvé.
3.1 IPv6 Address Family and Protocol Family

A new address family name, AF_INET6, is defined in <sys/socket.h).
The AF_INET6 definition distinguishes between the original
sockaddr_in address data structure, and the new sockaddr_in6 data
structure.

A new protocol family name, PF_INET6, is defined in <sys/socket.h).
Like most of the other protocol family names, this will usually be
defined to have the same value as the corresponding address family
name:

#define PF_INET6 AF_INET6

The PF_INET6 is used in the first argument to the socket() function
to indicate that an IPv6 socket is being created

3.2 IPv6 Address Structure

A new in6_addr structure holds a single IPv6 address and is defined
as a result of including <netinet/in.h>:

struct in6_addr {
uint8_t s6_addr{16]; /* IPv6 address */

I
This data structure contains an array of sixteen 8-bit elements,
which make up one 128-bit IPv6 address. The IPv6 address is stored
in network byte order
The structure in6_addr above is usually implemented with an embedded
union with extra fields that force the desired alignment level in a
manner similar to BSD implementations of “struct in_addr”. Those

additional implementation details are omitted here for simplicity.

An example is as follows:

Gilligan, et. al. Informational [Page 6]

| Appendix




920

RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

struct in6_addr {
union {
uint8_t _S6_u8[16];
uint32_t _S6_u32[4]);
uint64_t _S6_u64(2];
} _S6_un;
}s
#define s6_addr _S6_un._S6_u8

3.3 Socket Address Structure for 4.3BSD-Based Systems

In the socket interface, a different protocol-specific data structure
is defined to carry the addresses for each protocol suite. Each
protocol- specific data structure is designed so it can be cast into a
protocol- independent data structure -— the ”“sockaddr” structure.

Each has a "family” field that overlays the "sa_family” of the
sockaddr data structure. This field identifies the type of the data
structure,

The sockaddr_in structure is the protocol-specific address data
structure for IPv4. It is used to pass addresses between applications
and the system in the socket functions. The following sockaddr_in6
structure holds IPv6 addresses and is defined as a result of including
the <netinet/in.h> header:

struct sockaddr_iné {

sa_family_t sinb_family; /* AF_INET6 */

in_port_t sin6_port; /% transport layer port # */
uint32_t sin6é_flowinfo; /# IPv6 traffic class & flow info %/
struct in6_addr sin6_addr; /% 1Pv6 address */

uint32_t sin6_scope_id; /* set of interfaces for a scope */

This structure is designed to be compatible with the sockaddr data
structure used in the 4.3BSD release.

The sin6_family field identifies this as a sockaddr_in6 structure.
This field overlays the sa_family field when the buffer is cast to a
sockaddr data structure. The value of this field must be AF_INET®.

The sin6_port field contains the 16-bit UDP or TCP port number. This
field is used in the same way as the sin_port field of the
sockaddr_in structure. The port number is stored in network byte
order.

Gilligan, et. al. Informational [Page 7]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

The sin6_flowinfo field is a 32-bit field that contains two pieces of
information: the traffic class and the flow label. The contents and
interpretation of this member is specified in [1]. The sin6_flowinfo
field SHOULD be set to zero by an implementation prior to using the
sockaddr_in6 structure by an application on receive operations.

The sin6_addr field is a single in6_addr structure (defined in the
previous section). This field holds one 128-bit IPv6 address. The
address is stored in network byte order.

The ordering of elements in this structure is specifically designed
so that when sin6_addr field is aligned on a 64-bit boundary, the
start of the structure will also be aligned on a 64-bit boundary
This is done for optimum performance on 64-bit architectures.

The sin6_scope_id field is a 32-bit integer that identifies a set of
interfaces as appropriate for the scope of the address carried in the
sin6_addr field. For a link scope sin6_addr sin6_scope_id would be
an interface index. For a site scope sin6_addr, sin6_scope_id would
be a site identifier. The mapping of sin6_scope_id to an interface
or set of interfaces is left to implementation and future
specifications on the subject of site identifiers,

Notice that the sockaddr_in6 structure will normally be larger than
the generic sockaddr structure. On many existing implementations the
sizeof (struct sockaddr_in) equals sizeof{struct sockaddr), with both
being 16 bytes. Any existing code that makes this assumption needs
to be examined carefully when converting to IPv6

3.4 Socket Address Structure for 4.4BSD-Based Systems

The 4.4BSD release includes a small, but incompatible change to the
socket interface. The "sa_family” field of the sockaddr data
structure was changed from a 16-bit value to an 8-bit value, and the
space saved used to hold a length field, named "sa_len”. The
sockaddr_in6 data structure given in the previous section cannot be
correctly cast into the newer sockaddr data structure. For this
reason, the following alternative IPv6 address data structure is
provided to be used on systems based on 4.4BSD. It is defined as a
result of including the <netinet/in.h> header.

Gilligan, et. al. Informational {Page 8]

| Appendix




92

RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

struct sockaddr_in6 {

uint8_t sin6_len; /* length of this struct */
sa_family_t siné_family; /% AF_INET6 */

in_port_t sin6_port; /* transport layer port # */
uint32_t sin6_flowinfo: /% IPv6 flow information */

struct in6_addr sin6_addr; /% IPv6 address */

uint32_t sin6_scope_id; /* set of interfaces for a scope */

The only differences between this data structure and the 4.3BSD
variant are the inclusion of the length field, and the change of the
family field to a 8-bit data type. The definitions of all the other
fields are identical to the structure defined in the previous
section

Systems that provide this version of the sockaddr_in6é data structure
must also declare SIN6_LEN as a result of including the
<netinet/in.h> header. This macro allows applications to determine
whether they are being built on a system that supports the 4.3BSD or
4. 4BSD variants of the data structure.

3.5 The Socket Functions

Applications call the socket() function to create a socket descriptor
that represents a communication endpoint. The arguments to the
socket () function tell the system which protocol to use, and what
format address structure will be used in subsequent functions. For
example, to create an IPv4/TCP socket, applications make the call:

s = socket (PF_INET, SOCK_STREAM, 0);
To create an IPv4/UDP socket, applications make the call:

s = socket (PF_INET, SOCK_DGRAM, 0);
Applications may create IPv6/TCP and IPv6/UDP sockets by simply using
the constant PF_INET6 instead of PF_INET in the first argument. For
example, to create an IPv6/TCP socket, applications make the call:

= socket (PF_INET6, SOCK_STREAM, 0);

To create an IPv6/UDP socket, applications make the call:

s = socket (PF_INET6, SOCK_DGRAM, 0);

Gilligan, et. al. Informational [Page 9}




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Once the application has created a PF_INET6 socket, it must use the
sockaddr_in6 address structure when passing addresses in to the
system. The functions that the application uses to pass addresses
into the system are:

bind ()
connect ()
sendmsg ()
sendto ()

The system will use the sockaddr_in6 address structure to return
addresses to applications that are using PF_INET6 sockets. The

functions that return an address from the system to an application
are:

accept ()
recvfrom()
recvmsg ()
getpeername ()
getsockname ()

No changes to the syntax of the socket functions are needed to
support IPv6, since all of the "address carrying” functions use an

opaque address pointer, and carry an address length as a function
argument

3.6 Compatibility with IPv4 Applications

In order to support the large base of applications using the original
API, system implementations must provide complete source and binary
compatibility with the original API. This means that systems must
continue to support PF_INET sockets and the sockaddr_in address
structure. Applications must be able to create IPv4/TCP and IPv4/UDP
sockets using the PF_INET constant in the socket() function, as
described in the previous section. Applications should be able to
hold a combination of IPv4/TCP, IPv4/UDP, IPv6/TCP and IPv6/UDP
sockets simultaneously within the same process.

Applications using the original API should continue to operate as
they did on systems supporting only IPv4. That is, they should

continue to interoperate with IPv4 nodes

3.7 Compatibility with IPv4 Nodes
The API also provides a different type of compatibility: the ability
for IPv6 applications to interoperate with IPv4 applications. This

feature uses the IPv4d-mapped IPv6 address format defined in the IPv6
addressing architecture specification [2]. This address format

Gilligan, et. al. Informational [Page 10]

| Appendix




RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

allows the IPv4 address of an IPv4 node to be represented as an IPv6
address. The IPv4 address is encoded into the low—order 32 bits of
the IPv6 address, and the high-order 96 bits hold the fixed prefix
0:0:0:0:0:FFFF. IPv4- mapped addresses are written as follows:

: :FFFF:<IPv4-address>

These addresses can be generated automatically by the
getipnodebyname () function when the specified host has only IPv4
addresses (as described in Section 6.1).

Applications may use PF_INET6 sockets to open TCP connections to IPv4
nodes, or send UDP packets to IPv4 nodes, by simply encoding the
destination’s IPv4 address as an IPv4-mapped IPv6 address, and
passing that address, within a sockaddr_in6 structure, in the
connect{} or sendto() call. When applications use PF_INET6 sockets
to accept TCP connections from IPv4 nodes, or receive UDP packets
from IPv4 nodes, the system returns the peer’ s address to the
application in the accept(), recvfrom(), or getpeername() call using
a sockaddr_in6 structure encoded this way.

Few applications will likely need to know which type of node they are
interoperating with. However, for those applications that do need to
know, the IN6_IS_ADDR_VAMAPPED() macro, defined in Section 6.7, is
provided.

3.8 IPv6 Wildcard Address

While the bind() function allows applications to select the source IP
address of UDP packets and TCP connections, applications often want
the system to select the source address for them. With IPv4, one
specifies the address as the symbolic constant INADDR_ANY {called the
"wildcard” address) in the bind() call, or simply omits the bind()
entirely.

Since the IPv6 address type is a structure (struct in6_addr), a
symbolic constant can be used to initialize an IPv6 address variable,
but cannot be used in an assignment. Therefore systems provide the
IPv6 wildcard address in two forms.

The first version is a global variable named “in6addr_any” that is an
in6_addr structure. The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_any;

Gilligan, et. al. Informational [Page 11]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Applications use infaddr_any similarly to the way they use INADDR_ANY
in IPv4. For example, to bind a socket to port number 23, but let
the system select the source address, an application could use the
folliowing code:

struct sockaddr_iné sin6;

sin6. sin6_family = AF_INET6;

sin6. sin6_flowinfo = 0;

sin6. sinb_port = htons(23);

sin6, sin6_addr = in6addr_any; /* structure assignment */

if (bind(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)

The other version is a symbolic constant named INSADDR_ANY_INIT and
is defined in <netinet/in.h>. This constant can be used to
initialize an in6_addr structure:

struct in6_addr anyaddr = IN6ADDR_ANY_INIT;

Note that this constant can be used ONLY at declaration time. It can
not be used to assign a previously declared in6_addr structure. For
example, the following code will not work:

/% This is the WRONG way to assign an unspecified address */
struct sockaddr_in6 sin6;

sin6. sinb_addr = IN6ADDR_ANY_INIT; /* will NOT compile */
Be aware that the IPv4 INADDR_xxx constants are all defined in host
byte order but the IPv6 INGADDR xxx constants and the IPv6

inbaddr_xxx externals are defined in network byte order.

3.9 IPv6 Loopback Address

Applications may need to send UDP packets to, or originate TCP
connections to, services residing on the local node. In IPv4, they
can do this by using the constant IPvd4 address INADDR_LOOPBACK in
their connect(), sendto(), or sendmsg() call.

IPv6 also provides a loopback address to contact local TCP and UDP
services. Like the unspecified address, the IPv6 loopback address is
provided in two forms —- a global variable and a symbolic constant.

Gilligan, et. al. Informational {Page 12]

| Appendix




RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPvé March 1999

The global variable is an in6_addr structure named
"inbaddr_loopback. ” The extern declaration for this variable is
defined in <netinet/in. h>:

extern const struct in6é_addr in6addr_loopback;

Applications use in6addr_loopback as they would use INADDR_LOOPBACK
in IPv4 applications (but beware of the byte ordering difference
mentioned at the end of the previous section). For example, to open
a TCP connection to the local telnet server, an application could use
the following code:

struct sockaddr_in6 sin6;

sin6. sin6_family = AF_INET6;

sin6. sin6_flowinfo = 0;

sin6. sinb_port = htons(23);

sin6. sin6_addr = inBaddr_loopback; /* structure assignment */

if (connect(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)

The symbolic constant is named INGADDR_LOOPBACK_INIT and is defined
in <netinet/in.h>. It can be used at declaration time ONLY; for
example:

struct in6_addr loopbackaddr = IN6ADDR_LOOPBACK_INIT;

Like IN6ADDR_ANY_INIT, this constant cannot be used in an assignment
to a previously declared IPv6 address variable.

3.10 Portability Additions

One simple addition to the sockets API that can help application
writers is the "struct sockaddr_storage”. This data structure can
simplify writing code portable across multiple address families and
platforms. This data structure is designed with the following goals.

- It has a large enough implementation specific maximum size to
store the desired set of protocol specific socket address data
structures. Specifically, it is at least large enough to
accommodate sockaddr_in and sockaddr_in6 and possibly other
protocol specific socket addresses too.

It is aligned at an appropriate boundary so protocol specific
socket address data structure pointers can be cast to it and
access their fields without alignment problems. (e.g. pointers
to sockaddr_in6é and/or sockaddr_in can be cast to it and access
fields without alignment problems).

Gilligan, et. al. Informational [Page 13]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

97

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

- It has the initial field(s) isomorphic to the fields of the
"struct sockaddr” data structure on that implementation which
can be used as a discriminants for deriving the protocol in use.
These initial field(s) would on most implementations either be a
single field of type "sa_family_t” (isomorphic to sa_family
field, 16 bits) or two fields of type uint8_t and sa_family_t
respectively, (isomorphic to sa_len and sa_family_t, 8 bits
each).

An example implementation design of such a data structure would be as
follows,

/%
* Desired design of maximum size and alignment
*/
#define _SS_MAXSIZE 128 /* Implementation specific max size */
#define _SS_ALIGNSIZE (sizeof (int64_t))
/* Implementation specific desired alignment */

/*
* Definitions used for sockaddr_storage structure paddings design.
*/
#define _SS_PADISIZE  (_SS_ALIGNSIZE - sizeof (sa_family t))
#define _SS_PAD2SIZE  (_SS_MAXSIZE - (sizeof (sa_family_t)+

_SS_PADISIZE + _SS_ALIGNSIZE))
struct sockaddr_storage {

sa_family_t __ss_family; /* address family */
/% Following fields are implementation specific */
char __ss_pad1[_SS_PADISIZE];

/% 6 byte pad, this is to make implementation
/% specific pad up to alignment field that */
/* follows explicit in the data structure */

inté4_t __ss_align; /* field to force desired structure */
/* storage alignment */
char __ss_pad2[_SS_PAD2SIZE];

/% 112 byte pad to achieve desired size, */
/% _SS_MAXSIZE value minus size of ss_family */
/* __ss_padl, __ss_align fields is 112 %/

}i :

On implementations where sockaddr data structure includes a “sa_len”,
field this data structure would look like this:

/%
* Definitions used for sockaddr_storage structure paddings design.
*/
#define _SS_PADISIZE (_SS_ALIGNSIZE -

(sizeof (uint8_t) + sizeof (sa_family_t))
#define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof (sa_family_t)+

Gilligan, et. al. Informational [Page 14]

| Appendix




98

RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPvé March 1999

_SS_PADISIZE + _SS_ALIGNSIZE))

struct sockaddr_storage {

uint8_t __ss_len; /* address length */
sa_family_t __ss_family; /% address family */
/% Following fields are implementation specific %/
char __ss_padl(_SS_PADISIZE];

/* 6 byte pad, this is to make implementation
/* specific pad up to alignment field that %/
/* follows explicit in the data structure */

int64_t _ss_align: /% field to force desired structure */
/* storage alignment */
char __ss_pad2[_SS_PAD2SIZE];

/* 112 byte pad to achieve desired size, */
/* _SS_MAXSIZE value minus size of ss_len, */
/* __ss_family, __ss_padl, __ss_align fields is 112 */

The above example implementation illustrates a data structure which
will align on a 64 bit boundary. An implementation specific field
”_.ss_align” along "__ss_padl” is used to force a 64-bit alignment
which covers proper alignment good enough for needs of sockaddr_in6
(IPv6), sockaddr_in (IPv4) address data structures. The size of
padding fields __ss_padl depends on the chosen alignment boundary.
The size of padding field __ss_pad2 depends on the value of overall
size chosen for the total size of the structure. This size and
alignment are represented in the above example by implementation
specific (not required) constants _SS_MAXSIZE (chosen value 128) and
_SS_ALIGNMENT (with chosen value 8). Constants _SS_PADISIZE (derived
value 6) and _SS_PAD2SIZE (derived value 112) are also for
illustration and not required. The implementation specific
definitions and structure field names above start with an underscore
to denote implementation private namespace. Portable code is not
expected to access or reference those fields or constants.

The sockaddr_storage structure solves the problem of declaring
storage for automatic variables which is large enough and aligned
enough for storing socket address data structure of any family. For
example, code with a file descriptor and without the context of the
address family can pass a pointer to a variable of this type where a
pointer to a socket address structure is expected in calls such as
getpeername () and determine the address family by accessing the
received content after the call.

The sockaddr _storage structure may also be useful and applied to
certain other interfaces where a generic socket address large enough
and aligned for use with multiple address families may be needed. A
discussion of those interfaces is outside the scope of this document

Gilligan, et. al. Informational [Page 15]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Also, much existing code assumes that any socket address structure
can fit in a generic sockaddr structure. While this has been true
for IPv4 socket address structures, it has always been false for Unix
domain socket address structures (but in practice this has not been a
problem) and it is also false for IPv6 socket address structures
(which can be a problem).

So now an application can do the following:

struct sockaddr_storage _ ss;
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *) &_ ss;

4. Interface Identification

This APl uses an interface index (a small positive integer) to
identify the local interface on which a multicast group is joined
(Section 5.3). Additionally, the advanced API [4] uses these same
interface indexes to identify the interface on which a datagram is
received, or to specify the interface on which a datagram is to be
sent.

Interfaces are normally known by names such as "1e0”, “sl11”, “ppp2”,
and the like. On Berkeley-derived implementations, when an interface
is made known to the system, the kernel assigns a unique positive
integer value (called the interface index) to that interface. These
are small positive integers that start at 1. (Note that 0 is never
used for an interface index.) There may be gaps so that there is no
current interface for a particular positive interface index.

This API defines two functions that map between an interface name and
index, a third function that returns all the interface names and
indexes, and a fourth function to return the dynamic memory allocated
by the previous function. How these functions are implemented is
left up to the implementation. 4.4BSD implementations can implement
these functions using the existing sysctl() function with the
NET_RT_IFLIST command. Other implementations may wish to use ioctl()
for this purpose.

4.1 Name—to-Index

The first function maps an interface name into its corresponding
index.

#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

Gilligan, et. al. Informational [Page 16]

| Appendix




100 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

If the specified interface name does not exist, the return value is
0, and errno is set to ENXIO. If there was a system error (such as
running out of memory), the return value is 0 and errno is set to the
proper value (e.g., ENOMEM).

4.2 Index—to-Name

The second function maps an interface index into its corresponding
name.

#include <net/if.h>
char *if_indextoname (unsigned int ifindex, char *ifname);

The ifname argument must point to a buffer of at least IF_NAMESIZE
bytes into which the interface name corresponding to the specified
index is returned. (IF_NAMESIZE is also defined in <net/if.h> and
its value includes a terminating null byte at the end of the
interface name.) This pointer is also the return value of the
function. If there is no interface corresponding to the specified
index, NULL is returned, and errno is set to ENXIO, if there was a
system error (such as running out of memory), if_indextoname returns
NULL and errno would be set to the proper value (e.g., ENOMEM).

4.3 Return All Interface Names and Indexes

The if_nameindex structure holds the information about a single

interface and is defined as a result of including the <net/if.h>
header.

struct if_nameindex {
unsigned int if_index; /* 1, 2, ... %/
char *if_name; /¥ null terminated name: “1e0”, ... */

b

The final function returns an array of if nameindex structures, one
structure per interface.

struct if_nameindex #*if_nameindex(void);
The end of the array of structures is indicated by a structure with
an if_index of 0 and an if_name of NULL. The function returns a NULL
pointer upon an error, and would set errno to the appropriate value
The memory used for this array of structures along with the interface

names pointed to by the if_name members is obtained dynamically.
This memory is freed by the next function.

Gilligan, et. al. Informational [Page 17]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 101

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

4. 4 Free Memory

The following function frees the dynamic memory that was allocated by
if_nameindex().

#include <net/if.h>
void if_freenameindex(struct if_nameindex *ptr);

The argument to this function must be a pointer that was returned by
if_nameindex ().

Currently net/if.h doesn’t have prototype definitions for functions
and it is recommended that these definitions be defined in net/if.h
as well and the struct if_nameindex({}.

5. Socket Options

A number of new socket options are defined for IPv6. All of these
new options are at the IPPROTO_IPV6 level. That is, the "level”
parameter in the getsockopt() and setsockopt() calls is IPPROTO_IPV6
when using these options. The constant name prefix IPV6_ is used in
all of the new socket options. This serves to clearly identify these
options as applying to IPv6

The declaration for IPPROTO_IPV6, the new IPv6 socket options, and
related constants defined in this section are obtained by including
the header <netinet/in.h>.

5.1 Unicast Hop Limit

A new setsockopt() option controls the hop limit used in outgoing
unicast IPv6 packets. The name of this option is IPV6_UNICAST_HOPS,
and it is used at the IPPROTO_IPV6 layer. The following example
illustrates how it is used:

int hoplimit = 10;

if (setsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
(char *) &hoplimit, sizeof (hoplimit)) == -1)
perror ("setsockopt IPV6_UNICAST HOPS”);

When the IPV6_UNICAST_HOPS option is set with setsockopt(), the
option value given is used as the hop limit for all subsequent
unicast packets sent via that socket. If the option is not set, the
system selects a default value. The integer hop limit value (called
x) is interpreted as follows:

Gilligan, et. al. Informational [Page 18]

|  Appendix B




102 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999
x < ~1: return an error of EINVAL
x == —1: use kernel default
0 <= x <= 255! use x
X >= 256! return an error of EINVAL

The IPV6_UNICAST_HOPS option may be used with getsockopt() to
determine the hop limit value that the system will use for subsequent
unicast packets sent via that socket. For example:

int hoplimit;
size_t len = sizeof (hoplimit);

if (getsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
(char %) &hoplimit, &len) == -1)
perror ("getsockopt IPV6_UNICAST_HOPS™);
else
printf ("Using %d for hop limit.¥n”, hoplimit);

5.2 Sending and Receiving Multicast Packets

IPv6 applications may send UDP multicast packets by simply specifying
an IPv6 multicast address in the address argument of the sendto()
function.

