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PREFACE

The book, to the best of the author’s knowledge, is the first text of its kind that
presents both the traditional and the modern aspects of ‘Al and Soft
Computing’ in a clear, insightful and highly comprehensive writing style. It
provides an in-depth analysis of the mathematical models and algorithms, and
demonstrates their applications in real world problems of significant
complexity.

1. About the book

The book covers 24 chapters altogether. It starts with the behavioral
perspective of the ‘human cognition’ and covers in detail the tools and
techniques required for its intelligent realization on machines. The classical
chapters on search, symbolic logic, planning and machine learning have been
covered in sufficient details, including the latest research in the subject. The
modern aspects of soft computing have been introduced from the first
principles and discussed in a semi-informal manner, so that a beginner of the
subject is able to grasp it with minimal effort. Besides soft computing, the
other leading aspects of current Al research covered in the book include non-
monotonic and  spatio-temporal reasoning, knowledge acquisition,
verification, validation and maintenance issues, realization of cognition on
machines and the architecture of Al machines. The book ends with two case
studies: one on ‘criminal investigation’ and the other on ‘navigational
planning of robots,” where the main emphasis is given on the realization of
intelligent systems using the methodologies covered in the book.

The book is unique for its diversity in contents, clarity and precision of
presentation and the overall completeness of its chapters. It requires no
mathematical prerequisites beyond the high school algebra and elementary
differential calculus; however, a mathematical maturity is required to follow
the logical concepts presented therein. An elementary background of data
structure and a high level programming language like Pascal or C is helpful to
understand the book. The book, thus, though meant for two semester courses
of computer science, will be equally useful to readers of other engineering
disciplines and psychology as well as for its diverse contents, clear
presentation and minimum prerequisite requirements.

In order to make the students aware of the applied side of the subject,
the book includes a few homework problems, selected from a wide range of
topics. The problems supplied, in general, are of three types: i) numerical, ii)
reflexive and iii) provocative. The numerical problems test the students’



understanding of the subject. The reflexive type requires a formulation of the
problem from its statement before finding its solution. The provocative type
includes the well-known problems of modern AI research, the solution to
some of which are known, and some are open ended. With adequate hints
supplied with the problems, the students will be able to solve most of the
numerical and reflexive type problems themselves. The provocative type,
however, requires some guidance from the teacher in charge. The last type of
problems is included in the text to give the research-oriented readers an idea
of the current trend in Al research. Graduate students of Al will also find
these problems useful for their dissertation work.

The book includes a large number of computer simulations to illustrate
the concepts presented in logic programming, fuzzy Petri nets, imaging and
robotics. Most of the simulation programs are coded in C and Pascal, so that
students without any background of PROLOG and LISP may understand them
easily. These programs will enhance the students’ confidence in the subject
and enable them to design the simulation programs, assigned in the exercise as
homework problems. The professionals will find these simulations interesting
as it requires understanding of the end results only, rather than the formal
proofs of the theorems presented in the text.

2. Special features

The book includes the following special features.

i) Unified theme of presentation: Most of the existing texts on Al cover a set
of chapters of diverse thoughts, without demonstrating their inter-relationship.
The readers, therefore, are misled with the belief that Al is merely a
collection of intelligent algorithms, which precisely is not correct. The
proposed book is developed from the perspective of cognitive science, which
provides the readers with the view that the psychological model of cognition
can be visualized as a cycle of 5 mental states: sensing, acquisition,
perception, planning and action, and there exists a strong interdependence
between each two sequential states. The significance of search in the state of
perception, reasoning in the state of planning, and learning as an intermediate
process between sensing and action thus makes sense. The unified theme of
the book, therefore, is to realize the behavioral perspective of cognition on an
intelligent machine, so as to enable it act and think like a human being.
Readers will enjoy the book especially for its totality with an ultimate aim to
build intelligent machines.

ii) Comprehensive coverage of the mathematical models: This probably is
the first book that provides a comprehensive coverage of the mathematical



models on Al and Soft Computing. The existing texts on “mathematical
modeling in AI” are beyond the scope of undergraduate students.
Consequently, while taking courses at graduate level, the students face much
difficulty in studying from monographs and journals. The book, however,
bridges the potential gap between the textbooks and advanced monographs in
the subject by presenting the mathematical models from a layman’s
understanding of the problems.

iii) Case studies: This is the only book that demonstrates the realization of
the proposed tools and techniques of Al and Soft Computing through case
studies. The readers, through these case studies, will understand the
significance of the joint usage of the Al and Soft Computing tools and
techniques in interesting problems of the real world. Case studies for two
distinct problems with special emphasis to their realization have been covered
in the book in two separate chapters. The case study I is concerned with a
problem of criminal investigation, where the readers will learn to use the soft
computing tools in facial image matching, fingerprint classification, speaker
identification and incidental description based reasoning. The readers can
build up their own systems by adding new fuzzy production rules and facts
and deleting the unwanted rules and facts from the system. The book thus will
serve the readership from both the academic and the professional world.
Electronic and computer hobbyists will find the case study II on mobile robots
very exciting. The algorithms of navigational planning (in case study II),
though tested with reference to “Nomad Super Scout II robot,” have been
presented in generic form, so that the interested readers can code them for
other wheel-based mobile robots.

iv) Line Diagrams: The book includes around 190 line diagrams to give the
readers a better insight to the subject. Readers will enjoy the book for they
directly get a deeper view of the subject through diagrams with a minimal
reading of the text.

3. Origin of the book

The book is an outgrowth of the lecture materials prepared by the author for a
one semester course on “Artificial Intelligence,” offered to the graduate
students in the department of Electronics and Telecommunication
Engineering, Jadavpur University, Calcutta. An early version of the text was
also used in a summer-school on “Al and Neural Nets,” offered to the faculty
members of various engineering colleges for their academic development and
training. The training program included theories followed by a laboratory
course, where the attendees developed programs in PROLOG, Pascal and C
with the help of sample programs/toolkit. The toolkit is included in the book
on a CD and the procedure to use it is presented in Appendix A.



4. Structural organization of the book

The structural organization of the book is presented below with a dependency
graph of chapters, where Ch. 9 — Ch. 10 means that chapter 10 should be
read following chapter 9, for example.

Ch. 1

Ch.2 Ch.3 Ch.17 Ch. 13 Ch.18

PO

Ch. 16 Ch.19 Ch.5 Ch.4 Ch.23 Ch. 14
ChL. 6
v
Ch.7 Ch.11 Ch. 15 Ch. 20

\{
Ch. 24 Ch. 22 Ch. 21

July 12, 1999
Jadavpur University Amit Konar
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Introduction to

Artificial
Intelligence and

Soft Computing

This chapter provides a brief overview of the disciplines of Artificial
Intelligence (Al) and Soft Computing. It introduces the topics covered under
the heads of intelligent systems and demonstrates the scope of their
applications in real world problems of significant complexity. It also
highlights the direction of research in this broad discipline of knowledge.
The historical development in Al and the means by which the subject was
gradually popularized are briefly outlined here. The chapter addresses many
new tools and techmniques, commonly used to represent and solve complex
problems. The organization of the book in light of these tools and
techniques is also presented briefly in this chapter.

1.1 Evolution of Computing

At the beginning of the Stone Age, when people started taking shelters in
caves, they made attempts to immortalize themselves by painting their
images on rocks. With the gradual progress in civilization, they felt interested



to see themselves in different forms. So, they started constructing
models of human being with sand, clay and stones. The size, shape,
constituents and style of the model humans continued evolving but the man
was not happy with the models that only looked like him. He had a strong
desire to make the model ‘intelligent’, so that it could act and think as he did.
This, however, was a much more complex task than what he had done before.
So, he took millions of years to construct an ‘analytical engine’ that could
perform a little arithmetic mechanically. Babbage’s analytical engine was the
first significant success in the modern era of computing. Computers of the
first generation, which were realized following this revolutionary success,
were made of thermo-ionic valves. They could perform the so-called ‘number
crunching’ operations. The second-generation computers came up shortly after
the invention of transistors and were more miniaturized in size. They were
mainly used for commercial data processing and payroll creation. After more
than a decade or so, when the semiconductor industries started producing
integrated circuits (IC) in bulk, the third generation computers were launched
in business houses. These machines had an immense capability to perform
massive computations in real time. Many electromechanical robots were also
designed with these computers. Then after another decade, the fourth
generation computers came up with the high-speed VLSI engines. Many
electronic robots that can see through cameras to locate objects for placement
at the desired locations were realized during this period. During the period of
1981-1990 the Japanese Government started to produce the fifth generation
computing machines that, besides having all the capabilities of the fourth
generation machines, could also be able to process intelligence. The
computers of the current (fifth) generation can process natural languages, play
games, recognize images of objects and prove mathematical theorems, all of
which lie in the domain of Artificial Intelligence (AI). But what exactly is AI?
The following sections will provide a qualitative answer to this question.

1.2 Defining Al

The phrase Al, which was coined by John McCarthy [1] three decades ago,
evades a concise and formal definition to date. One representative definition is
pivoted around the comparison of intelligence of computing machines with
human beings [11]. Another definition is concerned with the performance of
machines which “historically have been judged to lie within the domain of
intelligence” [17], [35]. None of these definitions or the like have been
universally accepted, perhaps because of their references to the word
“intelligence”, which at present is an abstract and immeasurable quantity. A
better definition of A, therefore, calls for formalization of the term
“intelligence”. Psychologist and Cognitive theorists are of the opinion that
intelligence helps in identifying the right piece of knowledge at the appropriate



instances of decision making [27], [14].The phrase “AI” thus can be def-
ined as the simulation of human intelligence on a machine, so as to make
the machine efficient to identify and use the right piece of
“Knowledge” at a given step of solving a problem. A system capable of
planning and executing the right task at the right time is generally called
rational [36]. Thus, Al alternatively may be stated as a subject dealing with
computational models that can think and act rationally [18]', [47], [37],
[6]'. A common question then naturally arises: Does rational thinking and
acting include all possible characteristics of an intelligent system? If so, how
does it represent behavioral intelligence such as machine learning, perception
and planning? A little thinking, however, reveals that a system that can reason
well must be a successful planner, as planning in many circumstances is part
of a reasoning process. Further, a system can act rationally only after
acquiring adequate knowledge from the real world. So, perception that stands
for building up of knowledge from real world information is a prerequisite
feature for rational actions. One step further thinking envisages that a
machine without learning capability cannot possess perception. The rational
action of an agent (actor), thus, calls for possession of all the elementary
characteristics of intelligence. Relating Al with the computational models
capable of thinking and acting rationally, therefore, has a pragmatic
significance.

1.3 General Problem Solving
Approaches in Al

To understand what exactly Al is, we illustrate some common problems.
Problems dealt with in Al generally use a common term called ‘state’. A
state represents a status of the solution at a given step of the problem solving
procedure. The solution of a problem, thus, is a collection of the problem
states. The problem solving procedure applies an operator to a state to get the
next state. Then it applies another operator to the resulting state to derive a
new state. The process of applying an operator to a state and its subsequent

1.The branch of computer science that is concerned with the automation of
intelligent behavior.

2. The study of computations that make it possible to perceive, reason and
act.

3. A field of study that seeks to explain and emulate intelligent behavior in
terms of computational processes.

4. The study of mental faculties through the use of computational models.



transition to the next state, thus, is continued until the goal (desired) state is
derived. Such a method of solving a problem is generally referred to as state-
space approach. We will first discuss the state-space approach for problem
solving by a well-known problem, which most of us perhaps have solved in
our childhood.

Example 1.1:  Consider a 4-puzzle problem, where in a 4-cell board there
are 3 cells filled with digits and 1 blank cell. The initial state of the game
represents a particular orientation of the digits in the cells and the final state
to be achieved is another orientation supplied to the game player. The
problem of the game is to reach from the given initial state to the goal (final)
state, if possible, with a minimum of moves. Let the initial and the final state
be as shown in figures 1(a) and (b) respectively.

2 p

(a) initial state (b) final state

Fig. 1.1: The initial and the final states of the Number Puzzle game,
where B denotes the blank space.

We now define two operations, blank-up (BU) / blank-down (BD) and
blank-left (BL) / blank-right (BR) [9], and the state-space (tree) for the
problem is presented below (vide figure 1.2) using these operators.

The algorithm for the above kind of problems is straightforward. It
consists of three steps, described by steps 1, 2(a) and 2(b) below.

Algorithm for solving state-space problems
Begin
1. state: = initial-state; existing-state:=state;
2. While state # final state do
Begin
a. Apply operations from the set {BL, BR, BU,
BD} to each state so as to generate new-states;

b. Ifnew-states M the existing-states # O
Then do



Begin state := new-states — existing-states;
Existing-states := existing-states U {states}
End;
End while;

End.

1B

ﬂ 3 B|1
B nE 23
Goal ignored old state

Fig.1.2: The state-space for the Four-Puzzle problem.

It is thus clear that the main trick in solving problems by the state-space
approach is to determine the set of operators and to use it at appropriate states
of the problem.

Researchers in Al have segregated the AI problems from the non-Al
problems. Generally, problems, for which straightforward mathematical /
logical algorithms are not readily available and which can be solved by
intuitive approach only, are called Al problems. The 4-puzzle problem, for



instance, is an ideal AI Problem. There is no formal algorithm for its
realization, i.e., given a starting and a goal state, one cannot say prior to
execution of the tasks the sequence of steps required to get the goal from the
starting state. Such problems are called the ideal A/ problems. The well-
known water-jug problem [35], the Travelling Salesperson Problem (TSP)
[35], and the n-Queen problem [36] are typical examples of the classical Al
problems. Among the non-classical Al problems, the diagnosis problems and
the pattern classification problem need special mention. For solving an Al
problem, one may employ both Al and non-Al algorithms. An obvious
question is: what is an A7 algorithm? Formally speaking, an Al algorithm
generally means a non-conventional intuitive approach for problem solving.
The key to Al approach is intelligent search and matching. In an intelligent
search problem / sub-problem, given a goal (or starting) state, one has to reach
that state from one or more known starting (or goal) states. For example,
consider the 4-puzzle problem, where the goal state is known and one has to
identify the moves for reaching the goal from a pre-defined starting state.
Now, the less number of states one generates for reaching the goal, the better
is the AT algorithm. The question that then naturally arises is: how to control
the generation of states. This, in fact, can be achieved by suitably designing
some control strategies, which would filter a few states only from a large
number of legal states that could be generated from a given starting /
intermediate state. As an example, consider the problem of proving a
trigonometric identity that children are used to doing during their schooldays.
What would they do at the beginning? They would start with one side of the
identity, and attempt to apply a number of formulae there to find the possible
resulting derivations. But they won’t really apply all the formulae there.
Rather, they identify the right candidate formula that fits there best, such that
the other side of the identity seems to be closer in some sense (outlook).
Ultimately, when the decision regarding the selection of the formula is over,
they apply it to one side (say the L.H.S) of the identity and derive the new
state. Thus they continue the process and go on generating new intermediate
states until the R.H.S (goal) is reached. But do they always select the right
candidate formula at a given state? From our experience, we know the answer
is “not always”. But what would we do if we find that after generation of a
few states, the resulting expression seems to be far away from the R.H.S of
the identity. Perhaps we would prefer to move to some old state, which is
more promising, i.e., closer to the R.H.S of the identity. The above line of
thinking has been realized in many intelligent search problems of Al. Some of
these well-known search algorithms are:

a) Generate and Test

b) Hill Climbing

¢) Heuristic Search

d) Means and Ends analysis



(a) Generate and Test Approach: This approach concerns the
generation of the state-space from a known starting state (root) of the problem
and continues expanding the reasoning space until the goal node or the
terminal state is reached. In fact after generation of each and every state, the
generated node is compared with the known goal state. When the goal is
found, the algorithm terminates. In case there exist multiple paths leading to
the goal, then the path having the smallest distance from the root is preferred.
The basic strategy used in this search is only generation of states and their
testing for goals but it does not allow filtering of states.

(b) Hill Climbing Approach: Under this approach, one has to first
generate a starting state and measure the total cost for reaching the goal from
the given starting state. Let this cost be f. While f < a predefined utility value
and the goal is not reached, new nodes are generated as children of the current
node. However, in case all the neighborhood nodes (states) yield an identical
value of f and the goal is not included in the set of these nodes, the search
algorithm is trapped at a hillock or local extrema. One way to overcome this
problem is to select randomly a new starting state and then continue the above
search process. While proving trigonometric identities, we often use Hill
Climbing, perhaps unknowingly.

(¢) Heuristic Search: Classically heuristics means rule of thumb. In
heuristic search, we generally use one or more heuristic functions to determine
the better candidate states among a set of legal states that could be generated
from a known state. The heuristic function, in other words, measures the
fitness of the candidate states. The better the selection of the states, the fewer
will be the number of intermediate states for reaching the goal. However, the
most difficult task in heuristic search problems is the selection of the heuristic
functions. One has to select them intuitively, so that in most cases hopefully
it would be able to prune the search space correctly. We will discuss many of
these issues in a separate chapter on Intelligent Search.

(d) Means and Ends Analysis: This method of search attempts to
reduce the gap between the current state and the goal state. One simple way to
explore this method is to measure the distance between the current state and
the goal, and then apply an operator to the current state, so that the distance
between the resulting state and the goal is reduced. In many mathematical
theorem- proving processes, we use Means and Ends Analysis.

Besides the above methods of intelligent search, there exist a good
number of general problem solving techniques in AI. Among these, the most
common are: Problem Decomposition and Constraint Satisfaction.



Problem Decomposition: Decomposition of a problem means breaking
a problem into independent (de-coupled) sub-problems and subsequently sub-
problems into smaller sub-problems and so on until a set of decomposed sub-
problems with known solutions is available. For example, consider the
following problem of integration.

1= |+ 9x +2) dx,
which may be decomposed to

| & a0+ Oxdo+] @dv),

where fortunately all the 3 resulting sub-problems need not be decomposed
further, as their integrations are known.

Constraint Satisfaction: This method is concerned with finding the
solution of a problem by satisfying a set of constraints. A number of
constraint satisfaction techniques are prevalent in Al In this section, we
illustrate the concept by one typical method, called hierarchical approach for
constraint satisfaction (HACS) [47]. Given the problem and a set of
constraints, the HACS decomposes the problem into sub-problems; and the
constraints that are applicable to each decomposed problem are identified and
propagated down through the decomposed problem. The process of re-
decomposing the sub-problem into smaller problems and propagation of the
constraints through the descendants of the reasoning space are continued until
all the constraints are satisfied. The following example illustrates the principle
of HACS with respect to a problem of extracting roots from a set of
inequality constraints.

Example 1.2: The problem is to evaluate the variables X;, X, and X3 from
the following set of constraints:

{XIZZ, X223, X1+X2 S6, Xl,Xz,X3€I}.

For solving this problem, we break the ‘>’ into ‘>’ and ‘=" and propagate the
sub-constraints through the arcs of the tree. On reaching the end of the arcs,
we attempt to satisfy the propagated constraints in the parent constraint and
reduce the constraint set. The process is continued until the set of constraints
is minimal, i.e., they cannot be broken into smaller sets (fig. 1.3).

There exists quite a large number of Al problems, which can be solved
by non-AI approach. For example, consider the Travelling Salesperson
Problem. It is an optimization problem, which can be solved by many non-Al
algorithms. However, the Neighborhood search AI method [35] adopted for



this problem is useful for the following reason. The design of the Al
algorithm should be such that the time required for solving the problem is a
polynomial (and not an exponential) function of the size (dimension) of the
problem. When the computational time is an exponential function of the
dimension of the problem, we call it a combinatorial exploration problem.
Further, the number of variables to be used for solving an Al problem should
also be minimum, and should not increase with the dimension of the
problem. A non-Al algorithm for an Al problem can hardly satisfy the above
two requirements and that is why an Al problem should be solved by an Al
approach.

{Xi22; X223; Xi+X2 £6; Xi,X2,Xs€e I}

X1>2

{Xi1=2, X223 ; {X1=3, X223 ;
Xi+ X2 £6; Xje I, Vj} Xi+ X2 £6; Xjel,Vj}
Xz :3 X2>3 Xz :3 X 2> 3

(Xi=2, X,=3} {X;=2, X,=4} {X; =3,X,=3}  No solution

Fig. 1.3: The constraint tree, where the arcs propagate the constraints, and
the nodes down the tree hold the reduced set of constraints.

1.4 The Disciplines of Al

The subject of Al spans a wide horizon. It deals with the various kinds
of knowledge representation schemes, different techniques of intelligent
search, various methods for resolving uncertainty of data and knowledge,
different schemes for automated machine learning and many others. Among
the application areas of Al, we have Expert systems, Game-playing, and
Theorem-proving, Natural language processing, Image recognition, Robotics
and many others. The subject of Al has been enriched with a wide discipline
of knowledge from Philosophy, Psychology, Cognitive Science, Computer



Science, Mathematics and Engineering. Thus in fig. 1.4, they have been
referred to as the parent disciplines of AI. An at-a-glance look at fig. 1.4 also
reveals the subject area of Al and its application areas.

PARENT DISCIPLINES OF Al

Philosophy Maths. Psychology Computer
& Cog. Sc. Science
Artificial
Intelligence

* Reasoning * Learning  * Planning * Perception
* Knowledge acquisition * Intelligent search
* Uncertainty management *Others

Subjects covered under Al

e

Game Theorem Language & Image Robotics &
Playing Proving Understanding Navigation

APPLICATION AREAS OF Al

Fig. 1.4: Al, its parent disciplines and application areas.

1.4.1 The Subject of Al

The subject of Al was originated with game-playing and theorem-proving
programs and was gradually enriched with theories from a number of parent



disciplines. As a young discipline of science, the significance of the topics
covered under the subject changes considerably with time. At present, the
topics which we find significant and worthwhile to understand the subject are
outlined below:

Tongue position adjustment

T Motor Nerve

. BRAIN
Voice System of

Learning System of
the Child the Child

!

Child’s pronunciation

v

[Auditory
_ Nerve
Voice System of the A
+ Hearing System
Mother

of the Child

Mother’s pronunciation
Fig. 1. 5: Pronunciation learning of a child from his mother.

Learning Systems: Among the subject areas covered under Al learning
systems needs special mention. The concept of learning is illustrated here
with reference to a natural problem of learning of pronunciation by a child
from his mother (vide fig. 1.5). The hearing system of the child receives the
pronunciation of the character “A” and the voice system attempts to imitate it.
The difference of the mother’s and the child’s pronunciation, hereafter
called the error signal, is received by the child’s learning system through the



auditory nerve, and an actuation signal is generated by the learning system
through a motor nerve for adjustment of the pronunciation of the child. The
adaptation of the child’s voice system is continued until the amplitude of the
error signal is insignificantly low. Each time the voice system passes through
an adaptation cycle, the resulting tongue position of the child for speaking
“A” is saved by the learning process.

The learning problem discussed above is an example of the well-known
parametric learning, where the adaptive learning process adjusts the
parameters of the child’s voice system autonomously to keep its response
close enough to the “sample training pattern”. The artificial neural networks,
which represent the electrical analogue of the biological nervous systems, are
gaining importance for their increasing applications in supervised (parametric)
learning problems. Besides this type, the other common learning methods,
which we do unknowingly, are inductive and analogy-based learning. In
inductive learning, the learner makes generalizations from examples. For
instance, noting that “cuckoo flies”, “parrot flies” and “sparrow flies”, the
learner generalizes that “birds fly”. On the other hand, in analogy-based
learning, the learner, for example, learns the motion of electrons in an atom
analogously from his knowledge of planetary motion in solar systems.

Knowledge Representation and Reasoning: In a reasoning
problem, one has to reach a pre-defined goal state from one or more given
initial states. So, the lesser the number of transitions for reaching the goal
state, the higher the efficiency of the reasoning system. Increasing the
efficiency of a reasoning system thus requires minimization of intermediate
states, which indirectly calls for an organized and complete knowledge base.
A complete and organized storehouse of knowledge needs minimum search to
identify the appropriate knowledge at a given problem state and thus yields
the right next state on the leading edge of the problem-solving process.
Organization of knowledge, therefore, is of paramount importance in
knowledge engineering. A variety of knowledge representation techniques are
in use in Artificial Intelligence. Production rules, semantic nets, frames, filler
and slots, and predicate logic are only a few to mention. The selection of a
particular type of representational scheme of knowledge depends both on the
nature of applications and the choice of users.

Example 1.3: A semantic net represents knowledge by a structured
approach. For instance, consider the following knowledge base:

Knowledge Base: A bird can fly with wings. A bird has wings. A bird has
legs. A bird can walk with legs.



The bird and its attributes here have been represented in figure 1.6 using a
graph, where the nodes denote the events and the arcs denote the relationship
between the nodes.
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Fig. 1.6: A semantic net representation of "birds".

Planning: Another significant area of Al is planning. The problems of
reasoning and planning share many common issues, but have a basic
difference that originates from their definitions. The reasoning problem is
mainly concerned with the testing of the satisfiability of a goal from a given
set of data and knowledge. The planning problem, on the other hand, deals
with the determination of the methodology by which a successful goal can be
achieved from the known initial states [1]. Automated planning finds
extensive applications in robotics and navigational problems, some of which
will be discussed shortly.

Knowledge Acquisition: Acquisition (Elicitation) of knowledge is
equally hard for machines as it is for human beings. It includes generation of
new pieces of knowledge from given knowledge base, setting dynamic data
structures for existing knowledge, learning knowledge from the environment
and refinement of knowledge. Automated acquisition of knowledge by
machine learning approach is an active area of current research in Artificial
Intelligence [5], [20].

Intelligent Search: Search problems, which we generally encounter in
Computer Science, are of a deterministic nature, i.e., the order of visiting the
elements of the search space is known. For example, in depth first and breadth
first search algorithms, one knows the sequence of visiting the nodes in a tree.
However, search problems, which we will come across in Al, are



non-deterministic and the order of visiting the elements in the search space is
completely dependent on data sets. The diversity of the intelligent search
algorithms will be discussed in detail later.

Logic Programming: For more than a century, mathematicians and
logicians were used to designing various tools to represent logical statements
by symbolic operators. One outgrowth of such attempts is propositional
logic, which deals with a set of binary statements (propositions) connected by
Boolean operators. The logic of propositions, which was gradually enriched to
handle more complex situations of the real world, is called predicate logic.
One classical variety of predicate logic-based programs is Leogic Program
[38]. PROLOG, which is an abbreviation for PROgramming in LOGic, is a
typical language that supports logic programs. Logic Programming has
recently been identified as one of the prime area of research in Al. The
ultimate aim of this research is to extend the PROLOG compiler to handle
spatio-temporal models [42], [20] and support a parallel programming
environment [45]. Building architecture for PROLOG machines was a hot
topic of the last decade [24].

Soft Computing: Soft computing, according to Prof. Zadeh, is “an
emerging approach to computing, which parallels the remarkable ability of the
human mind to reason and learn in an environment of uncertainty and
imprecision” [13]. It, in general, is a collection of computing tools and
techniques, shared by closely related disciplines that include fuzzy logic,
artificial neural nets, genetic algorithms, belief calculus, and some aspects of
machine learning like inductive logic programming. These tools are used
independently as well as jointly depending on the type of the domain of
applications. The scope of the first three tools in the broad spectrum of Al is
outlined below.

¢ Fuzzy Logic: Fuzzy logic deals with fuzzy sets and logical connectives
for modeling the human-like reasoning problems of the real world. A
fuzzy set, unlike conventional sets, includes all elements of the universal
set of the domain but with varying membership values in the interval
[0,1]. It may be noted that a conventional set contains its members with a
value of membership equal to one and disregards other elements of the
universal set, for they have zero membership. The most common operators
applied to fuzzy sets are AND (minimum), OR (maximum) and negation
(complementation), where AND and OR have binary arguments, while
negation has unary argument. The logic of fuzzy sets was proposed by
Zadeh, who introduced the concept in systems theory, and later extended it
for approximate reasoning in expert systems [45]. Among the pioneering
contributors on fuzzy logic, the work of Tanaka in stability analysis of
control systems [44], Mamdani in cement kiln control



[19], Kosko [15] and Pedrycz [30] in fuzzy neural nets, Bezdek in pattern
classification [3], and Zimmerman [50] and Yager [48] in fuzzy tools and
techniques needs special mention.

¢ Artificial Neural Nets: Artificial neural nets (ANN) are electrical
analogues of the biological neural nets. Biological nerve cells, called
neurons, receive signals from neighboring neurons or receptors through
dendrites, process the received electrical pulses at the cell body and
transmit signals through a large and thick nerve fiber, called an axon. The
electrical model of a typical biological neuron consists of a linear
activator, followed by a non-linear inhibiting function. The linear
activation function yields the sum of the weighted input excitation, while
the non-linear inhibiting function attempts to arrest the signal levels of the
sum. The resulting signal, produced by an electrical neuron, is thus
bounded (amplitude limited). An artificial neural net is a collection of
such electrical neurons connected in different topology. The most common
application of an artificial neural net is in machine learning. In a learning
problem, the weights and / or non-linearities in an artificial neural net
undergo an adaptation cycle. The adaptation cycle is required for updating
these parameters of the network, until a state of equilibrium is reached,
following which the parameters no longer change further. The ANN
support both supervised and unsupervised types of machine learning. The
supervised learning algorithms realized with ANN have been successfully
applied in control [25], automation [31], robotics [32] and computer
vision [31]. The unsupervised learning algorithms built with ANN, on the
other hand, have been applied in scheduling [31], knowledge acquisition
[5], planning [22] and analog to digital conversion of data [41].

¢ Genetic Algorithms: A genetic algorithm (GA) is a stochastic
algorithm that mimics the natural process of biological evolution [35]. It
follows the principle of Darwinism, which rests on the fundamental belief
of the “survival of the fittest’ in the process of natural selection of
species. GAs find extensive applications in intelligent search, machine
learning and optimization problems. The problem states in a GA are
denoted by chromosomes, which are usually represented by binary strings.
The most common operators used in GA are crossover and mutation. The
processes of execution of crossover and mutation are illustrated in fig.1.7
and 1.8 respectively. The evolutionary cycle in a GA consists of the
following three sequential steps [23].

a) Generation of population (problem states represented
by chromosomes).

b) Genetic evolution through crossover followed by
mutation.



c) Selection of better candidate states from the generated
population.

In step (a) of the above cycle, a few initial problem states are first
identified. The step (b) evolves new chromosomes through the process of
crossover and mutation. In step (c ) a fixed number of better candidate states
are selected from the generated population. The above steps are repeated a
finite number of times for obtaining a solution for the given problem.

|1110 |011| X |1001 I010| Parent chromosomes

T T

crossover points

[1110fo10]  froo1 Jou1 ]

Offsprings obtained by crossover

Fig.1.7: Exchange of genetic information by crossover operation.
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Fig. 1. 8: The mutation operation: randomly selected
bits are complemented.

Management of Imprecision and Uncertainty: Data and knowledge-
bases in many typical Al problems, such as reasoning and planning, are often
contaminated with various forms of incompleteness. The incompleteness of
data, hereafter called imprecision, generally appears in the database for 1)
lack of appropriate data, and ii) poor authenticity level of the sources. The
incompleteness of knowledge, often refered to as uncertainty, originates in
the knowledge base due to lack of certainty of the pieces of knowledge.



Reasoning in the presence of imprecision of data and uncertainty of
knowledge is a complex problem. Various tools and techniques have been
devised for reasoning under incomplete data and knowledge. Some of these
techniques employ 1) stochastic ii) fuzzy and iii) belief network models [16].
In a stochastic reasoning model, the system can have transition from one
given state to a number of states, such that the sum of the probability of
transition to the next states from the given state is strictly unity. In a fuzzy
reasoning system, on the other hand, the sum of the membership value of
transition from the given state to the next state may be greater than or equal to
one. The belief network model updates the stochastic / fuzzy belief assigned
to the facts embedded in the network until a condition of equilibrium is
reached, following which there would be no more change in beliefs. Recently,
fuzzy tools and techniques have been applied in a specialized belief network,
called a fuzzy Petri net, for handling both imprecision of data and
uncertainty of knowledge by a unified approach [14].

1.4.2 Applications of Al Techniques

Almost every branch of science and engineering currently shares the tools and
techniques available in the domain of AI. However, for the sake of the
convenience of the readers, we mention here a few typical applications, where
Al plays a significant and decisive role in engineering automation.

Expert Systems: In this example, we illustrate the reasoning process
involved in an expert system for a weather forecasting problem with special
emphasis to its architecture. An expert system consists of a knowledge base,
database and an inference engine for interpreting the database using the
knowledge supplied in the knowledge base. The reasoning process of a typical
illustrative expert system is described in Fig. 1.9. PR 1 in Fig. 1.9 represents
i-th production rule.

The inference engine attempts to match the antecedent clauses (IF parts)
of the rules with the data stored in the database. When all the antecedent
clauses of a rule are available in the database, the rule is fired, resulting in
new inferences. The resulting inferences are added to the database for
activating subsequent firing of other rules. In order to keep limited data in the
database, a few rules that contain an explicit consequent (THEN) clause to
delete specific data from the databases are employed in the knowledge base.
On firing of such rules, the unwanted data clauses as suggested by the rule are
deleted from the database.

Here PR1 fires as both of its antecedent clauses are present in the
database. On firing of PR1, the consequent clause “it-will-rain” will be added
to the database for subsequent firing of PR2.
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Fig. 1. 9: Illustrative architecture of an expert system.

Image Understanding and Computer Vision: A digital image
can be regarded as a two-dimensional array of pixels containing gray levels
corresponding to the intensity of the reflected illumination received by a
video camera [6]. For interpretation of a scene, its image should be passed
through three basic processes: low, medium and high level vision (fig.1.10).
The importance of low level vision is to pre-process the image by filtering
from noise. The medium level vision system deals with enhancement of
details and segmentation (i.e., partitioning the image into objects of interest
). The high level vision system includes three steps: recognition of the
objects from the segmented image, labeling of the image and interpretation of
the scene. Most of the Al tools and techniques are required in high level
vision systems. Recognition of objects from its image can be carried out
through a process of pattern classification, which at present is realized by
supervised learning algorithms. The interpretation process, on the other hand,
requires knowledge-based computation.

Navigational Planning for Mobile Robots: Mobile robots, sometimes
called automated guided vehicles (AGV), are a challenging area of research,

A



where Al finds extensive applications. A mobile robot generally has one or
more camera or ultrasonic sensors, which help in identifying the obstacles on
its trajectory. The navigational planning problem persists in both static and
dynamic environments. In a static environment, the position of obstacles is
fixed, while in a dynamic environment the obstacles may move at arbitrary
directions with varying speeds, lower than the maximum speed of the robot.
Many researchers using spatio-temporal logic [7-8] have attempted the
navigational planning problems for mobile robots in a static environment. On
the other hand, for path planning in a dynamic environment, the genetic
algorithm [23], [26] and the neural network-based approach [41], [47] have
had some success. In the near future, mobile robots will find extensive
applications in fire-fighting, mine clearing and factory automation. In accident
prone industrial environment, mobile robots may be exploited for automatic
diagnosis and replacement of defective parts of instruments.

Camera Low level vision
Pre-processing —— Enhancement >
< Labeling Recognition Segmentation
[— -
Medium level vision
Interpretation |

High level vision
high level inferences

Fig. 1.10: Basic steps in scene interpretation.

Speech and Natural Language Understanding: Understanding
of speech and natural languages is basically two classical problems. In
speech analysis, the main problem is to separate the syllables of a spoken
word and determine features like amplitude, and fundamental and harmonic
frequencies of each syllable. The words then could be identified from the
extracted features by pattern classification techniques. Recently, artificial
neural networks have been employed [41] to classify words from their
features. The problem of understanding natural languages like English, on



the other hand, includes syntactic and semantic interpretation of the words in
a sentence, and sentences in a paragraph. The syntactic steps are required to
analyze the sentences by its grammar and are similar with the steps of
compilation. The semantic analysis, which is performed following the
syntactic analysis, determines the meaning of the sentences from the
association of the words and that of a paragraph from the closeness of the
sentences. A robot capable of understanding speech in a natural language will
be of immense importance, for it could execute any task verbally
communicated to it. The phonetic typewriter, which prints the words
pronounced by a person, is another recent invention where speech
understanding is employed in a commercial application.

Scheduling: In a scheduling problem, one has to plan the time schedule of
a set of events to improve the time efficiency of the solution. For instance in
a class-routine scheduling problem, the teachers are allocated to different
classrooms at different time slots, and we want most classrooms to be
occupied most of the time. In a flowshop scheduling problem [42], a set of
jobs J; and J, (say) are to be allocated to a set of machines M;, M, and M3,
(say). We assume that each job requires some operations to be done on all
these machines in a fixed order say, M;, M, and M. Now, what should be
the schedule of the jobs (J;-J») or (J, —=J1), so that the completion time of both
the jobs, called the make-span, is minimized? Let the processing time of jobs
Jiand J, on machines M;, M, and M3 be (5, 8, 7) and (8, 2, 3) respectively.
The gantt charts in fig. 1.11 (a) and (b) describe the make-spans for the
schedule of jobs J; - J, and J, - J; respectively. It is clear from these figures
that J;-J, schedule requires less make-span and is thus preferred.
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(a) The J, - J, schedule.
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(b): The J,- J; schedule where the hatched lines indicate waiting
time of the machines.

Fig. 1.11: The Gantt charts for the flowshop scheduling problem
with 2 jobs and 3 machines.

Flowshop scheduling problems are a NP complete problem [1] and
determination of optimal scheduling (for minimizing the make-span) thus
requires an exponential order of time with respect to both machine-size and
job-size. Finding a sub-optimal solution is thus preferred for such scheduling
problems. Recently, artificial neural nets and genetic algorithms have been
employed to solve this problem. The heuristic search, to be discussed
shortly, has also been used for handling this problem [34].

Intelligent Control: In process control, the controller is designed from the
known models of the process and the required control objective. When the
dynamics of the plant is not completely known, the existing techniques for
controller design no longer remain valid. Rule-based control is appropriate in
such situations. In a rule-based control system, the controller is realized by a
set of production rules intuitively set by an expert control engineer. The
antecedent (premise) part of the rules in a rule-based system is searched
against the dynamic response of the plant parameters. The rule whose
antecedent part matches with the plant response is selected and fired. When
more than one rule is firable, the controller resolves the conflict by a set of
strategies. On the other hand, there exist situations when the antecedent part
of no rules exactly matches with the plant responses. Such situations are
handled with fuzzy logic, which is capable of matching the antecedent parts of
rules partially/ approximately with the dynamic plant responses. Fuzzy



control has been successfully used in many industrial plants. One typical
application is the power control in a nuclear reactor. Besides design of the
controller, the other issue in process control is to design a plant (process)
estimator, which attempts to follow the response of the actual plant, when
both the plant and the estimator are jointly excited by a common input signal.
The fuzzy and artificial neural network-based learning techniques have recently
been identified as new tools for plant estimation [25], [43].

1.5 A Brief History of Al

Professor Peter Jackson of the University of Edinburgh classified the history
of Al into three periods namely 1) the classical period (of game playing and
theorem proving), ii) the romantic period, and iii) the modern period [12]; the
major research work carried out during these periods is presented below.

1.5.1 The Classical Period

This period dates back to 1950. The main research works carried out during
this period include game playing and theorem proving. The concept of state-
space approach for solving a problem, which is a useful tool for intelligent
problem-solving even now, was originated during this period [27].

The period of classical Al research began with the publication of
Shannon’s paper on chess (1950) [35] and ended with the publication by
Feigenbaum and Feldman [10]. The major area of research covered under this
period is intelligent search problems involved in game-playing and theorem-
proving. Turing’s “test”, which is a useful tool to test machine intelligence,
originated during this period.

1.5.2 The Romantic Period

The romantic period started from the mid 1960s and continued until the mid
1970s. During this period, people were interested in making machines
“understand”, by which they usually mean the understanding of natural
languages. Winograd’s (1972) SHRDLU system [46], a program capable of
understanding a non-trivial subset of English by representing and reasoning
about a restricted domain (a world consisting of toy blocks), in this regard
needs special mention. The knowledge representation scheme using special
structures like “semantic nets” was originated by Quillian [33] during this
period. Minisky (1968) also made a great contribution from the point of view
of information processing using semantic nets. Further, knowledge



representation formalisms using frames, which was another contribution of
Minisky during this period, also need special mention [28].

1.5.3 The Modern Period

The modern period starts from the latter half of the 1970s to the present day.
This period is devoted to solving more complex problems of practical
interest. The MYCIN experiments of Stanford University [4], [39] resulted in
an expert system that could diagnose and prescribe medicines for infectious
bacteriological diseases. The MECHO system for solving problems of
Newtonian machines is another expert system that deals with real life
problems. It should be added that besides solving real world problems,
researchers are also engaged in theoretical research on Al including heuristic
search, uncertainty modeling and non-monotonic and spatio-temporal
reasoning. To summarize, this period includes research on both theories and
practical aspects of Al

1.6  Characteristic Requirements for the
Realization of the Intelligent Systems

The Al problems, irrespective of their type, possess a few common
characteristics. Identification of these characteristics is required for designing a
common framework for handling AI problems. Some of the well-known
characteristic requirements for the realization of the intelligent systems are
listed below.

1.6.1 Symbolic and Numeric Computation
on Common Platform

It is clear from the previous sections that a general purpose intelligent
machine should be able to perform both symbolic and numeric computations
on a common platform. Symbolic computing is required in automated
reasoning, recognition, matching and inductive as well as analogy-based
learning. The need for symbolic computing was felt since the birth of Al in
the early fifties. Recently, the connectionist approach for building intelligent
machines with structured models like artificial neural nets is receiving more
attention. The ANN based models have successfully been applied in learning,
recognition, optimization and also in reasoning problems [29] involved in
expert systems. The ANNs have outperformed the classical approach in many
applications, including optimization and pattern classification problems.
Many Al researchers, thus, are of the opinion that in the long run



the connectionist approach will replace the classical approach in all respects.
This, however, is a too optimistic proposition, as the current ANNs require
significant evolution to cope with the problems involved in logic
programming and non-monotonic reasoning. The symbolic and connectionist
approach, therefore, will continue co-existing in intelligent machines until the
latter, if ever, could replace the former in the coming years.