Three socket options at the IPPROTO_IPY6 layer control some of the
parameters for sending multicast packets. Setting these options is
not required: applications may send multicast packets without using
these options. The setsockopt() options for controlling the sending
of multicast packets are summarized below. These three options can
also be used with getsockopt ().

IPY6_MULTICAST_IF

Set the interface to use for outgoing multicast packets. The
argument is the index of the interface to use.

Argument type: unsigned int

IPV6_MULTICAST_HOPS
Set the hop limit to use for outgoing multicast packets. (Note
a separate option — IPV6_UNICAST_HOPS - is provided to set the

hop limit to use for outgoing unicast packets.)

The interpretation of the argument is the same as for the
IPV6_UNICAST_HOPS option:

Gilligan, et. al. Informational [Page 19]




RFC2553 “Basic Socket Interface Extensions for IPvé" 103
RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999
x < -1: return an error of EINVAL
x == -1: use kernel default
0 <= x <= 255! use x
x >= 256: return an error of EINVAL
If TPV6_MULTICAST_HOPS is not set, the default is 1
(same as IPv4 today)
Argument type: int
IPV6_MULTICAST_LOOP
If a multicast datagram is sent to a group to which the sending
host itself belongs (on the outgoing interface), a copy of the
datagram is looped back by the IP layer for local delivery if
this option is set to 1. If this option is set to 0 a copy
is not looped back. Other option values return an error of
EINVAL.
If TPV6_MULTICAST_LOOP is not set, the default is 1 (loopback;
same as IPv4 today).
Argument type: unsigned int
The reception of multicast packets is controlled by the two
setsockopt () options summarized below. An error of EOPNOTSUPP is
returned if these two options are used with getsockopt ().
IPV6_JOIN_GROUP
Join a multicast group on a specified local interface. If the
interface index is specified as 0, the kernel chooses the local
interface. For example, some kernels look up the multicast
group in the normal IPv6 routing table and using the resulting
interface.
Argument type: struct ipv6_mreq
IPV6_LEAVE_GROUP
Leave a multicast group on a specified interface
Argument type: struct ipv6_mreq
The argument type of both of these options is the ipv6_mreq structure
defined as a result of including the <netinet/in.h> header;
Gilligan, et. al. Informational [Page 20]
|  Appendix B




104 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

struct ipv6_mreq {
struct in6_addr ipvémr_multiaddr; /* IPv6 multicast addr */
unsigned int ipvbmr_interface; /* interface index */

}s

Note that to receive multicast datagrams a process must join the
multicast group and bind the UDP port to which datagrams will be
sent. Some processes also bind the multicast group address to the
socket, in addition to the port, to prevent other datagrams destined
to that same port from being delivered to the socket.

6. Library Functions

New library functions are needed to perform a variety of operations
with IPv6 addresses. Functions are needed to lookup IPv6 addresses
in the Domain Name System (DNS). Both forward lookup (nodename-to-
address translation) and reverse lookup (address-to-nodename
translation) need to be supported. Functions are also needed to
convert IPv6 addresses between their binary and textual form

We note that the two existing functions, gethostbyname() and
gethostbyaddr (), are left as—is. New functions are defined to handle
both IPv4 and IPv6 addresses.

6.1 Nodename-to-Address Translation

The commonly used function gethostbyname() is inadequate for many
applications, first because it provides no way for the caller to
specify anything about the types of addresses desired (IPv4 only,
IPv6 only, IPv4-mapped IPv6 are OK, etc.), and second because many
implementations of this function are not thread safe. REC 2133
defined a function named gethostbyname2() but this function was also
inadequate, first because its use required setting a global option
(RES_USE_INET6) when IPv6 addresses were required, and second because
a flag argument is needed to provide the caller with additional
control over the types of addresses required.

The following function is new and must be thread safe:

#include <sys/socket.h>
#include <netdb. h>

struct hostent *getipnodebyname (const char *name, int af, int flags
int *error_num);

The name argument can be either a node name or a numeric address

string (i.e., a dotted-decimal IPv4 address or an IPv6 hex address).
The af argument specifies the address family, either AF_INET or

Gilligan, et. al. Informational [Page 21]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 105

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

AF_INET6. The error_num value is returned to the caller, via a
pointer, with the appropriate error code in error_num, to support
thread safe error code returns. error_num will be set to one of the
following values:
HOST_NOT_FOUND
No such host is known.

NO_ADDRESS

The server recognised the request and the name but no address is
available. Another type of request to the name server for the
domain might return an answer.

NO_RECOVERY

An unexpected server failure occurred which cannot be recovered.

TRY_AGAIN

A temporary and possibly transient error occurred, such as a
failure of a server to respond.

The flags argument specifies the types of addresses that are searched
for, and the types of addresses that are returned. We note that a
special flags value of AI_DEFAULT (defined below) should handle most
applications.
That is, porting simple applications to use IPv6 replaces the call
hptr = gethostbyname (name) ;
with
hptr = getipnodebyname (name, AF_INET6, AI_DEFAULT, &error_num);

and changes any subsequent error diagnosis code to use error_num
instead of externally declared variables, such as h_errno

Applications desiring finer control over the types of addresses
searched for and returned, can specify other combinations of the
flags argument.

Gilligan, et. al. Informational [Page 22]

|  Appendix B




106 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

A flags of 0 implies a strict interpretation of the af argument:

- If flags is 0 and af is AF_INET, then the caller wants only
IPv4 addresses. A query is made for A records. If successful,
the IPv4 addresses are returned and the h_length member of the
hostent structure will be 4, else the function returns a NULL
pointer

- If flags is 0 and if af is AF_INET6, then the caller wants only
IPv6 addresses. A query is made for AAAA records. If
successful, the IPv6 addresses are returned and the h_length
member of the hostent structure will be 16, else the function
returns a NULL pointer.

Other constants can be logically-ORed into the flags argument, to
modify the behavior of the function

- If the AI_VAMAPPED flag is specified along with an af of
AF_INET6, then the caller will accept IPv4-mapped IPv6
addresses. That is, if no AAAA records are found then a query
is made for A records and any found are returned as IPv4-mapped
IPv6 addresses (h_length will be 16). The AI_VAMAPPED flag is
ignored unless af equals AF_INETS6.

The AI_ALL flag is used in conjunction with the AI_V4MAPPED

flag, and is only used with the IPv6 address family. When AI_ALL
is logically or’d with AI_VAMAPPED flag then the caller wants

all addresses: IPv6 and IPv4-mapped IPv6. A query is first made
for AAAA records and if successful, the IPv6 addresses are
returned. Another query is then made for A records and any found
are returned as IPv4-mapped IPv6 addresses. h_length will be 16.
Only if both queries fail does the function return a NULL pointer.
This flag is ignored unless af equals AF_INETS.

- The AI_ADDRCONFIG flag specifies that a query for AAAA records
should occur only if the node has at least one IPv6 source
address configured and a query for A records should occur only
if the node has at least one IPv4 source address configured

For example, if the node has no IPv6 source addresses
configured, and af equals AF_INET6, and the node name being
looked up has both AAAA and A records, then:

(a) if only AI_ADDRCONFIG is specified, the function
returns a NULL pointer;

(b) if AI_ADDRCONFIG | AI_VAMAPPED is specified, the A
records are returned as IPv4-mapped IPv6 addresses;

Gilligan, et. al. Informational [Page 23]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 107

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

The special flags value of AI_DEFAULT is defined as
#define AI_DEFAULT (AI_VAMAPPED | AI_ADDRCONFIG)

We noted that the getipnodebyname() function must allow the name
argument to be either a node name or a literal address string (i.e.,
a dotted—decimal IPv4 address or an IPv6 hex address). This saves
applications from having to call inet_pton() to handle literal
address strings.

There are four scenarios based on the type of literal address string
and the value of the af argument.

The two simple cases are:

¥hen name is a dotted-decimal IPv4 address and af equals AF_INET, or
when name is an IPv6 hex address and af equals AF_INET6. The members
of the returned hostent structure are: h_name points to a copy of the
name argument, h_aliases is a NULL pointer, h_addrtype is a copy of
the af argument, h_length is either 4 (for AF_INET) or 16 (for
AF_INET6), h_addr_list[0] is a pointer to the 4-byte or 16-byte
binary address, and h_addr_list[1] is a NULL pointer.

¥hen name is a dotted-decimal IPv4 address and af equals AF_INETS6,
and flags equals AI_V4MAPPED, an IPv4-mapped IPv6 address is
returned: h_name points to an IPv6 hex address containing the IPv4-
mapped IPv6 address, h_aliases is a NULL pointer, h_addrtype is
AF_INET6, h_length is 16, h_addr_list{0] is a pointer to the 16-byte
binary address, and h_addr_list[1] is a NULL pointer. If AI_V4MAPPED
is set (with or without AI_ALL) return IPv4-mapped otherwise return
NULL.

It is an error when name is an IPv6 hex address and af equals
AF_INET. The function’s return value is a NULL pointer and error_num
equals HOST_NOT_FOUND.

6. 2 Address-To~Nodename Translation

The following function has the same arguments as the existing
gethostbyaddr() function, but adds an error number.

#include <sys/socket.h> #include <netdb.h>

struct hostent *getipnodebyaddr (const void *src, size_t len
int af, int *error_num);

Gilligan, et. al. Informational [Page 24]

|  Appendix B




108 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

As with getipnodebyname (), getipnodebyaddr() must be thread safe.

The error_num value is returned to the caller with the appropriate
error code, to support thread safe error code returns. The following
error conditions may be returned for error_num:

HOST_NOT_FOUND
No such host is known.

NO_ADDRESS

The server recognized the request and the name but no address
is available. Another type of request to the name server for
the domain might return an answer

NO_RECOVERY

An unexpected server failure occurred which cannot be
recovered

TRY_AGAIN

A temporary and possibly transient error occurred, such as a
failure of a server to respond.

One possible source of confusion is the handling of IPv4-mapped IPv6
addresses and IPv4-compatible IPv6 addresses, but the following logic
should apply.

1. If af is AF_INET6, and if len equals 16, and if the IPv6
address is an IPv4-mapped IPv6 address or an IPv4-compatible
IPv6 address, then skip over the first 12 bytes of the IPv6
address, set af to AF_INET, and set len to 4.

2. If af is AF_INET, lookup the name for the given IPv4 address
(e.g., query for a PTIR record in the in-addr.arpa domain).

3. If af is AF_INET6, lookup the name for the given IPv6 address
(e.g., query for a PTR record in the ip6.int domain).

4. If the function is returning success, then the single address
that is returned in the hostent structure is a copy of the
first argument to the function with the same address family
that was passed as an argument to this function,

Gilligan, et. al. Informational [Page 25]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 109

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

All four steps listed are performed, in order. Also note that the
IPv6 hex addresses "::” and "::1” MUST NOT be treated as IPv4-
compatible addresses, and if the address is "::”, HOST_NOT_FOUND MUST
be returned and a query of the address not performed.

Also for the macro in section 6.7 IN6_IS_ADDR_V4COMPAT MUST return
false for "::” and "::1”.

6.3 Freeing memory for getipnodebyname and getipnodebyaddr
The hostent structure does not change from its existing definition.
This structure, and the information pointed to by this structure, are
dynamically allocated by getipnodebyname and getipnodebyaddr. The
following function frees this memory:

#include <netdb. h>
void freehostent (struct hostent *ptr);

6.4 Protocol-Independent Nodename and Service Name Translation
Nodename—-to-address translation is done in a protocol-independent
fashion using the getaddrinfo() function that is taken from the
Institute of Electrical and Electronic Engineers (IEEE) POSIX 1003. 1g

(Protocol Independent Interfaces) draft specification [3].

The official specification for this function will be the final POSIX
standard, with the following additional requirements:

- getaddrinfo() (along with the getnameinfo() function described
in the next section) must be thread safe

- The AI_NUMERICHOST is new with this document

All fields in socket address structures returned by
getaddrinfo() that are not filled in through an explicit
argument (e.g., sin6_flowinfo and sin_zero) must be set to 0.

(This makes it easier to compare socket address structures.)

- getaddrinfo( must fill in the length field of a socket address
structure (e.g., sin6_len) on systems that support this field

We are providing this independent description of the function because
POSIX standards are not freely available (as are IETF documents).

#include <sys/socket.h>
#include <netdb. h>

Gilligan, et. al. Informational [Page 26]

|  Appendix B




RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints,
struct addrinfo *#res);

The addrinfo structure is defined as a result of including the
<netdb. h> header.

struct addrinfo {
int ai_flags; /% AT_PASSIVE, AI_CANONNAME, AI_NUMERICHOST */
int ai_family; /* PF_xxx */
int ai_socktype; /% SOCK_xxx */
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 x/
size_t ai_addrlen; /* length of ai_addr */
char  *ai_canonname; /¥ canonical name for nodename %/
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

s
The return value from the function is O upon success or a nonzero
error code. The following names are the nonzero error codes from

getaddrinfo(), and are defined in <netdb. h>:

EAI_ADDRFAMILY address family for nodename not supported

EAI_AGAIN temporary failure in name resolution
EAI_BADFLAGS invalid value for ai_flags

EAI_FAIL non-recoverable failure in name resolution
EAI_FAMILY ai_family not supported

EAI_MEMORY memory allocation failure

EAI_NODATA no address associated with nodename
EAI_NONAME nodename nor servname provided, or not known
EAI_SERVICE servname not supported for ai_socktype
EAI_SOCKTYPE ai_socktype not supported

EAI_SYSTEM system error returned in errno

The nodename and servname arguments are pointers to null-terminated
strings or NULL. One or both of these two arguments must be a non-
NULL pointer. In the normal client scenario, both the nodename and
servname are specified. In the normal server scenario, only the
servname is specified. A non-NULL nodename string can be either a
node name or a numeric host address string (i.e., a dotted—decimal
IPv4 address or an IPv6 hex address). A non-NULL servname string can
be either a service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by
the third argument, to provide hints concerning the type of socket
that the caller supports. In this hints structure all members other
than ai_flags, ai_family, ai_socktype, and ai_protocol must be zero
or a NULL pointer. A value of PF_UNSPEC for ai_family means the

Gilligan, et. al. Informational [Page 27]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

caller will accept any protocol family. A value of 0 for ai_socktype
means the caller will accept any socket type. A value of 0 for
ai_protocol means the caller will accept any protocol. For example,
if the caller handles only TCP and not UDP, then the ai_socktype
member of the hints structure should be set to SOCK_STREAM when
getaddrinfo() is called. If the caller handles only IPv4 and not
IPv6, then the ai_family member of the hints structure should be set
to PF_INET when getaddrinfo() is called. If the third argument to
getaddrinfo() is a NULL pointer, this is the same as if the caller
had filled in an addrinfo structure initialized to zero with
ai_family set to PF_UNSPEC

Upon successful return a pointer to a linked list of one or more
addrinfo structures is returned through the final argument. The
caller can process each addrinfo structure in this list by following
the ai_next pointer, until a NULL pointer is encountered. In each
returned addrinfo structure the three members ai_family, ai_socktype,
and ai_protocol are the corresponding arguments for a call to the
socket () function. In each addrinfo structure the ai_addr member
points to a filled-in socket address structure whose length is
specified by the ai_addrien member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints
structure, then the caller plans to use the returned socket address
structure in a call to bind(). In this case, if the nodename
argument is a NULL pointer, then the IP address portion of the socket
address structure will be set to INADDR_ANY for an IPv4 address or
IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints
structure, then the returned socket address structure will be ready
for a call to connect() (for a connection-oriented protocol) or
either connect(), sendto(), or sendmsg() (for a connectionless
protocol). In this case, if the nodename argument is a NULL pointer
then the IP address portion of the socket address structure will be
set to the loopback address

If the AI_CANONNAME bit is set in the ai_flags member of the hints
structure, then upon successful return the ai_canonname member of the
first addrinfo structure in the linked list will point to a null-
terminated string containing the canonical name of the specified
nodename.

If the AI_NUMERICHOST bit is set in the ai_flags member of the hints
structure, then a non-NULL nodename string must be a numeric host
address string. Otherwise an error of EAI_NONAME is returned. This
flag prevents any type of name resolution service (e.g., the DNS)
from being called.

Gilligan, et. al. Informational [Page 28]

| Appendix




112 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

All of the information returned by getaddrinfo() is dynamically
allocated: the addrinfo structures, and the socket address structures
and canonical node name strings pointed to by the addrinfo

structures. To return this information to the system the function
freeaddrinfo() is called:

#include <sys/socket.h> #include <netdb. h>
void freeaddrinfo(struct addrinfo *ai);

The addrinfo structure pointed to by the ai argument is freed, along
with any dynamic storage pointed to by the structure. This operation
is repeated until a NULL ai_next pointer is encountered.

To aid applications in printing error messages based on the BAI_xxx
codes returned by getaddrinfo(), the following function is defined

#include <sys/socket.h> #include <netdb. h>
char *gai_strerror(int ecode):

The argument is one of the EAI_xxx values defined earlier and the
return value points to a string describing the error. If the
argument is not one of the EAI_xxx values, the function still returns
a pointer to a string whose contents indicate an unknown error.

6.5 Socket Address Structure to Nodename and Service Name

The POSIX 1003. 1g specification includes no function to perform the
reverse conversion from getaddrinfo(): to look up a nodename and
service name, given the binary address and port, Therefore, we
define the following function:

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen
char *serv, size_t servlen,
int flags);

This function locks up an IP address and port number provided by the
caller in the DNS and system—specific database, and returns text
strings for both in buffers provided by the caller. The function
indicates successful completion by a zero return value; a non-zero
return value indicates failure.

Gilligan, et. al. Informational [Page 29]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 113

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

The first argument, sa, points to either a sockaddr_in structure (for
IPv4) or a sockaddr_in6é structure (for IPv6) that holds the IP
address and port number. The salen argument gives the length of the
sockaddr_in or sockaddr_in6 structure.

The function returns the nodename associated with the IP address in
the buffer pointed to by the host argument. The caller provides the
size of this buffer via the hostlen argument. The service name
associated with the port number is returned in the buffer pointed to
by serv, and the servien argument gives the length of this buffer.
The caller specifies not to return either string by providing a zero
value for the hostlen or servlen arguments. Otherwise, the caller
must provide buffers large enough to hold the nodename and the
service name, including the terminating null characters.

Unfortunately most systems do not provide constants that specify the
maximum size of either a fully—qualified domain name or a service
name. Therefore to aid the application in ailocating buffers for
these two returned strings the following constants are defined in
<netdb. h>:

Hdefine NI_MAXHOST 1025
#define NI_MAXSERV 32

The first value is actually defined as the constant MAXDNAME in recent
versions of BIND' s <arpa/nameser.h> header (older versions of BIND
define this constant to be 256) and the second is a guess based on the
services listed in the current Assigned Numbers RFC.

The final argument is a flag that changes the default actions of this
function. By default the fully-qualified domain name (FQDN) for the
host is looked up in the DNS and returned. If the flag bit NI_NOFQDN
is set, only the nodename portion of the FQDN is returned for local
hosts.

If the flag bit NI_NUMERICHOST is set, or if the host’s name cannot be
located in the DNS, the numeric form of the host’s address is returned
instead of its name (e.g., by calling inet_ntop() instead of
getipnodebyaddr(}). If the flag bit NI_NAMEREQD is set, an error is
returned if the host’s name cannot be located in the DNS.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service
address is returned {e.g., its port number) instead of its name. The

two NI_NUMERICxxx flags are required to support the "-n” flag that
many commands provide.

Gilligan, et. al. Informational [Page 30]

|  Appendix B




14 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram
service, and causes getservbyport() to be called with a second
argument of “udp” instead of its default of “tcp”. This is required
for the few ports (e.g. 512-514) that have different services for UDP
and TCP.

These NI_xxx flags are defined in <netdb.h> along with the AI_xxx
flags already defined for getaddrinfo().

6.6 Address Conversion Functions

The two functions inet_addr() and inet_ntoa() convert an IPv4 address
between binary and text form. IPv6 applications need similar

functions. The following two functions convert both IPv6 and IPv4
addresses:

#include <(sys/socket.h>
#include <arpa/inet.h>

int inet_pton(int af, const char *src, void *dst);

const char *inet_ntop{int af, const void *src,
char #dst, size_t size);

The inet_pton() function converts an address in its standard text
presentation form into its numeric binary form. The af argument
specifies the family of the address. Currently the AF_INET and
AF_INET6 address families are supported. The src argument points to
the string being passed in. The dst argument points to a buffer into
which the function stores the numeric address. The address is
returned in network byte order. Inet_pton() returns 1 if the
conversion succeeds, 0 if the input is not a valid IPv4 dotted-
decimal string or a valid IPv6 address string, or -1 with errno set
to EAFNOSUPPORT if the af argument is unknown. The calling
application must ensure that the buffer referred to by dst is large
enough to hold the numeric address (e.g., 4 bytes for AF_INET or 16
bytes for AF_INET6).

If the af argument is AF_INET, the function accepts a string in the
standard IPv4 dotted-decimal form:

ddd. ddd. ddd. ddd

where ddd is a one to three digit decimal number between 0 and 255.
Note that many implementations of the existing inet_addr () and
inet_aton(} functions accept nonstandard input: octal numbers
hexadecimal numbers, and fewer than four numbers. inet_pton() does
not accept these formats

Gilligan, et. al. Informational [Page 31]




RFC2553 “Basic Socket Interface Extensions for IPvé" 15
RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999
If the af argument is AF_INET6, then the function accepts a string in
one of the standard IPv6 text forms defined in Section 2.2 of the
addressing architecture specification [2].
The inet_ntop() function converts a numeric address into a text
string suitable for presentation. The af argument specifies the
family of the address. This can be AF_INET or AF_INET6. The src
argument points to a buffer holding an IPv4 address if the af
argument is AF_INET, or an IPv6 address if the af argument is
AF_INET6, the address must be in network byte order. The dst
argument points to a buffer where the function will store the
resulting text string. The size argument specifies the size of this
buffer. The application must specify a non-NULL dst argument. For
IPv6 addresses, the buffer must be at least 46-octets. For IPv4
addresses, the buffer must be at least 16-octets. In order to allow
applications to easily declare buffers of the proper size to store
IPv4 and 1Pv6 addresses in string form, the following two constants
are defined in <netinet/in.h>:
#define INET_ADDRSTRLEN 16
fidefine INET6_ADDRSTRLEN 46
The inet_ntop() function returns a pointer to the buffer containing
the text string if the conversion succeeds, and NULL otherwise. Upon
failure, errno is set to EAFNOSUPPORT if the af argument is invalid or
ENOSPC if the size of the result buffer is inadequate.
6. 7 Address Testing Macros
The following macros can be used to test for special IPv6 addresses.
#include <netinet/in.h>
int IN6_ES_ADDR_UNSPECIFIED (const struct in6_addr *);
int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
int IN6_IS_ADDR MULTICAST (const struct in6_addr ¥);
int IN6_IS_ADDR_LINKLOCAL  (const struct in6_addr *);
int IN6_IS_ADDR_SITELOCAL  {const struct in6_addr *);
int IN6_IS_ADDR_V4AMAPPED (const struct in6_addr *);
int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);
int IN6_IS_ADDR_MC_NODELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_LINKLOCAL{const struct in6_addr *);
int IN6_IS_ADDR_MC_SITELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_GLOBAL  (const struct in6_addr *);
Gilligan, et. al. Informational [Page 32]
i
|  Appendix B




16 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

The first seven macros return true if the address is of the specified
type, or false otherwise. The last five test the scope of a
multicast address and return true if the address is a multicast
address of the specified scope or false if the address is either not
a multicast address or not of the specified scope. Note that
IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only for
the two local-use IPv6 unicast addresses. These two macros do not
return true for IPv6 multicast addresses of either link-local scope
or site-local scope.

7. Summary of New Definitions

The following list summarizes the constants, structure, and extern
definitions discussed in this memo, sorted by header.

<net/if. h> IF_NAMESIZE
<net/if.h> struct if_nameindex{}:
<netdb. h> AI_ADDRCONFIG
<netdb. h> AI_DEFAULT
<{netdb. h> AI_ALL

<(netdb. h> AI_CANONNAME
<{netdb. h> AT_NUMERICHOST
<{netdb. h> AI_PASSIVE
{netdb. h> AI_VAMAPPED
<{netdb. h> EAT_ADDRFAMILY
<netdb. h> EAI_AGAIN
<netdb. h> EAI_BADFLAGS
<netdb. h> EAI_FAIL
<netdb. h> EAI_FAMILY
<netdb. h> EAI_MEMORY
<netdb. h> EAI_NODATA
<netdb. h> EAI_NONAME
<netdb. h> EAI_SERVICE
<netdb. h> EAI_SOCKTYPE
<netdb. h> EAI_SYSTEM
<netdb. h> NI_DGRAM
<{netdb. h> NI_MAXHOST
<netdb. h> NI_MAXSERV
<netdb. h> NI_NAMEREQD
<netdb. h> NI_NOFQDN
<{netdb. h> NI_NUMERICHOST
<netdb. h> NI_NUMERICSERV
<netdb. h> struct addrinfo{};

<netinet/in.h> INGADDR_ANY_INIT
<netinet/in.h> INGADDR_LOOPBACK_INIT
<netinet/in.h> INET6_ADDRSTRLEN

Gilligan, et. al. Informational [Page 33]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 17

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

<netinet/in.h> INET_ADDRSTRLEN

<netinet/in.h> IPPROTO_IPV6

<netinet/in.h> IPV6_JOIN_GROUP

<netinet/in.h> IPV6_LEAVE_GROUP

<netinet/in.h> [PV6_MULTICAST_HOPS

<netinet/in. h> IPV6_MULTICAST_IF

<netinet/in.h> IPV6_MULTICAST_LOOP

<netinet/in. h> IPV6_UNICAST_HOPS

<netinet/in.h> SIN6_LEN

<netinet/in.h> extern const struct in6_addr in6addr_any;
<netinet/in.h> extern const struct in6_addr in6addr_loopback;
<netinet/in.h> struct in6_addr{};

<netinet/in.h> struct ipv6_mreq{};

<netinet/in.h> struct sockaddr_in6{};

<sys/socket. h> AF_INET6
{sys/socket. h> PF_INET6
{sys/socket. h> struct sockaddr_storage;

The following list summarizes the function and macro prototypes
discussed in this memo, sorted by header.

<arpa/inet.h>  int inet_pton(int, const char *, void *);
<arpa/inet.h> const char *inet_ntop(int, const void *
char *, size_t);

<net/if. h> char *if_indextoname (unsigned int, char *);
<net/if.h> unsigned int if_nametoindex (const char ¥);
<net/if. h> void if_freenameindex(struct if_nameindex *);
<net/if.h> struct if nameindex *if_nameindex(void);
<netdb. h> int getaddrinfo(const char *, const char *

const struct addrinfo *,
struct addrinfo #*%);

<netdb. h> int getnameinfo(const struct sockaddr *, socklen_t,
char *, size_t, char ¥, size_t, int);

<netdb. h> void freeaddrinfo(struct addrinfo *);

<netdb. h> char *gai_strerror(int);

<netdb. h> struct hostent *getipnodebyname{const char # int, int,
int *);

<{netdb. h> struct hostent *getipnodebyaddr (const void *, size_t,
int, int #);

<netdb. h> void freehostent (struct hostent *);

{netinet/in.h> int IN6_IS_ADDR_LINKLOCAL({const struct in6_addr *);
<netinet/in.h> int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
<netinet/in.h> int IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);
{netinet/in.h> int IN6_IS_ADDR_MC_LINKLOCAL (const struct in6_addr *);

Gilligan, et. al. Informational [Page 34]

|  Appendix B




18

RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553

{netinet/in.
{netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in
<netinet/in.
<netinet/in

8. Security

h>

Basic Socket Interface Extensions for IPv6 March 1999

int

IN6_IS_ADDR_MC_NODELOCAL (const struct in6_addr *);

h> int IN6_IS_ADDR_MC_ORGLOCAL(const struct inf_addr *);
h> int IN6_IS_ADDR_MC_SITELOCAL(const struct in6_addr *);
h> int IN6_IS_ADDR_MULTICAST (const struct in6_addr *);

h> int IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);

h> int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);
h> int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);

h> int IN6_IS_ADDR_V4MAPPED(const struct in6_addr *);
Considerations

IPv6 provides a number of new security mechanisms, many of which need
to be accessible to applications. Companion memos detailing the
extensions to the socket interfaces to support IPv6 security are
being written.

9. Year 2000 Considerations

There are no issues for this memo concerning the Year 2000 issue
regarding the use of dates.

Changes From RFC 2133

Changes made in the March 1998 Edition (-0l draft):

Changed all "hostname” to "nodename” for consistency with other
IPv6 documents.

Section 3.3: changed comment for sin6_flowinfo to be "traffic
class & flow info” and updated corresponding text description to
current definition of these two fields.

Section 3.10 ("Portability Additions”) is new.

Section 6: a new paragraph was added reiterating that the existing
gethostbyname() and gethostbyaddr() are not changed.

Section 6.1: change gethostbyname3() to getnodebyname(). Add
AI_DEFAULT to handle majority of applications. Renamed
AI_V6ADDRCONFIG to AI_ADDRCONFIG and define it for A records and
IPv4 addresses too. Defined exactly what getnodebyname() must
return if the name argument is a numeric address string

Section 6.2: change gethostbyaddr() to getnodebyaddr(). Reword
items 2 and 3 in the description of how to handle IPv4-mapped and
IPv4- compatible addresses to “lookup a name” for a given address,
instead of specifying what type of DNS query to issue.

Gilligan, et. al.

Informational [Page 35]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 119

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Section 6.3: added two more requirements to getaddrinfo().

Section 7! added the following constants to the list for
<netdb. h>: AI_ADDRCONFIG, AI_ALL, and AI_V4MAPPED. Add union
sockaddr_union and SA_LEN to the lists for {sys/socket.h).

Updated references.
Changes made in the November 1997 Edition (-00 draft):

The data types have been changed to conform with Draft 6.6 of the
Posix 1003. 1g standard.

Section 3.2: data type of s6_addr changed to “uint8_t”.

Section 3.3: data type of sin6_family changed to "sa_family_t”.
data type of sin6_port changed to "in_port_t”, data type of
sinb_flowinfo changed to "uint32_t”.

Section 3. 4: same as Section 3.3, plus data type of sin6_len
changed to "uint8_t”.

Section 6.2: first argument of gethostbyaddr() changed from “const
char *¥” to “const void *” and second argument changed from ”"int”
to “size_t”.

Section 6.4: second argument of getnameinfo() changed from
"size_t” to "socklen_t”.

The wording was changed when new structures were defined, to be
more explicit as to which header must be included to define the
structure:

Section 3.2 (in6_addr{}), Section 3.3 (sockaddr_in6{}), Section
3.4 (sockaddr_in6{}), Section 4.3 (if_nameindex{}), Section 5.3
(ipv6_mreq{}), and Section 6.3 (addrinfo{}).

Section 4: NET_RT_LIST changed to NET_RT_IFLIST.

Section 5.1: The IPV6_ADDRFORM socket option was removed.
Section 5.3: Added a note that an option value other than 0 or 1
for IPV6_MULTICAST_LOOP returns an error. Added a note that
IPV6_MULTICAST_IF, IPV6_MULTICAST_HOPS, and IPV6_MULTICAST_LOOP

can also be used with getsockopt(), but IPV6_ADD_MEMBERSHIP and
IPY6_DROP_MEMBERSHIP cannot be used with getsockopt ().

Gilligan, et. al. Informational [Page 36]

|  Appendix B




120 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPvé March 1999

Section 6.1: Removed the description of gethostbyname2() and its
associated RES_USE_INET6 option, replacing it with
gethostbyname3 ().

Section 6.2! Added requirement that gethostbyaddr() be thread
safe. Reworded step 4 to avoid using the RES_USE_INET6 option.

Section 6.3 Added the requirement that getaddrinfo() and
getnameinfo() be thread safe. Added the AI_NUMERICHOST flag

Section 6.6: Added clarification about IN6_IS_ADDR_LINKLOCAL and
IN6_IS_ADDR_SITELOCAL macros.

Changes made to the draft —01 specification Sept 98
Changed priority to traffic class in the spec.
Added the need for scope identification in section 2. 1.

Added sin6_scope_id to struct sockaddr_in6 in sections 3.3 and
3.4,

Changed 3.10 to use generic storage structure to support holding
IPv6 addresses and removed the SA_LEN macro.

Distinguished between invalid input parameters and system failures
for Interface Identification in Section 4.1 and 4. 2.

Added defaults for multicast operations in section 5.2 and changed
the names from ADD to JOIN and DROP to LEAVE to be consistent with
IPv6 multicast terminology.

Changed getnodebyname to getipnodebyname, getnodebyaddr to
getipnodebyaddr, and added MT safe error code to function
parameters in section 6.

Moved freehostent to its own sub—section after getipnodebyaddr now
6.3 (so this bumps all remaining sections in section 6

Clarified the use of AI_ALL and AI_VAMAPPED that these are

dependent on the AF parameter and must be used as a conjunction in
section 6. 1.

Removed the restriction that literal addresses cannot be used with
a flags argument in section 6. 1.

Added Year 2000 Section to the draft

Gilligan, et. al. Informational [Page 37]




RFC2553 “Basic Socket Interface Extensions for [Pv6"

121

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Deleted Reference to the following because the attached is deleted
from the ID directory and has expired. But the logic from the
aforementioned draft still applies, so that was kept in Section
6.2 bullets after 3rd paragraph.

[7] P. Vixie, "Reverse Name Lookups of Encapsulated IPv4
Addresses in IPv6”, Internet-Draft, <draft-vixie—ipng-
ipvdptr-00. txt>, May 1996.

Deleted the following reference as it is no longer referenced.
And the draft has expired.

[3] D. McDonald, "A Simple IP Security API Extension to BSD
Sockets”, Internet-Draft, <{draft-mcdonald-simple~ipsec—api-
01. txt>, March 1997.

Deleted the following reference as it is no longer referenced.

[4] C. Metz, "Network Security API for Sockets”,

Internet-Draft, <draft-metz-net-security-api-0l.txt>, January
1998.

Update current references to current status
Added alignment notes for in6_addr and sin6_addr.

Clarified further that AI_V4MAPPED must be used with a dotted IPv4
literal address for getipnodebyname(), when address family is
AF_INET®.

Added text to clarify "::” and "::1” when used by
getipnodebyaddr ().

Acknowledgments

Thanks to the many people who made suggestions and provided feedback
to this document, including: Werner Almesberger, Ran Atkinson, Fred
Baker, Dave Borman, Andrew Cherenson, Alex Conta, Alan Cox, Steve
Deering, Richard Draves, Francis Dupont, Robert Elz, Marc Hasson, Tom
Herbert, Bob Hinden, Wan-Yen Hsu, Christian Huitema, Koji Imada,
Markus Jork, Ron Lee, Alan Lloyd, Charles Lynn, Dan McDonald, Dave
Mitton, Thomas Narten, Josh Osborne, Craig Partridge, Jean-Luc
Richier, Erik Scoredos, Keith Sklower, Matt Thomas, Harvey Thompson,
Dean D. Throop, Karen Tracey, Glenn Trewitt, Paul Vixie, David
Waitzman, Carl Williams, and Kazu Yamamoto,

Gilligan, et. al. Informational [Page 381

| Appendix




122 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

The getaddrinfo() and getnameinfo() functions are taken from an
earlier Internet Draft by Keith Sklower. As noted in that draft
¥William Durst, Steven Wise, Michael Karels, and Eric Allman provided
many useful discussions on the subject of protocol-independent name-
to—address translation, and reviewed early versions of Keith
Sklower’ s original proposal. Eric Allman implemented the first
prototype of getaddrinfo(). The observation that specifying the pair
of name and service would suffice for connecting to a service
independent of protocol details was made by Marshall Rose in a
proposal to X/Open for a “Uniform Network Interface”.

Craig Metz, Jack McCann, Erik Nordmark, Tim Hartrick, and Mukesh
Kacker made many contributions to this document. Ramesh Govindan
made a number of contributions and co-authored an earlier version of
this memo.

References

[1] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification”, RFC 2460, December 1998.

[2] Hinden, R. and S. Deering, “IP Version 6 Addressing
Architecture”, RFC 2373, July 1998.

[3] 1IEEE, "Protocol Independent Interfaces”, IEEE Std 1003.1g, DRAFT
6.6, March 1997.

[4] Stevens, W. and M. Thomas, “Advanced Sockets API for IPv6”, RFC
2292, February 1998

Gilligan, et. al. Informational [Page 39]




RFC2553 “Basic Socket Interface Extensions for [Pv6" 123

RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999

Authors’ Addresses

Robert E. Gilligan
FreeGate Corporation
1208 E. Arques Ave
Sunnyvale, CA 94086

Phone: +1 408 617 1004
EMail: gilligan@freegate.com

Susan Thomson

Bell Communications Research
MRE 2P-343, 445 South Street
Morristown, NJ 07960

Phone: +1 201 829 4514
EMail: set@thumper. bellcore. com

Jim Bound

Compaq Computer Corporation
110 Spitbrook Road ZK3-3/U14
Nashua, NH 03062-2698

Phone: +1 603 884 0400
EMail: bound@zk3. dec. com

¥. Richard Stevens
1202 E. Paseo del Zorro
Tucson, AZ 85718-2826

Phone: +1 520 297 9416
EMail: rstevens@kohala. com

Gilligan, et. al. Informational [Page 40]

|  Appendix B




124 RFC2553 “Basic Socket Interface Extensions for IPvé"

RFC 2553 Basic Socket Interface Extensions for IPvé March 1999

Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

Gilligan, et. al. Informational [Page 41]




C

RFC3493 “Basic Socket Interface Extensions
for IPv6”

125




126

RFC3493 "“Basic Socket Interface Extensions for IPv6”

Network Working Group R. Gilligan
Request for Comments: 3493 Intransa, Inc.
Obsoletes: 2553 S. Thomson
Category: Informational Cisco

J. Bound

J. McCann
Hewlett-Packard
W. Stevens
February 2003

Basic Socket Interface Extensions for IPvé

Status of this Memo

This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

The de facto standard Application Program Interface (API) for TCP/IP
applications is the “sockets” interface. Although this API was
developed for Unix in the early 1980s it has also been implemented on
a wide variety of non-Unix systems. TCP/IP applications written
using the sockets API have in the past enjoyed a high degree of
portability and we would like the same portability with IPvé6
applications. But changes are required to the sockets API to support
IPv6 and this memo describes these changes. These include a new
socket address structure to carry IPvé addresses, new address
conversion functions, and some new socket options. These extensions
are designed to provide access to the basic IPv6 features required by
TCP and UDP applications, including multicasting, while introducing a
minimum of change into the system and providing complete
compatibility for existing IPv4 applications. Additional extensions
for advanced IPvée features (raw sockets and access to the IPvé
extension headers) are defined in another document.

Gilligan, et al. Informational [Page 1]




RFC3493 “Basic Socket Interface Extensions for IPv6” 127
RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003
Table of Contents

1. IntrodUCLIion. .. ...t e e et 3
2. Design Considerations.......... ... 4
2.1 What Needs to be Changed.......... ... ... 4
2.2 Data Ty . i ittt e e e e e e e e e 6
2.3 HeadersS . . ottt ittt e e e e e e e e 6
2.4 SErUCEULES. . . i e e e e 6
3. Socket Interface....... ... e e 6
3.1 IPv6 Address Family and Protocol Family................ 6
3.2 IPv6e Address SEruCtUTre. .. .. ... ...ttt 7
3.3 Socket Address Structure for 4.3BSD-Based Systems...... 7
3.4 Socket Address Structure for 4.4BSD-Based Systems...... 9
3.5 The Socket Functions.......... ... ..., 9
3.6 Compatibility with IPv4 Applications.................. 10
3.7 Compatibility with IPv4 Nodes......... ... 11
3.8 IPv6 Wildcard AddreSS. .. ...ttt eeieenn 11
3.9 IPv6 Loopback AdAresSsS. ... ...ttt tiinnneeeennn. 13
3.10 Portability Additions.......... ... 14
4. Interface Identification............ .. ... 16
4.1 Name-to-TnAdeX. ...ttt ettt e et ettt e e e 17
4.2 Index-to-Name. ... ...ttt ittt et i ie e 17
4.3 Return All Interface Names and IndexXeS................ 18
4.4 Free MemMOTY . .o vt ittt ittt e ettt e e e e e e e 18
5. Socket OpPLIiOmS. ..ttt e e e e e e 18
5.1 Unicast Hop Limit...... ... .. 19
5.2 Sending and Receiving Multicast Packets............... 19
5.3 IPV6 V6ONLY option for AF INET6 Sockets............... 22
6. Library FUNCLIONS . . v ittt it e e e e e e e e e et e e e et e 22
6.1 Protocol-Independent Nodename and
Service Name Translation................ciuiiienenon.. 23
6.2 Socket Address Structure to Node Name
and Service Name. ... ...ttt et e e 28
6.3 Address Conversion Functions.......................... 31
6.4 Address Testing MaCroS...........iuiuiiiniininnnnennn.. 33
7. Summary of New Definitions................iiniiiininnnnan.. 33
8. Security Considerations.......... .. iiiiinininnnnnn. 35
9. Changes from REC 2553 . . . . ..ttt t et e eee e 35
10. AcCKNOWledgment S . . vttt et e e e e e e e e e e e e e e 36
11. ReferenCes . . oo e e e e 37
12. AUthOors’ AddresSsSesS. ... ...ttt e et e 38
13. Full Copyright Statement........ .. ... . ... 39
Gilligan, et al. Informational [Page 2]
| Appendix C




128 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

1. Introduction

While IPv4 addresses are 32 bits long, IPv6 addresses are 128 bits
long. The socket interface makes the size of an IP address quite
visible to an application; virtually all TCP/IP applications for
BSD-based systems have knowledge of the size of an IP address. Those
parts of the API that expose the addresses must be changed to
accommodate the larger IPv6 address size. IPv6 also introduces new
features, some of which must be made visible to applications via the
API. This memo defines a set of extensions to the socket interface
to support the larger address size and new features of IPve. It
defines “basic” extensions that are of use to a broad range of
applications. A companion document, the “advanced” API [4], covers
extensions that are of use to more specialized applications, examples
of which include routing daemons, and the “ping” and “traceroute”
utilities.

The development of this API was started in 1994 in the IETF IPng
working group. The API has evolved over the years, published first
in RFC 2133, then again in RFC 2553, and reaching its final form in
this document.

As the API matured and stabilized, it was incorporated into the Open
Group’s Networking Services (XNS) specification, issue 5.2, which was
subsequently incorporated into a joint Open Group/IEEE/ISO standard
[31.

Effort has been made to ensure that this document and [3] contain the
same information with regard to the API definitions. However, the
reader should note that this document is for informational purposes
only, and that the official standard specification of the sockets API
is [3].

It is expected that any future standardization work on this API would
be done by the Open Group Base Working Group [6].

It should also be noted that this document describes only those
portions of the API needed for IPv4 and IPv6 communications. Other
potential uses of the API, for example the use of getaddrinfo() and
getnameinfo() with the AF UNIX address family, are beyond the scope
of this document.

Gilligan, et al. Informational [Page 3]




RFC3493 “Basic Socket Interface Extensions for IPv6” 129

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

2. Design Considerations

There are a number of important considerations in designing changes
to this well-worn API:

- The API changes should provide both source and binary
compatibility for programs written to the original API. That is,
existing program binaries should continue to operate when run on a
system supporting the new API. 1In addition, existing applications
that are re-compiled and run on a system supporting the new API
should continue to operate. Simply put, the API changes for IPvé6
should not break existing programs. An additional mechanism for
implementations to verify this is to verify the new symbols are
protected by Feature Test Macros as described in [3]. (Such
Feature Test Macros are not defined by this RFC.)

- The changes to the API should be as small as possible in order to
simplify the task of converting existing IPv4 applications to
IPv6.

- Where possible, applications should be able to use this API to
interoperate with both IPvé and IPv4 hosts. Applications should
not need to know which type of host they are communicating with.

- IPv6 addresses carried in data structures should be 64-bit
aligned. This is necessary in order to obtain optimum performance
on 64-bit machine architectures.