1.6.2 Non-Deterministic Computation

The Al problems are usually solved by state-space approach, introduced in
section 1.3. This approach calls for designing algorithms for reaching one or
more goal states from the selected initial state(s). The transition from one
state to the next state is carried out by applying appropriate rules, selected
from the given knowledge base. In many circumstances, more than one rule is
applicable to a given state for yielding different next states. This informally is
referred to as non-determinism. Contrary to the case, when only one rule is
applicable to a given state, this system is called deterministic. Generally Al
problems are non-deterministic. The issues of determinism and non-
determinism are explained here with respect to an illustrative knowledge-based
system. For instance, consider a knowledge base consisting of the following
production rules and database.

Production Rules

PRI1: IF (A) AND (B) THEN ( C).
PR2: IF ( C ) THEN ( D).

PR3: IF (C) AND ( E ) THEN (Y).
PR4: IF (Y) THEN (Z).

Database: A, B, E.

The graph representing the transition of states for the above reasoning
problem is presented in fig.1.12. Let A and B be starting states and Z be the
goal state. It may be noted that both PR2 and PR3 are applicable at state (C)
yielding new states. However, the application of PR3 at state (C) can
subsequently lead to the goal state Z, which unfortunately remains unknown
until PR4 is applied at state Y. This system is a typical example of non-
determinism. The dropping of PR2 from the knowledge base, however, makes
the system deterministic. One formal approach for testing determinism / non-
determinism of a reasoning system can be carried out by the following
principle:
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Fig. 1.12: A Petri-like net representing non-determinism in a reasoning system
with initial states A and B and goal state Z.

Principle for testing determinism: After deriving the goal state
from the initial states, continue marking (backtracking) the parents of each
node starting from the goal node, until the initial states are reached. If
unmarked nodes are detected, then the system is non-deterministic; otherwise
it is deterministic. It may be noted that testing of determinism in a
knowledge-based system, for any set of starting and goal states, is a distinct
problem and no conclusion about determinism can be drawn for modified
initial or goal states.

The principle for testing determinism in the proposed knowledge-based
system is illustrated here with reference to the dependence graph (Petri-like
net) of fig.1.12. It may be noted that while backtracking on the graph, node
D is not marked and thus the system is non-deterministic.

Besides reasoning, non-determinism plays a significant role in many
classical Al problems. The scope of non-determinism in heuristic search has
already been mentioned. In this section, we demonstrate its scope in
recognition problems through the following example.

Example 1.3: This example illustrates the differences of deterministic and
non-deterministic transition graphs [9], called automata. Let us first consider
the problem of recognition of a word, say, “robot”. The transition graph (fig.
1.13(a)) for the current problem is deterministic, since the arcs emerging out
from a given state are always distinct. However, there exist problems, where
the arcs coming out from a state are not always distinct. For instance,
consider the problem of recognizing the words “robot” and “root”. Here, since
more than one outgoing arc from state B (fig. 1.13(b)) contains the same label
(0), they are not distinct and the transition graph is non-deterministic.
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System states: A,B,C,D,E; Received symbols : 1, 0,b, 0,t, x wherex ¢ {r, 0, b, t}.
x / 1: transition on X to next state with output =1 (success) ; x/ 0: transition on x to
next state with output 0 (failure).

Fig.1. 13 (a) : A deterministic automata used for the recognition of the word

“robot”.
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Fig.1. 13 (b): A non-deterministic automata that recognizes words “robot”
and “root”.

1.6.3 Distributed Computing

Because of too much non-determinism in the AI problems, distributed
computing with shared resources is given much importance in the current
computational models of intelligence. Data structures like Petri nets [14], and
computational models like “AND-parallelism”, “OR-parallelism”, “Stream-
parallelism” [45] etc., have been recently emerging to realize distributed
computing on intelligent machines. Distributed computing has twofold
advantages in Al: i) to support massive parallelism and ii) to



improve reliability by realizing fragments of computational models onto a
number of software or hardware modules.

1.6.4 Open System

The design of an intelligent system should be made, so that it can be readily
extended for spatio-temporal changes in the environment. For example, one
should use a dynamic knowledge base, which can automatically acquire
knowledge from its environment. Further, the learning systems should adapt
their parameters to take into account the new problem instances. An open
system also allows hardware/software interfacing with the existing system.

1.7 Programming Languages for Al

Generally relational languages like PROLOG [38] or functional languages like
LISP are preferred for symbolic computation in Al. However, if the program
requires much arithmetic computation (say, for the purpose of uncertainty
management) then procedural language could be used. There is a dilemma
between the choice of programming languages for solving Al problems to
date. A procedural language that offers a call for a relational function or a
relational language that allows interface with a procedural one is probably the
best choice. Currently, a number of shells (for ES) are available, where the
user needs to submit knowledge only and the shell offers the implementation
of both numeric as well as symbolic processing simultaneously.

1.8 Architecture for AI Machines

During the developmental phase of AI, machines used for conventional
programming were also used for Al programming. However, since Al
programs deal more with relational operators than number crunching, the need
for special architectures for the execution of Al programs was felt. Gradually,
it was discovered that due to non-determinism in the Al problems, it supports
a high degree of concurrent computing. The architecture of an Al machine thus
should allow symbolic computation in a concurrent environment. Further, for
minimizing possible corruption of program resources (say variables or
procedures), concurrent computation may be realized in a fine grain distributed
environment. Currently PROLOG and LISP machines are active areas of Al
research, where the emphasis is to incorporate the above issues at the hardware
and software levels. Most of these architectures are designed for research
laboratories and are not available in the open commercial market to date. We
hope for a better future for Al, when these special architectures will find
extensive commercial exploitation.



1.9 Objective and Scope of the Book

The objective of the book is to bridge the potential gap between the existing
textbooks of Al and research papers/monographs. The available texts on Al
usually do not cover mathematical issues. Further, soft computing, which
plays a significant role in modeling intelligent problems, has rarely been
included in a textbook on AI. The book, thus, to the best of the author’s
knowledge, is the first text of its kind that covers all modern aspects of Al
and soft computing and their applications in a single easy-to-read volume.

The book has been organized in the following manner. Chapter 2
introduces the behavioral aspects of cognition [21]. Problem solving by
production system is presented in chapter 3. A detailed review on intelligent
search is presented in chapter 4. Various aspects of knowledge representation
and reasoning are covered in chapters 5-11. The chapters included are
predicate logic (chapter 5), logic programming (chapter 6), default and non-
monotonic logic (chapter 7), structured approach to knowledge representation
(chapter 8), and dealing with imprecision and uncertainty (chapter 9). A
separate chapter on structured approach to fuzzy reasoning systems is included
in chapter 10 of the book for both its increasing demand and scarcity of the
literature on the topic. The spatio-temporal models for reasoning are covered
in chapter 11. Some aspects of intelligent planning are covered in chapter 12.
The principles of machine learning are presented in chapter 13 and some of
their realizations with ANN are covered in chapter 14. One complete chapter
(chapter 15) is devoted to genetic algorithm. These are the major areas covered
in the book. The other issues outlined in the book, for the sake of
completeness are: realizing cognition with fuzzy neural nets (chapter 16),
visual perception (chapter 17), linguistic perception (chapter 18), constraint
satisfaction (chapter 19), knowledge acquisition (chapter 20), verification and
validation models (chapter 21) and architecture of Al machines (chapter 22).
These are relatively growing topics and thus will help the readers learn the
frontier areas of the subject. Chapter 23 and 24 cover two case studies: one
on criminal investigation and the other on navigational planning of robots.

1.10 Summary

The subject of AI deals more with symbolic processing than numeric
computation. Knowledge representation, reasoning, planning, learning,
intelligent search and uncertainty management of data and knowledge are the
common areas covered under Al. Some of the applications areas of Al are
speech and image understanding, expert systems, pattern classification and
navigational planning of mobile robots. LISP and PROLOG are the usual
languages for programming Al problems. Because of severe non-determinism



in Al problems, it supports massive parallelism. Specialized parallel
processing architecture for PROLOG and LISP machines is in development
and may be available shortly in the open market.

Exercises

1. Determine the starting state, goal state, and legal moves and draw the
state-space for the well-known missionaries-cannibals problem, listed
below:

There are three missionaries, three cannibals and a boat on the left bank of
a river. All of the six persons need to be transported to the right bank
using a boat. The boat carries only two persons and at least one person
should bring the boat back. If the cannibals outnumber the missionaries on
either bank, they will eat the missionaries.

2. Design a semantic net, describing relationships among different modules of
an aircraft. Write a program in Pascal/C to realize the net for answering the
following questions:

Queries: a) Does the aircraft have seats?
b) If answer to (a) is yes, then how many seats does it have?

3. Consider the following knowledge base and database.

Knowledge base:

PR1: IF (( X is a man and Y is a woman ) AND

(X and Y are lovers))
THEN (X is a friend of Y).

PR2: IF ((X is a man and Y is a woman) AND

( X married Y))
THEN (X loves Y).

PR3: IF ((X is aman and Y is a woman) AND

(Y married X))
THEN (Y loves X).

PR4: IF ((X loves Y ) AND

(Y loves X))
THEN (X and Y are lovers).
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(2]

(3]
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Database:

1. Ram is a man.

2. Sita is a woman.
3. Ram married Sita.
4. Sita married Ram.

Show the sequence of selection of PRs to prove that “Ram is a friend of
Sita”. What other (intermediate) inferences does the inference engine
derive to prove the above conclusion?

What additional piece of knowledge should one add to the system to
eliminate the fourth data element, which is redundant in presence of the
third data element?

Design a deterministic automata for the recognition of the word “apple”.
Extend your design to recognize the words “apple” and “ape” by a non-
deterministic automata.

References

Bender, Edward A., Mathematical Methods in Artificial Intelligence,
IEEE Computer Society Press, Los Alamitos, CA, chapter 1, pp. 26,
1996.

Besnard, P., An Introduction to Default Logic, Springer-Verlag, Berlin,
pp.27-35, 1989.

Bezdek. J. C., Ed., Pattern Recognition with Fuzzy Objective Function
Algorithms, Kluwer Academic Press, 1991.

Buchanan, B. G. and Shortliffe, E. H., Eds., Rule-Based Expert
Systems, Addison-Wesley, Reading, MA, 1984.

Buchanan, B.G. and Wilkins, D.C., Eds., Readings in Knowledge
Acquisition and Learning: Automating the Construction and
Improvement of Expert Systems, Morgan Kaufmann, San Mateo, CA,
1993.

Charniak, E. and McDermott, D., Introduction to Artificial Intelligence,
Addison-Wesley, Reading, MA, 1985.



[71 Dean, T., Allen, J. and Aloimonds, Y., Artificial Intelligence: Theory
and Practice, Addison-Wesley, Reading, MA, 1995.

[8] Dickmans, E.D., Mysliwetz, B. and Christians, T., “An integrated
spatio-temporal approach to vehicles,” IEEE Trans. on Systems, Man and
Cybernetics, vol. 20, no. 6, Dec. 1990.

[9]1 Dougherty, E. R. and Giardina, C.R., Mathematical Methods for
Artificial Intelligence and Autonomous Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[10] Feigenbaum, E. A. and Feldman, J., Eds., Computers and Thought,
McGraw-Hill, New York, 1963.

[11] Haugeland, J., Ed., Artificial Intelligence: The Very Idea, MIT Press,
Cambridge, 1985.

[12] Jackson, P., Introduction to Expert Systems, Addison-Wesley, Reading,
MA, 1986.

[13]Jang, J. R., Sun, C. and Mizutani, E., Neuro-Fuzzy and Soft
Computing: A Computational Approach to Learning and Machine
Intelligence, Prentice-Hall, Englewood Cliffs, NJ, pp. 7-9, 1997.

[14] Konar A., Uncertainty Management in Expert Systems using Fuzzy Petri
Nets, Ph.D. thesis, Jadavpur University, Calcutta, 1994.

[15] Kosko, B., Neural Networks and Fuzzy Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

[16] Kruse, R., Schwecke, E. and Heinsohn, J., Uncertainty and Vagueness
in Knowledge Based Systems, Springer-Verlag, Berlin, 1991.

[17] Kurzweil, R., The Age of Intelligent Machines, MIT Press, Cambridge,
1990.

[18] Luger, G. F. and Stubblefield, W. A., Artificial Intelligence: Structures
and Strategies for Complex Problem Solving, Benjamin/Cummings,
Menlo Park, CA, 1993.

[19] Mamdani, E. H., Application of fuzzy set theory to control systems, in
Fuzzy Automata and Decision Processes, Gupta, M. M., Saridies, G. N.
and Gaines, B. R., Eds., Oxford University Press, Amsterdam, New
York, pp. 77-88, 1977.



[20] Mark, S. Introduction to Knowledge Systems, Morgan Kaufmann, San
Mateo, CA, Chapter 5, pp. 433-458, 1995.

[21] Matlin, M. W., Cognition, Original U.S. edition by Harcourt Brace
Publishers, Indian reprint by Prism Books Pvt. Ltd., Bangalore, 1994.

[22] McDermott, D. and Davis, E., “Planning routes through uncertain
territory,” Artificial Intelligence, vol. 22, 1984.

[23] Michalewicz, Z., Genetic algorithms + Data Structures = Evolution
Programs, Springer-Verlag, Berlin, 1992.

[24] Naganuuma, J., Ogura, T., Yamada, S. I. and Kimura, T., “High speed
CAM-based architecture for a PROLOG machine,” IEEE Trans. on
Computers, vol. 37, no. 11, November 1997.

[25] Narendra, K. S. and Parthasarathi, K., "Identification and control of
dynamical system using neural networks,” IEEE Trans. on Neural
Networks, vol. 1. , pp. 4-27, 1990.

[26] Xiao, J., Michalewicz, Z., Zhang, L. and Trojanowski, K., “Adaptive
Evolutionary Planner/Navigator for Mobile Robots,” IEEE Trans. on
Evolutionary Computation, vol. 1, no.1, April 1997.

[27] Newell, A .and Simon, H.A., Human Problem Solving, Prentice-Hall,
Englewood Cliffs, NJ, 1972.

[28] Nilson, N. J., Principles of Artificial Intelligence, Morgan Kaufmann,
San Mateo, CA, pp. 6-7, 1980.

[29] Patterson, D. W., Introduction to Artificial Intelligence and Expert
Systems, Prentice-Hall, Englewood Cliffs, NJ, pp. 345-347, 1990.

[30] Pedrycz, W., Fuzzy Sets Engineering, CRC Press, Boca Raton, FL,
1995.

[31] Proceedings of First Int. Conf. on Automation, Robotics and Computer
Vision, Singapore, pp. 1-133, 1990.

[32] Proceedings of Fourth Int. Conf. on Control, Automation, Robotics and
Computer Vision, Singapore, 1-376, 1996.

[33] Quillian, M. R., Semantic Memory, In Semantic Information
Processing, Minisky, M., Ed., MIT Press, Cambridge, MA, pp. 227-
270, 1968.



[34] Rajendra, C. and Chaudhury, D., “An efficient heuristic approach to the
scheduling of jobs in a flowshop,” European Journal of Operational
Research, vol. 61, pp. 318-325, 1991.

[35] Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New
York, 1996.

[36] Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[37] Schalkoff, J., Culberson, J., Treloar, N. and Knight, B., “A world
championship caliber checkers program,” Artificial Intelligence, vol. 53,
no. 2-3, pp. 273-289, 1992.

[38] Shobam, Y., Artificial Intelligence Techniques in PROLOG, Morgan
Kaufmann, San Mateo, CA, 1994.

[39] Shortliffe, E. H., Computer-based Medical Consultations: MYCIN,
Elsevier, New York, 1976.

[40] Spivey, M., An Introduction to Logic Programming through PROLOG,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

[41] Sympson, P., Artificial Neural Nets: Concepts, Paradigms and
Applications, Pergamon Press, Oxford, 1988.

[42] Szats, A., Temporal logic of programs: standard approach, In Time &
Logic, Leonard, B. and Andrzej, S., Eds., UCL Press, London, pp. 1-50,
1995.

[43] Takagi, T.and Sugeno, M., "Fuzzy identification of systems and its
application to modeling and control,” IEEE Trans. on Systems, Man and
Cybernetics, pp. 116-132, 1985.

[44] Tanaka, K., “Stability and Stabilizability of Fuzzy-Neural-Linear Control
Systems,” IEEE Trans. on Fuzzy Systems, vol. 3, no. 4, 1995.

[45] Wah, B.W. and Li, G.J., “A survey on the design of multiprocessing
systems for artificial intelligence,” IEEE Trans. On Systems, Man and
Cybernetics, vol. 19, no.4, July/Aug. 1989.

[46] Winograd, T., “Understanding natural language,” Cognitive Psychology,
vol. 1, 1972.



[47] Winston, P. H., Artificial Intelligence, Addison-Wesley, 2 ed.,
Reading, MA, 1994.

[48] Yager, R.R., “Some relationships between possibility, truth and
certainty,” Fuzzy Sets and Systems, Elsevier, North Holland, vol. 11,
pp- 151-156, 1983.

[49] Zadeh. L. A., “ The role of fuzzy logic in the management of uncertainty
in Expert Systems,” Fuzzy Sets and Systems, Elsevier, North Holland,
vol. 11, pp. 199-227, 1983.

[50] Zimmermann, H. J., Fuzzy Set Theory and its Applications, Kluwer
Academic, Dordrecht, The Netherlands, 1991.



The Psychological
Perspective of
Cognition

The chapter provides an overview of the last thirty years’ research in
cognitive psychology with special reference to the representation of sensory
information on the human mind. The interaction of visual, auditory and
linguistic information in memory for understanding instances of the real
world scenario has been elucidated in detail. The construction of mental
imagery from the visual scenes and interpretation of the unknown scenes
with such imagery have also been presented in this chapter. Neuro-
physiological evidences to support behavioral models of cognition have
been provided throughout the chapter. The chapter ends with a discussion
on a new ‘model of cognition’ that mimics the different mental states and
their inter-relationship through reasoning and automated machine learning.
The scope of Al in building the proposed model of cognition has also been
briefly outlined.

2.1 Introduction

Theword ‘cognition’ generally refersto afaculty of mental activities dealing with
abstraction of information from a real world scenario, their representation and



storage in memory and automatic recall [27]. It aso includes construction of
higher level percepts from primitive/low level information/knowledge, hereafter
referred to as perception. The chapter is an outgrowth of the last thirty years
research in neurocomputing and cognitive science. It elucidates various models
of cognition to represent different types of sensory information and their
integration on memory for understanding and reasoning with the real world
context. It also outlines the process of construction of mental imagery from the
real instances for subsequent usage in understanding complex three-dimensional
objects.

The chapter starts with the cognitive perspective of pattern recognition. It
covers elementary matching of ‘sensory instances with identical ‘templates
saved in memory. This is referred to as the ‘template matching theory’. The
weakness of the template matching theory is outlined and the principle to
overcome it through matching problem instances with stored minimal
representational models (prototypes) is presented. An alternative feature-
based approach for pattern recognition is also covered in this chapter. A more
recent approach to 3-dimensional object recognition based on Marr’ stheory is
also presented here.

The next topic, covered in the chapter, is concerned with cognitive models
of memory. It includes the Atkinson-Shiffring’s model, the Tulving’'s model
and the outcome of the Parallel Distributed Processing (PDP) research by
Rumelhart and McClelland [30].

The next section in the chapter deals with mental imagery and the
relationship among its components. It includes a discussion on the
relationship between object shape versus imagery and ambiguous figures
versus their imagery. Neuro-physiological support to building perception from
imagery is also outlined in this section. Representation of spatial and temporal
information and the concept of relative scaling is also presented here with a
specialized structure, called cognitive maps.

Understanding a problem and its representation in symbolic form is
considered next in the chapter. Examples have been cited to demonstrate how a
good representation serves an efficient solution to the problem.

The next section proposes a hew model of cognition based on its
behavioral properties. The model consists of a set of mental states and their
possible inter-dependence. The state transition graph representing the model
of cognition includes 3 closed cycles, namely, i) the sensing-action cycle, ii)
the acquisition-perception cycle, and iii) the sensing-acquisition-perception-
planning-action cycle. Details of the functionaries of the different states of
cognition will be undertaken in this section.



The scope of realization of the proposed model of cognition will be briefly
outlined in the next section by employing Al tools and techniques. A
concluding section following this section includes a discussion on the
possible direction of research in cognitive science.

2.2 The Cognitive Perspective of
Pattern Recognition

The process of recognizing a pattern involves ‘identifying a complex
arrangement of sensory stimuli’ [20], such as a character, a facial image or a
signature. Four distinct techniques of pattern recognition with reference to
both contexts and experience will be examined in this section.

2.2.1 Template-Matching Theory

A ‘template’ is part or whole of a pattern that one saves in his memory for
subsequent matching. For instance, in template matching of images, one may
search the template in the image. If the template is part of an image, then
matching requires identifying the portion (block) of the image that closely
resembles the template. If the template is a whole image, such as the facial
image of one's friend, then matching requires identifying the template among a
set of images [4]. Template matching is useful in contexts, where pattern shape
does not change with time. Signature matching or printed character matching
may be categorized under this head, where the size of the template is equal to
the font size of the patterns.