Because of the importance of providing IPv4 compatibility in the API,

these extensions are explicitly designed to operate on machines that

provide complete support for both IPv4 and IPv6. A subset of this

API could probably be designed for operation on systems that support

only IPve. However, this is not addressed in this memo.

2.1 What Needs to be Changed

The socket interface API consists of a few distinct components:

- Core socket functions.

- Address data structures.

- Name-to-address translation functions.

- Address conversion functions.

Gilligan, et al. Informational [Page 4]

| Appendix C




130 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

The core socket functions — those functions that deal with such
things as setting up and tearing down TCP connections, and sending
and receiving UDP packets — were designed to be transport
independent. Where protocol addresses are passed as function
arguments, they are carried via opaque pointers. A protocol-specific
address data structure is defined for each protocol that the socket
functions support. Applications must cast pointers to these
protocol-specific address structures into pointers to the generic
“sockaddr” address structure when using the socket functions. These
functions need not change for IPve, but a new IPv6-specific address
data structure is needed.

The “sockaddr in” structure is the protocol-specific data structure
for IPv4. This data structure actually includes 8-octets of unused
space, and it is tempting to try to use this space to adapt the
sockaddr in structure to IPv6. Unfortunately, the sockaddr in
structure is not large enough to hold the 16-octet IPv6 address as
well as the other information (address family and port number) that
is needed. So a new address data structure must be defined for IPvé6.

IPv6 addresses are scoped [2] so they could be link-local, site,
organization, global, or other scopes at this time undefined. To
support applications that want to be able to identify a set of
interfaces for a specific scope, the IPv6 sockaddr in structure must
support a field that can be used by an implementation to identify a
set of interfaces identifying the scope for an IPv6 address.

The IPv4 name-to-address translation functions in the socket
interface are gethostbyname () and gethostbyaddr (). These are left as
is, and new functions are defined which support both IPv4 and IPvé6.

The IPv4 address conversion functions — inet ntoa() and inet_ addr()
— convert IPv4 addresses between binary and printable form. These
functions are quite specific to 32-bit IPv4 addresses. We have
designed two analogous functions that convert both IPv4 and IPvé
addresses, and carry an address type parameter so that they can be
extended to other protocol families as well.

Finally, a few miscellaneous features are needed to support IPv6. A
new interface is needed to support the IPv6 hop limit header field.
New socket options are needed to control the sending and receiving of
IPv6 multicast packets.

The socket interface will be enhanced in the future to provide access

to other IPv6 features. Some of these extensions are described in
[4].

Gilligan, et al. Informational [Page 5]




RFC3493 “Basic Socket Interface Extensions for IPv6” 131
RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003
2.2 Data Types
The data types of the structure elements given in this memo are
intended to track the relevant standards. uintN _t means an unsigned
integer of exactly N bits (e.g., uintlé_t). The sa family t and
in port_t types are defined in [3].

2.3 Headers
When function prototypes and structures are shown we show the headers
that must be #included to cause that item to be defined.

2.4 Structures
When structures are described the members shown are the ones that
must appear in an implementation. Additional, nonstandard members
may also be defined by an implementation. As an additional
precaution nonstandard members could be verified by Feature Test
Macros as described in [3]. (Such Feature Test Macros are not
defined by this RFC.)
The ordering shown for the members of a structure is the recommended
ordering, given alignment considerations of multibyte members, but an
implementation may order the members differently.

3. Socket Interface
This section specifies the socket interface changes for IPv6.

3.1 IPv6 Address Family and Protocol Family
A new address family name, AF INET6, is defined in <sys/socket.h.
The AF_INET6 definition distinguishes between the original
sockaddr in address data structure, and the new sockaddr iné data
structure.
A new protocol family name, PF_INET6, is defined in <sys/socket.h.
Like most of the other protocol family names, this will usually be
defined to have the same value as the corresponding address family
name :

#define PF_INET6 AF _INET6

The AF_INET6 is used in the first argument to the socket () function
to indicate that an IPvé socket is being created.

Gilligan, et al. Informational [Page 6]

| Appendix C




132 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

3.2 IPv6 Address Structure

A new in6_addr structure holds a single IPv6 address and is defined
as a result of including <netinet/in.h:>

struct iné addr (
uint8 t s6_addr[16]; /* IPv6 address */
}i

This data structure contains an array of sixteen 8-bit elements,
which make up one 128-bit IPvé address. The IPv6 address is stored
in network byte order.

The structure iné_addr above is usually implemented with an embedded
union with extra fields that force the desired alignment level in a
manner similar to BSD implementations of “struct in_addr”. Those
additional implementation details are omitted here for simplicity.

An example is as follows:

struct iné_addr {
union {
uint8 t S6 u8[1l6];
uint32 t _S6 u32[4];
uinté64 t S6 u64[2];
} _S6_un;
i

#define s6_addr S6 un. S6_u8
3.3 Socket Address Structure for 4.3BSD-Based Systems

In the socket interface, a different protocol-specific data structure
is defined to carry the addresses for each protocol suite. Each
protocol-specific data structure is designed so it can be cast into a
protocol-independent data structure — the “sockaddr” structure.

Each has a “family” field that overlays the “sa family” of the
sockaddr data structure. This field identifies the type of the data
structure.

The sockaddr in structure is the protocol-specific address data
structure for IPv4. It is used to pass addresses between
applications and the system in the socket functions. The following
sockaddr iné structure holds IPvé6é addresses and is defined as a
result of including the <netinet/in.h:> header:

Gilligan, et al. Informational [Page 7]




RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

struct sockaddr_iné {

sa family t sin6é family; /* AF INET6 */

in port t siné port; /* transport layer port # */

uint32 t sin6é flowinfo; /* IPvée flow information */

struct iné addr siné addr; /* IPv6 address */

uint32 t sin6é scope id; /* set of interfaces for a scope */

This structure is designed to be compatible with the sockaddr data
structure used in the 4.3BSD release.

The siné family field identifies this as a sockaddr iné structure.
This field overlays the sa family field when the buffer is cast to a
sockaddr data structure. The value of this field must be AF INET6.

The siné_port field contains the 16-bit UDP or TCP port number. This
field is used in the same way as the sin port field of the
sockaddr in structure. The port number is stored in network byte
order.

The sin6é_ flowinfo field is a 32-bit field intended to contain flow-
related information. The exact way this field is mapped to or from a
packet is not currently specified. Until such time as its use is
specified, applications should set this field to zero when
constructing a sockaddr iné6, and ignore this field in a sockaddr iné6
structure constructed by the system.

The sin6_addr field is a single in6é_addr structure (defined in the
previous section). This field holds one 128-bit IPv6 address. The
address is stored in network byte order.

The ordering of elements in this structure is specifically designed
so that when sin6é addr field is aligned on a 64-bit boundary, the
start of the structure will also be aligned on a 64-bit boundary.
This is done for optimum performance on 64-bit architectures.

The sin6é_scope_id field is a 32-bit integer that identifies a set of
interfaces as appropriate for the scope [2] of the address carried in
the sin6é addr field. The mapping of siné scope id to an interface or
set of interfaces is left to implementation and future specifications
on the subject of scoped addresses.

Notice that the sockaddr iné structure will normally be larger than
the generic sockaddr structure. On many existing implementations the
sizeof (struct sockaddr in) equals sizeof (struct sockaddr), with both
being 16 bytes. Any existing code that makes this assumption needs
to be examined carefully when converting to IPvé6.

Gilligan, et al. Informational [Page 8]

| Appendix




134 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

3.4 Socket Address Structure for 4.4BSD-Based Systems

The 4.4BSD release includes a small, but incompatible change to the
socket interface. The “sa family” field of the sockaddr data
structure was changed from a 16-bit value to an 8-bit value, and the

space saved used to hold a length field, named “sa_len”. The
sockaddr iné data structure given in the previous section cannot be
correctly cast into the newer sockaddr data structure. For this
reason, the following alternative IPv6é address data structure is
provided to be used on systems based on 4.4BSD. It is defined as a

result of including the <netinet/in.h:> header.

struct sockaddr_iné {

uint8_t sin6_len; /* length of this struct */

sa family t sin6é family; /* AF INET6 */

in port t siné port; /* transport layer port # */

uint32 t sin6é flowinfo; /* IPv6e flow information */

struct iné addr siné addr; /* IPv6 address */

uint32 t sin6é scope id; /* set of interfaces for a scope */

The only differences between this data structure and the 4.3BSD
variant are the inclusion of the length field, and the change of the
family field to a 8-bit data type. The definitions of all the other
fields are identical to the structure defined in the previous
section.

Systems that provide this version of the sockaddr iné data structure
must also declare SIN6_LEN as a result of including the
<netinet/in.h:> header. This macro allows applications to determine
whether they are being built on a system that supports the 4.3BSD or
4 .4BSD variants of the data structure.

3.5 The Socket Functions
Applications call the socket () function to create a socket descriptor
that represents a communication endpoint. The arguments to the
socket () function tell the system which protocol to use, and what
format address structure will be used in subsequent functions. For
example, to create an IPv4/TCP socket, applications make the call:
s = socket (AF_INET, SOCK STREAM, 0);

To create an IPv4/UDP socket, applications make the call:

s = socket (AF_INET, SOCK DGRAM, O0);

Gilligan, et al. Informational [Page 9]




RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

Applications may create IPv6/TCP and IPv6/UDP sockets (which may also
handle IPv4 communication as described in section 3.7) by simply
using the constant AF _INET6 instead of AF_INET in the first argument.
For example, to create an IPv6/TCP socket, applications make the
call:

s = socket (AF_INET6, SOCK STREAM, O0);
To create an IPv6/UDP socket, applications make the call:
s = socket (AF_INET6, SOCK DGRAM, O0);

Once the application has created a AF_INET6 socket, it must use the
sockaddr in6 address structure when passing addresses in to the
system. The functions that the application uses to pass addresses
into the system are:

bind ()

connect ()
sendmsg ()
sendto ()

The system will use the sockaddr_ iné address structure to return
addresses to applications that are using AF INET6 sockets. The
functions that return an address from the system to an application
are:

accept ()
recvirom/()
recvmsg ()
getpeername ()
getsockname ()

No changes to the syntax of the socket functions are needed to
support IPv6, since all of the “address carrying” functions use an
opaque address pointer, and carry an address length as a function
argument .

3.6 Compatibility with IPv4 Applications

In order to support the large base of applications using the original
API, system implementations must provide complete source and binary
compatibility with the original API. This means that systems must
continue to support AF INET sockets and the sockaddr in address
structure. Applications must be able to create IPv4/TCP and IPv4/UDP
sockets using the AF INET constant in the socket () function, as

Gilligan, et al. Informational [Page 10]

| Appendix




136 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

described in the previous section. Applications should be able to
hold a combination of IPv4/TCP, IPv4/UDP, IPv6/TCP and IPvé6/UDP
sockets simultaneously within the same process.

Applications using the original API should continue to operate as
they did on systems supporting only IPv4. That is, they should
continue to interoperate with IPv4 nodes.

3.7 Compatibility with IPv4 Nodes

The API also provides a different type of compatibility: the ability
for IPv6 applications to interoperate with IPv4 applications. This
feature uses the IPv4-mapped IPvé address format defined in the IPvé
addressing architecture specification [2]. This address format
allows the IPv4 address of an IPv4 node to be represented as an IPv6
address. The IPv4 address is encoded into the low-order 32 bits of
the IPv6 address, and the high-order 96 bits hold the fixed prefix
0:0:0:0:0:FFFF. IPv4-mapped addresses are written as follows:

: :FFFF:<IPv4-address>

These addresses can be generated automatically by the getaddrinfo()
function, as described in Section 6.1.

Applications may use AF_INET6 sockets to open TCP connections to IPv4
nodes, or send UDP packets to IPv4 nodes, by simply encoding the
destination’s IPv4 address as an IPv4-mapped IPvé6 address, and
passing that address, within a sockaddr iné structure, in the
connect () or sendto() call. When applications use AF_INET6 sockets
to accept TCP connections from IPv4 nodes, or receive UDP packets
from IPv4 nodes, the system returns the peer’s address to the
application in the accept (), recvfrom(), or getpeername() call using
a sockaddr in6é structure encoded this way.

Few applications will likely need to know which type of node they are
interoperating with. However, for those applications that do need to
know, the IN6 IS ADDR V4MAPPED () macro, defined in Section 6.4, is
provided.

3.8 IPv6 Wildcard Address

While the bind() function allows applications to select the source IP
address of UDP packets and TCP connections, applications often want
the system to select the source address for them. With IPv4, one
specifies the address as the symbolic constant INADDR ANY (called the
“wildcard” address) in the bind() call, or simply omits the bind()
entirely.

Gilligan, et al. Informational [Page 11]




RFC3493 “Basic Socket Interface Extensions for IPv6” 137
RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

Since the IPv6é address type is a structure (struct iné_addr), a
symbolic constant can be used to initialize an IPvé address variable,
but cannot be used in an assignment. Therefore systems provide the
IPv6e wildcard address in two forms.
The first version is a global variable named “in6addr any” that is an
in6é_addr structure. The extern declaration for this variable is
defined in <netinet/in.h>

extern const struct iné_addr inéaddr_any;
Applications use in6addr any similarly to the way they use INADDR ANY
in IPv4. For example, to bind a socket to port number 23, but let
the system select the source address, an application could use the
following code:

struct sockaddr iné siné;

siné.sin6 family = AF_INET6;

sin6.sin6_flowinfo = 0;

sin6.sin6_port = htons(23);

siné.siné addr = inéaddr any; /* structure assignment */

if (bind(s, (struct sockaddr *) &siné6, sizeof (sin6)) == -1)
The other version is a symbolic constant named IN6ADDR_ANY INIT and
is defined in <netinet/in.h>. This constant can be used to
initialize an iné_ addr structure:

struct iné_addr anyaddr = IN6ADDR ANY INIT;
Note that this constant can be used ONLY at declaration time. It can
not be used to assign a previously declared in6é_ addr structure. For
example, the following code will not work:

/* This is the WRONG way to assign an unspecified address */

struct sockaddr_iné6 siné;

sin6.sin6 _addr = IN6ADDR ANY INIT; /* will NOT compile */
Be aware that the IPv4 INADDR xxx constants are all defined in host
byte order but the IPv6 IN6ADDR xxx constants and the IPvé6
in6addr xxx externals are defined in network byte order.

Gilligan, et al. Informational [Page 12]
| Appendix C




138 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

3.9 IPve Loopback Address

Applications may need to send UDP packets to, or originate TCP

connections to, services residing on the local node. In IPv4, they
can do this by using the constant IPv4 address INADDR LOOPBACK in
their connect (), sendto(), or sendmsg() call.

IPv6 also provides a loopback address to contact local TCP and UDP
services. Like the unspecified address, the IPvé loopback address is
provided in two forms — a global variable and a symbolic constant.

The global variable is an in6é addr structure named
“in6addr loopback.” The extern declaration for this variable is
defined in <netinet/in.h>

extern const struct iné_addr inéaddr loopback;
Applications use in6addr loopback as they would use INADDR LOOPBACK
in IPv4 applications (but beware of the byte ordering difference
mentioned at the end of the previous section). For example, to open
a TCP connection to the local telnet server, an application could use
the following code:

struct sockaddr iné6 siné;

sin6.sin6_ family = AF INET6;

sin6.sin6_ flowinfo = 0;

sin6.sin6 port = htons(23);

sin6.sin6é_addr = inéaddr loopback; /* structure assignment */
if (connect (s, (struct sockaddr *) &siné, sizeof (siné6)) == -1)

The symbolic constant is named IN6ADDR_LOOPBACK INIT and is defined
in <netinet/in.h>. It can be used at declaration time ONLY; for
example:

struct iné_addr loopbackaddr = IN6ADDR_LOOPBACK_ INIT;

Like IN6ADDR_ANY INIT, this constant cannot be used in an assignment
to a previously declared IPv6 address variable.

Gilligan, et al. Informational [Page 13]




RFC3493 “Basic Socket Interface Extensions for IPv6” 139

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

3.10 Portability Additions

One simple addition to the sockets API that can help application
writers is the “struct sockaddr storage”. This data structure can
simplify writing code that is portable across multiple address
families and platforms. This data structure is designed with the
following goals.

- Large enough to accommodate all supported protocol-specific address
structures.

- Aligned at an appropriate boundary so that pointers to it can be
cast as pointers to protocol specific address structures and used
to access the fields of those structures without alignment
problems.

The sockaddr storage structure contains field ss_family which is of
type sa family t. When a sockaddr storage structure is cast to a
sockaddr structure, the ss family field of the sockaddr storage
structure maps onto the sa family field of the sockaddr structure.
When a sockaddr storage structure is cast as a protocol specific
address structure, the ss family field maps onto a field of that
structure that is of type sa family t and that identifies the
protocol’s address family.

Gilligan, et al. Informational [Page 14]

| Appendix C




140

RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

An example implementation design of such a data structure would be as

follows.
/*
* Desired design of maximum size and alignment
*/
#define _SS MAXSIZE 128 /* Implementation specific max size */

#define _SS ALIGNSIZE (sizeof (inté64_t))
/* Implementation specific desired alignment */

/*

* Definitions used for sockaddr storage structure paddings design.

*/
#define _SS PADISIZE (_SS ALIGNSIZE - sizeof (sa_ family t))
#define _SS PAD2SIZE (_SS_MAXSIZE - (sizeof (sa_family t) +

_SS _PAD1SIZE + _SS ALIGNSIZE))

struct sockaddr storage {

sa_family t ss_family; /* address family */
/* Following fields are implementation specific */
char _ss padl[ SS PADISIZE] ;

/* 6 byte pad, this is to make implementation
/* specific pad up to alignment field that */
/* follows explicit in the data structure */

inté64 t _ss_align; /* field to force desired structure */
/* storage alignment */
char ss_pad2[_ SS PAD2SIZE] ;

/* 112 byte pad to achieve desired size, */
/* SS MAXSIZE value minus size of ss family */
/* ss padl,  ss align fields is 112 */

The above example implementation illustrates a data structure which
will align on a 64-bit boundary. An implementation-specific field

" ss align” along with “ ss padl" is used to force a 64-bit
alignment which covers proper alignment good enough for the needs of
sockaddr iné (IPvé6), sockaddr in (IPv4) address data structures. The

size of padding field _ ss padl depends on the chosen alignment
boundary. The size of padding field _ ss pad2 depends on the value
of overall size chosen for the total size of the structure. This
size and alignment are represented in the above example by
implementation specific (not required) constants _SS MAXSIZE (chosen
value 128) and _SS ALIGNSIZE (with chosen value 8). Constants
_SS_PAD1SIZE (derived value 6) and _SS PAD2SIZE (derived value 112)
are also for illustration and not required. The derived values
assume sa_family t is 2 bytes. The implementation specific
definitions and structure field names above start with an underscore
to denote implementation private namespace. Portable code is not
expected to access or reference those fields or constants.

Gilligan, et al. Informational [Page 15]




RFC3493 “Basic Socket Interface Extensions for IPv6” 4]

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

On implementations where the sockaddr data structure includes a
“sa_ len” field this data structure would look like this:

/*
* Definitions used for sockaddr storage structure paddings design.
*
/
#define _SS PADISIZE (_SS_ALIGNSIZE -
(sizeof (uint8 t) + sizeof (sa_family t))
#define _SS PAD2SIZE (_SS_MAXSIZE -
(sizeof (uint8 t) + sizeof (sa family t) +
_SS_PADISIZE + _SS ALIGNSIZE))
struct sockaddr storage {

uint8 t ss_len; /* address length */
sa family t ss family; /* address family */
/* Following fields are implementation specific */
char _ ss padl[_ SS PADISIZE];

/* 6 byte pad, this is to make implementation
/* specific pad up to alignment field that */
/* follows explicit in the data structure */

int64_t __ss_align; /* field to force desired structure */
/* storage alignment */
char __ss pad2[ SS PAD2SIZE] ;

/* 112 byte pad to achieve desired size, */
/* SS MAXSIZE value minus size of ss len, */
/* _ss family,  ss padl, _ ss align fields is 112 */

4. Interface Identification

This API uses an interface index (a small positive integer) to
identify the local interface on which a multicast group is joined
(Section 5.2). Additionally, the advanced API [4] uses these same
interface indexes to identify the interface on which a datagram is
received, or to specify the interface on which a datagram is to be
sent.

Interfaces are normally known by names such as “le0", ”sll", “ppp2",
and the like. On Berkeley-derived implementations, when an interface
is made known to the system, the kernel assigns a unique positive
integer value (called the interface index) to that interface. These
are small positive integers that start at 1. (Note that 0 is never
used for an interface index.) There may be gaps so that there is no
current interface for a particular positive interface index.

This API defines two functions that map between an interface name and
index, a third function that returns all the interface names and

indexes, and a fourth function to return the dynamic memory allocated
by the previous function. How these functions are implemented is

Gilligan, et al. Informational [Page 16]

| Appendix C




142 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

left up to the implementation. 4.4BSD implementations can implement
these functions using the existing sysctl() function with the

NET RT IFLIST command. Other implementations may wish to use ioctl()
for this purpose.

4.1 Name-to-Index

The first function maps an interface name into its corresponding
index.

#include <net/if.h>
unsigned int if nametoindex(const char *ifname) ;

If ifname is the name of an interface, the if nametoindex() function
shall return the interface index corresponding to name ifname;
otherwise, it shall return zero. No errors are defined.

4.2 Index-to-Name

The second function maps an interface index into its corresponding
name.

#include <net/if.h>
char *if indextoname (unsigned int ifindex, char *ifname) ;

When this function is called, the ifname argument shall point to a
buffer of at least IF NAMESIZE bytes. The function shall place in
this buffer the name of the interface with index ifindex.
(IF_NAMESIZE is also defined in <net/if.h> and its value includes a
terminating null byte at the end of the interface name.) If ifindex
is an interface index, then the function shall return the value
supplied in ifname, which points to a buffer now containing the
interface name. Otherwise, the function shall return a NULL pointer
and set errno to indicate the error. If there is no interface
corresponding to the specified index, errno is set to ENXIO. If
there was a system error (such as running out of memory), errno would
be set to the proper value (e.g., ENOMEM) .

Gilligan, et al. Informational [Page 17]




RFC3493 “Basic Socket Interface Extensions for IPv6” 143

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

4.3 Return All Interface Names and Indexes

The if nameindex structure holds the information about a single
interface and is defined as a result of including the <net/if.h>
header.

struct if nameindex {
unsigned int if index; /* 1, 2, ... */
char *if name; /* null terminated name: “leO", ... */

Vi

The final function returns an array of if nameindex structures, one
structure per interface.