Example 2.1: This example illustrates the principle of the template-
matching theory. Fig. 2.1 (a) is the template, searched in the image of aboy in
fig. 2.1(b). Here, theimage is partitioned into blocks [5] equal to the size of the
template and the objective is to identify the block in the image (fig. 2.1(b)) that
best matches with the template (fig. 2.1 (a)).

@ (b)

Fig. 2.1: Matching of the template (a) with the blocksin (b).



The template-matching theory suffers from the following counts.

i) Restriction in font size and type: Template-matching theory is not
applicable to cases when the search domain does not include the template
of the same size and font type. For instance, if someone wants to match a
large-sized character, say Z, with an image containing a different font or
sizeof letter Z, the template-matching theory failsto serve the purpose.

ii) Restriction due to rotational variance: In case the search space of
the template contains a slightly rotated version of the template, the theory
is unable to detect it in the space. Thus, the template-matching theory is
sensitive to rotational variance of images.

It may be added here that the template-matching theory was framed for
exact matching and the theory as such, therefore, should not be blamed for the
reason for which it was meant. However, in case one wants to overcome the
above limitations, he/she may be advised to use the Prototype-matching
theory outlined below.

2.2.2 Prototype-Matching Theory

‘Prototypes are idealized / abstract patterns' [20] in memory, which is
compared with the stimulus that people receive through their sensory organs.
For instance, the prototype of stars could be an asterisk (*). A prototype of a
letter ‘A’ could be a symbol that one can store in his memory for matching
with any of the patternsin fig. 2.2 (a) or thelike.

A AAAAA A

Fig. 2.2 (a): Variousfontsand sizeof ‘A’.

Prototype-matching theory works well for images also. For example, if one
has to identify his friend among many people, he should match the prototype
of thefacial image and his structure, stored in memory, with the visual images
of individuals. The prototype (mental) image, in the present context, could
include an approximate impression of the face under consideration. How
exactly the prototype is kept in memory is unknown to the researchers still
today.

An alternative approach to pattern recognition, to be discussed shortly, is
the well-known feature-based matching.



2.2.3 Feature-based Approach
for Pattern Recognition

The main consideration of this approach isto extract a set of primitive features,
describing the object and to compare it with similar features in the sensory
patterns to be identified. For example, suppose we are interested to identify
whether character ‘H’ is present in the following list of characters (fig. 2.2 (b)).

A HFKIL

Fig. 2.2 (b): A list of charactersincluding H.

Now, first the elementary features of ‘H’ such astwo parallel lines and one
line intersecting the parallel lines roughly at half of their lengths are detected.
These features together are searched in each of the characters in fig. 2.2 (b).
Fortunately, the second character in the figure approximately contains similar
features and consequently it is the matched pattern.

For matching facial images by the feature-based approach, the features like
the shape of eyes, the distance from the nose tip to the center of each eye, etc.
are first identified from the reference image. These features are then matched
with the corresponding features of the unknown set of images. The image with
the best matched features is then identified. The detailed scheme for image
matching by specialized feature descriptors such as fuzzy moments [5] will be
presented in chapter 23.

2.2.4 The Computational Approach

Though there exist quite a large number of literature on the computational
approach for pattern recognition, the main credit in this field goes to David
Marr. Marr [19] pioneered a new concept of recognizing 3-dimensional objects.
He stressed the need for determining the edges of an object and constructed a
2 Y>-D model that carries more information than a 2-D but less than a 3-D image.
An approximate guess about the 3-D object, thus, can be framed from its 2 ¥2-D
images.

Currently, computer scientists are in favor of aneural model of perception.
According to them, an electrical analogue of the biological neural net can be
trained to recognize 3-D objects from their feature space. A number of training



algorithms have been devised during the last two decades to study the
behavioral properties of perception. The most popular among them is the well-
known back-propagation algorithm, designed after Rumelhart in connection
with their research on Parallel Distributed Processing (PDP) [30]. The details of
the neural algorithms for pattern recognition will be covered in chapter 14.

2.3 Cognitive Models of Memory

Sensory information is stored in the human brain at closely linked neuronal
cells. Information in some cells can be preserved only for a short duration.
Such memory is referred to as Short Term Memory (STM). Further, there are
cells in the human brain that can hold information for a quite long time, of the
order of years. Such memory is called Long Term Memory (LTM). STMs and
LTMs can aso be of two basic varieties, namely iconic memory and echoic
memory. The iconic memories can store visual information, while the echoic
memories participate in storing audio information. These two types of
memories together are generally called sensory memory. Tulving alternatively
classified human memory into three classes, namely episodic, semantic and
procedural memory. Episodic memory saves facts on their happening, the
semantic memory constructs knowledge in structural form, while the
procedural ones help in taking decisions for actions. In this section, a brief
overview of memory systems will be undertaken, irrespective of the type/
variety of memory; these memory systems together are referred to as cognitive
memory. Three distinct classes of cognitive memory models such as Atkinson-
Shiffrin’s model, Tulving’s model and the PDP model will be outlined in this
section.

2.3.1 The Atkinson-Shiffrin’s Model

The Atkinson-Shifrin’s model consists of a three layered structure of memory
(fig. 2.3). Sensory information (signals) such as scene, sound, touch, smell, etc.
is received by receptors for temporary storage in sensory registers (memory).
The sensory registers (Reg.) are large capacity storage that can save
information with high accuracy. Each type of sensory information is stored in
separate (sensory) registers. For example, visual information is saved in iconic
registers, while audio information is recorded in echoic registers. The sensory
registers decay at a fast rate to keep provisions for entry of new information.
Information from the sensory registers is copied into short term memory
(STM). STMs are fragile but less volatile than sensory registers. Typicaly
STMs can hold information with significant strength for around 30 seconds,
while sensory registers can hold it for just a fraction of a second. Part of the
information stored in STM is copied into long term memory (LTM). LTMs have
large capacity and can hold information for several years.
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Fig. 2.3: Three-level hierarchical model of cognitive memory.

STMs have faster access time [1] than LTMs. Therefore, for the purpose
of generating inferences, useful information from LTMs is copied into STMs.
This has been shown in fig. 2.3 by a feedback path from LTM to STM.
Because of its active participation in reasoning, STMs are sometimes called
active memory.

The hierarchical structure of Atkinson-Shiffrin’s cognitive memory model
can be compared with the memory systems in computers. The STM is similar
with cache, while the LTM could be compared with main (RAM) memory. The
reasoning system in the human brain is analogous with the central processing
unit (CPU) of the computer. The reasoning system fetches information from the
STM, as CPU receives information from cache, when the addressed words are
available in the cache. In case the addressed words are not available in cache,



they are fetched from the main and transferred to the cache and the CPU as
well. Analogously, when the information required for reasoning is not found in

STM, they could be transferred from the LTM to the STM and then to the
reasoning system.

2.3.2 Debates on the Atkinson-Shiffrin’s Model

Researchers of various domains have debated the Atkinson-Shiffrin’s model.
Many psychologists [14], [15] do not agree with the view of the existence of
STMs and LTMs as separate units. Neuro-physiological research, however,
supports the existence of these two separate units. Recent reports on
experimentation with the human brain put forward another challenging
question: Is there any direct input to LTM from sensory registers? The
following experimental results answer to the controversial issues.

Medical Experiment 1: /n order to cure the serious epilepsy of a person
X, a portion of his temporal lobes and hippocampus region was
removed. The operation resulted in a successful cure in epilepsy, but
caused a severe memory loss. The person was able to recall what
happened before the operation, but could not learn or retain new
information, even though his STM was found normal [21].

Medical Experiment 2: The left side of the cerebral cortex of a person was
damaged by a motorcycle accident. It was detected that his LTM was
normal but his STM was severely limited [2].

The experiment 1 indicates that the communication link from the STM to
the LTM might have been damaged. The experiment 2, however, raised the
question: how does the person input information to hisLTM when his STM is
damaged? The answer to this question follows from Tveter’s model, outlined
below.

Without referring to the Atkinson-Shiffrin's model, Tveter in his recent
book [34] considered an alternative form of memory hierarchy (fig. 2.4). The
sensory information, here, directly enters into the LTM and can be passed on
to the STM from the LTM. The STM has two outputs leading to the LTM. One
output of the STM helps in making decisions, while the other is for permanent
storageinthe LTM.

2.3.3 Tulving’s Model
The Atkinson-Shiffrin’s model discussed a flow of control among the various

units of memory system. Tulving's model, on the other hand, stresses the
significance of abstracting meaningful information from the environment by



cognitive memory and its utilization in problem solving. The model comprises of
three distinct units namely episodic, semantic and procedural memory.

For storage
intheLTM

input for
decision making

input from sensory
receptors/memory

Fig. 2.4: Tveter's Model showing direct entry tothe LTM.

Episodic memory stores information about happened events and their
relationship. The semantic memory, on the other hand, represents knowledge
and does not change frequently. The procedural memory saves procedures for
execution of a task [33]. A schematic architecture of Tulving’'s model is
presented infig. 2.5.

The episodic memory in fig. 2.5 receives an information “the sky is cloudy”
and saves it for providing the necessary information to the semantic memory.
The semantic memory stores knowledge in an antecedent-consequent form.
The nodes in the graph denote information and the arcs denote the causal
relationship. Thus the graph represents two rules: Rule 1 and Rule 2, given
below.

Rule 1: If the sky is cloudy
Then it will rain.

Rule 2: [f'it rains
Then the roads will be flooded.
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Fig. 2.5: Schematic architecture of Tulving’s cognitive memory.

After execution of these two sequential rules, the semantic memory derives
that ‘the roads will be flooded . The procedural memory first checks the pre-
condition: “the road will be flooded” and then implements the action of
cleaning the drainage system.



Tulving's model bridges a potential gap between the Atkinson-Shiffrin’'s
model and the modern aspects of knowledge representation. For instance, the
episodic memory contains only facts like data clauses in a PROLOG program
(vide chapter 6). The semantic memory is similar with ‘semantic nets' used for
structured knowledge representation and reasoning (vide chapter 8). The
procedural memory may be compared with a frame (vide chapter 8) that
provides methods to solve a problem.

2.3.4 The Parallel Distributed
Processing Approach

The outcome of the research on Parallel Distributed Processing (PDP) by
Rumelhart, McClelland and their associates opened up a new frontier in
machine learning. Unlike the other models of cognitive memory, the PDP
approach rests on the behavioral characteristics of single cellular neurons. The
PDP team considered the cognitive system as an organized structure of
neurons, which together forms a neural net. Such a network has an immense
capability to learn and save the learned information / knowledge for
subsequent usage. The PDP approach thus supports the behavioral features
of cognitive memory but cannot explain the true psychological perspectives of
cognition. For instance, it cannot differentiate the STM with the LTM, but
experimental evidences support their co-existence. However, irrespective of
any such issues, the PDP approach undoubtedly has significance from the
point of view of realization of cognition on machines. The fundamental
characteristics of this approach, which gave it a unique status in cognitive
science, are presented below.

It is one of the pioneering works on cognition that resembled the
biological memory as a distributed collection of single cellular neurons
that could betrained in atime parallel manner.

" It demonstrated a possibl e realization of cognition on machines.

For similar input patterns, the neural net should respond similarly, while
for distinct input patterns with sufficient difference, the resulting
responses of the neural net will also be different sufficiently.

In fact, thisis a significant observation that led to the foundation of a
completely new class of pattern recognition by supervised learning. In a
supervised learning scheme there is atrainer that can provide the desired
output for the given input patterns. The details of a supervised learning
paradigm will be covered in a separate chapter on neural nets [35].



The PDP approach supports the content addressable features of
memory, rather than addressable memory.

In conventional computers we use random access memory, where we
find the contents, once the address is supplied. But in our biological
brain, we may sometimes remember part of an information and retrieve the
whole after a while. Retrieving the whole information from its part is
usually done by content addressable memory (CAM).

2.4 Mental Imagery

How do people remember scenes? Perhaps they represent scenes in some form
of imagein their brain. The mental representation of scenesisinformally called
mental imagery [17] in cognitive science. This section explores two important
areasin cognitive science. First, it covers mental imagery, its rotation and part-
whole relationship. Next it presents cognitive maps' that denote the spatial
relationship among objects. People form an idea of distances between any two
places by their cognitive map.

2.4.1 Mental Representation of Imagery

Psychologists have a decade-long controversy on the mental representation of
images of physical objects. One school of psychologists[17] believes that the
images are stored in human memory in analog patterns, i.e., asimilar prototype
image of the object is recorded in memory. The other school [29] argues that
we store images by symbolic logic-based codes. Symbolic logics are currently
used in Artificial Intelligence to represent spatial, temporal and relational data
and knowledge but are inadequate to describe complex shape of imagery. We
are, however, trained to remember the shape of objects / animals with high
accuracy, which probably could not be reproduced (decoded) from symbolic
codes. Therefore, without going into the controversy, we may favor the
opinion of thefirst school of psychologists.

2.4.2 Rotation of Mental Imagery

Psychologists are of the view that people can rotate their mental imagery, as
we physically rotate the objects around a point or an axis. As experimental
evidence, let us consider the character imagesin fig. 2.6.

! Cognitive mapsin Artificial Intelligence, however, have amore general
meaning. It stands for networks capable of acquiring, learning, encoding
and decoding information / knowledge.



A "
@) (b)

Fig. 2.6: The character ‘A’ and its 180 degree rotated
view around its top vertex point.

Itisclear from fig. 2.6 that (b) is the inverted view of that in (a). Based on
the experimental evidences on rotation of mental imagery, the following points
can be envisaged.

More complex is the shape of the original image, more (reaction) time
[20] isrequired to identify its rotated view [31].

More is the angle of rotation, more is the reaction time to identify the
uniqueness of the mental imagery [31].

Non-identical but more close images and their rotated view require large
reaction time to identify their non-uniqueness[32].

Familiar figures can be rotated more quickly than the unfamiliar ones

[8].

With practice one can improve his/ her reaction time to rotate a mental
image[13].

2.4.3 Imagery and Size
In this section, the different views on imagery and size will be outlined briefly.

Kosslyn’s view: Stephen Kosslyn wasthe pioneering researcher to study
whether people make faster judgements with large images than smaller images.
Kosslyn has shown that a mental image of an elephant beside that of a rabbit
would force people to think of arelatively small rabbit. Again, the same image
of the rabbit seems to be larger than that of afly. Thus, people have their own
relative judgement about mental imageries. Another significant contribution of
Kosslyn is the experimental observation that people require more time to create



larger mental imageries than smaller ones [18]. The results, though argued by
the contemporary psychologists, however, follow directly from intuition.

Moyer’s view: Robert Moyer provided additional information on the
correspondence between the relative size of the objectsand the relative size of
their mental imagery. Moyer’s results were based on psychophysics, the
branch of psychology engaged in measuring peoples’ reactions to perceptual
stimuli [24]. In psychophysics, people take alonger time to determine which of
the two amost equal straight lines is larger. Moyer thus stated that the
reaction time to identify a larger mental image between two closely equal
imagesis quite large.

Peterson’s view: Unlike visua imagery, Intons-Peterson [28] experimented
with auditory signals (also called images). She asked her students to first
create a mental imagery of a cat’s purring and then the ringing tone of a
telephone set. She then advised her students to move the pitch of the first
mental imagery up and compare it with the second imagery. After many hours
of experimentation, she arrived at the conclusion that people require quite a
large time to compare two mental imageries, when they are significantly
different. But they require less time to traverse the mental imagery when they
arevery close. For instance, the imagery of purring, being close enough to the
ticking of aclock, requireslesstime to compare them.

2.4.4 Imagery and Their Shape

How can people compare two similar shaped imageries? Obviously the
reasoning process looks at the boundaries and compares the closeness of the
two imageries. It is evident from commonsense reasoning that two imageries of
an almost similar boundary require alonger time to determine whether they are
identical. Two dissimilar shaped imageries, however, require a little reaction
time to arrive at a decision about their non-uniqueness.

Paivio [26] made a pioneering contribution in this regard. He established the
principle, stated above, by experiments with mental clock imagery. When the
angle between the two arm positionsin a clock is comparable with the same in
another imagery, obviously the reaction time becomes large to determine which
angle is larger. The credit to Paivio lies in extending the principle in a generic
sense.

2.4.5 Part-whole Relationship in Mental Imagery

Reed was interested in studying whether people could determine a part-whole
relationship of their mental image [20]. For instance, suppose one has saved



his friend@ facial image in memory. If he is now shown a portion of his friends
face, would he be able to identify him? The answer in many cases was in the

afirmative.

Reed experimented with geometric figures. For instance, he first showed a
Star of David (vide fig. 2.7) and then a parallelogram to a group of people and
asked them to save the figures in their memory. Consequently, he asked them
whether there exists a part-whole relationship in the two mental imageries.
Only 14% of the people could answer it correctly. Thus determining part-whole
relationship in mental imagery is difficult. But we do it easily through

practicing.

Fig. 2.7: The Star of David.

2.4.6 Ambiguity in Mental Imagery

Most psychologists are of the opinion that people can hardly identify
ambiguity in mental imagery, though they can do it easily with paper and
pencil [20]. For instance consider the following imagery (videfig. 2.8).

Fig. 2.8: The letter X topped by the letter H is difficult to extract
from the mental imagery but not impossible by paper and pencil.

Peterson and her colleagues, however, pointed out that after some help, people
can identify ambiguity also in mental imagery [28], [20].

2.4.7 Neuro Physiological Similarity
between Imagery and Perception

The word ‘perception’ refers to the construction of knowledge from the
sensory data for subsequent usage in reasoning. Animals including lower
class mammals generally form perception from visual data. Psychologists,
therefore, have long wondered: does mental imagery and perception have any



neuro-physiological similarity? An answer to this was given by Farah [12] in
1988, which earned her the Troland award in experimental psychology.
Goldenbarg and his colleagues [9] noted through a series of experiments that
there exists a correlation between accessing of mental imagery and increased
blood flow in the visual cortex. For example, when people make judgements
with visual information, the blood flow in the visual cortex increases.

2.4.8 Cognitive Maps of Mental Imagery

Cognitive maps are the internal representation of real world spatial information.
Their exact form of representation is not clearly known to date. However, most
psychologists believe that such maps include both propositional codes as well
as imagery for internal representation. For example, to encode the structural
map of a city, one stores the important places by their imagery and the
relationship among these by some logical codes. The relationship in the
present context refers to the distance between two places or their directional
relevance, such as place A isnorth to place B and at a distance of %2 Km.

How exactly people represent distance in their cognitive map is yet a
mystery. McNamara and his colleagues [22] made several experiments to
understand the process of encoding distance in the cognitive maps. They
observed that after the process of encoding the road maps of cities is over,
people can quickly remember the cities closely connected by roads to a city
under consideration. But the cities far away by mileage from a given city do
not appear quickly in our brain. This implicates that there must be some
mechanisms to store the relative distances between elements in a cognitive

map.

Besides representing distance and geographical relationship among
objects, the cognitive maps also encode shapes of the pathways connecting
the objects. For example, if the road includes curvilinear paths with large
straight line segments, videfig. 2.9, the same could be stored in our cognitive
map easily [7]. However, experimental evidences show that people cannot
easily remember complex curvilinear road trajectories (fig. 2.10). Recently, Moar
and Bower [23] studied the encoding of angle formation by two non-collinear
road trgjectories. They observed experimentally that people have a general
tendency to approximate near right angles as right angles in their cognitive
map. For example, three streets that form atriangle in reality may not appear so
in the cognitive map. Thisis due to the fact that the sum of the internal angles
of atriangle in any physical system is 180 degrees; however, with the angles
close to 90 degrees being set exactly to 90 degrees in the cognitive map, the



sum need not be 180 degrees. Thus a triangular path appears distorted in the
cognitive map.

/

/ North

L’ East

Fig. 2.9: A path with large straight-line segments.

TNy

Fig. 2.10: A complex curvilinear path, difficult for encoding in
acognitive map.

2.5 Understanding a Problem

According to Greeno [10], understanding a problem involves constructing an
internal representation of the problem statement. Thus to understand a
sentence we must have some representation of the words and phrases and
some semantic links between the words, so that the construct resembles the
original sentence in meaning. The understanding of a problem, therefore, calls
for understanding the meaning of the words in the problem in more elementary
forms. Greeno stressed the need for three issues: coherence, correspondence
and relationship to background knowledge in connection with
understanding a problem.

Coherence: A coherent representation is a pattern, so that al its
components (fragments) make sense. Readers with a background of wave
propagation theory, of course, will wonder: why the term ‘coherence’!
Coherence in wave propagation theory correspondsto wavelets (small waves)
with the same phase. In the present context, coherence stands for equal
emphasis on each component of the pattern, so that it is not biased to one or



more of its components. For example, to create a mental representation of the
sentence "Tree trunks are straws for thirsty leaves and branches’, one should
not pay more emphasis on straws than trunks (stems of the trees). Formally,
coherence calls for a mental representation of the sentence with equal

emphasis on each word / fact / concept.