#include <net/if.h>

struct if nameindex *if nameindex (void) ;
The end of the array of structures is indicated by a structure with
an if _index of 0 and an if name of NULL. The function returns a NULL
pointer upon an error, and would set errno to the appropriate value.
The memory used for this array of structures along with the interface
names pointed to by the if name members is obtained dynamically.
This memory is freed by the next function.

4.4 Free Memory

The following function frees the dynamic memory that was allocated by
if nameindex() .

#include <net/if.h>

void 1if freenameindex(struct if nameindex *ptr) ;
The ptr argument shall be a pointer that was returned by
if nameindex(). After if freenameindex() has been called, the
application shall not use the array of which ptr is the address.

5. Socket Options

A number of new socket options are defined for IPve. All of these
new options are at the IPPROTO IPV6é level. That is, the “level”
parameter in the getsockopt () and setsockopt() calls is IPPROTO IPV6
when using these options. The constant name prefix IPV6 is used in

all of the new socket options. This serves to clearly identify these
options as applying to IPvé6.

Gilligan, et al. Informational [Page 18]

| Appendix C




144

RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

The declaration for IPPROTO IPV6, the new IPv6é socket options, and
related constants defined in this section are obtained by including
the header <netinet/in.h>

5.1 Unicast Hop Limit

A new setsockopt () option controls the hop limit used in outgoing
unicast IPv6 packets. The name of this option is IPV6_ _UNICAST HOPS,
and it is used at the IPPROTO IPV6 layer. The following example
illustrates how it is used:

int hoplimit = 10;
if (setsockopt (s, IPPROTO_IPV6, IPV6 UNICAST HOPS,

(char *) &hoplimit, sizeof (hoplimit)) == -1)
perror (“setsockopt IPV6 UNICAST HOPS”) ;

When the IPV6 UNICAST HOPS option is set with setsockopt (), the
option value given is used as the hop limit for all subsequent
unicast packets sent via that socket. TIf the option is not set, the

system selects a default value. The integer hop limit value (called
x) 1s interpreted as follows:

x -1: return an error of EINVAL
X == -1: use kernel default

0 <= x <= 255: use x

x >= 256: return an error of EINVAL

The IPV6_ UNICAST HOPS option may be used with getsockopt () to
determine the hop limit value that the system will use for subsequent
unicast packets sent via that socket. For example:

int hoplimit;
socklen t len = sizeof (hoplimit);

if (getsockopt (s, IPPROTO IPV6, IPV6 UNICAST HOPS,
(char *) &hoplimit, &len) == -1)
perror (“getsockopt IPV6 UNICAST HOPS”) ;
else
printf (“Using %d for hop limit.\n”, hoplimit) ;

5.2 Sending and Receiving Multicast Packets

IPv6 applications may send multicast packets by simply specifying an
IPv6e multicast address as the destination address, for example in the
destination address argument of the sendto() function.

Gilligan, et al. Informational [Page 19]




RFC3493 “Basic Socket Interface Extensions for IPv6” 145

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

Three socket options at the IPPROTO IPV6 layer control some of the
parameters for sending multicast packets. Setting these options is
not required: applications may send multicast packets without using
these options. The setsockopt () options for controlling the sending
of multicast packets are summarized below. These three options can
also be used with getsockopt ().

IPV6_MULTICAST IF

Set the interface to use for outgoing multicast packets. The
argument is the index of the interface to use. If the
interface index is specified as zero, the system selects the
interface (for example, by looking up the address in a routing
table and using the resulting interface).

Argument type: unsigned int

IPV6_MULTICAST_ HOPS
Set the hop limit to use for outgoing multicast packets. (Note
a separate option - IPV6 UNICAST HOPS - is provided to set the

hop limit to use for outgoing unicast packets.)

The interpretation of the argument is the same as for the
IPV6_UNICAST HOPS option:

x -1: return an error of EINVAL
x == -1: use kernel default

0 <= x <= 255: use x

x >= 256: return an error of EINVAL

If IPV6_MULTICAST_HOPS is not set, the default is 1
(same as IPv4 today)

Argument type: int

IPV6_MULTICAST_LOOP
If a multicast datagram is sent to a group to which the sending
host itself belongs (on the outgoing interface), a copy of the
datagram is looped back by the IP layer for local delivery if
this option is set to 1. If this option is set to 0 a copy is

not looped back. Other option values return an error of
EINVAL.

Gilligan, et al. Informational [Page 20]

| Appendix C




146 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

If IPV6 MULTICAST LOOP is not set, the default is 1 (loopback;
same as IPv4 today) .

Argument type: unsigned int

The reception of multicast packets is controlled by the two
setsockopt () options summarized below. An error of EOPNOTSUPP is
returned if these two options are used with getsockopt ().

IPV6 JOIN GROUP

Join a multicast group on a specified local interface.
If the interface index is specified as 0,

the kernel chooses the local interface.

For example, some kernels look up the multicast group

in the normal IPvé routing table and use the resulting
interface.

Argument type: struct ipvé mreq
IPV6_LEAVE GROUP

Leave a multicast group on a specified interface.

If the interface index is specified as 0, the system
may choose a multicast group membership to drop by
matching the multicast address only.

Argument type: struct ipvé mreqg

The argument type of both of these options is the ipvé mreqg
structure, defined as a result of including the <netinet/in.h>
header;

struct ipvé mreq {
struct iné addr ipvémr multiaddr; /* IPv6e multicast addr */
unsigned int ipvémr interface; /* interface index */

¥

Note that to receive multicast datagrams a process must join the
multicast group to which datagrams will be sent. UDP applications
must also bind the UDP port to which datagrams will be sent. Some
processes also bind the multicast group address to the socket, in
addition to the port, to prevent other datagrams destined to that
same port from being delivered to the socket.

Gilligan, et al. Informational [Page 21]




RFC3493 “Basic Socket Interface Extensions for IPv6” 147

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

5.3 IPV6_V6ONLY option for AF_INET6 Sockets

This socket option restricts AF INET6 sockets to IPv6 communications
only. As stated in section <3.7 Compatibility with IPv4 Nodes>,
AF_INET6 sockets may be used for both IPv4 and IPv6 communications.
Some applications may want to restrict their use of an AF_ INET6
socket to IPv6 communications only. For these applications the
IPV6_V60ONLY socket option is defined. When this option is turned on,
the socket can be used to send and receive IPv6 packets only. This
is an IPPROTO_IPV6 level option. This option takes an int value.
This is a boolean option. By default this option is turned off.

Here is an example of setting this option:
int on = 1;

if (setsockopt (s, IPPROTO IPV6, IPV6 V6ONLY,
(char *)&on, sizeof(on)) == -1)
perror (“setsockopt IPV6 V6ONLY”) ;
else
printf (“IPV6 V6ONLY set\n") ;

Note - This option has no effect on the use of IPv4 Mapped addresses
which enter a node as a valid IPv6 addresses for IPv6 communications
as defined by Stateless IP/ICMP Translation Algorithm (SIIT) [5].

An example use of this option is to allow two versions of the same
server process to run on the same port, one providing service over
IPv6e, the other providing the same service over IPv4.

6. Library Functions

New library functions are needed to perform a variety of operations
with IPv6 addresses. Functions are needed to lookup IPv6 addresses
in the Domain Name System (DNS). Both forward lookup (nodename-to-
address translation) and reverse lookup (address-to-nodename
translation) need to be supported. Functions are also needed to
convert IPv6e addresses between their binary and textual form.

We note that the two existing functions, gethostbyname () and
gethostbyaddr (), are left as-is. New functions are defined to handle
both IPv4 and IPvé6é addresses.

The commonly used function gethostbyname () is inadequate for many
applications, first because it provides no way for the caller to
specify anything about the types of addresses desired (IPv4 only,
IPv6 only, IPv4-mapped IPv6 are OK, etc.), and second because many
implementations of this function are not thread safe. RFC 2133

Gilligan, et al. Informational [Page 22]

| Appendix C




148 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

defined a function named gethostbyname2 () but this function was also
inadequate, first because its use required setting a global option
(RES_USE_INET6) when IPv6 addresses were required, and second because
a flag argument is needed to provide the caller with additional
control over the types of addresses required. The gethostbyname2 ()
function was deprecated in RFC 2553 and is no longer part of the
basic API.

6.1 Protocol-Independent Nodename and Service Name Translation

Nodename-to-address translation is done in a protocol-independent
fashion using the getaddrinfo() function.

#include <sys/socket.hs
#include <netdb.h>
int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai) ;

struct addrinfo

int ai flags; /* AI PASSIVE, AI CANONNAME,
AI NUMERICHOST, .. */
int ai family; /* AF_xxx */
int al socktype; /* SOCK xxx */
int ai protocol; /* 0 or IPPROTO xxx for IPv4 and IPvée */
socklen_t ai_addrlen; /* length of ai addr */

char *al canonname; /* canonical name for nodename */
struct sockaddr *ai addr; /* binary address */
struct addrinfo *ai next; /* next structure in linked list */

The getaddrinfo() function translates the name of a service location
(for example, a host name) and/or a service name and returns a set of
socket addresses and associated information to be used in creating a
socket with which to address the specified service.

The nodename and servname arguments are either null pointers or
pointers to null-terminated strings. One or both of these two
arguments must be a non-null pointer.

The format of a valid name depends on the address family or families.
If a specific family is not given and the name could be interpreted
as valid within multiple supported families, the implementation will
attempt to resolve the name in all supported families and, in absence
of errors, one or more results shall be returned.

Gilligan, et al. Informational [Page 23]




RFC3493 “Basic Socket Interface Extensions for IPv6” 149

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

If the nodename argument is not null, it can be a descriptive name or
can be an address string. If the specified address family is
AF_INET, AF INET6, or AF UNSPEC, valid descriptive names include host
names. If the specified address family is AF INET or AF UNSPEC,
address strings using Internet standard dot notation as specified in
inet_addr () are valid. If the specified address family is AF_INET6
or AF _UNSPEC, standard IPvé text forms described in inet pton() are
valid.

If nodename is not null, the requested service location is named by
nodename; otherwise, the requested service location is local to the
caller.

If servname is null, the call shall return network-level addresses
for the specified nodename. If servname is not null, it is a null-
terminated character string identifying the requested service. This
can be either a descriptive name or a numeric representation suitable
for use with the address family or families. If the specified
address family is AF_INET, AF_INET6 or AF UNSPEC, the service can be
specified as a string specifying a decimal port number.

If the argument hints is not null, it refers to a structure
containing input values that may direct the operation by providing
options and by limiting the returned information to a specific socket
type, address family and/or protocol. In this hints structure every
member other than ai flags, ai_family, ai_ socktype and ai_ protocol
shall be set to zero or a null pointer. A value of AF_UNSPEC for

ai family means that the caller shall accept any address family. A
value of zero for ai socktype means that the caller shall accept any
socket type. A value of zero for ai protocol means that the caller
shall accept any protocol. If hints is a null pointer, the behavior
shall be as if it referred to a structure containing the value zero
for the ai_flags, ai_socktype and ai protocol fields, and AF UNSPEC
for the ai family field.

Note:

1. If the caller handles only TCP and not UDP, for example, then the
ai_protocol member of the hints structure should be set to
IPPROTO TCP when getaddrinfo() is called.

2. If the caller handles only IPv4 and not IPvé, then the ai_family

member of the hints structure should be set to AF _INET when
getaddrinfo() is called.

Gilligan, et al. Informational [Page 24]

| Appendix C




150 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

The ai_flags field to which hints parameter points shall be set to
zero or be the bitwise-inclusive OR of one or more of the values
ATl PASSIVE, AI_CANONNAME, AI NUMERICHOST, AI NUMERICSERV,

AI V4MAPPED, AI ALL, and AI_ ADDRCONFIG.

If the AI PASSIVE flag is specified, the returned address information
shall be suitable for use in binding a socket for accepting incoming
connections for the specified service (i.e., a call to bind()). 1In
this case, 1f the nodename argument is null, then the IP address
portion of the socket address structure shall be set to INADDR ANY
for an IPv4 address or IN6ADDR _ANY INIT for an IPv6 address. If the
AI PASSIVE flag is not specified, the returned address information

shall be suitable for a call to connect() (for a connection-mode
protocol) or for a call to connect (), sendto() or sendmsg() (for a
connectionless protocol). 1In this case, if the nodename argument is

null, then the IP address portion of the socket address structure
shall be set to the loopback address. This flag is ignored if the
nodename argument is not null.

If the AI CANONNAME flag is specified and the nodename argument is
not null, the function shall attempt to determine the canonical name
corresponding to nodename (for example, if nodename is an alias or
shorthand notation for a complete name) .

If the AI_NUMERICHOST flag is specified, then a non-null nodename
string supplied shall be a numeric host address string. Otherwise,
an [EAI_NONAME] error is returned. This flag shall prevent any type
of name resolution service (for example, the DNS) from being invoked.

If the AI NUMERICSERV flag is specified, then a non-null servname
string supplied shall be a numeric port string. Otherwise, an
[EAI_NONAME] error shall be returned. This flag shall prevent any
type of name resolution service (for example, NIS+) from being
invoked.

If the AI V4MAPPED flag is specified along with an ai family of
AF INET6, then getaddrinfo() shall return IPv4-mapped IPv6 addresses
on finding no matching IPv6é addresses (ai_addrlen shall be 16) .

For example, when using the DNS, if no AAAA records are found then
a query is made for A records and any found are returned as IPv4-

mapped IPv6e addresses.

The AI_V4MAPPED flag shall be ignored unless ai_ family equals
AF_INETS6.

If the AT ALL flag is used with the AI V4MAPPED flag, then
getaddrinfo() shall return all matching IPvé and IPv4 addresses.

Gilligan, et al. Informational [Page 25]




RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

For example, when using the DNS, queries are made for both AAAA
records and A records, and getaddrinfo() returns the combined
results of both queries. Any IPv4 addresses found are returned as
IPv4-mapped IPv6 addresses.

The AI ALL flag without the AI V4MAPPED flag is ignored.
Note:

When ai family is not specified (AF_UNSPEC), AI_ V4MAPPED and
AI ALL flags will only be used if AF INET6 is supported.

If the AI ADDRCONFIG flag is specified, IPv4 addresses shall be
returned only if an IPv4 address is configured on the local system,
and IPv6 addresses shall be returned only if an IPv6 address is
configured on the local system. The loopback address is not
considered for this case as valid as a configured address.

For example, when using the DNS, a query for AAAA records should
occur only if the node has at least one IPv6 address configured
(other than IPvé loopback) and a query for A records should occur
only if the node has at least one IPv4 address configured (other
than the IPv4 loopback) .

The ai_socktype field to which argument hints points specifies the
socket type for the service, as defined for socket(). If a specific
socket type is not given (for example, a value of zero) and the
service name could be interpreted as valid with multiple supported
socket types, the implementation shall attempt to resolve the service
name for all supported socket types and, in the absence of errors,
all possible results shall be returned. A non-zero socket type value
shall limit the returned information to values with the specified
socket type.

If the ai_family field to which hints points has the value AF UNSPEC,
addresses shall be returned for use with any address family that can
be used with the specified nodename and/or servname. Otherwise,
addresses shall be returned for use only with the specified address
family. TIf ai family is not AF_UNSPEC and ai_protocol is not zero,
then addresses are returned for use only with the specified address
family and protocol; the value of ai protocol shall be interpreted as
in a call to the socket () function with the corresponding values of
ai family and ai protocol.

The freeaddrinfo() function frees one or more addrinfo structures
returned by getaddrinfo(), along with any additional storage

associated with those structures (for example, storage pointed to by
the ai canonname and ai_addr fields; an application must not

Gilligan, et al. Informational [Page 26]

| Appendix




152 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

reference this storage after the associated addrinfo structure has
been freed). If the ai next field of the structure is not null, the
entire list of structures is freed. The freeaddrinfo() function must
support the freeing of arbitrary sublists of an addrinfo list
originally returned by getaddrinfo() .

Functions getaddrinfo() and freeaddrinfo() must be thread-safe.

A zero return value for getaddrinfo() indicates successful
completion; a non-zero return value indicates failure. The possible
values for the failures are listed below under Error Return Values.

Upon successful return of getaddrinfo(), the location to which res
points shall refer to a linked list of addrinfo structures, each of
which shall specify a socket address and information for use in
creating a socket with which to use that socket address. The list
shall include at least one addrinfo structure. The ai_next field of
each structure contains a pointer to the next structure on the list,
or a null pointer if it is the last structure on the list. Each
structure on the list shall include values for use with a call to the
socket () function, and a socket address for use with the connect ()
function or, if the AI PASSIVE flag was specified, for use with the
bind() function. The fields ai family, ai socktype, and ai protocol
shall be usable as the arguments to the socket () function to create a
socket suitable for use with the returned address. The fields
ai_addr and ai_addrlen are usable as the arguments to the connect ()
or bind() functions with such a socket, according to the AI PASSIVE
flag.

If nodename is not null, and if requested by the AI CANONNAME flag,
the ai_canonname field of the first returned addrinfo structure shall
point to a null-terminated string containing the canonical name
corresponding to the input nodename; if the canonical name is not
available, then ai canonname shall refer to the nodename argument or
a string with the same contents. The contents of the ai flags field
of the returned structures are undefined.

All fields in socket address structures returned by getaddrinfo()
that are not filled in through an explicit argument (for example,

sin6 flowinfo) shall be set to zero.

Note: This makes it easier to compare socket address structures.

Gilligan, et al. Informational [Page 27]




RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

Error Return Values:

The getaddrinfo() function shall fail and return the corresponding
value if:

[EATI_AGAIN] The name could not be resolved at this time. Future
attempts may succeed.

[EAI BADFLAGS] The flags parameter had an invalid value.

[EAI_FAIL] A non-recoverable error occurred when attempting to
resolve the name.

[EAI_FAMILY] The address family was not recognized.

[EAI_MEMORY] There was a memory allocation failure when trying to
allocate storage for the return value.

[EAI_NONAME] The name does not resolve for the supplied
parameters. Neither nodename nor servname were

supplied. At least one of these must be supplied.

[EAI_SERVICE] The service passed was not recognized for the
specified socket type.

[EAI_SOCKTYPE] The intended socket type was not recognized.

[EAI_SYSTEM] A system error occurred; the error code can be found
in errno.
The gai_strerror() function provides a descriptive text string

corresponding to an EAI xxx error value.

#include <netdb.h>

const char *gai strerror (int ecode) ;
The argument is one of the EAI xxx values defined for the
getaddrinfo() and getnameinfo() functions. The return value points
to a string describing the error. If the argument is not one of the
EAI xxx values, the function still returns a pointer to a string
whose contents indicate an unknown error.

6.2 Socket Address Structure to Node Name and Service Name

The getnameinfo() function is used to translate the contents of a
socket address structure to a node name and/or service name.

Gilligan, et al. Informational [Page 28]

| Appendix




|54

RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

#include <sys/socket.hs
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen t salen,
char *node, socklen t nodelen,
char *service, socklen t servicelen,
int flags) ;

The getnameinfo() function shall translate a socket address to a node
name and service location, all of which are defined as in
getaddrinfo() .

The sa argument points to a socket address structure to be
translated.

The salen argument holds the size of the socket address structure
pointed to by sa.

If the socket address structure contains an IPv4-mapped IPv6 address
or an IPv4-compatible IPvée address, the implementation shall extract
the embedded IPv4 address and lookup the node name for that IPv4
address.

Note: The IPvée unspecified address (“::”) and the IPv6 loopback
address (“::1") are not IPv4-compatible addresses. If the address
is the IPvée unspecified address (“::”), a lookup is not performed,

and the [EAI _NONAME] error is returned.

If the node argument is non-NULL and the nodelen argument is nonzero,
then the node argument points to a buffer able to contain up to
nodelen characters that receives the node name as a null-terminated
string. TIf the node argument is NULL or the nodelen argument is
zero, the node name shall not be returned. If the node’s name cannot
be located, the numeric form of the node’s address is returned
instead of its name.

If the service argument is non-NULL and the servicelen argument is
non-zero, then the service argument points to a buffer able to
contain up to servicelen bytes that receives the service name as a
null-terminated string. If the service argument is NULL or the
servicelen argument is zero, the service name shall not be returned.
If the service’s name cannot be located, the numeric form of the
service address (for example, its port number) shall be returned
instead of its name.

The arguments node and service cannot both be NULL.

Gilligan, et al. Informational [Page 29]




RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

The flags argument is a flag that changes the default actions of the
function. By default the fully-qualified domain name (FQDN) for the
host shall be returned, but:

- If the flag bit NI_NOFQDN is set, only the node name portion of
the FQDN shall be returned for local hosts.

- If the flag bit NI_NUMERICHOST is set, the numeric form of the
host’s address shall be returned instead of its name, under all
circumstances.

- If the flag bit NI _NAMEREQD is set, an error shall be returned if
the host’s name cannot be located.

- If the flag bit NI_NUMERICSERV is set, the numeric form of the
service address shall be returned (for example, its port number)
instead of its name, under all circumstances.

- If the flag bit NI _DGRAM is set, this indicates that the service
is a datagram service (SOCK DGRAM). The default behavior shall
assume that the service is a stream service (SOCK_STREAM) .

Note:

1. The NI_NUMERICxxx flags are required to support the “-n” flags
that many commands provide.

2. The NI_DGRAM flag is required for the few AF_INET and AF _ INET6
port numbers (for example, [512,514]) that represent different
services for UDP and TCP.

The getnameinfo() function shall be thread safe.

A zero return value for getnameinfo() indicates successful
completion; a non-zero return value indicates failure.

Upon successful completion, getnameinfo() shall return the node and
service names, if requested, in the buffers provided. The returned
names are always null-terminated strings.

Gilligan, et al. Informational [Page 30]

| Appendix




156 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé February 2003

Error Return Values:

The getnameinfo() function shall fail and return the corresponding
value if:
[EAI AGAIN] The name could not be resolved at this time.

Future attempts may succeed.
[EATI BADFLAGS] The flags had an invalid value.
[EAT FAIL] A non-recoverable error occurred.

[EATI_FAMILY] The address family was not recognized or the address
length was invalid for the specified family.

[EATI_MEMORY] There was a memory allocation failure.

[EAT NONAME] The name does not resolve for the supplied parameters.
NI_NAMEREQD is set and the host’s name cannot be
located, or both nodename and servname were null.

[EAI_OVERFLOW] An argument buffer overflowed.