Correspondence: Correspondence refers to one-to-one mapping from the
problem statement to the mental representation. If the mapping is incorrect or
incomplete, then a proper understanding is not feasible. Correspondence, in
most cases, however, isdetermined by the third issue, presented below.

Relationship to background knowledge: Background knowledge is
essential to map components of the problem statement to mental
representation. Without it people fail to understand the meaning of the words
in a sentence and thus lose the interconnection of that word with othersin the
same sentence. Students can feel the significance of the background
knowledge, when they attend the next class on a subject without attending the
previous classes on the same topic.

2.5.1 Steps in Understanding a Problem

Understanding a problem consists of two main steps: i) identifying pertinent
information from the problem description, deleting many unnecessary ones
and ii) a well-organized scheme to represent the problem. Both the steps are
crucial in understanding a problem. The first step reduces the scope of
generality and thus pinpoints the important features of the problem. It should,
of course, be added here that too much specialization of the problem features
may sometimes yield a subset of the original problem and thus the original
problem is lost. Determining the problem features, thus, is a main task in
understanding the problem. Once the first step is over, the next step is to
represent the problem features by an internal representation that truly
describes the problem. The significance of the second step lies in the exact
encoding of the features into the mental representation, so that the semantics
of the problem and the representation have no apparent difference. The
second step depends solely on the type of the problem itself and thus differs
for each problem. In most cases, the problem is represented by a specialized
data structure such as matrices, trees, graphs, etc. The choice of the structure
and organization of the data / information by that structure, therefore, should
be given priority for understanding a problem. It should be mentioned here
that the time-efficiency in understanding a problem depends largely on its
representation and consequently on the selection of the appropriate data
structures. A few examples are presented below to give the readers some idea
about understanding and solving a problem.

Example 2.2: This example demonstrates how a graphic representation can
help in solving a complex problem. The problem is with a monk. He started
climbing up atall mountain on one sunny morning and reached the top on the



same evening. Then he started meditating for several days in atemple at the
hilltop. After several days, on another sunny morning, he left the temple and
started climbing down the hill through the same road surrounding the
mountain. The road is too narrow and can accommodate only one passenger at
onetime.

The problem isto prove that there must be a point on the hill that the
monk will visit at the same time of the day both in his upward and downward
journey, irrespective of his speed. This problem can be best solved by
assuming that there are two monks, one moving up, while the other is climbing
down the hill. They started moving at the same time of the day. Since the road
is narrow, they must meet at some spot on theroad (videfig. 2.11).

2000 Km
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The vertical bars denote the monks. The upward (downward)
arrow indicates the upward (downward) journey of the monks.
Note that the two monks must meet at some point on the road.

Fig. 2.11: Representation of the monk problem.

It may be noted that the main stress of the problem should be given to the
meeting of the monks only and should not be confused with their meeting
time. The solution of the given problem is a simple extension of the modified

problem with two monks, which the reader can guess easily .

There exist quite alarge number of interesting problems (see exercises) that
can be efficiently represented by specialized data structures. For instance, the
4-puzzle problem can be described by a matrix; the water-jug problem by a



graph and the missionaries-cannibals problem by a tree. There exist also a
different variety of problems that could be formulated by propositional codes
or other knowledge representation techniques. Identifying the best
representation of a problem is an art and one can learn it through intuition
only. No hard and fast rules can be framed for identifying the appropriate
representation of the problem space.

2.6 A Cybernetic View to Cognition

An elementary model of cognition (vide fig. 2.12) is proposed in this section
based on its foundation in cognitive psychology [7], [11]. The model consists
of a set of 5 mental states, denoted by ellipses, and their activation through
various physiological and psychological processes. The model includes
feedback of states and is thus cyclic. The model [16] in fig. 2.12, for instance,
contains three cycles, namely the perception-acquisition cycle, the sensing-
action cycle, and the last one that passes through all states, including
sensing, acquisition, perception, planning and action, is hereafter called the
cognition cycle [16].

2.6.1 The States of Cognition

Sensing: Apparently, sensing in engineering sciences refers to reception and
transformation of signals into measurable form. However, sensing, which has
awider perspective in cognitive science, stands for all the above together with
pre-processing (filtering from stray information) and extraction of features from
the received information. For example, visual information on reception is
filtered from undesirable noise [5] and the elementary features like size, shape,
color, etc. are extracted for storing into short term memory (STM).

Acquisition: The acquisition state compares the response of the STM with
aready acquired and permanently stored information of the LTM. The content
of LTM, however, changes occasionally, through feedback from the
perception state. This process, often called refinement of knowledge, is
generally carried out by a process of unsupervised learning. The learning is
unsupervised since such refinement of knowledge is an autonomous process
and reguires no trainer for its adaptation.

Perception: This state constructs high level knowledge from acquired
information of relatively lower level and organizes it, generaly, in a structural
form for the efficient access of knowledge in subsequent phases. The



construction of knowledge and its organization is carried out through a
process of automated reasoning that analyzes the semantic (meaningful)
behavior of the low-level knowledge and their association. The state of
perception itself is autonomous, as the adaptation of its internal parameters
continues for years long until death. It can be best modeled by a semantic net
(3], [6] -

Sensory information

Sensing
/
Action
Acquisition
Cognition
cycle
SL UL
Planning +«
Perception
RS

SL= Supervised learning, UL= Unsupervised learning, RS= Reasoning
Fig. 2.12: The different mental states of cognition and their relationship.

Planning: The state of planning engages itself to determine the steps of
action involved in deriving the required goal state from known initial states of
the problem. The main task of this state is to identify the appropriate piece of
knowledge for application at a given instance of solving a problem. It executes
the above task through matching the problem states with its perceptual model,
saved in the semantic memory.

It may be added here that planning and reasoning, although sharing much
common formalism, have a fundamental difference that originates from their
nomenclature. The reasoning may be continued with the concurrent execution
of the actions, while in planning, the schedule of actions are derived and
executed in a later phase. In our model of cognition, we, thus, separated the
action state from the planning state.

Action: This state determines the control commands for actuation of the
motor limbs in order to execute the schedule of the action-plan for a given



problem. It is generally carried out through a process of supervised learning,
with the required action as input stimulus and the strength of the control
signals as the response.

Example 2.3: This example demonstrates the various states of cognition
with reference to avisual image of asleeping cat in acorridor (Fig. 2.13).

Fig. 2.13: Digital image of asleeping cat in acorridor.
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Fig. 2.14: The state of perception about a cat in the semantic memory.
Here, the sensing unit is a video camera, which received the digital image of
the cat in the corridor. The image was then pre-processed and its bit-map was



saved in a magnetic media, which here acts as an acquisition unit. The
Acquisition State of the model of cognition, thus, contains only a pixel-wise
intensity map of the scene. Human beings, however, never store the bit-map of
a scene; rather, they extract some elementary features, for instance, the shape
of the face (round / oval-shaped ), length of the tail (long / too long / short),
texture of the fur and the posture of the creature. The extracted features of a
scene may vary depending on age and experience of the person. For example, a
baby of 10 months only extracts the (partial) boundary edges of the image,
while a child of 3 years old can extract that “the face of the creature is round
and has a long tail”. An adult, on the other hand, gives priority to postures,
saves it in STM and uses it as the key information for subsequent search in
the LTM model of perception. The LTM in the present context is a semantic
net, which keeps record of different creatures with their attributes. A typical
organization of a semantic net, representing a cat (fig.2.14) and a corridor (fig.
2.15) is presented below.

connect is part of a
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Fig. 2.15 : The state of perception about a corridor in the
semantic memory.

Now, for illustrating the utility of the perception, planning and action
states, let us consider the semantic net for the following sentencein fig. 2.16.

“The milkman lays packets full of milk in the corridor.”

lays full of inthe
Milk

A 4

A 4

Corridor

A 4

Milkman Packets

Fig. 2.16: Semantic net of atypical fact in the state of perception.

Combining al the above semantic nets together, we form a composite
model of the entire scene, which together with the additional piece of
knowledge: “If a living creature is fond of something and it is kept away from
him, then he cannot access it,” helps someone to generate the following
schedule of plansthrough a process of backward reasoning [16].



Plan: Keep the packets full of milk away from the cat.

Further, for execution of the above plan, one has to prepare the following
schedul e of actions:

1. Move to the corridor.
2. Pick up the packets of milk.
3. Keep them in a safe place beyond the reach of the cat.

It may be noted that the generation of the above schedule of actions for a
given plan by human beings requires almost no time. This, perhaps, is due to
the supervised learning scheme that hel ps speeding up the generation of such
aschedule.

The semantic net that serves as a significant tool for knowledge
representation and reasoning requires further extension for handling various
states of cognition efficiently. A specialized Petri-like net has been employed
in chapter 16 of this book, for building models of cognition for applicationsin
inexact reasoning, learning, refinement of knowledge and control and co-
ordination of tasks by an artificial cognitive map. The Petri-like nets mentioned
here, however, have structural resemblance only with ideal Petri nets [25] but
are distinct with respect to their properties.

2.7 Scope of Realization of Cognition
in Artificial Intelligence

‘Cognition’ being an interdisciplinary area has drawn the attention of peoples
of diverse interest. The psychologists study the behavioral aspects of
cognition. They construct conceptual models that resemble the behavior of
cognition and interpret the biological phenomena with their conceptual
models. Researchers of Artificial Intelligence, however, have a different
attitude towards cognition. They observe the biological behavior of human
beings and attempt to realize such behavior on an intelligent agent by
employing intelligent tools and techniques. A robot, for example, could be
such an agent, which receives sensory signals from its environment and acts
on it by its actuators and motor assemblies to execute a physical task. A
question then naturally arises: should we call al the sensing-action cycle
executing agents artificially intelligent? If so, whereistheir intelligence?
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Fig. 2.17: A process control loop that executes the sensing-action
cycle.

A little thinking, however, reveals that most of the closed loop control
systems sense signals from their environment and act on it to satisfy a desired
goal (criterion). There is a controller in the control loop that receives the
deviation (error) of the measured signal from the desired signal (set-point), and
generates a control command for the plant. The plant in turn generates an
output signal, which is fed back to the controller through the error detector
module (vide fig. 2.17). The controller could be analog or digital. An analog
controller is alag/ lead network, realized with R-C circuits. A digital controller,
on the other hand, could be realized with a microcomputer that recursively
executes a difference eguation. Such controllers were called intelligent two
decades back. But, they are never called artificially intelligent. So a mere
performer of the sensing-action cycle in the elementary model of cognition
(vide fig. 2.12) cannot be called artificially intelligent. But they can be made
intelligent by replacing the standard controllers by a knowledge-based system.
It should be added here that a sensing-action cycle performer too is sometimes
called artificially intelligent, in case it requires some intelligent processing of
the raw information. For instance, consider a robot that has to plan its
trajectory from a predefined initial position of the gripper to a final position.
Suppose that the robot can take images of its neighboring world by a camera
and determine the 3-D surfaces around it that block its motion. There may exist
alarge number of possible trajectories of gripper movement and the robot has
to determine the shortest path without hitting an obstacle. Such schemes
obviously require much of Al tools and techniques and thus should be called
artificialy intelligent. But what are the tools that can make them intelligent?

The book provides an answer to this question through its next 22 chapters.
A brief outline of the answer to the question, however, is presented here to
hold the patience of the curious readers. A cursory view to the elementary



model of cognition (vide fig. 2.12) reveals that there exist 5 mental states and 3
possible cycles that an intelligent agent can execute. The task of the agent, in
the present context, is to maintain a transition of states by reasoning and
learning paradigms. The reasoning schemes provide the agent new inferences,
abstracted from sensory data and knowledge. It is capable of deriving
inferences even in the absence of complete data and knowledge bases. The
learning schemes, on the other hand, help the agent by providing him
necessary actuating signals, when excited with sensory signals. The agent
thus is able to maintain state-transitions with the reasoning and the learning
modules. The book provides a detailed analysis of the mathematical models
that can be employed to design the reasoning and learning schemes in an
intelligent agent.

It must be added here that the model of cognition (videfig. 2.12) isageneric
scheme and the whole of it need not be realized in most intelligent agents. We
now list some of the possible realization of the agents.

Pattern Recognition Agent: A pattern recognition agent receives

sensory signals and generates a desired pattern to be used for some

definitive purposes. For example, if the agent is designed for speaker
recognition, one has to submit some important speech features of the
speakers such as pitch, format frequencies, etc. and the system would

be able to give us the speaker number. If the recognition system is to

recognize objects from their visual features, then one has to submit

some features such as the largest diagonal that the 2-D image can

inscribe, the smallest diagonal that it can inscribe and the area of the 2-

D image surface. In turn, the system can return the name of the 2-D

objects such as ellipse, circle, etc. It may be mentioned here that a
pattern recognition system realizes only the sensing-action cycle of
the cognition.

A Path Planning Agent: A path planning agent perhaps is one of
the complete agents that uses all the states in the elementary model of
cognition (fig. 2.12). Such agents have ultrasonic sensors / laser
range finders by which it can sense obstacles around it. It saves the
sensed images in its short term memory and then extracts knowledge
about the possible locations of the obstacles. Thisisreferred to asthe
obstacle map of the robot’s environment. For subsequent planning
and the action cycle, the robot may use the obstacle map. Details of
the path planning scheme of the mobile robot will be presented in
chapter 24.



2.8 Summary

Cognitive science has emerged as a new discipline of knowledge that deas
with the mental aspectsof human beings. The chapter aims at establishing the
psychological perspectives of the human cognition. It elucidated the various
models of human memory and representation of imagery and cognitive maps
on memory. The mechanism of understanding a problem is also presented here
with special reference to representation of the problems.

Artificial Intelligence, on the other hand, isayoung branch of science that
rests on the theme of building intelligent machines. The chapter briefly
outlined the fundamental principles of cognitive science and demonstrated the
possible ways of realizing them on intelligent machines. The tools and
techniques required for its possible realization have been referred to only. But
their detailed mechanism will be covered throughout the book.

The special feature of the chapter is the cybernetic view to cognition. The
elementary model of cognition has 5 mental states. These states can undergo
transformation under appropriate reasoning and learning cycles. An intelligent
agent can autonomously control the transition of states through reasoning
and learning mechanisms. An agent need not always be a person. A machine
that receives sensory information and acts accordingly on the environment
can also play the role of an agent. Thus modern robots are ideal agents. The
chapter demonstrated some applications of these agentsin pattern recognition
and path planning amidst obstacles.

Exercises

1. A template image of dimension of (m x m) pixels is to be searched in a
digital image of dimension (n x n). Assume that mod (n/ m) =0 and n >> m.
If the matching of the template block with equal sized image blocks is
carried out at an interleaving of (m/2) pixels, both row and column-wise,
determine the number of times the template is compared with the blocksin

theimage[ 5.

[Hints: The number of comparison per row of theimage = (2n/ m-1).
The number of comparison per column of theimage = (2n/ m -1).
Total number of comparison = (2n/m-1)%]

2. For matching a template image of dimension (m x m) pixels with a given
image of dimension (n x n), where n >>m and mod (n/ m) =0, one uses the
aboveinterleaving.



Further, instead of comparing pixel-wise intensity, we estimate the
following 5 parameters (features) of the template with the same parameters
in each block of theimage[4] :

L-1
Mean intensity M; =& b P(b),
b=0

L-1
Variance of intensity V> =& { (b-M, )*P(b)},
b=0
L-1
Skewness of intensity Sk; =(1/ V*) & { (b-M;)*P(b)},
b=0

L-1
Kurtosis of intensity Ku; = (1/V;*) & { (b-M,)* P(b)}, and
b=0
L-1
Energy of intensity E =& {P(b)}?,
b=0

where b represents the gray level of each pixel in ablock i and L is the
number of gray levelsin theimage.

The square of absolute deviation of these features of the i-th block
from the corresponding features of the template is denoted by m?, v/, sk?,
kui?, e respectively.

Let d; denote a measure of distance between the features of the i-th
block to that of the template. Show (logically) that the weakest feature
match model identifiesthe j-th block, by estimating

di=Max{ m? v? sk’ ku? e}, 1£" i £(2n/m-1)
such thatd; =Min { d; |1£" i £(2n/m-1°} [4].

Also show that the strongest feature match model identifies the j-th block
by estimating

di=Min{ m? v? sk’ ku? e?}, 1£" i £(2n/m-1)>°

such thatd; =Min { d; |1£" i £(2n/m-1°} [4].



Further show that the Euclidean least square model identifies the j-th
block by estimating

d ={ m*+v+sk?+ ku?+ e*}* 1£" i £(2n/m-1)’
suchthatd; =Min {d [1£" i £(2n/m-1)*} [4].

Write a program in your favorite language to match a given template with
the blocks in an image, using the above guidelines. Mark the actual block
in the image that you want to identify and measure the shift of the
matched blocks by executing your program. Perform the experiments with
different templates on the same image and then conclude which of the
three measures isthe best estimator of template matching.

Given two jugs, one 4 liters and the other 3 liters with no markingsin them.
Also given awater supply with alarge storage. Using these 2 jugs, how
can you separate 2 liters of water? Also draw the tree representing the
transition of states.

[Hints: Define operators such as filling up a jug, evacuating a jug,
transferring water from one jug to the other etc. and construct a tree
representing change of state of each jug due to application of these
operators. Stop when you reach a state of 2 liters water in either of the 2
jugs. Do not use repeated states, since repeated states will result in a
graph with loops. If you cannot solve it yourself, search for the solution in
the rest of the book.]

Redraw the state-space for the water jug problem, by allowing repetition of
the states. Should you call it atree yet?

Show by Tulving's model which of the following information/knowledge
should be kept in the episodic, semantic and procedural memories.

a) Therewasahugerain last evening.

b) The sky was cloudy.

¢) Themoon wasinvisible.

d) The seawas covered with darkness.

€) Thetidesinthe seahad alarge swinging.

f)  Theboatmen could not control the direction of their boats.

g) Itwasaterrific day for the fishermen sailing in the sea by boats.

h) Since the sea was covered with darkness, the boatmen used a battery
driven lamp to catch fish.

i) Because of the large swinging of the tides, the fishermen got a large
number of fish caught in the net.



i)  Thenet wastoo heavy to be brought to the seashore.
k) The fishermen used large sticks to control the motion of their boats
towards the shore.

7. The Atkinson-Shiffrin’s model can be represented by first ordered transfer

functions, vide fig.2.18, presented below:

sensory
information
1 o 1/(S+T)) oy 1/(S+Ty) L,
sensory STM LTM

register
Fig.2.18: Schematic representation of the Atkinson-Shiffrin’s model.

Given T; = 10 seconds and T, = 30 minutes, find the time response of
the STM and the LTM, when a unit impulse is used as an excitation signal
for the sensory register. Also given that the Laplace inverse of

1/(S+a)ise?".

Now suppose we replace the excitation signal by a 0.5 unit impulse. Find
the response of the STM and the LTM. Can we distinguish the current
responses from the last ones? If the answer is yes, what does the result
imply?
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Production
Systems

‘Production systems’ is one of the oldest techniques of knowledge
representation. A production system includes a knowledge base, represented
by production rules, a working memory to hold the matching patterns of data
that causes the rules to fire and an interpreter, also called the inference
engine, that decides which rule to fire, when more than one of them are
concurrently firable. On firing of a rule, either its new consequences are
added to the working memory or old and unnecessary consequences of
previously fired rules are dropped out from the working memory. The
addition to and deletion from working memory depends on the consequent
(then) part of the fired rule. Addition of new elements to the working memory
is required to maintain firing of the subsequent rules. The deletion of data
elements from the working memory, on the other hand, prevents a rule from
firing with the same set of data. This chapter provides a detailed account of
production systems, its architecture and relevance to state-space formulation
for problem solving.

3.1 Introduction

Knowledge in an Expert System can be represented in various ways. Some
of the well- known techniques for representation of knowledge include



Production Systems, Logical Calculus and Structured Models. This chapter is
devoted to the Production System-based approach of knowledge
representation. Logical Calculus-based methods for knowledge representation
are covered in chapter 5, 6 and 7 while the structured models for reasoning
with knowledge are presented in chapter 8. The reasoning methodologies
presented in chapter 3, 5 and 6 are called monotonic [8] as the conclusions
arrived at in any stage of reasoning do not contradict their predecessor
premises derived at earlier. However, reasoning people often apply common
sense, which in many circumstances results in conclusions that contradict the
current or long chained premises. Such a type of reasoning is generally called
non-monotonic [8]. A detailed account of the non-monotonic logics will be
covered later in chapter 7. The reasoning methodologies covered in chapter 3-
8 do not presume any temporal and spatial variations of their problem states.
The issues of spatio-temporal models for reasoning will be taken up later in
chapter 11.

This chapter is an opening chapter on knowledge representation. We,
therefore, discuss some elementary aspects, relevant to this chapter. Before
presenting the technique for knowledge representation by Production Systems,
we define the term “Knowledge”, which is widely used throughout the text.

Formally, a piece of knowledge is a function that maps a domain of
clauses onto a range of clauses. The function may take algebraic or
relational form depending on the type of applications. As an example
consider the production rule PR, , which maps a mother-child relationship
between (m, c) to a Love relationship between the same pair.