[EAI_SYSTEM] A system error occurred. The error code can be found
in errno.

6.3 Address Conversion Functions

The two IPv4 functions inet addr() and inet ntoa() convert an IPv4
address between binary and text form. IPvé applications need similar
functions. The following two functions convert both IPvé and IPv4
addresses:

#include <arpa/inet.h>

int inet pton(int af, const char *src, void *dst);

const char *inet ntop(int af, const void *src,
char *dst, socklen t size);

The inet pton() function shall convert an address in its standard
text presentation form into its numeric binary form. The af argument
shall specify the family of the address. The AF INET and AF_INET6
address families shall be supported. The src argument points to the
string being passed in. The dst argument points to a buffer into
which the function stores the numeric address; this shall be large
enough to hold the numeric address (32 bits for AF INET, 128 bits for
AF INET6). The inet pton() function shall return 1 if the conversion

Gilligan, et al. Informational [Page 31]




RFC3493 “Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPvé6é February 2003

succeeds, with the address pointed to by dst in network byte order.
It shall return 0 if the input is not a valid IPv4 dotted-decimal
string or a valid IPv6 address string, or -1 with errno set to
EAFNOSUPPORT if the af argument is unknown.

If the af argument of inet pton() is AF INET, the src string shall be
in the standard IPv4 dotted-decimal form:

ddd.ddd.ddd.ddd

where “ddd” is a one to three digit decimal number between 0 and 255.
The inet_pton() function does not accept other formats (such as the
octal numbers, hexadecimal numbers, and fewer than four numbers that
inet addr () accepts).

If the af argument of inet pton() is AF_INET6, the src string shall
be in one of the standard IPv6e text forms defined in Section 2.2 of
the addressing architecture specification [2].

The inet ntop() function shall convert a numeric address into a text
string suitable for presentation. The af argument shall specify the
family of the address. This can be AF_INET or AF_INET6. The src
argument points to a buffer holding an IPv4 address if the af
argument is AF_INET, or an IPv6 address if the af argument is
AF_INET6; the address must be in network byte order. The dst
argument points to a buffer where the function stores the resulting
text string; it shall not be NULL. The size argument specifies the
size of this buffer, which shall be large enough to hold the text
string (INET ADDRSTRLEN characters for IPv4, INET6 ADDRSTRLEN
characters for IPve).

In order to allow applications to easily declare buffers of the
proper size to store IPv4 and IPvé addresses in string form, the
following two constants are defined in <netinet/in.h>

#define INET ADDRSTRLEN 16
#define INET6 ADDRSTRLEN 46

The inet ntop() function shall return a pointer to the buffer
containing the text string if the conversion succeeds, and NULL
otherwise. Upon failure, errno is set to EAFNOSUPPORT if the af
argument is invalid or ENOSPC if the size of the result buffer is
inadequate.

Gilligan, et al. Informational [Page 32]

| Appendix




158 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

6.4 Address Testing Macros
The following macros can be used to test for special IPv6 addresses.

#include <netinet.h>

int IN6_IS ADDR _UNSPECIFIED (const struct iné_addr *);
int IN6_IS_ADDR LOOPBACK (const struct iné_addr *);
int IN6_IS ADDR MULTICAST (const struct iné6_addr *);
int IN6_ IS ADDR_ LINKLOCAL (const struct iné6é_addr *);
int IN6_IS ADDR SITELOCAL (const struct iné_addr *);
int IN6_IS ADDR V4MAPPED (const struct iné_addr *);
int IN6_IS_ADDR V4COMPAT (const struct iné_addr *);
int IN6_IS ADDR MC_NODELOCAL (const struct iné_addr *);
int IN6_IS ADDR MC_LINKLOCAL (const struct iné_addr *);
int IN6 IS ADDR MC SITELOCAL (const struct iné addr *);
int IN6_IS ADDR MC_ORGLOCAL (const struct iné_addr *);
int IN6_IS ADDR MC_ GLOBAL (const struct iné6_addr *);

The first seven macros return true if the address is of the specified
type, or false otherwise. The last five test the scope of a
multicast address and return true if the address is a multicast
address of the specified scope or false if the address is either not
a multicast address or not of the specified scope.

Note that IN6_ IS ADDR LINKLOCAL and IN6 IS ADDR SITELOCAL return true
only for the two types of local-use IPv6 unicast addresses (Link-
Local and Site-Local) defined in [2], and that by this definition,
the IN6_IS ADDR_LINKLOCAL macro returns false for the IPvé loopback
address (::1). These two macros do not return true for IPvée
multicast addresses of either link-local scope or site-local scope.

7. Summary of New Definitions

The following list summarizes the constants, structure, and extern
definitions discussed in this memo, sorted by header.

<net/if.h> IF_NAMESIZE
<net/if.h> struct if nameindex{};
<netdb.h> AI ADDRCONFIG
<netdb.h> AI ALL

<netdb.h> AI CANONNAME
<netdb.h> AI NUMERICHOST
<netdb.h> AI NUMERICSERV
<netdb.h> AI PASSIVE

<netdb.h> AI_ V4MAPPED

Gilligan, et al. Informational [Page 33]




RFC3493 “Basic Socket Interface Extensions for IPv6” 159
RFC 3493 Basic Socket Interface Extensions for IPvé6é February 2003
<netdb.h> EAI AGAIN
<netdb.h> EAI BADFLAGS
<netdb.h> EAT FAIL
<netdb.h> EAI FAMILY
<netdb.h> EAI MEMORY
<netdb.h> EAI_ NONAME
<netdb.h> EAI_OVERFLOW
<netdb.h> EAI SERVICE
<netdb.h> EAI SOCKTYPE
<netdb.h> EAI SYSTEM
<netdb.h> NI_DGRAM
<netdb.h> NI_ NAMEREQD
<netdb.h> NI_NOFQDN
<netdb.h> NI _NUMERICHOST
<netdb.h> NI_NUMERICSERV
<netdb.h> struct addrinfo{};
<netinet/in.h> IN6ADDR ANY INIT
<netinet/in.h> IN6ADDR LOOPBACK INIT
<netinet/in.h> INET6_ADDRSTRLEN
<netinet/in.h> INET ADDRSTRLEN
<netinet/in.h> IPPROTO_IPV6
<netinet/in.h> IPV6 JOIN GROUP
<netinet/in.h> IPV6_LEAVE_ GROUP
<netinet/in.h> IPV6 MULTICAST HOPS
<netinet/in.h> IPV6_MULTICAST IF
<netinet/in.h> IPV6 MULTICAST LOOP
<netinet/in.h> IPV6 UNICAST HOPS
<netinet/in.h> IPV6_ V6ONLY
<netinet/in.h> SIN6_ LEN
<netinet/in.h> extern const struct iné_ addr inéaddr any;
<netinet/in.h> extern const struct iné addr iné6addr loopback;
<netinet/in.h> struct iné_addr{};
<netinet/in.h> struct ipvé_mreq{};
<netinet/in.h> struct sockaddr iné{};
<sys/socket.h> AF INET6
<sys/socket.h> PF_INET6
<sys/socket.h> struct sockaddr storage;

The following list summarizes the function and macro prototypes
discussed in this memo, sorted by header.
<arpa/inet.h> int inet pton(int, const char *, void *);
<arpa/inet.h> const char *inet ntop(int, const void *,
char *, socklen t);
Gilligan, et al. Informational [Page 34]
| Appendix C



160

RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493

<net/if .h>
<net/if.h>
<net/if.h>
<net/if.h>

<netdb.h>

<netdb.h>

<netdb.h>
<netdb.h>

<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.
<netinet/in.

8. Security

Basic Socket Interface Extensions for IPv6é February 2003

char *if indextoname (unsigned int, char *);
unsigned int if nametoindex(const char *);
void if freenameindex(struct if nameindex *);
struct if nameindex *if nameindex (void) ;

int getaddrinfo(const char *, const char *,

const struct addrinfo ¥*,
struct addrinfo *¥*);

int getnameinfo(const struct sockaddr *, socklen t,
char *, socklen t, char *, socklen t, int);

void freeaddrinfo(struct addrinfo *);

const char *gai strerror(int);

h> int IN6_IS ADDR LINKLOCAL (const struct iné_addr *);

h> int IN6_ IS ADDR LOOPBACK (const struct iné6 addr *);

h> int IN6_IS ADDR_MC GLOBAL (const struct iné_addr *);

h> int IN6 IS ADDR MC LINKLOCAL (const struct iné addr *);
h> int IN6_IS ADDR_MC NODELOCAL (const struct iné_addr *);
h> int IN6_IS ADDR_MC_ORGLOCAL (const struct in6_addr *);
h> int IN6_IS ADDR_MC SITELOCAL (const struct iné6_addr *);
h> int IN6_ IS ADDR MULTICAST (const struct iné6_addr *);

h> int IN6_ IS ADDR SITELOCAL (const struct iné_addr *);

h> int IN6_IS ADDR_UNSPECIFIED (const struct iné_addr *);
h> int IN6_ IS ADDR V4COMPAT (const struct iné_ addr *);

h> int IN6 IS ADDR V4MAPPED (const struct iné addr *);
Considerations

IPv6 provides a number of new security mechanisms, many of which need
to be accessible to applications. Companion memos detailing the
extensions to the socket interfaces to support IPvé security are
being written.

9. Changes from RFC 2553

1. Add brief description of the history of this API and its relation
to the Open Group/IEEE/ISO standards.

2. Alignments with [3].

3. Removed all references to getipnodebyname () and getipnodebyaddr (),
which are deprecated in favor of getaddrinfo() and getnameinfol().

4. Added IPV6 V6ONLY IP level socket option to permit nodes to not
process IPv4 packets as IPv4 Mapped addresses in implementations.

5. Added SIIT to references and added new contributors.

Gilligan, et al.

Informational [Page 35]




RFC3493 “Basic Socket Interface Extensions for IPv6”

16l

RFC 3493 Basic Socket Interface Extensions for IPvé6é February 2003

10.

6. In previous versions of this specification, the siné_ flowinfo
field was associated with the IPvé traffic class and flow label,
but its usage was not completely specified. The complete
definition of the siné flowinfo field, including its association
with the traffic class or flow label, is now deferred to a future
specification.

Acknowledgments

This specification’s evolution and completeness were significantly
influenced by the efforts of Richard Stevens, who has passed on.
Richard’s wisdom and talent made the specification what it is today.
The co-authors will long think of Richard with great respect.

Thanks to the many people who made suggestions and provided feedback
to this document, including:

Werner Almesberger, Ran Atkinson, Fred Baker, Dave Borman, Andrew
Cherenson, Alex Conta, Alan Cox, Steve Deering, Richard Draves,
Francis Dupont, Robert Elz, Brian Haberman, Jun-ichiro itojun Hagino,
Marc Hasson, Tom Herbert, Bob Hinden, Wan-Yen Hsu, Christian Huitema,
Koji Imada, Markus Jork, Ron Lee, Alan Lloyd, Charles Lynn, Dan
McDonald, Dave Mitton, Finnbarr Murphy, Thomas Narten, Josh Osborne,
Craig Partridge, Jean-Luc Richier, Bill Sommerfield, Erik Scoredos,
Keith Sklower, JINMEI Tatuya, Dave Thaler, Matt Thomas, Harvey
Thompson, Dean D. Throop, Karen Tracey, Glenn Trewitt, Paul Vixie,
David Waitzman, Carl Williams, Kazu Yamamoto, Vlad Yasevich, Stig
Venaas, and Brian Zill.

The getaddrinfo() and getnameinfo() functions are taken from an
earlier document by Keith Sklower. As noted in that document,
William Durst, Steven Wise, Michael Karels, and Eric Allman provided
many useful discussions on the subject of protocol-independent name-
to-address translation, and reviewed early versions of Keith
Sklower’s original proposal. Eric Allman implemented the first
prototype of getaddrinfo(). The observation that specifying the pair
of name and service would suffice for connecting to a service
independent of protocol details was made by Marshall Rose in a
proposal to X/Open for a “Uniform Network Interface”.

Craig Metz, Jack McCann, Erik Nordmark, Tim Hartrick, and Mukesh
Kacker made many contributions to this document. Ramesh Govindan
made a number of contributions and co-authored an earlier version of
this memo.

Gilligan, et al. Informational [Page 36]

| Appendix




162

RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493

Basic Socket Interface Extensions for IPv6é February 2003

11. References

[1]

[21]

[3]

Deering, S. and R. Hinden, “Internet Protocol, Version 6 (IPvé6)
Specification", RFC 2460, December 1998.

Hinden, R. and S. Deering, “IP Version 6 Addressing
Architecture", RFC 2373, July 1998.

IEEE Std. 1003.1-2001 Standard for Information Technology —
Portable Operating System Interface (POSIX). Open Group
Technical Standard: Base Specifications, Issue 6, December 2001.
ISO/IEC 9945:2002. http://www.opengroup.org/austin

Stevens, W. and M. Thomas, “Advanced Sockets API for IPvé", RFC
2292, February 1998.

Nordmark, E., “Stateless IP/ICMP Translation Algorithm (SIIT)",
RFC 2765, February 2000.

The Open Group Base Working Group
http://www.opengroup.org/platform/base.html

Gilligan, et al. Informational [Page 37]




RFC3493 “Basic Socket Interface Extensions for IPvé”

163

RFC 3493

12.

Authors’ Addresses

Bob Gilligan
Intransa, Inc.
2870 Zanker Rd.
San Jose, CA 95134

Phone: 408-678-8647
EMail: gilligan@intransa.com

Susan Thomson

Cisco Systems

499 Thornall Street, 8th floor
Edison, NJ 08837

Phone: 732-635-3086
EMail: sethomso@cisco.com

Jim Bound

Hewlett-Packard Company

110 Spitbrook Road ZKO3-3/W20
Nashua, NH 03062

Phone: 603-884-0062
EMail: Jim.Bound@hp.com

Jack McCann

Hewlett-Packard Company

110 Spitbrook Road ZKO3-3/W20
Nashua, NH 03062

Phone: 603-884-2608
EMail: Jack.McCann@hp.com

Gilligan, et al. Informational

Basic Socket Interface Extensions for IPvé

February 2003

[Page 38]

Appendix

C



|64 RFC3493 "“Basic Socket Interface Extensions for IPv6”

RFC 3493 Basic Socket Interface Extensions for IPv6é February 2003

13. Full Copyright Statement
Copyright (C) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
“AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.

Gilligan, et al. Informational [Page 39]




RFC2292 “Advanced Sockets API for [PvG”

165




166 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998
Network Working Group W. Stevens
Request for Comments: 2292 Consultant
Category: Informational M. Thomas

AltaVista

February 1998

Advanced Sockets API for IPvé

Status of this Memo

This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract

Specifications are in progress for changes to the sockets API to
support IP version 6 [RFC-2133]. These changes are for TCP and UDP-
based applications and will support most end-user applications in use
today: Telnet and FTP clients and servers, HTTP clients and servers,
and the like.

But another class of applications exists that will also be run under
IPv6. We call these “advanced” applications and today this includes
programs such as Ping, Traceroute, routing daemons, multicast routing
daemons, router discovery daemons, and the like. The API feature
typically used by these programs that make them “advanced” is a raw
socket to access ICMPv4, IGMPv4, or IPv4, along with some knowledge
of the packet header formats used by these protocols. To provide
portability for applications that use raw sockets under IPv6, some
standardization is needed for the advanced API features.

There are other features of IPv6 that some applications will need to
access: interface identification (specifying the outgoing interface
and determining the incoming interface) and IPvé6é extension headers
that are not addressed in [RFC-2133]: Hop-by-Hop options, Destination
options, and the Routing header (source routing). This document
provides API access to these features too.

Stevens & Thomas Informational [Page 1]




RFC2292 “Advanced Sockets API for IPv6” 167
RFC 2292 Advanced Sockets API for IPvé6 February 1998
Table of Contents

1. IntroducCtion ... ...t e e e e e e 3
2. Common Structures and Definitions ............. .. ... ... .. .. .. 5
2.1. The ip6_hdr Structure .............. .. .. ... ..., 5
2.1.1. 1IPv6e Next Header Values ............ ... 6
2.1.2. 1IPv6 Extension Headers ............. ..., 6
2.2. The icmp6_hdr Structure ............... .. .. .. .. ... 8
2.2.1. ICMPve Type and Code Values ..........ouiueeeenn. 8
2.2.2. 1ICMPv6 Neighbor Discovery Type and Code Values ..9
2.3. Address Testing MaCroOS . ...t iii ittt ettt 12
2.4. Protocols File ... ... e e 12
3. IPv6e Raw Sockets ... ... .. e 13
3.1. Checksums ....... ... ... e 14
3.2. ICMPv6 Type Filtering ....... ...ttt 14
4. Ancillary Data ...t e e e e 17
4.1. The msghdr Structure ... ... .. ...ttt ettt 18
4.2. The cmsghdr Structure . ... ... ...ttt ettt 18
4.3. Ancillary Data Object MacCrosS . ... ...ttt ennnnn 19
4.3.1. CMSG FIRSTHDR ... ..ttt it e 20
4.3.2. CMSG NXTHDR . ...ttt ittt ittt eeee e 22
4.3.3. CMSG DATA ..ttt e e e e e e 22
4.3.4. CMSG SPACE ...\ttt ittt e et e e 22
4.3.5. CMSG LEN . ...ttt et e e e 22
4.4. Summary of Options Described Using Ancillary Data ...... 23
4.5. 1IPV6_PKTOPTIONS Socket Option .......................... 24
4.5.1. TCP Sticky Options ... ...ttt 25
4.5.2. TUDP and Raw Socket Sticky Options ............... 26
5. Packet Information .......... ... ... e 26
5.1. Specifying/Receiving the Interface ..................... 27
5.2. Specifying/Receiving Source/Destination Address ........ 27
5.3 Specifying/Receiving the Hop Limit ............c.uuenen.. 28
5.4. Specifying the Next Hop AdAressS ........iiuiiiuennnnnnn. 29
5.5. Additional Errors with sendmsg () .............. .. ....... 29
6. HOP-BY-HODP OPCIOMmS vttt ittt ittt e e e e e e e e e e e e e e e e e e et e ee e 30
6.1. Receiving Hop-by-Hop Options ............. ..., 31
6.2. Sending Hop-by-Hop Options ......... ..., 31
6.3. Hop-by-Hop and Destination Options Processing .......... 32
6.3.1. 1inet6 option space .......... ... ..., 32
6.3.2. 1dnet6 option init ......... ... .. .. . i i, 32
6.3.3. 1net6 _option append .............. ... ..., 33
6.3.4. 1inet6 option alloc ........... .. ..., 33
6.3.5. 1dnet6 option mext ............ .. .. .. . L. 34
6.3.6. 1dnet6 option find .......... ... .. ... L L., 35
6.3.7. Options Examples .. ... ...ttt 35
7. Destination Options ... ... ... e 42
7.1. Receiving Destination Options .......... ... ... . ... ... 42
7.2. Sending Destination Options ..............iuiiiuennnennn. 43
Stevens & Thomas Informational [Page 2]
| Appendix D




168 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998
8. Routing Header OpLion . ... ...ttt e e e i 43
8.1. idnet6 rthdr space ....... ... ... .. e 44

8.2 inet6 _rthdr init ......... ... .. .. .. e 45

8.3 inet6 rthdr add ........ ... ... .. . e 45

8.4 inet6 rthdr lasthop ........... .. .. ... .. . i, 46

8.5 inet6 _rthdr reverse ........... ... ..., 46

8.6 inet6 rthdr segments ............ ... .. .. i, 46

8.7 inet6 rthdr getaddr ............. .. ... ... ... 46
8.8. dnet6_rthdr getflags ......... ... ... .. .. .. . .. 47
8.9. Routing Header Example ... ... ...ttt 47

9. Ordering of Ancillary Data and IPvé Extension Headers ....... 53
10. IPvé6-Specific Options with IPv4-Mapped IPv6 Addresses ....... 54
11. rresvport af .. ... .. e 55
12. Future TLems ... ... . e e e e e 55
12.1. Flow Labels ... ... ... e e 55
12.2. Path MTU Discovery and UDP . .... ...ttt ennnennnn 56
12.3. Neighbor Reachability and UDP ...........ciiuieenineennn. 56

13. Summary of New Definitions ........ .. .. ... 56
14. Security Considerations ... ... ...ttt 59
15. Change History ...t e e e e e e e e e e e e 59
16. References ... ... ... e e 65
17. Acknowledgments . ... ...ttt e e e e e e e e 65
18. Authors’ Addresses ... .. .. ...t e e e 66
19. Full Copyright Statement ........ ... ...t 67

1. Introduction

Specifications are in progress for changes to the sockets API to
support IP version 6 [RFC-2133]. These changes are for TCP and UDP-
based applications. The current document defines some the “advanced”
features of the sockets API that are required for applications to
take advantage of additional features of IPvé.

Today, the portability of applications using IPv4 raw sockets is
quite high, but this is mainly because most IPv4 implementations
started from a common base (the Berkeley source code) or at least
started with the Berkeley headers. This allows programs such as Ping
and Traceroute, for example, to compile with minimal effort on many
hosts that support the sockets API. With IPvé6, however, there is no
common source code base that implementors are starting from, and the
possibility for divergence at this level between different
implementations is high. To avoid a complete lack of portability
amongst applications that use raw IPvé sockets, some standardization
is necessary.

Stevens & Thomas Informational [Page 3]




RFC2292 “Advanced Sockets API for IPv6” 169

RFC 2292 Advanced Sockets API for IPvé6 February 1998

There are also features from the basic IPv6é specification that are
not addressed in [RFC-2133]: sending and receiving Hop-by-Hop
options, Destination options, and Routing headers, specifying the
outgoing interface, and being told of the receiving interface.

This document can be divided into the following main sections.

1. Definitions of the basic constants and structures required for
applications to use raw IPv6 sockets. This includes structure
definitions for the IPv6é and ICMPvé headers and all associated
constants (e.g., values for the Next Header field).

2. Some basic semantic definitions for IPvé raw sockets. For
example, a raw ICMPv4 socket requires the application to
calculate and store the ICMPv4 header checksum. But with IPvé6
this would require the application to choose the source IPvé
address because the source address is part of the pseudo header
that ICMPv6 now uses for its checksum computation. It should be
defined that with a raw ICMPvé6 socket the kernel always
calculates and stores the ICMPv6 header checksum.

3. Packet information: how applications can obtain the received
interface, destination address, and received hop limit, along
with specifying these values on a per-packet basis. There are a
class of applications that need this capability and the technique
should be portable.

4. Access to the optional Hop-by-Hop, Destination, and Routing
headers.

5. Additional features required for IPv6 application portability.

The packet information along with access to the extension headers
(Hop-by-Hop options, Destination options, and Routing header) are
specified using the “ancillary data” fields that were added to the

4 .3BSD Reno sockets API in 1990. The reason is that these ancillary
data fields are part of the Posix.lg standard (which should be
approved in 1997) and should therefore be adopted by most vendors.

This document does not address application access to either the
authentication header or the encapsulating security payload header.

All examples in this document omit error checking in favor of brevity

and clarity.

Stevens & Thomas Informational [Page 4]

| Appendix D




170 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

We note that many of the functions and socket options defined in this
document may have error returns that are not defined in this
document. Many of these possible error returns will be recognized
only as implementations proceed.

Datatypes in this document follow the Posix.1lg format: intN_t means a
signed integer of exactly N bits (e.g., intl6 t) and uintN t means an

unsigned integer of exactly N bits (e.g., uint32 t).

Note that we use the (unofficial) terminology ICMPv4, IGMPv4, and
ARPv4 to avoid any confusion with the newer ICMPv6 protocol.

2. Common Structures and Definitions
Many advanced applications examine fields in the IPvé header and set
and examine fields in the various ICMPvé headers. Common structure
definitions for these headers are required, along with common
constant definitions for the structure members.

Two new headers are defined: <netinet/ipé6.h> and <netinet/icmpé.h>.

When an include file is specified, that include file is allowed to
include other files that do the actual declaration or definition.

2.1. The ip6 hdr Structure

The following structure is defined as a result of including
<netinet/ip6.h>. Note that this is a new header.

struct ipé6_hdr {

union {
struct ip6 hdrctl {
uint32_t ip6_unl_flow; /* 24 bits of flow-ID */
uintlé6é_t ipé unl plen; /* payload length */
uint8 t ip6 unl nxt; /* next header */
uint8_t ip6_unl_hlim; /* hop limit */
} ip6_uni;
uint8 t ip6 un2 vfc; /* 4 bits version, 4 bits priority */
} ip6_ctlun;
struct iné_addr ip6 src; /* source address */
struct iné_addr ipé6 dst; /* destination address */

}i

#define ip6 vfc ip6 ctlun.ip6 un2 vfc
#define ip6_flow 1ip6_ctlun.ipé6_unl.ip6_unl_flow
#define ip6 plen 1ip6 ctlun.ip6 unl.ipé6 unl plen
#define ip6 nxt ip6 ctlun.ip6 unl.ip6 unl nxt
#define ip6_hlim ip6_ctlun.ipé6_unl.ip6_unl_hlim
#define ip6 hops 1ip6 ctlun.ip6 unl.ipé6 unl hlim
Stevens & Thomas Informational [Page 5]




RFC2292 “Advanced Sockets API for IPv6” |71

RFC 2292 Advanced Sockets API for IPvé6 February 1998

2.1.1. 1IPv6 Next Header Values

IPv6e defines many new values for the Next Header field. The
following constants are defined as a result of including
<netinet/in.h>.

#define IPPROTO HOPOPTS 0 /* IPv6 Hop-by-Hop options */
#define IPPROTO IPV6 41 /* IPvé6 header */

#define IPPROTO_ ROUTING 43 /* IPv6 Routing header */

#define IPPROTO FRAGMENT 44 /* IPv6 fragmentation header */
#define IPPROTO_ ESP 50 /* encapsulating security payload */
#define IPPROTO AH 51 /* authentication header */

#define IPPROTO_ICMPVe6 58 /* ICMPv6 */

#define IPPROTO NONE 59 /* IPv6 no next header */

#define IPPROTO DSTOPTS 60 /* IPv6 Destination options */

Berkeley-derived IPv4 implementations also define IPPROTO_IP to be 0.
This should not be a problem since IPPROTO IP is used only with IPv4
sockets and IPPROTO HOPOPTS only with IPvé sockets.

2.1.2. 1IPv6 Extension Headers

Six extension headers are defined for IPv6. We define structures for
all except the Authentication header and Encapsulating Security
Payload header, both of which are beyond the scope of this document.
The following structures are defined as a result of including
<netinet/ipé6.h>.

/* Hop-by-Hop options header */
/* XXX should we pad it to force alignment on an 8-byte boundary? */
struct ip6 hbh {
uint8_t ipéh nxt; /* next header */
uint8 t 1ipéh len; /* length in units of 8 octets */
/* followed by options */
Vi

/* Destination options header */
/* XXX should we pad it to force alignment on an 8-byte boundary? */
struct ipé6 dest
uint8 t ip6d nxt; /* next header */
uint8_t ipé6d_len; /* length in units of 8 octets */
/* followed by options */
}i

/* Routing header */
struct ipé6_rthdr {

Stevens & Thomas Informational [Page 6]

| Appendix D




172 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998
uint8 t ipér nxt; /* next header */
uint8 t ipé6r len; /* length in units of 8 octets */
uint8 t ipé6r type; /* routing type */
uint8 t 1ipér segleft; /* segments left */

/* followed by routing type specific data */

Vi

/* Type 0 Routing header */
struct ipé6_rthdro {

uint8 t 1ipé6r0_nxt; /* next header */

uint8 t 1ip6r0_len; /* length in units of 8 octets */
uint8 t 1ip6r0_type; /* always zero */

uint8 t 1p6r0_segleft; /* segments left */

uint8 t 1ip6r0_reserved; /* reserved field */

uint8_t ip6r0_slmap([3]; /* strict/loose bit map */

struct iné_addr 1ip6r0 addr([l]; /* up to 23 addresses */

}i

/* Fragment header */
struct ipé6 frag {

uint8_t ip6f nxt; /* next header */

uint8 t ip6f reserved; /* reserved field */

uintle t ip6f offlg; /* offset, reserved, and flag */

uint32 t ip6f ident; /* identification */
bi
#if BYTE ORDER == BIG ENDIAN
#define IP6F OFF_MASK oxfff8 /* mask out offset from offlg */
#define IP6F RESERVED MASK 0x0006 /* reserved bits in ip6f offlg */
#define IP6F MORE_FRAG 0x0001 /* more-fragments flag */
#telse /* BYTE ORDER == LITTLE_ ENDIAN */
#define IP6F_OFF MASK 0xf8ff /* mask out offset from offlg */
#define IP6F RESERVED MASK 0x0600 /* reserved bits in ip6f offlg */
#define IP6F _MORE_FRAG 0x0100 /* more-fragments flag */
#endif

Defined constants for fields larger than 1 byte depend on the byte
ordering that is used. This API assumes that the fields in the
protocol headers are left in the network byte order, which is big-
endian for the Internet protocols. If not, then either these
constants or the fields being tested must be converted at run-time,
using something like htons () or htonl().

(Note: We show an implementation that supports both big-endian and

little-endian byte ordering, assuming a hypothetical compile-time #if
test to determine the byte ordering. The constant that we show,

Stevens & Thomas Informational [Page 7]




RFC2292 “Advanced Sockets API for IPv6”

173

RFC 2292

Advanced Sockets API for IPvé

February 1998

BYTE ORDER, with values of BIG ENDIAN and LITTLE ENDIAN, are for

example purposes only.

2.2. The icmp6 hdr

If an implementation runs on only one type of
hardware it need only define the set of constants for that hardware’s
byte ordering.)

Structure

The ICMPv6 header is needed by numerous IPv6 applications including

Ping, Traceroute,
daemons .
<netinet/icmpé6.h>.

router discovery daemons,

and neighbor discovery

The following structure is defined as a result of including

struct icmpé hdr {

uint8_
uint8
uintle t

t icmpé6_type;
t icmpé6 code;
icmpé6 cksum;

union {

uint32 t
uintle t
uint8_t

} icmpé dataun;

}i

#define
#define
#define
#define
#define
#define
#define
#define

icmpé6e data32
icmpé6 datalé
icmp6_datas8
icmp6 pptr
icmp6 mtu
icmpé6_id

icmp6 seqg
icmpé6 maxdelay

icmp6 _un data32([1]; /*
icmpé _un datalé[2]; /*

/* type field */
/* code field */
/* checksum field */

Note that this is a new header.

type-specific field */
type-specific field */
icmpé_un data8[4]; /* type-specific field */

icmp6 dataun.icmp6é un data32
icmpé6 dataun.icmp6é un datalé
icmp6_dataun.icmp6_un data8

icmpé6 data32[0]
icmpé6 data32[0]
icmpé6_datalé [0]
icmpé6 datalé6 [1]
icmpé6 datalé6 [0]

2.2.1. ICMPve Type and Code Values

/*
/*
/*
/*
/*

parameter prob */

packet too big */

echo request/reply */
echo request/reply */
mcast group membership */

In addition to a common structure for the ICMPvé header, common
definitions are required for the ICMPv6 type and code fields. The
following constants are also defined as a result of including
<netinet/icmpé6.h>.

#define ICMP6 DST UNREACH

#define ICMP6 PACKET TOO BIG
#define ICMP6 TIME EXCEEDED

#define ICMP6_ PARAM PROB

#define ICMP6_ INFOMSG MASK

#define ICMP6 ECHO REQUEST

#define ICMP6_ ECHO REPLY

Stevens & Thomas

Sw N

0x80 /* all informational messages */

128
129

Informational

[Page 8]

| Appendix




|74

RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998
#define ICMP6 MEMBERSHIP QUERY 130
#define ICMP6 MEMBERSHIP REPORT 131

#define ICMP6_ MEMBERSHIP REDUCTION 132

#define ICMP6 DST UNREACH NOROUTE 0 /* no route to destination */
#define ICMP6 DST UNREACH ADMIN 1 /* communication with */

/* destination */

/* administratively */

/* prohibited */
#define ICMP6 DST UNREACH NOTNEIGHBOR 2 /* not a neighbor */

#define ICMP6 DST UNREACH ADDR 3 /* address unreachable */
#define ICMP6_DST UNREACH NOPORT 4 /* bad port */
#define ICMP6 TIME EXCEED TRANSIT 0 /* Hop Limit == 0 in transit */

#define ICMP6_TIME EXCEED REASSEMBLY 1 /* Reassembly time out */

#define ICMP6 PARAMPROB HEADER 0 /* erroneous header field */
#define ICMP6_ PARAMPROB NEXTHEADER 1 /* unrecognized Next Header */
#define ICMP6 PARAMPROB OPTION 2 /* unrecognized IPv6 option */

The five ICMP message types defined by IPv6 neighbor discovery (133-
137) are defined in the next section.

2.2.2. 1ICMPv6 Neighbor Discovery Type and Code Values

The following structures and definitions are defined as a result of
including <netinet/icmpé6.h>.

#define ND ROUTER SOLICIT 133
#define ND ROUTER ADVERT 134
#define ND NEIGHBOR SOLICIT 135
#define ND NEIGHBOR ADVERT 136
#define ND REDIRECT 137
struct nd_router solicit /* router solicitation */

struct icmp6_hdr nd_rs_hdr;
/* could be followed by options */
Vi

#define nd rs type nd rs_ hdr.icmpé6 type
#define nd rs code nd rs hdr.icmpé6 code
#define nd_rs_cksum nd_rs_hdr.icmp6_cksum
#define nd rs reserved nd rs hdr.icmpé6 data32[0]
struct nd_router advert { /* router advertisement */
struct icmp6é hdr nd ra hdr;
uint32 t nd ra reachable; /* reachable time */
uint32 t nd ra retransmit; /* retransmit timer */

Stevens & Thomas Informational [Page 9]




RFC2292 “Advanced Sockets API for IPv6” 175
RFC 2292 Advanced Sockets API for IPvé6 February 1998
/* could be followed by options */
}i
#define nd_ra_type nd ra hdr.icmpé6 type
#define nd ra code nd _ra hdr.icmpé_ code
#define nd ra cksum nd ra hdr.icmpé6 cksum
#define nd ra curhoplimit nd ra hdr.icmpé6 data8[0]
#define nd ra flags reserved nd ra hdr.icmpé6 data8[1]
#define ND RA FLAG MANAGED 0x80
#define ND RA FLAG OTHER 0x40
#define nd_ra_router_ lifetime nd_ra_hdr.icmpé6_datalé6[1]
struct nd_neighbor solicit { /* neighbor solicitation */
struct icmp6_hdr nd_ns_hdr;
struct iné_addr nd ns_target; /* target address */
/* could be followed by options */
}i
#define nd_ns_type nd ns_hdr.icmpé6_ type
#define nd ns_ code nd ns_hdr.icmpé_ code
#define nd ns_ cksum nd ns_hdr.icmpé6 cksum
#define nd ns reserved nd ns_hdr.icmpé6 data32([0]
struct nd _neighbor advert { /* neighbor advertisement */
struct icmpé hdr nd na hdr;
struct in6é addr nd na target; /* target address */
/* could be followed by options */
}i
#define nd na type nd na hdr.icmpé6 type
#define nd_na_code nd na hdr.icmpé6 code
#define nd_na_cksum nd_na_hdr.icmp6_cksum
#define nd na flags reserved nd na hdr.icmpé6 data32([0]
#if BYTE ORDER == BIG_ENDIAN
#define ND NA FLAG ROUTER 0x80000000
#define ND NA FLAG SOLICITED 0x40000000
#define ND NA FLAG OVERRIDE 0x20000000
#else /* BYTE ORDER == LITTLE ENDIAN */
#define ND NA FLAG ROUTER 0x00000080
#define ND NA FLAG SOLICITED 0x00000040
#define ND NA FLAG OVERRIDE 0x00000020
#endif
struct nd redirect { /* redirect */
struct icmpé hdr nd rd hdr;
struct in6é addr nd rd target; /* target address */
struct iné addr nd rd dst; /* destination address */
/* could be followed by options */
Stevens & Thomas Informational [Page 10]
| Appendix D




176

RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

Vi

#define nd rd type
#define nd rd code
#define nd rd cksum
#define nd_rd reserved

struct nd_opt_hdr
uint8 t nd opt type;
uint8 t nd opt len;

nd_rd hdr.icmpé_ type

nd rd hdr.icmpé code

nd rd hdr.icmpé6 cksum
nd_rd_hdr.icmpé6_data32[0]

/* Neighbor discovery option header */

/* in units of 8 octets */

/* followed by option specific data */

Vi

#define ND OPT SOURCE_LINKADDR 1
#define ND_OPT_TARGET LINKADDR 2
#define ND OPT PREFIX INFORMATION 3
#define ND OPT REDIRECTED HEADER 4
#define ND_OPT MTU 5
struct nd_opt prefix info /* prefix information */
uint8_t nd _opt pi_ type;
uint8 t nd opt pi len;
uint8 t nd opt pi prefix len;
uint8_t nd opt pi flags reserved;
uint32 t nd opt pi valid time;
uint32 t nd opt pi preferred time;
uint32 t nd opt pi reserved2;
struct in6é addr nd opt pi prefix;
yi
#define ND_OPT PI_ FLAG ONLINK 0x80
#define ND_OPT PI FLAG AUTO 0x40

struct nd opt_rd hdr {

/* redirected header */

uint8 t nd opt rh type;

uint8_t nd_opt_rh len;

uintlé t nd opt rh reservedl;
uint32 t nd opt rh reserved2;
/* followed by IP header and data */

Vi

struct nd opt mtu

/* MTU option */

uint8 t nd _opt _mtu_type;
uint8 t nd opt mtu len;
uintlé_t nd opt mtu reserved;
uint32 t nd opt mtu mtu;

}i

Stevens & Thomas

Informational [Page 11]




RFC2292 “Advanced Sockets API for IPvé” |77

RFC 2292 Advanced Sockets API for IPvé6 February 1998

We note that the nd na flags reserved flags have the same byte
ordering problems as we discussed with ip6f offlg.

2.3. Address Testing Macros

The basic API ([RFC-2133]) defines some macros for testing an IPvé
address for certain properties. This API extends those definitions
with additional address testing macros, defined as a result of
including <netinet/in.hs>.

int IN6_ARE_ADDR_EQUAL (const struct iné6_addr *,
const struct iné addr *);

2.4. Protocols File
Many hosts provide the file /etc/protocols that contains the names of

the various IP protocols and their protocol number (e.g., the value
of the protocol field in the IPv4 header for that protocol, such as 1

for ICMP). Some programs then call the function getprotobyname () to
obtain the protocol value that is then specified as the third
argument to the socket () function. For example, the Ping program

contains code of the form

struct protoent *proto;

proto = getprotobyname (“icmp”) ;

s = socket (AF_INET, SOCK RAW, proto->p proto);
Common names are required for the new IPv6 protocols in this file, to
provide portability of applications that call the getprotoXXX()

functions.

We define the following protocol names with the values shown. These
are taken from ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-

numbers.

hopopt 0 # hop-by-hop options for ipveé
ipvé 41 # ipvé
ipvé-route 43 # routing header for ipveé
ipvée-frag 44 # fragment header for ipveé
esp 50 # encapsulating security payload for ipveé
ah 51 # authentication header for ipveé
ipvée-icmp 58 # icmp for ipveée
ipv6-nonxt 59 # no next header for ipveé
ipvé-opts 60 # destination options for ipveée

Stevens & Thomas Informational [Page 12]

| Appendix D




178 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

3. 1IPv6 Raw Sockets

Raw sockets bypass the transport layer (TCP or UDP). With IPv4, raw
sockets are used to access ICMPv4, IGMPv4, and to read and write IPv4
datagrams containing a protocol field that the kernel does not
process. An example of the latter is a routing daemon for OSPF,
since it uses IPv4 protocol field 89. With IPvé raw sockets will be
used for ICMPvé and to read and write IPvé datagrams containing a
Next Header field that the kernel does not process. Examples of the
latter are a routing daemon for OSPF for IPvé and RSVP (protocol
field 46).

All data sent via raw sockets MUST be in network byte order and all
data received via raw sockets will be in network byte order. This
differs from the IPv4 raw sockets, which did not specify a byte
ordering and typically used the host’s byte order.

Another difference from IPv4 raw sockets is that complete packets
(that is, IPvé packets with extension headers) cannot be read or
written using the IPvé raw sockets API. Instead, ancillary data
objects are used to transfer the extension headers, as described
later in this document. Should an application need access to the
complete IPvé6é packet, some other technique, such as the datalink
interfaces BPF or DLPI, must be used.

All fields in the IPv6 header that an application might want to
change (i.e., everything other than the version number) can be
modified using ancillary data and/or socket options by the
application for output. All fields in a received IPvé header (other
than the version number and Next Header fields) and all extension
headers are also made available to the application as ancillary data
on input. Hence there is no need for a socket option similar to the
IPv4 IP_HDRINCL socket option.

When writing to a raw socket the kernel will automatically fragment
the packet if its size exceeds the path MTU, inserting the required
fragmentation headers. On input the kernel reassembles received
fragments, so the reader of a raw socket never sees any fragment
headers.

When we say “an ICMPv6 raw socket” we mean a socket created by
calling the socket function with the three arguments PF_INET6,
SOCK_RAW, and IPPROTO ICMPV6.

Most IPv4 implementations give special treatment to a raw socket
created with a third argument to socket () of IPPROTO RAW, whose value
is normally 255. We note that this value has no special meaning to
an IPv6 raw socket (and the IANA currently reserves the value of 255

Stevens & Thomas Informational [Page 13]




RFC2292 “Advanced Sockets API for IPv6” 179

RFC 2292 Advanced Sockets API for IPvé6 February 1998

when used as a next-header field). (Note: This feature was added to
IPv4 in 1988 by Van Jacobson to support traceroute, allowing a
complete IP header to be passed by the application, before the
IP_HDRINCL socket option was added.)

3.1. Checksums

The kernel will calculate and insert the ICMPvé checksum for ICMPvé
raw sockets, since this checksum is mandatory.

For other raw IPvé sockets (that is, for raw IPvé sockets created
with a third argument other than IPPROTO_ICMPV6), the application
must set the new IPV6 CHECKSUM socket option to have the kernel (1)
compute and store a checksum for output, and (2) verify the received
checksum on input, discarding the packet if the checksum is in error.
This option prevents applications from having to perform source
address selection on the packets they send. The checksum will
incorporate the IPv6é pseudo-header, defined in Section 8.1 of [RFC-
1883]. This new socket option also specifies an integer offset into
the user data of where the checksum is located.

int offset = 2;
setsockopt (fd, IPPROTO IPV6, IPV6 CHECKSUM, &offset, sizeof (offset));

By default, this socket option is disabled. Setting the offset to -1
also disables the option. By disabled we mean (1) the kernel will
not calculate and store a checksum for outgoing packets, and (2) the
kernel will not verify a checksum for received packets.

(Note: Since the checksum is always calculated by the kernel for an
ICMPv6 socket, applications are not able to generate ICMPv6 packets
with incorrect checksums (presumably for testing purposes) using this
API.)

3.2. 1ICMPv6 Type Filtering

ICMPv4 raw sockets receive most ICMPv4 messages received by the
kernel. (We say "“most” and not “all” because Berkeley-derived
kernels never pass echo requests, timestamp requests, or address mask
requests to a raw socket. Instead these three messages are processed
entirely by the kernel.) But ICMPv6 is a superset of ICMPv4, also
including the functionality of IGMPv4 and ARPv4. This means that an
ICMPv6 raw socket can potentially receive many more messages than
would be received with an ICMPv4 raw socket: ICMP messages similar to
ICMPv4, along with neighbor solicitations, neighbor advertisements,
and the three group membership messages.

Stevens & Thomas Informational [Page 14]

| Appendix D




180 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

Most applications using an ICMPv6 raw socket care about only a small
subset of the ICMPv6 message types. To transfer extraneous ICMPv6
messages from the kernel to user can incur a significant overhead.
Therefore this API includes a method of filtering ICMPvé messages by
the ICMPv6 type field.

Each ICMPv6 raw socket has an associated filter whose datatype is
defined as

struct icmpé6 filter;

This structure, along with the macros and constants defined later in
this section, are defined as a result of including the
<netinet/icmpé6.h> header.

The current filter is fetched and stored using getsockopt () and
setsockopt () with a level of IPPROTO ICMPV6 and an option name of
ICMP6_FILTER.