PR,: Mother (m, ¢c) - Loves (m, c)

where the clause Mother (m, c) describes that “m” is a mother of child “c”; the
clause Loves (m, c¢) denotes that “m” loves “c” and the arrow denotes the if-

then condition. In brief, the rule implicates: if “m” is a mother of child “c
then “m” loves “c”.

The production system is the simplest and one of the oldest
techniques for knowledge representation. A production system consists of
three items: i) a set of production rules (PR), which together forms the
knowledge base, ii) One (or more) dynamic database(s), called the working
memory and 1iii) a control structure / interpreter, which interprets the database
using the set of PRs [4], [7]. The production system, which has wide
applications in automata theory, formal grammars and the design of
programming languages, however, entered into knowledge engineering (1978)
by Buchanan and Feigenbarm [2] only a few years back.



Before presenting the architecture of a production system, applied to
intelligent problem solving, let us first introduce the functionaries of its
modules.

3.2 Production Rules

The structure of a production rule PR, can be formally stated as follows:
PR: Pr(X)A P, (V)A .P.(X2) = Qi (V)VO:0 V.. Ou(Y,X)

where Pi and Qj are predicates; X, y, z are variables; “A“, “V” | and “ —”
denote the logical AND, OR and if-then operators respectively. The left-hand
side of a PR is called the antecedent / conditional part and the right-hand side
is called the consequent / conclusion part. Analogously, the left-side symbol

Pi is called the antecedent predicate, while the right-side symbol Q; is called

the consequent predicates.

It should be pointed out that the antecedent and consequent need not be
always predicates. They may equally be represented by object-attribute-value
triplets. For example, (person-age-value) may be one such triplet. To represent
the rules in this fashion, we consider an example, presented in PR2.

PR2 : if (person age above-21) &
(person wife nil) &
(person sex male)
then (person eligible for marriage) .

It should further be noted that though object-attribute-value in PRs are
often represented using variables, still the presence of constants in the triplet-
form cannot be excluded. PR3, given below, is one such typical example.

PR3: if (Ram age 25) &
(Ram wife nil) &
(Ram sex male)
then (Ram eligible for marriage).

In the last example person’s name and age are explicit in the PR.

3.3 The Working Memory

The working memory (WM) generally holds data either in the form of clauses
or object-attribute-value (OAV) triplet form. The variables in the antecedent
predicates / OAYV relationship of the antecedent part of PRs are matched



against the data items of the WM. In case all the variable instantiation of the
antecedent parts of a rule are consistent, then the rule is fired and the new
consequents are added to the WM. In some production systems, the right-
hand-side of the rule indicates which data are to be added to or deleted from
the WM. Normally, new consequents are added to the WM and some old
data of WM, which are no longer needed, are deleted from the WM to
minimize the search time required for matching the antecedent parts of a rule
with the data in WM. OPSS5 is a production language that offers the addition /
deletion features highlighted above.

3.4 The Control Unit / Interpreter

The control unit / interpreter for a production system passes through three
steps, which together is called the recognize-act cycle [4].

Recognize-Act Cycle

l. Match the variables of the antecedents of a rule, kept in a knowledge
base, with the data recorded in the WM.

2. If more than one rule, which could fire, is available then decide
which rule to fire by designing a set of strategies for resolving the
conflict regarding firing of the rules.

3. After firing of a rule, add new data items to WM or delete old (and
unnecessary) data, as suggested by the fired rule from the WM and
go to step (1).

Generally, a start-up element is kept at the working memory at the
beginning of a computation to get the recognize-act cycle going. The
computation process is terminated if no rule fires or the fired rule contains an
explicit command to halt.

The conflict resolution process helps the system by identifying which
rule to fire. It is, however, possible to construct a rule-set where only one rule
is firable at any instant of time. Such systems are called deterministic. Since
most of the real world problems contain a non-deterministic set of rules, it
becomes difficult for many systems to present the rule-set in a deterministic
manner.



Good performance of a control unit / interpreter depends on two properties,
namely, i) sensitivity and 1ii) stability [4]. A production system or more
specifically a control unit is called sensitive, if the system can respond
quickly to the change in environment, reflected by the new contents of the
WM. Stability, on the other hand, means showing continuity in the line
of reasoning.

3.5 Conflict Resolution Strategies

The Conflict Resolution strategies vary from system to system. However,
among the various strategies, the following three are most common. In many
systems a combination of two or all of the following strategies [4] are used
for resolving conflict in a control unit.

1. Refractoriness

This strategy requires that the same rule should not be fired more than once
when instantiated with the same set of data. The obvious way of
implementing this is to discard the instantiations from the WM, which have
been used up once. Another version of their strategy deletes instantiations,
which were used up during the last recognition-act cycle. This actually helps
the system overcome the problems of moving on loops.

2. Recency

This strategy requires that the most recent elements of the WM be used up for
instantiating one of the rules. The idea is to follow the leading edge of
computation, rather than doubling back to take another look at the old data.
Doubling back, of course, is necessary when the reasoning in the current line
of action fails.

3.  Specificity

This strategy requires that the rule with more number of antecedent clauses be
fired than rules handling fewer antecedent clauses. As an example, consider
the following two rules, denoted as PR1 and PR2.

PR1: Bird (X) — Fly (X).

PR2: Bird (X), Not emu (X) > Fly (X).



Suppose the WM contains the data Bird (parrot) and Not emu (parrot). Then
both the rules are firable. However, the second rule should be fired using the
specificity strategy.

3.6 An Alternative Approach
for Conflict Resolution

The MYCIN experiments [3] of Stanford University proposed another
approach for resolving conflicts via metarules. Metarules too are rules, whose
task is to control the direction of reasoning and not to participate in the
reasoning process itself. Metarules can be either domain-specific or domain-
free. A domain-specific metarule is applicable for identifying the rule to fire
only in a specific domains, while domain-free metarules are of very general
kinds and can be used for controlling the firing of rules in a generalized
knowledge base. To illustrate this concept, we take examples from MYCIN

[3].
Example 3.1: Domain-specific metarule
Metarule:  IF 1) the infection is pelvic abscess and

2) there are rules which mention in their premise
entero-bactoriae, and

3) there are rules which mention in their premise
gram- positive rods.

THEN there exists suggestive evidence (0.4) that the
former should be applied before the latter.

Example 3.2: Domain-free rule

Metarule: [IF 1) there are rules which do not mention the current
goal in their premise, and

2) there are rules while mention the current goal
in their premise

THEN it is definite (1.0) that the former should be applied
before the latter.
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The architecture of a production system [5] is now presented, vide fig.
3.1. The conflict resolution with two rules PRi and PRj
demonstrated in this architecture. The other descriptions in fig. 3.1 being self-
explanatory are left to the readers for interpretation.

has been



To demonstrate the working principle of a production system, let us
illustrate it using the well- known water-jug problem. The following
statement can best describe the problem.

3.7 An Illustrative Production System

We now consider the well known water jug problem, presented below, as a
case study of production systems.

Example 3.3: Given 2 water jugs, 4 liters and 3 liters. Neither has any
measuring marks on it. There is a pump that can be used to fill the jugs.
How can you get exactly 2 liters of water into 4-liter jugs?

Let us assume that u and v denote the content of 4L and 3L jugs
respectively. The content of the two jugs will be represented by (u, v).
Suppose, the start-up element in the WM is (0,0). The set of PRs for the
problem [8] are listed below.

List of PRs for the water-jug problem
PR1. (u,v:u<4) - 4,v)
PR2. (uv:v<3)-> (u3)

PR3. (uv:u>0)— (u-D,v), where D is a fraction of the previous
content of u.

PR 4. (u,v:v>0) > (u, v-D), where D is a fraction of the previous
content of v.

PR5 (uv:u>0)—> (0,v)

PR6. (u,v:v>0)—> (u0)

PR7. (wv:iutv 24A v>0)—> 4, v-(4-u)
PR8 (uv:utv 23A u>0)—>@w-03-v),3)
PRY9. (u,v:u+v <4A v>0) - (u+v,0)

PR 10. (uy,v:u+v <3Au>0)—-> (O,u+v)



To keep track of the reasoning process, we draw a state-space for the
problem. Note that the leaves generated after firing of the rules should be
stored in WM. We first consider all possibilities of the solution (i.e., without
resolving the conflict). Later we would fire only one rule even though more
than one are firable. The state-space without conflict resolution is given in fig.
3.2.

(0,0)
PR 2 / \ PR 1
0.3) 4,0)
PR 9 PR 2 / \ PR 6
30 | [@3) {, 3)
PR 2 ‘_}( \4-.“ \ PR 6
(3.3) " " [ao
PR 7 / \ PR 10
@2) o
PR 5 / \ PR 1
(0,2) oD
PR 9 \ PR 8
2,0)
2.3)

Fig. 3.2: The state-space for the water-jug problem.

To resolve conflict for this system, one can use the following strategies.



i) Prefer rules for firing, where u + v can be brought to 5L or 6L.

ii) Avoid doubling back, whenever possible. In other words, never
attempt to generate old entries.

3.8 The RETE Match Algorithm

The recognition-act cycle, mentioned earlier, suffers from a limitation of
matching the common antecedents of two or more rules with working
memory elements a number of times for testing the friability of the rules. For
instance, consider the following three production rules PR 1 through PR 3.

PR 1: IF (Xis a Bird) &
(X has wings) &
(the wings of X are not defective)
THEN (ADD to WM that X can Fly).

PR 2: IF (X has Wings) &
(X is a mammal)

THEN (Add to WM that X can fly).

PR 3: IF (X is a Bird) &
(X has wings) &
(Color of X is black) &
(X lays eggs at the nest of Y) &
(Color of Y is black)
THEN (Add to WM that X is a spring Bird).

Assume that the WM contents are given by WM =

{ Cuckoo is a Bird, parrot is a Bird, Cuckoo has wings, Color of cuckoo is
black, Cuckoo lays eggs at the nest of crow, Color of crow is black }.

The recognition-act cycle, in the present context, will attempt to match the
antecedents of PR1 first with the data recorded in WM. Since the third



antecedent clause is not available in WM, the interpreter will leave this rule
and start the matching cycle for the antecedents of PR 2 with contents of
WM. Since the second antecedent clause of PR 2 is not available, the
interpreter would start the matching cycle for the antecedents of PR 3. So,
when there exist common antecedents of a number of rules, the interpreter
checks their possibility of firing one by one and thus matches the common
antecedents of the rules a number of times. Such repeated matching of
common antecedents can be avoided by constructing a network to keep track
of these variable bindings. The word ‘rete’, which in Latin means net [7],
refers to such a network. The RETE algorithm is illustrated below with the
network of fig.3.3.

Parrot is a Bird

Cuckoo is a Bird

Cuckoo has wings
X = Cuckoo

Color of Cuckoo is black

Cuckoo is a spring Bird

Color of crow is black

Y= Crow

Cuckoo lays eggs at the nest of crow

Fig. 3.3: Construction of the ‘rete’.



In fig. 3.3, the antecedent clauses have been represented by circles. It may
be noted that at each node there may exist more than one clause. Further, the
bound values of the variables here are X = Cuckoo and Y = Crow. Thus the
third rule only is selected for firing. In case more than one rule is found to be
firable, then the conflict resolution strategies, described earlier, will be
invoked to identify the right rule for firing.

The RETE algorithm thus constructs a network like fig. 3.3 and
continues updating it as more rules are fired. It saves significant matching
cycles by matching common antecedents of the rules once only.

3.9 Types of Production Systems

In this section, we present two special types of production systems: i)
commutative system and ii) decomposable system [4]. Special features of these
production systems are outlined below.

3.9.1 Commutative Production System

A production system is called commutative if for a given set of rules R and
a working memory WM the following conditions are satisfied:

i) Freedom in orderliness of rule firing: Arbitrary order of firing of the
applicable rules selected from set S will not make a difference in the
content of WM. In other words, the WM that results due to an
application of a sequence of rules from S is invariant under the
permutation of the sequence.

ii) Invariance of the pre-condition of attaining goal: 1f the pre-condition
of a goal is satisfied by WM before firing of a rule, then it should remain
satisfiable after firing of the rule.

iii) Independence of rules: The firability condition of an yet unfired rule R;
with respect to WM remains unaltered, even after firing of the rule R; for

any j.

The most significant advantage of a commutative production system is
that rules can be fired in any order without having the risk of losing the goal,
in case it is attainable. Secondly, an irrevocable control strategy can be
designed for such systems, as an application of a rule to WM never needs to
be undone.



3.9.2 Decomposable Production System

A production system is called decomposable if the goal G and the working
memory can be partitioned into G; and WM,;, such that

G: ANDi(Gi ),
wM=U { WM}

Vi

and the rules are applied onto each WM; independently or concurrently to
yield Gi. The termination of search occurs when all the goals G; for all i have
been identified.

The main advantage of decomposition is the scope in concurrent access
of the WM, which allows parallel firing of rules, without causing a difference
in the content of the working memory WM. Decomposable production
systems have been successfully used for evaluation of symbolic integration.
Here a integral can be expressed as a sum of more than one integral, all of
which can be executed independently.

3.10 Forward versus Backward
Production Systems

Most of the common classical reasoning problems of Al can be solved by any
of the following two techniques called i) forward and ii) backward reasoning.
In a forward reasoning problem such as 4-puzzle games or the water-jug
problem, where the goal state is known, the problem solver has to identify the
states by which the goal can be reached. These class of problems are generally
solved by expanding states from the known starting states with the help of a
domain-specific knowledge base. The generation of states from their
predecessor states may be continued until the goal is reached. On the other
hand, consider the problem of system diagnosis or driving a car from an
unknown place to home. Here, the problems can be easily solved by
employing backward reasoning, since the neighboring states of the goal node
are known better than the neighboring states of the starting states. For
example, in diagnosis problems, the measurement points are known better
than the cause of defects, while for the driving problem, the roads close to
home are known better than the roads close to the unknown starting location
of driving. It is thus clear that, whatever be the class of problems, system
states from starting state to goal or vice versa are to be identified, which
requires expanding one state to one or more states. If there exists no
knowledge to identify the right offspring state from a given state, then many



possible offspring states are generated from a known state. This enhances the
search-space for the goal. When the distance (in arc length) between the
starting state and goal state is long, determining the intermediate states and
the optimal path (minimum arc length path) between the starting and the goal
state becomes a complex problem. The issues of determining an optimal path
will be taken up in detail in the next chapter.

The following example illustrates the principle of forward and backward
reasoning with reference to the well-known “farmer’s fox-goat-cabbage
problem”.

Example 3.4: The problem may be stated as follows. A farmer wants to
transfer his three belongings, a wolf, a goat and a cabbage, by a boat from
the left bank of a river to its right bank. The boat can carry at most two items
including the farmer. If unattended, the wolf may eat up the goat and the goat
may eat up the cabbage. How should the farmer plan to transfer the items?

The illegal states in the problem are (W,G || F,C), (G,C | | F,W), (F, W
|| G,C)and (F, C|| W, G) where F, G, | |, W and C denote the farmer, the
goat, the river, the wolf and the cabbage respectively. In the first case the wolf
and the goat are at the left bank, and the farmer and the cabbage are at the right
bank of the river. The second case demonstrates the presence of goat and
cabbage in the left and the farmer and the wolf in the right bank. Similarly,
the other illegal states can be explained easily.

A part of the knowledge base for the system is given below.
PR1: (F,G,W,C||Nil)—> (W,C]||F, Q)
PR2: (W,C||F,G)—> (F,W,C||G)
PR3:(F,W,C||G)—> (C||F,W,QG)

PR4: (C||F,W,G) - (F,G,C||W)
PR5: (F,G,C||W) - (G| |F, W, C)
PR6:(G||F,W,C) - (F,G||W,CO)
PR7:(F,G,||W,C) — (Nil||F,G,W,C)
PR8 (F,W,C||G)—> (W]]|F,G,O)
PR9: (W ||F,G,C)— (F,G, W |]|C)

PR 10: (F,G,W ||C)—> (G| |F,W,C)
PR11: (G| |F,W,C)— (F,G||W,0)
PR 12: (F,G||W,C) —>(Nil ||F,G,W,C)



Forward Reasoning: Given the starting state ( F, G, W, C | | Nil) and the
goal state (Nil | | F, G, W, C), one may expand the state-space, starting with
(F,G,W,C | | Nil) by the supplied knowledge base, as follows:
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Fig. 3.4: The forward reasoning trace of the farmer’s problem with a
partially expanded state-space.



Backward Reasoning: The backward reasoning scheme can also be
invoked for the problem. The reasoning starts with the goal and identifies a
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Fig. 3.5: Backward reasoning solution of the farmer’s problem.



rule whose right-hand side contains the goal. It then generates the left side of
the rule in a backward manner. The resulting antecedents of the rules are called
sub-goals. The sub-goals are again searched among the consequent part of the
rules and on a successful match the antecedent parts of the rule are generated
as the new sub-goals. The process is thus continued until the starting node is
obtained.

A caution about backward reasoning: Backward reasoning' in
many circumstances does not support the logical semantics of problem
solving. It may even infer wrong conclusions, when a goal or sub-goal (any
intermediate state leading to the goal ) has multiple causes for occurrence, and
by backward reasoning we miss the right cause and select a wrong cause as its
predecessor in the state-space graph. This is illustrated in the following
example below with reference to a hypothetical knowledge base.

Example 3.4: Consider the following knowledge base, the starting state
and the goal state for a hypothetical problem. The “,” in the left-hand side of
the production rules PR 1 through PR 4 denotes joint occurrence of them.

PR1: p,q —s
PR2: s,t > u
PR3: p,q,r > W
PR4: w—ov
PR5: v,;t—>u
Starting state: p and q
Goal state: u.

Other facts: t.

The state-space graph for the hypothetical problem, presented in fig. 3.6,
indicates that the goal can be correctly inferred by forward reasoning.
However, backward reasoning may infer a wrong conclusion: p and q and r, if
PR 5, PR 4 and PR 3 are used in order starting with the goal. Note that r is
an extraneous premise, derived by backward reasoning. But in practice the
goal is caused due to p, q and t only. Hence, backward reasoning may
sometimes yield wrong inferences.

" Backward reasoning is not supported by the logic of propositions and
predicates, vide chapter 5.
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Fig. 3.6: The state-space graph of a hypothetical problem.

Bi-directional Reasoning: Instead of employing either forward or
backward reasoning, both of them may be used together in automated problem
solving [6]. This is required especially in situations when expanding from
either direction leads to a large state-space. Fig. 3.7 (a) and (b) demonstrates
the state-space created respectively by forward and backward reasoning, while
fig. 3.7 (c) shows expansion of the state space from both sides together.
Surely, it requires expansion of less state-space.

Starting state Starting state Starting state

v

v

Goal state Goal State Goal State

(a) (b) (c)

Fig. 3.7: The state-space in (a) forward, (b) backward and (c) bi-
directional reasoning.



It may be added here that when instead of expanding all possible states
in both the forward and backward direction, as shown in fig. 3.7 (c), a few
states may be selected in both directions. This can be done by employing a
heuristic search, where a heuristic function is used to select a few states
among many for expansion. Heuristic search on a graph will be covered in
detail in the next chapter. The resulting forward and backward reasoning state-
space under this circumstance may not have an intersection, as cited in fig.
3.8. Bi-directional search in the present context is a waste of computational
effort.

Starting state

forward z
backward I:I

A\ 4
Goal state

Fig.3.8: Bi-directional search with minimal overlap in the state-space
generated by forward and backward reasoning.

3.11 General Merits of a Production System

Production systems, as already stated, are the oldest form of knowledge
representation that can maintain its traditional significance for the following
reasons.



3.11.1 Isolation of Knowledge and Control Strategy

The architecture of a production system, presented in fig. 3.1, demonstrates
that the knowledge base and the interpreter are realized on different modules.
This has significance from the point of view of the knowledge engineer. The
knowledge engineer collects the rules from the experts of her domain of interest
and codes the rules in appropriate format as required for the knowledge base.
Since the knowledge base is augmented with new rules and some rules are
updated and sometimes deleted from the storehouse, a loose coupling between
the knowledge base and the interpreter is helpful for them. Such a loose
coupling protects the interpreter code from unwanted access by the knowledge
engineers or users. Alternatively, updating the codes of the interpreter does not
cause a change in the knowledge base due to their loose coupling. The
separation of the knowledge base and the interpreter in a production system
has, therefore, been done purposefully.

3.11.2 A Direct Mapping onto State-space

The modules of a production system can be directly mapped onto the state-
space. For instance, the contents of the working memory represent the states,
the production rules cause state transitions and the conflict resolution strategies
control the selection of the promising states by firing one rule among many
firable rules. Production systems thus may be compared with a problem solver
that searches the goal through state-space search. The best first search
algorithms that we will present in the next chapter have much similarity with
a production system. The only differences between the two perhaps lies in the
process of selection of the next state. While in production systems this is
done by conflict resolution strategy, it is realized in the best first search
algorithms by selecting a state with a minimum cost estimate” .

3.11.3 Modular Structure of Production Rules

The production rules used in a production system generate the space of
instantiation of other rules in the working memory. Thus one fired rule causes
another rule to fire, thereby forming a chain of fired rule sequences. This is
informally called chaining of rules. However, a production rule does not call
other rules like function or procedure calls. Such syntactic independence of

* In a special form of the best first search algorithm like A*, the total cost of
reaching a state x from the starting node (root), called g(x), and the predicted
cost of reaching the goal from x, called h(x), is minimized. A node x is
selected for expansion, if it has the minimum g(x) + h(x) among many
possible unexpanded nodes.



rules supports the incremental development of reasoning systems by adding,
updating and deleting rules without affecting the existing rules in the
knowledge base.

3.11.4 Tracing of Explanation

A production system with conflict resolution strategy selects only one rule at
each recognize-act cycle for firing. Thus the fired rules are virtually time-
tagged. Since the rules cause state-transition in a production system, stating
the rule to the user during its firing, let the user understand the significance of
the state transition. Presenting the set of the time-tagged rule in sequence thus
gives the user an explanation of the sequence of the operators used to reach the
goal.

3.12 Knowledge Base Optimization
in a Production System

The performance of a production system depends largely on the organization of
its knowledge base. The inferences derived by a production system per unit
time, also called time efficiency, can be improved by reducing the matching
time of the antecedents of the production rules with data in the WM. Further,
if the rules are constructed in a manner so that there is no conflict in the order
of rule firing, then the problem of conflict resolution too can be avoided.
Another important issue of rule-base design is to select the rules so that the
resulting state-space for rule firing does not contain any cycles. The last issue
is to identify the concurrently firable rules that do not have conflict in their
action parts. This, if realized for a rule-based system, will improve the
performance to a high extent. This issue will be covered in detail in chapter 22,
where the architecture of knowledge-based systems is highlighted.

For optimization of rules in a rule-based system, Zupan [9] suggested the
following points.

i) Construct by backward reasoning a state-space graph from the desired
goal nodes (states) up to the nodes, which cannot be expanded further in a
backward manner. Each goal node, also called fixed points, is thus
reachable (has connectivity) from all possible starting states. It may be
noted that some of the connectivity from the starting nodes to the goal
nodes may pass through cycles. It should also be noted that the resulting
state-space will not miss the shortest paths from the goal to any other



state, as the predecessor states of each state are found by an exhaustive
breadth first search.

ii) The common states in the graph are replaced by a single vertex and the
parallel paths are identified.

iii) Do not generate an existing state.

3.13 Conclusions

Production systems are the simplest method for knowledge representation in
Al Experts, who are specialists in their respective subject-domain, need not be
conversant with knowledge engineering tools for encoding knowledge in
simple if-then rules. The efficiency of a production system depends mainly on
the order of firing of rules and hence on the conflict resolution strategies.
Selection of conflict resolution strategies, thus, is a significant issue in
designing a production system. Among the other interesting properties of a
production system, the two that need special mention are i) sensitivity and ii)
stability. A production system with good sensitivity implies that a small
change in data clauses of WM would cause a significant change in the
inferences. Stability, on the other hand, means continuation of reasoning in the
same line.

Exercises

1. For the missionaries-cannibals problem, presented in Exercises of
chapter 1, formulate one conflict resolution strategy. Test the advantage
of using the strategy with the state-space representation of the problem.

2. Test whether the following production systems are commutative. Justify
your answer.

a) Knowledge base

If A & B Then C.
If C Then D.
If A & D then E.

Initial WM = { A, B}.
b) Knowledge base

If A & B Then C.
If X & Y Then C.
If A Then E.



(1]

(2]

If B then F.
Initial WM = {A, B, X, Y}.
Knowledge base

If A & B Then Not (C ) [i.e. eliminate C from WM]
If C Then D.

Initial WM = {A, B, C}.
Which of the following two production systems is more stable ?
Knowledge base
If A & B Then C.
If C Then D.
If D Then E.
Initial WM = {A, B} and goal ={E}.
Knowledge base
If A Then B.
If C Then E.

If A& C ThenF.
If F Then A.

Initial WM = {A, C} and goal = {F}.
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Problem Solving
by Intelligent
Search

Problem solving requires two prime considerations: first representation of
the problem by an appropriately organized state space and then testing the
existence of a well-defined goal state in that space. Identification of the goal
state and determination of the optimal path, leading to the goal through one
or more transitions from a given starting state, will be addressed in this
chapter in sufficient details. The chapter, thus, starts with some well-known
search algorithms, such as the depth first and the breadth first search, with
special emphasis on their results of time and space complexity. It then
gradually explores the ‘heuristic search’ algorithms, where the order of
visiting the states in a search space is supported by thumb rules, called
heuristics, and demonstrates their applications in complex problem solving.
It also discusses some intelligent search algorithms for game playing.

4.1 Introduction

We have already come across some of the problems that can be solved by
intelligent search. For instance, the well-known water-jug problem, the
number puzzle problem and the missionaries-cannibals problem are ideal
examples of problems that can be solved by intelligent search. Common
experience reveals that a search problem is associated with two important



issues: first ‘what to search’ and secondly ‘where to search’. The first one is
generally referred to as ‘the key’, while the second one is termed ‘search
space’. In Al the search space is generally referred to as a collection of states
and is thus called state space. Unlike common search space, the state space in
most of the problems in Al is not completely known, prior to solving the
problem. So, solving a problem in Al calls for two phases: the generation of
the space of states and the searching of the desired problem state in that space.
Further, since the whole state space for a problem is quite large, generation of
the whole space prior to search may cause a significant blockage of storage,
leaving a little for the search part. To overcome this problem, the state space
is expanded in steps and the desired state, called “the goal”, is searched after
each incremental expansion of the state space.

Depending on the methodology of expansion of the state space and
consequently the order of visiting the states, search problems are differently
named in Al. For example, consider the state space of a problem that takes the
form of a tree. Now, if we search the goal along each breadth of the tree,
starting from the root and continuing up to the largest depth, we call it
breadth first search. On the other hand, we may sometimes search the goal
along the largest depth of the tree, and move up only when further traversal
along the depth is not possible. We then attempt to find alternative offspring
of the parent of the node (state) last visited. If we visit the nodes of a tree
using the above principles to search the goal, the traversal made is called
depth first traversal and consequently the search strategy is called depth first
search. We will shortly explore the above schemes of traversal in a search
space. One important issue, however, needs mention at this stage. We may
note that the order of traversal and hence search by breadth first or depth first
manner is generally fixed by their algorithms. Thus once the search space,
here the tree, is given, we know the order of traversal in the tree. Such types
of traversal are generally called ‘deterministic’. On the other hand, there exists
an alternative type of search, where we cannot definitely say which node will
be traversed next without computing the details in the algorithm. Further, we
may have transition to one of many possible states with equal likelihood at an
instance of the execution of the search algorithm. Such a type of search, where
the order of traversal in the tree is not definite, is generally termed ‘non-
deterministic’'. Most of the search problems in Al are non-deterministic. We
will explore the details of both deterministic and non-deterministic search in
this chapter.

' There exists also a third variety, called stochastic (random) search, where
random numbers are used to select the order of visiting the states in the search
space. The execution of such search algorithms twice at a given iteration need
not necessarily select the same state in the next visit.



4.2 General Problem Solving Approaches

There exist quite a large number of problem solving techniques in Al that rely
on search. The simplest among them is the generate and test method. The
algorithm for the generate and test method can be formally stated as follows:

Procedure Generate & Test
Begin
Repeat
Generate a new state and call it current-state;
Until current-state = Goal,
End.

It is clear from the above algorithm that the algorithm continues the
possibility of exploring a new state in each iteration of the repeat-until loop
and exits only when the current state is equal to the goal. Most important part
in the algorithm is to generate a new state. This is not an easy task. If
generation of new states is not feasible, the algorithm should be terminated.
In our simple algorithm, we, however, did not include this intentionally to
keep it simplified.

But how does one generate the states of a problem? To formalize this, we
define a four tuple, called state space, denoted by

{ nodes, arc, goal, current },
where
nodes represent the set of existing states in the search space;

an arc denotes an operator applied to an existing state to cause
transition to another state;

goal denotes the desired state to be identified in the nodes; and

current represents the state, now generated for matching with the goal.

The state space for most of the search problems we will cover in this
chapter takes the form of a tree or graph’. The fig. 1.2 in chapter 1, for

instance, represents the state space for a 4-puzzle problem in the form of a
tree.

® The basic distinction between a tree and a graph lies in the count of parents
of a node in the respective data structures. For a graph, this could be any
positive integer, while for a tree it has a maximum value of one.



We will now present two typical algorithms for generating the state
space for search. These are depth first search and breadth first search.

4.2.1 Breadth First Search

The breadth first search algorithm visits the nodes of the tree along its
breadth, starting from the level with depth 0 to the maximum depth. It can be
easily realized with a queue. For instance, consider the tree, given in fig. 4.1.
Here, the nodes in the tree are traversed following their ascending ordered
labels.

depth

Fig. 4.1: The order of traversal in a tree of depth 3 by
breadth first manner.

The algorithm for traversal in a tree by depth first manner can be
presented with a queue as follows:

Procedure Breadth-first-search
Begin
i) Place the starting node in a queue;
ii) Repeat
Delete queue to get the front element;
If the front element of the queue = goal,
return success and stop;



Else do

Begin
insert the children of the front element,
if exist, in any order at the rear end of
the queue;

End

Until the queue is empty;
End.

The breadth first search algorithm, presented above, rests on a simple
principle. If the current node is not the goal add the offspring of the
current in any order to the rear end of the queue and redefine the front
element of the queue as the current. The algorithm terminates, when the goal
is found.
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Fig. 4.2: First few steps of breadth first search on the tree of fig. 4.1.

Time Complexity

For the sake of analysis, we consider a tree of equal branching factor from
each node = b and largest depth = d. Since the goal is not located within
depth (d-1), the number of false search [1], [2] is given by

1+b+b” +b° + ... + b = (b%1)/(b-1), b>>1.



Further, the first state within the fringe nodes could be the goal. On the
other hand, the goal could be the last visited node in the tree. Thus, on an
average, the number of fringe nodes visited is given by

(1+b%) /2.

Consequently, the total number of nodes visited in an average case becomes
(b%-1) / (b-1) + (1+b%) / 2

= b (b+1)/2(b-1).

Since the time complexity is proportional to the number of nodes visited,
therefore, the above expression gives a measure of time complexity.

Space Complexity

The maximum number of nodes will be placed in the queue, when the
leftmost node at depth d is inspected for comparison with the goal. The
queue length under this case becomes b’. The space complexity of the
algorithm that depends on the queue length, in the worst case, thus, is of the
order of b,

In order to reduce the space requirement, the generate and test algorithm
is realized in an alternative manner, as presented below.

4.2.2 Depth First Search

The depth first search generates nodes and compares them with the goal along
the largest depth of the tree and moves up to the parent of the last visited
node, only when no further node can be generated below the last visited node.
After moving up to the parent, the algorithm attempts to generate a new
offspring of the parent node. The above principle is employed recursively to
each node of a tree in a depth first search. One simple way to realize the
recursion in the depth first search algorithm is to employ a stack. A stack-
based realization of the depth first search algorithm is presented below.

Procedure Depth first search

Begin

1. Push the starting node at the stack,
pointed to by the stack-top;



2. While stack is not empty do
Begin
Pop stack to get stack-top element;
If stack-top element = goal, return
success and stop

Else push the children of the stack-top

element in any order into the stack;

End while;

End.

depth

Fig. 4.3: Depth first search on a tree, where the node numbers denote

the order of visiting that node.

In the above algorithm, a starting node is placed in the stack, the top of
which is pointed to by the stack-top. For examining the node, it is popped
out from the stack. If it is the goal, the algorithm terminates, else its children
are pushed into the stack in any order. The process is continued until the stack
is empty. The ascending order of nodes in fig. 4.3 represents its traversal on
the tree by depth first manner. The contents of the stack at the first few
iterations are illustrated below in fig. 4.4. The arrowhead in the figure denotes
the position of the stack-top.
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Fig. 4.4: A snapshot of the stack at the first few iterations.

Space Complexity

Maximum memory in depth first search is required, when we reach the
largest depth at the first time. Assuming that each node has a branching
factor b, when a node at depth d is examined, the number of nodes saved in
memory are all the unexpanded nodes up to depth d plus the node being
examined. Since at each level there are (b-1) unexpanded nodes, the total
number of memory required = d (b -1) +1. Thus the space complexity of
depth first search is a linear function of b, unlike breadth first search, where
it is an exponential function of b. This, in fact, is the most useful aspect of
the depth first search.

Time Complexity

If we find the goal at the leftmost position at depth d, then the number of
nodes examined = (d +1). On the other hand, if we find the goal at the
extreme right at depth d, then the number of nodes examined include all the
nodes in the tree, which is

1+b+b* +b° +...4b* = (b -1) / (b-1)

So, the total number of nodes examined in an average case
= (d+1) 2+ " -1) / 2(b-1)
=b(b'+d) /2 (b-1)

This is the average case time complexity of the depth first search algorithm.

Since for large depth d, the depth first search requires quite a large
runtime, an alternative way to solve the problem is by controlling the depth
of the search tree. Such an algorithm, where the user mentions the initial



depth cut-off at each iteration, is called an Iterative Deepening Depth First
Search or simply an Iterative deepening search.

4.2.3 Iterative Deepening Search

When the initial depth cut-off is one, it generates only the root node and
examines it. If the root node is not the goal, then depth cut-off is set to two
and the tree up to depth 2 is generated using typical depth first search.
Similarly, when the depth cut-off is set to m, the tree is constructed up to
depth m by depth first search. One may thus wonder that in an iterative
deepening search, one has to regenerate all the nodes excluding the fringe
nodes at the current depth cut-off. Since the number of nodes generated by
depth first search up to depth h is

(b"'-1) / (b-1),

the total number of nodes expanded in failing searches by an iterative
deepening search will be

(d-1)
{1/} X O"'-1)
h=0

=b(b"-d)/ (b-1).

The last pass in the algorithm results in a successful node at depth d, the
average time complexity of which by typical depth first search is given by

b(b*+d)/2 (b-1).

Thus the total average time complexity is given by
b(b*-d)/ (b-1)" +b(b*+d) /2 (b-1).

= (b+1) b*'/2 (b -1)".

Consequently, the ratio of average time complexity of the iterative deepening
search to depth first search is given by

{b+1) b /2 (b -1} (b /2 (b-1)}
= (b+1): (b-1).



The iterative deepening search thus does not take much extra time, when
compared to the typical depth first search. The unnecessary expansion of the
entire tree by depth first search, thus, can be avoided by iterative deepening. A
formal algorithm of iterative deepening is presented below.

Procedure Iterative-deepening
Begin
1. Set current depth cutoff =1;
2. Put the initial node into a stack, pointed to by stack-top;
3.  While the stack is not empty and the depth is within the
given depth cut-off do
Begin
Pop stack to get the stack-top element;
if stack-top element = goal, return it and stop
else push the children of the stack-top in any order
into the stack;
End While;
4. Increment the depth cut-off by 1 and repeat
through step 2;
End.

The breadth first, depth first and the iterative deepening search can be
equally used for Generate and Test type algorithms. However, while the
breadth first search requires an exponential amount of memory, the depth first
search calls for memory proportional to the largest depth of the tree. The
iterative deepening, on the other hand, has the advantage of searching in a
depth first manner in an environment of controlled depth of the tree.

4.2.4 Hill Climbing

The ‘generate and test’ type of search algorithms presented above only
expands the search space and examines the existence of the goal in that space.
An alternative approach to solve the search problems is to employ a function
f(x) that would give an estimate of the measure of distance of the goal from
node x. After f(x) is evaluated at the possible initial nodes x, the nodes are



sorted in ascending order of their functional values and pushed into a stack in
the ascending order of their ‘f* values. So, the stack-top element has the least f
value. It is now popped out and compared with the goal. If the stack-top
element is not the goal, then it is expanded and f is measured for each of its
children. They are now sorted according to their ascending order of the
functional values and then pushed into the stack. If the stack-top element is
the goal, the algorithm exits; otherwise the process is continued until the
stack becomes empty. Pushing the sorted nodes into the stack adds a depth
first flavor to the present algorithm. The hill climbing algorithm is formally
presented below.

Procedure Hill-Climbing
Begin

1. Identify possible starting states and measure the distance (f) of their
closeness with the goal node; Push them in a stack according to the
ascending order of their f;

2. Repeat
Pop stack to get the stack-top element;
If the stack-top element is the goal, announce it and exit

Else push its children into the stack in the ascending order of their
f values;

Until the stack is empty;
End.

A ridge

Fig.4.5: Moving along a ridge in two steps (by two successive

operators) in hill climbing.

The hill climbing algorithm too is not free from shortcomings. One
common problem is trapping at local maxima at a foothill. When trapped at
local maxima, the measure of f at all possible next legal states yield less
promising values than the current state. A second drawback of the hill
climbing is reaching a plateau [2]. Once a state on a plateau is reached, all



legal next states will also lie on this surface, making the search ineffective. A
new algorithm, called simulated annealing, discussed below could easily
solve the first two problems. Besides the above, another problem that too
gives us trouble is the traversal along the ridge. A ridge (vide fig. 4.5) on
many occasions leads to a local maxima. However, moving along the ridge is
not possible by a single step due to non-availability of appropriate operators.
A multiple step of movement is required to solve this problem.

4.2.5 Simulated Annealing

“Annealing” is a process of metal casting, where the metal is first melted at a
high temperature beyond its melting point and then is allowed to cool down,
until it returns to the solid form. Thus in the physical process of annealing,
the hot material gradually loses energy and finally at one point of time reaches
a state of minimum energy. A common observation reveals that most physical
processes have transitions from higher to lower energy states, but there still
remains a small probability that it may cross the valley of energy states [2]
and move up to a energy state, higher than the energy state of the valley. The
concept can be verified with a rolling ball. For instance, consider a rolling
ball that falls from a higher (potential) energy state to a valley and then moves
up to a little higher energy state (vide fig. 4.6). The probability of such

high energy state

a little higher energy
state than the valley

valley ( the minimum energy state)

Fig. 4.6: A rolling ball passes through a valley to a higher

energy state.

transition to a higher energy state, however, is very small and is given by

p =exp (-AE / KT)



where p is the probability of transition from a lower to a higher energy state,
AE denotes a positive change in energy, K is the Boltzman constant and T is
the temperature at the current thermal state. For small AE, p is higher than the
value of p, for large AE. This follows intuitively, as w.r.t the example of ball
movement, the probability of transition to a slightly higher state is more than
the probability of transition to a very high state.

An obvious question naturally arises: how to realize annealing in search?
Readers, at this stage, would remember that the need for simulated annealing
is to identify the direction of search, when the function f yields no better
next states than the current state. Under this circumstance, AE is computed for
all possible legal next states and p’ is also evaluated for each such next state
by the following formula:

p = =exp(-AE/ T)

A random number in the closed interval of [0,1] is then computed and p’
is compared with the value of the random number. If p’ is more, then it is
selected for the next transition. The parameter T, also called temperature, is
gradually decreased in the search program. The logic behind this is that as T
decreases, p’ too decreases, thereby allowing the algorithm to terminate at a
stable state. The algorithm for simulated annealing is formally presented
below.

Procedure Simulated Annealing
Begin

1. Identify possible starting states and measure the distance (f) of their
closeness with the goal; Push them in a stack according to the
ascending order of their f;

2. Repeat
Pop stack to get stack-top element;
If the stack-top element is the goal,
announce it and exit;
Else do
Begin
a) generate children of the stack-top element N and
compute f for each of them;

b) If measure of f for at least one child of N is improving



Then push those children into stack in ascending order of
their f;

¢) If none of the children of N is better in f

Then do
Begin
a) select any one of them randomly, compute its p’ and test
whether p’ exceeds a randomly generated number in the interval
[0,1]; If yes, select that state as the next state; If no, generate
another alternative legal next state and test in this way until one

move can be selected; Replace stack-top element by the selected
move (state);

b) Reduce T slightly; If the reduced value is negative, set it to
Zero;

End;
Until the stack is empty;
End.

The algorithm is similar to hill climbing, if there always exists at least
one better next state than the state, pointed to by the stack-top. If it fails, then
the last begin-end bracketed part of the algorithm is invoked. This part
corresponds to simulated annealing. It examines each legal next state one by
one, whether the probability of occurrence of the state is higher than the
random value in [0,1]. If the answer is yes, the state is selected, else the next
possible state is examined. Hopefully, at least one state will be found whose
probability of occurrence is larger than the randomly generated probability.

Another important point that we did not include in the algorithm is the
process of computation of AE. It is computed by taking the difference of the
value of f of the next state and that of the current (stack-top) state.

The third point to note is that T should be decreased once a new state with
less promising value is selected. T is always kept non-negative. When T
becomes zero, p” will be zero and thus the probability of transition to any
other state will be zero.

4.3 Heuristic Search

This section is devoted to solve the search problem by a new technique, called
heuristic search. The term “heuristics” stands for “ thumb rules”, i.e., rules
which work successfully in many cases but its success is not guaranteed.



In fact, we would expand nodes by judiciously selecting the more promising
nodes, where these nodes are identified by measuring their strength compared
to their competitive counterparts with the help of specialized intuitive
functions, called heuristic functions.