Six macros operate on an icmpé6 filter structure:

void ICMP6 FILTER SETPASSALL (struct icmpé6 filter *);
void ICMP6 FILTER SETBLOCKALL (struct icmpé filter *);

void ICMP6 FILTER SETPASS ( int, struct icmpé6 filter *);
void ICMP6 FILTER SETBLOCK( int, struct icmpé6 filter ¥*);

int ICMP6 FILTER WILLPASS (int, const struct icmpé filter *);
int ICMP6 FILTER WILLBLOCK (int, const struct icmpé6 filter *);

The first argument to the last four macros (an integer) is an ICMPvé
message type, between 0 and 255. The pointer argument to all six
macros 1s a pointer to a filter that is modified by the first four
macros examined by the last two macros.

The first two macros, SETPASSALL and SETBLOCKALL, let us specify that
all ICMPvé6 messages are passed to the application or that all ICMPvé
messages are blocked from being passed to the application.

The next two macros, SETPASS and SETBLOCK, let us specify that
messages of a given ICMPv6 type should be passed to the application
or not passed to the application (blocked).

The final two macros, WILLPASS and WILLBLOCK, return true or false
depending whether the specified message type is passed to the
application or blocked from being passed to the application by the
filter pointed to by the second argument.

Stevens & Thomas Informational [Page 15]




RFC2292 “Advanced Sockets API for IPv6” 181

RFC 2292 Advanced Sockets API for IPvé6 February 1998

When an ICMPvé raw socket is created, it will by default pass all
ICMPv6 message types to the application.

As an example, a program that wants to receive only router
advertisements could execute the following:

struct icmpé6 filter myfilt;
fd = socket (PF_INET6, SOCK RAW, IPPROTO_ ICMPV6) ;

ICMP6_FILTER_SETBLOCKALL(&myfilt);
ICMP6_FILTER_SETPASS(ND_ROUTER_ADVERT, smyfilt) ;
setsockopt (fd, IPPROTO ICMPV6, ICMP6 FILTER, &myfilt, sizeof (myfilt));

The filter structure is declared and then initialized to block all
messages types. The filter structure is then changed to allow router
advertisement messages to be passed to the application and the filter
is installed using setsockopt ().

The icmp6 filter structure is similar to the fd set datatype used
with the select () function in the sockets API. The icmpé6 filter
structure is an opaque datatype and the application should not care
how it is implemented. All the application does with this datatype
is allocate a variable of this type, pass a pointer to a variable of
this type to getsockopt () and setsockopt (), and operate on a variable
of this type using the six macros that we just defined.

Nevertheless, it is worth showing a simple implementation of this
datatype and the six macros.

struct icmpé filter {
uint32 t dicmpé6_f£filt[8]; /* 8*32 = 256 bits */

}i

#define ICMP6 FILTER WILLPASS (type, filterp) \
((((filterp) ->icmp6 filt[(type) >> 5]) & (1 << ((type) & 31))) != 0)
#define ICMP6 FILTER WILLBLOCK (type, filterp) \
((((filterp) ->icmp6_filt[(type) >> 5]) & (1 << ((type) & 31))) == 0)
#define ICMP6 FILTER SETPASS (type, filterp) \
((((filterp)->icmp6_filt[(type) >> 5]) |=
#define ICMP6 FILTER SETBLOCK (type, filterp) \
((((filterp) ->icmp6 filt[(type) >> 5]) &= ~(1 << ((type) & 31))))
#define ICMP6 FILTER SETPASSALL (filterp) \
memset ((filterp), OxFF, sizeof (struct icmpé_filter))
#define ICMP6 FILTER SETBLOCKALL (filterp) \
memset ((filterp), 0, sizeof (struct icmpé filter))

(1 << ((type) & 31))))

Stevens & Thomas Informational [Page 16]

| Appendix D




182 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

(Note: These sample definitions have two limitations that an
implementation may want to change. The first four macros evaluate
their first argument two times. The second two macros require the
inclusion of the <string.h> header for the memset () function.)

4. Ancillary Data

4 .2BSD allowed file descriptors to be transferred between separate
processes across a UNIX domain socket using the sendmsg() and
recvmsg () functions. Two members of the msghdr structure,

msg accrights and msg accrightslen, were used to send and receive the
descriptors. When the OSI protocols were added to 4.3BSD Reno in
1990 the names of these two fields in the msghdr structure were
changed to msg control and msg controllen, because they were used by
the OSI protocols for “control information”, although the comments in
the source code call this “ancillary data”.

Other than the OSI protocols, the use of ancillary data has been
rare. In 4.4BSD, for example, the only use of ancillary data with
IPv4 is to return the destination address of a received UDP datagram
if the IP_RECVDSTADDR socket option is set. With Unix domain sockets
ancillary data is still used to send and receive descriptors.

Nevertheless the ancillary data fields of the msghdr structure
provide a clean way to pass information in addition to the data that
is being read or written. The inclusion of the msg control and

msg controllen members of the msghdr structure along with the cmsghdr
structure that is pointed to by the msg control member is required by
the Posix.lg sockets API standard (which should be completed during
1997) .

In this document ancillary data is used to exchange the following
optional information between the application and the kernel:

the send/receive interface and source/destination address,
the hop limit,

next hop address,

Hop-by-Hop options,

Destination options, and

Routing header.

o Ul WN

Before describing these uses in detail, we review the definition of
the msghdr structure itself, the cmsghdr structure that defines an
ancillary data object, and some functions that operate on the
ancillary data objects.

Stevens & Thomas Informational [Page 17]




RFC2292 “Advanced Sockets API for IPv6” 183

RFC 2292 Advanced Sockets API for IPvé6 February 1998

4.1. The msghdr Structure

The msghdr structure is used by the recvmsg() and sendmsg()
functions. Its Posix.lg definition is:

struct msghdr {

void *msg_name; /* ptr to socket address structure */
socklen t msg namelen; /* size of socket address structure */
struct iovec *msg_iov; /* scatter/gather array */

size t msg_iovlen; /* # elements in msg_iov */

void *msg control; /* ancillary data */

socklen t msg controllen; /* ancillary data buffer length */

int msg flags; /* flags on received message */

}i
The structure is declared as a result of including <sys/socket.h>.

(Note: Before Posix.lg the two “void *” pointers were typically “char
*", and the two socklen t members and the size t member were
typically integers. Earlier drafts of Posix.1lg had the two socklen t
members as size t, but Draft 6.6 of Posix.lg, apparently the final
draft, changed these to socklen t to simplify binary portability for
64-bit implementations and to align Posix.lg with X/Open’s Networking
Services, Issue 5. The change in msg control to a “void *” pointer
affects any code that increments this pointer.)

Most Berkeley-derived implementations limit the amount of ancillary
data in a call to sendmsg() to no more than 108 bytes (an mbuf) .

This API requires a minimum of 10240 bytes of ancillary data, but it
is recommended that the amount be limited only by the buffer space
reserved by the socket (which can be modified by the SO _SNDBUF socket
option). (Note: This magic number 10240 was picked as a value that
should always be large enough. 108 bytes is clearly too small as the
maximum size of a Type 0 Routing header is 376 bytes.)

4.2. The cmsghdr Structure

The cmsghdr structure describes ancillary data objects transferred by
recvmsg () and sendmsg (). Its Posix.lg definition is:

struct cmsghdr {

socklen t cmsg len; /* #bytes, including this header */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by unsigned char cmsg datal]; */

This structure is declared as a result of including <sys/socket.hs>.

Stevens & Thomas Informational [Page 18]

| Appendix D




184 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

As shown in this definition, normally there is no member with the
name cmsg datal[]l. Instead, the data portion is accessed using the
CMSG_xxx () macros, as described shortly. Nevertheless, it is common
to refer to the cmsg datal[] member.

(Note: Before Posix.1lg the cmsg len member was an integer, and not a
socklen t. See the Note in the previous section for why socklen t is
used here.)

When ancillary data is sent or received, any number of ancillary data
objects can be specified by the msg control and msg controllen
members of the msghdr structure, because each object is preceded by a
cmsghdr structure defining the object’s length (the cmsg len member) .
Historically Berkeley-derived implementations have passed only one
object at a time, but this API allows multiple objects to be passed
in a single call to sendmsg() or recvmsg (). The following example
shows two ancillary data objects in a control buffer.

e msg _controllen ------------------—---——-—-—-—- >
<--- ancillary data object --->|<--- ancillary data object ----------- >
P CMSG_SPACE() ---------- N [P CMSG_SPACE () ----mmmmmmmmmmmmmm >
|

<--------- cmsg_len ------- > |<----- cmsg_len ---------------—-—-—- > |
<mmmmmm - CMSG_LEN() ----- >| |<---- CMSG_LEN() ------------------ >

| |
+----- +----- e e R e e +----- +----- R R +-—+
cmsg_ |cmsg |cmsg | XX| | XX |cmsg_ |cmsg |cmsg | XX| | XX
len |level|type |XX|cmsg datal] |XX|len |level|type |XX|cmsg datal] |XX
+----- +----- +----- R e R e e +----- +----- R e +-—+

msg_control
points here

The fields shown as “XX” are possible padding, between the cmsghdr
structure and the data, and between the data and the next cmsghdr
structure, if required by the implementation.

4.3. Ancillary Data Object Macros
To aid in the manipulation of ancillary data objects, three macros
from 4.4BSD are defined by Posix.lg: CMSG DATA(), CMSG NXTHDR(), and
CMSG _FIRSTHDR(). Before describing these macros, we show the

following example of how they might be used with a call to recvmsg() .

struct msghdr msg;
struct cmsghdr *cmsgptr;

Stevens & Thomas Informational [Page 19]




RFC2292 “Advanced Sockets API for IPv6”

185

RFC 2292 Advanced Sockets API for IPvé6 February 1998

/* £ill in msg */

/* call recvmsg() */
for (cmsgptr = CMSG FIRSTHDR (&msg); cmsgptr != NULL;
cmsgptr = CMSG_NXTHDR (&msg, cmsgptr)) {
if (cmsgptr->cmsg _level == ... && cmsgptr->cmsg_type == ... ) {

u_char “*ptr;

ptr = CMSG DATA (cmsgptr) ;
/* process data pointed to by ptr */

}

We now describe the three Posix.lg macros, followed by two more that
are new with this API: CMSG SPACE() and CMSG LEN(). All these macros
are defined as a result of including <sys/socket.h>.

4.3.1. CMSG_FIRSTHDR
struct cmsghdr *CMSG FIRSTHDR (const struct msghdr *mhdr) ;

CMSG_FIRSTHDR () returns a pointer to the first cmsghdr structure in
the msghdr structure pointed to by mhdr. The macro returns NULL if
there is no ancillary data pointed to the by msghdr structure (that
is, if either msg control is NULL or if msg controllen is less than
the size of a cmsghdr structure).

One possible implementation could be

#define CMSG_FIRSTHDR (mhdr) \
( (mhdr)->msg_controllen >= sizeof (struct cmsghdr) ? \
(struct cmsghdr *) (mhdr)-s>msg control : \
(struct cmsghdr *)NULL )

(Note: Most existing implementations do not test the value of

msg _controllen, and just return the value of msg control. The value
of msg controllen must be tested, because if the application asks
recvmsg () to return ancillary data, by setting msg control to point
to the application’s buffer and setting msg controllen to the length
of this buffer, the kernel indicates that no ancillary data is
available by setting msg controllen to 0 on return. It is also
easier to put this test into this macro, than making the application
perform the test.)

Stevens & Thomas Informational [Page 20]

| Appendix




186

RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292

4.3.

Advanced Sockets API for IPvé

2. CMSG_NXTHDR

struct cmsghdr *CMSG_NXTHDR (const struct msghdr *mhdr,
const struct cmsghdr *cmsg) ;

CMSG_NXTHDR ()
the next ancillary data object.
structure and cmsg is a pointer to a cmsghdr structure.
not another ancillary data object, the return value is NULL.
The following behavior of this macro is new to this API:
of the cmsg pointer is NULL,
describing the first ancillary data object is returned.

February 1998

returns a pointer to the cmsghdr structure describing
mhdr is a pointer to a msghdr
If there is

if the wvalue
a pointer to the cmsghdr structure
That is,

CMSG_NXTHDR (mhdr, NULL)

is equivalent to CMSG FIRSTHDR (mhdr). If

there are no ancillary data objects,

the return value is NULL. This

provides an alternative way of coding the processing loop shown

earlier:
struct msghdr msg;
struct cmsghdr *cmsgptr = NULL;

Stevens & Thomas

/* £ill in msg */
/* call recvmsg() */
while ((cmsgptr = CMSG _NXTHDR (&msg, cmsgptr)) != NULL)
if (cmsgptr->cmsg level == && cmsgptr->cmsg type ==
u char ‘*ptr;
ptr = CMSG DATA (cmsgptr) ;

/* process data pointed to by ptr */

One possible implementation could be:

#define CMSG NXTHDR (mhdr, cmsg) \
( ((cmsg) == NULL) ? CMSG_FIRSTHDR (mhdr) : \
(((u_char *) (cmsg) + ALIGN((cmsg)->cmsg len) \
+ ALIGN(sizeof (struct cmsghdr))
(u_char *) ((mhdr) ->msg _control) +
(struct cmsghdr *)NULL : \
(struct cmsghdr *) ((u_char *) (cmsg)

The macro ALIGN(), which is implementation dependent,

>\

(mhdr) ->msg_controllen)

2\

+ ALIGN( (cmsg) ->cmsg _len)))

rounds its

argument up to the next even multiple of whatever alignment is

required (probably a multiple of 4 or 8 bytes).

Informational

[Page 21]




RFC2292 “Advanced Sockets API for IPv6” 187

RFC 2292 Advanced Sockets API for IPvé6 February 1998

4.3.3. CMSG DATA
unsigned char *CMSG DATA (const struct cmsghdr *cmsg) ;
CMSG_DATA () returns a pointer to the data (what is called the
cmsg_data[] member, even though such a member is not defined in the
structure) following a cmsghdr structure.

One possible implementation could be:

#define CMSG_DATA(cmsg) ( (u_char *) (cmsg) + \
ALIGN (sizeof (struct cmsghdr)) )

4.3.4. CMSG SPACE
unsigned int CMSG_SPACE (unsigned int length);

This macro is new with this API. Given the length of an ancillary
data object, CMSG SPACE() returns the space required by the object
and its cmsghdr structure, including any padding needed to satisfy
alignment requirements. This macro can be used, for example, to
allocate space dynamically for the ancillary data. This macro should
not be used to initialize the cmsg len member of a cmsghdr structure;
instead use the CMSG LEN() macro.

One possible implementation could be:

#define CMSG_SPACE (length) ( ALIGN (sizeof (struct cmsghdr)) + \
ALIGN (length) )

4.3.5. CMSG_LEN
unsigned int CMSG LEN (unsigned int length);
This macro is new with this API. Given the length of an ancillary
data object, CMSG LEN() returns the value to store in the cmsg len
member of the cmsghdr structure, taking into account any padding
needed to satisfy alignment requirements.

One possible implementation could be:

#define CMSG LEN (length) ( ALIGN(sizeof (struct cmsghdr)) + length
)

Stevens & Thomas Informational [Page 22]

| Appendix D




188 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998
Note the difference between CMSG_SPACE() and CMSG_LEN(), shown also
in the figure in Section 4.2: the former accounts for any required
padding at the end of the ancillary data object and the latter is the
actual length to store in the cmsg len member of the ancillary data
object.

4.4. Summary of Options Described Using Ancillary Data

There are six types of optional information described in this

document that are passed between the application and the kernel using

ancillary data:

1. the send/receive interface and source/destination address,

2. the hop limit,

3. next hop address,

4. Hop-by-Hop optiomns,

5. Destination options, and

6. Routing header.
First, to receive any of this optional information (other than the
next hop address, which can only be set), the application must call
setsockopt () to turn on the corresponding flag:

int on = 1;

setsockopt (fd, IPPROTO IPV6, IPV6 PKTINFO, &on, sizeof (on)) ;
setsockopt (fd, IPPROTO IPV6, IPV6 HOPLIMIT, &on, sizeof(on));
setsockopt (fd, IPPROTO IPV6, IPV6 HOPOPTS, &on, sizeof(on));
setsockopt (fd, IPPROTO IPV6, IPV6 DSTOPTS, &on, sizeof (on)) ;
setsockopt (fd, IPPROTO IPV6, IPV6 RTHDR, &on, sizeof (on)) ;

the corresponding data is
as one or more

When any of these options are enabled,
returned as control information by recvmsg(),
ancillary data objects.

Nothing special need be done to send any of this optional
information; the application just calls sendmsg() and specifies one
or more ancillary data objects as control information.

We also summarize the three cmsghdr fields that describe the
ancillary data objects:

cmsg_level cmsg_type cmsg_datal] #times
IPPROTO IPVe6 IPV6_ PKTINFO in6é pktinfo structure once
IPPROTO_IPV6 IPV6 HOPLIMIT int once
IPPROTO _IPV6 IPV6 NEXTHOP socket address structure once
IPPROTO_IPV6 IPV6 HOPOPTS implementation dependent mult.

Stevens & Thomas

Informational

[Page 23]




RFC2292 “Advanced Sockets API for IPv6” 189

RFC 2292 Advanced Sockets API for IPvé6 February 1998

IPPROTO_IPV6 IPV6 DSTOPTS implementation dependent mult.
IPPROTO_IPV6 IPV6_RTHDR implementation dependent once

The final column indicates how many times an ancillary data object of
that type can appear as control information. The Hop-by-Hop and
Destination options can appear multiple times, while all the others
can appear only one time.

All these options are described in detail in following sections. All
the constants beginning with IPV6 are defined as a result of
including the <netinet/in.h> header.

(Note: We intentionally use the same constant for the cmsg level
member as is used as the second argument to getsockopt () and
setsockopt () (what is called the “level”), and the same constant for
the cmsg type member as is used as the third argument to getsockopt ()
and setsockopt () (what is called the “option name”). This is
consistent with the existing use of ancillary data in 4.4BSD:
returning the destination address of an IPv4 datagram.)

(Note: It is up to the implementation what it passes as ancillary
data for the Hop-by-Hop option, Destination option, and Routing
header option, since the API to these features is through a set of
inet6 option XXX () and ineté6 rthdr XXX () functions that we define
later. These functions serve two purposes: to simplify the interface
to these features (instead of requiring the application to know the
intimate details of the extension header formats), and to hide the
actual implementation from the application. Nevertheless, we show
some examples of these features that store the actual extension
header as the ancillary data. Implementations need not use this
technique.)

4.5. 1IPV6 PKTOPTIONS Socket Option

The summary in the previous section assumes a UDP socket. Sending
and receiving ancillary data is easy with UDP: the application calls
sendmsg () and recvmsg () instead of sendto() and recvfrom() .

But there might be cases where a TCP application wants to send or
receive this optional information. For example, a TCP client might
want to specify a Routing header and this needs to be done before

calling connect (). Similarly a TCP server might want to know the
received interface after accept() returns along with any Destination
options.

Stevens & Thomas Informational [Page 24]

| Appendix D




190 RFC2292 “Advanced Sockets API for IPvé6”

RFC 2292 Advanced Sockets API for IPvé February 1998

A new socket option is defined that provides access to the optional
information described in the previous section, but without using
recvmsg () and sendmsg (). Setting the socket option specifies any of
the optional output fields:

setsockopt (fd, IPPROTO IPV6, IPV6 PKTOPTIONS, &buf, len);

The fourth argument points to a buffer containing one or more
ancillary data objects, and the fifth argument is the total length of
all these objects. The application fills in this buffer exactly as
if the buffer were being passed to sendmsg() as control information.

The options set by calling setsockopt () for IPV6 PKTOPTIONS are
called “sticky” options because once set they apply to all packets
sent on that socket. The application can call setsockopt() again to
change all the sticky options, or it can call setsockopt () with a
length of 0 to remove all the sticky options for the socket.

The corresponding receive option
getsockopt (fd, IPPROTO IPV6, IPV6 PKTOPTIONS, &buf, &len);

returns a buffer with one or more ancillary data objects for all the
optional receive information that the application has previously
specified that it wants to receive. The fourth argument points to
the buffer that is filled in by the call. The fifth argument is a
pointer to a value-result integer: when the function is called the
integer specifies the size of the buffer pointed to by the fourth
argument, and on return this integer contains the actual number of
bytes that were returned. The application processes this buffer
exactly as if the buffer were returned by recvmsg() as control
information.

To simplify this document, in the remaining sections when we say “can
be specified as ancillary data to sendmsg()" we mean “can be
specified as ancillary data to sendmsg() or specified as a sticky
option using setsockopt () and the IPV6 PKTOPTIONS socket option".
Similarly when we say “can be returned as ancillary data by
recvmsg ()" we mean “can be returned as ancillary data by recvmsg() or
returned by getsockopt () with the IPV6 PKTOPTIONS socket option".

4.5.1. TCP Sticky Options

When using getsockopt () with the IPV6 PKTOPTIONS option and a TCP
socket, only the options from the most recently received segment are
retained and returned to the caller, and only after the socket option
has been set. That is, TCP need not start saving a copy of the
options until the application says to do so.

Stevens & Thomas Informational [Page 25]




RFC2292 “Advanced Sockets API for IPv6” 191

RFC 2292 Advanced Sockets API for IPvé6 February 1998

The application is not allowed to specify ancillary data in a call to
sendmsg () on a TCP socket, and none of the ancillary data that we
describe in this document is ever returned as control information by
recvmsg () on a TCP socket.

4.5.2. TUDP and Raw Socket Sticky Options

The IPV6_PKTOPTIONS socket option can also be used with a UDP socket
or with a raw IPvé socket, normally to set some of the options once,
instead of with each call to sendmsg() .

Unlike the TCP case, the sticky options can be overridden on a per-
packet basis with ancillary data specified in a call to sendmsg() on
a UDP or raw IPv6e socket. If any ancillary data is specified in a
call to sendmsg(), none of the sticky options are sent with that
datagram.

5. Packet Information

There are four pieces of information that an application can specify
for an outgoing packet using ancillary data:

the source IPv6 address,

the outgoing interface index,
the outgoing hop limit, and
the next hop address.

W N R

Three similar pieces of information can be returned for a received
packet as ancillary data:

1. the destination IPv6 address,
2. the arriving interface index, and
3. the arriving hop limit.

The first two pieces of information are contained in an iné_pktinfo
structure that is sent as ancillary data with sendmsg() and received
as ancillary data with recvmsg(). This structure is defined as a
result of including the <netinet/in.h> header.

struct iné pktinfo {
struct iné_addr ipié_addr; /* src/dst IPv6 address */
unsigned int ipié_i