Heuristic search is generally employed for two distinct types of
problems: i) forward reasoning and ii) backward reasoning. We have already
discussed that in a forward reasoning problem we move towards the goal state
from a pre-defined starting state, while in a backward reasoning problem, we
move towards the starting state from the given goal. The former class of
search algorithms, when realized with heuristic functions, is generally called
heuristic Search for OR-graphs or the Best First search Algorithms. It may be
noted that the best first search is a class of algorithms, and depending on the
variation of the performance measuring function it is differently named. One
typical member of this class is the algorithm A*. On the other hand, the
heuristic backward reasoning algorithms are generally called AND-OR graph
search algorithms and one ideal member of this class of algorithms is the
AO* algorithm. We will start this section with the best first search algorithm.

4.3.1 Heuristic Search for OR Graphs

Most of the forward reasoning problems can be represented by an OR-graph,
where a node in the graph denotes a problem state and an arc represents an
application of a rule to a current state to cause transition of states. When a
number of rules are applicable to a current state, we could select a better state
among the children as the next state. We remember that in hill climbing, we
ordered the promising initial states in a sequence and examined the state
occupying the beginning of the list. If it was a goal, the algorithm was
terminated. But, if it was not the goal, it was replaced by its offsprings in any
order at the beginning of the list. The hill climbing algorithm thus is not free
from depth first flavor. In the best first search algorithm to be devised
shortly, we start with a promising state and generate all its offsprings. The
performance (fitness) of each of the nodes is then examined and the most
promising node, based on its fitness, is selected for expansion. The most
promising node is then expanded and the fitness of all the newborn children is
measured. Now, instead of selecting only from the generated children, all the
nodes having no children are examined and the most promising of these
fringe nodes is selected for expansion. Thus unlike hill climbing, the best
first search provides a scope of corrections, in case a wrong step has been
selected earlier. This is the prime advantage of the best first search algorithm
over hill climbing. The best first search algorithm is formally presented
below.



Procedure Best-First-Search
Begin

1. Identify possible starting states and measure the distance (f) of their
closeness with the goal; Put them in a list L;

2.  While L is not empty do
Begin

a) Identify the node n from L that has the minimum f; If there
exist more than one node with minimum f, select any one of them
(say, n) arbitrarily;

b) If n is the goal
Then return n along with the path from the starting node,
and exit;
Else remove n from L and add all the children of n to the list L,
with their labeled paths from the starting node;
End While;
End.

As already pointed out, the best first search algorithm is a generic
algorithm and requires many more extra features for its efficient realization.
For instance, how we can define f is not explicitly mentioned in the
algorithm. Further, what happens if an offspring of the current node is not a
fringe node. The A* algorithm to be discussed shortly is a complete
realization of the best first algorithm that takes into account these issues in
detail. The following definitions, however, are required for presenting the
A¥* algorithm. These are in order.

Definition 4.1: A node is called open if the node has been generated and
the h’ (x) has been applied over it but it has not been expanded yet.

Definition 4.2: A node is called closed if it has been expanded for
generating offsprings.

In order to measure the goodness of a node in A* algorithm, we require
two cost functions: 1) heuristic cost and ii) generation cost. The heuristic cost
measures the distance of the current node x with respect to the goal and is
denoted by h(x). The cost of generating a node x, denoted by g(x), on the
other hand measures the distance of node x with respect to the starting node in
the graph. The total cost function at node x, denoted by f(x), is the sum of

g(x) plus h(x).



The generation cost g(x) can be measured easily as we generate node x
through a few state transitions. For instance, if node x was generated from
the starting node through m state transitions, the cost g(x) will be
proportional to m (or simply m). But how does one evaluate the h(x)? It may
be recollected that h(x) is the cost yet to be spent to reach the goal from the
current node x. Obviously, any cost we assign as h(x) is through prediction.
The predicted cost for h(x) is generally denoted by h’(x). Consequently, the
predicted total cost is denoted by f(x), where

f7(x) = g(x) +h” ().
Now, we shall present the A* algorithm formally.

Procedure A*
Begin

1. Put a new node n to the set of open nodes (hereafter open); Measure its
f'(n) = g(n) + h’ (n); Presume the set of closed nodes to be a null set
initially;

2. While open is not empty do
Begin
If n is the goal, stop and return n and the path of n from the
beginning node to n through back pointers;
Else do
Begin

a) remove n from open and put it under closed;

b) generate the children of n;

c) If all of them are new (i.e., do not exist in the graph
before generating them Then add them to open and
label their f* and the path from the root node through
back pointers;

d) If one or more children of n already existed as open
nodes in the graph before their generation Then those
children must have multiple parents; Under this
circumstance compute their f* through current path and
compare it through their old paths, and keep them
connected only through the shortest path from the
starting node and label the back pointer from the
children of n to their parent, if such pointers do not
exist;

e) If one or more children of n already existed as closed
nodes before generation of them, then they too must



have multiple parents; Under this circumstance, find the
shortest path from the starting node, i.e., the path (may be
current or old) through which f of n is minimum; If the
current path is selected, then the nodes in the sub-tree rooted
at the corresponding child of n should have revised f* as the
g’ for many of the nodes in that sub-tree changed; Label the
back pointer from the children of n to their parent, if such
pointers do not exist;

End;

End While;
End.

To illustrate the computation of £ (x) at the nodes of a given tree or
graph, let us consider a forward reasoning problem, say the water-jug
problem, discussed in chapter 3. The state-space for such problems is often
referred to as OR graphs / trees. The production rules we would use here are
identical with those in chapter 3, considered for the above problem.

Example 4.1: Let us consider the following heuristic function, where X
and Y denote the content of 4-liter and 3-liter jugs respectively and x denotes
an arbitrary node in the search space.

h’ (x)=2,when0<X <4 AND 0<Y <3,
=4, when0<X <4 OR 0<Y<3,
=10, when i) X=0ANDY =0

ORii)) X=4AND Y =3

=8, when i)X=0ANDY =3
ORii)X=4 ANDY =0

Assume that g(x) at the root node = 0 and g(x) at a node x with
minimum distance n, measured by counting the parent nodes of each node
starting from x till the root node, is estimated to be g(x) = n. Now let us
illustrate the strategy of the best first search in an informal manner using the
water-jug problem, vide fig. 4.7.

In step 0, we have the node o only where g + h> = 0+10 =10. In step
1, we have two terminal nodes M and N, where (g + h’ =1+8 =9) are equal.
We can, therefore, choose any of these two arbitrarily for generating their
offsprings. Let us select node M for generating offsprings. By expanding node
M, we found nodes P and R in step 2 with g + h> =6 and 12 respectively.
Now, out of these three nodes P, N and R, P has the minimum value of .
So, we select node P for expansion. On expanding node P, we find node S,
where g + h> = 3+4. Now the terminals in the tree are S, Rand N, out of



which node S has the smallest f’. So, node S will be selected for
expansion the next time. The process would thus continue until the goal node
is reached.

sep0 B 00 g+n=0+10

Step 1 0,00 g +th’=0+10
(0,3) (4,0)
1+8 1+8

Step 2 (0,00 g+h’=0+10

(4,0)
1+8

4,3)
2+4 2+10

Step 3
(0,00 g+h>=0+10

(4,0)
1+8
2+4
(3,3)
3+4

Fig. 4.7: Expanding the state-space by the A* algorithm.

Another important issue that needs to be discussed is how to select a
path,when an offspring of a currently expanded node is an already existing



node. Under this circumstance, the parent that yields a lower value of g+h’
for the offspring node is chosen and the other parent is ignored, sometimes by
de-linking the corresponding arc from that parent to the offspring node. Let us
illustrate the above issue with example 4. 2.

Fig. 4.8 (b): A node U having parents R and Q, the least-cost
path being node Q to U.

Example 4.2: Consider the tree shown in fig. 4.8(a), where Q, U and T are
the free terminals (leaves). Assume that among these leaves the f” at node Q is
minimum. So, Q is selected for offspring generation. Now, suppose U is



the offspring of Q (fig. 4.8(b)) and the f* at U through Q is compared less
to the f” at U through R (this in fact is obvious, since g(U) via Q is 2, while
g(U) via R is 3). So, we prefer Q to R as a parent of U and, consequently,
we delink the arc from node R to node U (vide fig. 4.8(b) and (c)). It may be
noted that we would do the same de-linking operation, if U had offsprings
too.

Fig. 4.8 (¢): The modified tree after de-linking of the arc
from node R to node U in fig. 4.8 (b).

The third point to be discussed on the A* algorithm is to mark the arcs
with back-pointers, i.e., from child to parent nodes in the search space. This
helps in tracing the path from goal node to the root. Scrutinize fig. 4.8 (a)-(c)
for details.

The steps of the algorithm have already been illustrated. Now, the
properties of the algorithm will be presented in detail.

Properties of Heuristic Functions

The following notations will be required for understanding the properties of
the heuristic functions.

Notations Meaning
1. C(n;,n) cost / expenses to traverse from node n; to node n;
2. K (n, ny) cost on the cheapest path between n; and n;
3. Y a goal node
4. T the set of goals
5. P, v the path from node n to 'y



6. P r the set of paths from node n to the set of goals I
7. g% (n) the cheapest cost of paths, going from starting (root)
node s to node n,
g* () =K (s, n)
8. h* (n) the cheapest cost of paths, going from node nto I,
h* (n)=Min K (n,y), forallye I’
9. C* the cheapest cost of paths going from's to I,

C* = h* (s)

We now define the following properties of best first search algorithms.

d)

Completeness: An algorithm is said to be complete, if it
terminates with a solution, when one exists.

Admissibility: An algorithm is called admissible if it is
guaranteed to return an optimal solution, whenever a solution exists.

Dominance: An algorithm Al is said to dominate A2, if every
node expanded by Al is also expanded by A2.

Optimality: An algorithm is said to be optimal over a class of
algorithms, if it dominates all members of the class.

We now present here some of the interesting properties of the heuristic
functions.

Property I: Any node n* on an optimal path P*Y -r always satisfies
equation (4.1)

P (n*)=C* (4.1)

where C* is the cheapest cost from s to T



Proof: £* (n*)

= g (n*) +h* (n*)

=K (s, n*)+ Min K (n*, )

vyeTl
= Min K (s,7v)
vyeT
=(C*

The following results directly follow from property 1.
i) f*(s)=C* and
i) f* (y) =C*.

Property II: Any node n that does not lie on any of the optimal paths
P*s.  satisfies inequality (4.2).

£* (n) > C*, (4.2)

Proof: Proof is straightforward and is therefore omitted.

Definition 4.3: An heuristic function h is said to be admissible [6] if
h(n) £ h* (n).

Property III: At any time before A* terminates, there exists an open
node n’ on P*;_ | with f(n’) < C*.

Proof: Consider an optimal path P*_ ., belonging to P*; . Let P*g

4 =8 n ny...,n’,....,y and let n’ be the shallowest (minimum depth)
open node on P’ .. Since y is not closed before termination, n’ is an open

node. Further, since all ancestors of n’ are closed and since the path
s,n;,My,..., n” is optimal, therefore, it must be that the pointers of n’ are along
P*e . .

Therefore, g (n”) = g* (n’).



Therefore, f * (n”) =g* (n’) +h(n’)
< g*(n’) + h* (n”) [by definition of admissibility]
=f* @)
= C*,

Therefore, f(n”) < C*.

Property IV: A* is admissible (returns optimal solution)[6] .

Proof: Suppose A* terminates with a goal node t belonging to T" for
which

ft) = g(t) > C*.

However, A* tests nodes for compliance with termination criteria, only after
it selects them for expansion. Hence, when t was chosen for expansion,

f(t) < f (n), for all open n.

This means that immediately prior to termination, any node n on open
satisfies:

f (n) > C*

which, however, contradicts property III, which claims that there exists at
least one open node n with f(n) < C* . Therefore, the terminating t must have
g (t) = C*, which means that A* returns an optimal path.

Monotonicity and Consistency of Heuristics

Informally speaking, by consistency, we mean that A* never re-opens already
closed nodes. From property I and II, we find that the cheapest path con-
strained to pass through n cannot be less costly than the cheapest path
available without this constraint, i.e.,

g* (@) + h* (n) = h* (s), foralln
—  K(s,n) + h* (n) > h* (s).

Ifn’ is any descendent of n, we should have



h* (n) < K (n,n’) +h* (n’), forall (n, n’).

Now, if we select h (n), the measure of h* (n) in the manner described by the
last expression, we write

h(n) <K (n,n’)+h(n’),

which is the condition for consistency [6].

Definition 4.4: A heuristic function is said to be monotonic / monotone
if it satisfies

h(n) £ C(n,n’) + h (n’) for all n, n’
such that n’ is a successor of n.

Property V: Every consistent heuristic is also admissible.
Proof: We have

h(n) £K (n,n’) +h (n’) [ since h is consistent]

Replacing Y against n’, we have

h(m) <K@ 7y)+h (7)
= h(n) £ h* (n),
which is the condition for admissibility.

The following example [7] illustrates that optimal solution will never be
missed, if h (n) is admissible as presented below.

Example 4.3: Consider the search-space, given in fig. 4.9(a). Note that,
here h > h*, in the case of overestimation, where we made node D so bad (by
making its h value too large) that we can never find the optimal path A-D-G.

On the other hand, in fig. 4.9(b), we illustrate the case of underestimation
(admissibility) of h. Consider the case in fig. 4.9(b) when F, C and D are the
set of expanded nodes and among these nodes C has the least value of f*. We
thus expand C and fortunately reach the goal in one step. It is to be noted
that we wasted some effort to generate the unnecessary nodes E and F. But,
ultimately, we could correctly identify the optimal path A-C-G.



(g+h”)

Alternative path

E*’:l 42 ’;"'; Explored path

7 stimated h >
F xact h*

[E]3+1jf

-

S0+4

Fig. 4.9 (a): Illustration of overestimation of h in A* algorithm.

Estimated h <
Exact h*

Fig. 4.9 ( b): Illustration of underestimation of h in A* algorithm.



4.3.2 Iterative Deepening A* Algorithm

The iterative deepening search algorithm, discussed earlier, searches the goal
node in a depth first manner at limited depth. In each pass the depth is
increased by one level to test the presence of the goal node in that level. The
A* algorithm, on the other hand, in each pass, selects the least cost (f ) node
for expansion. The iterative deepening A* (or IDA*) algorithm presented
below attempts to combine the partial features of iterative deepening and A*
algorithms together. Here, the heuristic measure is used to check the depth
cut-off, rather than the order of the selection of nodes for expansion. The
algorithm is formally presented below.

Procedure IDA*
Begin
1. Initialize the current depth cut-off c = 1;
2. Push a set of starting nodes into a stack; Initialize the cut-off at
next iteration ¢’ = oc;
3. While the stack is not empty do
Begin
Pop stack and get the topmost element n;
If n is the goal, Then report success and
return n with the path from the starting node
Else do
Begin
For each child n’ of n
If f(n’) < ¢ Then push n’ into the stack
Else assign ¢’ := min (¢’, f(n’));
End For;
End;
End While;
4. 1If the stack is empty and ¢’ = o< Then stop and exit;

5. [If the stack is empty and ¢’# o< Then assign c:= ¢’ and return to step 2;

End.



The above algorithm considers two depth cut-off levels. If the stack contains
nodes whose children all have ‘f* value lower than the cut-off value c, then
these children are pushed into the stack to satisfy the depth first criteria of
iterative deepening algorithms. However, when it fails, i.e., ‘f” value of one or
more child n’ of n exceeds the cut-off level ¢, then the ¢’ value of the node n
is set to min (c’, f(n’)). The algorithm terminates when either i) the goal is
identified (successful termination) or ii) the stack is empty and the cut-off
value ¢’ = o<.

The main advantage of IDA* over A* lies in the memory requirement.
The A* requires an exponential amount of memory because of no restriction
on depth cut-off. The IDA* on the other hand expands a node n only when all
its children n” have f (n”) value less than the cut-off value c. Thus it saves a
considerable amount of memory.

Another important point to note is that IDA* expands the same nodes
expanded by A* and finds an optimal solution when the heuristic function
used is optimal.

4.3.3 Heuristic Search on AND-OR Graphs

The second classical problem, where the heuristic search is applicable, is the
backward reasoning problem implemented on AND-OR graphs. Before
describing the technique of pruning an AND-OR graph, let us first understand
the process of expanding an unconstrained graph. Consider the problem of
acquiring a TV set. One has to identify the possible ways one can acquire the
TV set. So, here the goal is “to acquire a TV set” and the terminals of the
graph describe the possible means by which it can be achieved. The details of
the possibility space are given in fig. 4.10.

For heuristic search on AND-OR graph, we use an algorithm, called an AO*
algorithm. The major steps of the AO* algorithm are presented below.

1. Given the Goal node, hereafter called the starting state, find the
possible offsprings of the starting state, such that the Goal can be
derived from them by AND / OR clauses.

3. Estimate the h’ values at the leaves and find the leaf (leaves) with
minimum h’. The cost of the parent of the leaf (leaves) is the minimum
of the cost of the OR clauses plus one or the cost of the AND clauses
plus the number of AND clauses. After the children with minimum h’
are estimated, a pointer is attached to point from the parent node to
its promising children.



3. One of the unexpanded OR clauses / the set of unexpanded AND
clauses, where the pointer points from its parent, is now expanded
and the h’ of the newly generated children are estimated. The effect of
this h’ has to be propagated up to the root by re-calculating the [ of
the parent or the parent of the parents of the newly created child /
children clauses through a least cost path. Thus the pointers may be
modified depending on the revised cost of the existing clauses.

Goal : Acquire a TV set

Symbols
A
Steal TV  Have Buy TV
money
B C D
IF (B OR C OR D)
THEN A.
Steal money Earn money
A
B C D
Identify  Kill  Find a job IF((B AND C) ORD)
THEN A.

a rich man him

Fig. 4.10: An unconstrained AND-OR graph, where the AND, OR arcs
are defined in side by side symbol definitions.

The few steps of the AO* algorithm are illustrated below based on the
above principle.
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Fig. 4. 11: Snapshots of the AO* algorithm.



Procedure AO*

Begin

1. Given the goal node INIT in the graph G; evaluate h’ at INIT;
2. Repeat

(a)Trace the marked arcs from the node INIT, if any such exists, and
select one of the unexpanded nodes, named NODE, that occurs on this
path, for expansion.

(b) If NODE cannot be expanded, Then assign FUTILITY as the h’
value of NODE, indicating that NODE is not solvable;

Else for each such successor, called SUCCESSOR, which is not an
ancestor of NODE, do

Begin
(i) Append SUCCESSOR to the graph G.

(ii) If SUCCESSOR is a terminal node Then Ilabel it
SOLVED and set its h’ value 0.

(i) If SUCCESSOR is not a terminal node Then estimate its
h’ value;

End;
(c) Initialize S to NODE;

(d) Repeat

(i) Select from S a node, none of whose descendants belong to
S. Call it CURRENT and remove it from S.

(i) Estimate the cost of each of the arcs, emerging from
CURRENT. The cost of each arc is equal to the sum of h’
value of each of the nodes at the end of the arc plus the cost
of the arc itself. The new h’ value of CURRENT is the
minimum of the cost just computed for the arcs emerging
from it.

(ii1) Label the best path out of CURRENT by marking the arc that
had the least cost as computed in the last step.



(iv) Ifall of the nodes connected to CURRENT through the new
marked arcs have been labeled SOLVED, Then mark the
CURRENT SOLVED.

(v) If CURRENT is marked SOLVED or the cost of CURRENT
was changed, Then propagate its new status back up the tree,
add all the ancestors of CURRENT to S.

Until S is empty.

Until INIT is labeled solved or its h’ value becomes greater than a maximum
level called FUTILITY:

End.

4.4 Adversary Search

In this section we will discuss special type of search techniques required in a
game playing between two opponent players. The state space in this case is
represented by a tree or graph and includes the possible turns of both players.
Each level of the search space in the present context denotes the possible turn
of one player only. We start with a simple algorithm called MINMAX and
gradually develop more complex algorithms for game playing.

4.4.1 The MINIMAX Algorithm

The MINIMAX algorithm considers the exhaustive possibility of the state
transitions from a given state and consequently covers the entire space. The
algorithm, thus, is applicable to games having few possible state transitions
from a given trial state. One typical example that can be simulated with
MINIMAX is the NIM game. A NIM game is played between two players.
The game starts with an odd number of match sticks, normally 7 or 9, placed
on a single row, called a pile. Each player in his turn has to break a single
pile into two piles of unequal sticks, greater than zero. The game will come
to an end when either of the two players cannot give a successful move. The
player who cannot give a successful move the first time will lose the game.

According to standard convention we name the two players MINIMIZER
and MAXIMIZER. NIM is a defensive game and consequently the opening
player, here, is called the MINIMIZER. For a game such as tic-tac-toe, where
the opener always gets the benefit, the opening player is called the
MAXIMIZER. A graph space for the NIM game is presented in fig. 4.12 (a),
demarcating MAXIMIZER’s move from the MINIMIZER’s move.



MIN move 7

MAX move 1

MIN 5+1+1 44+2+1 34242 34+3+1
move
MAX move \ \ ‘)g
mh \ 2424241 \
A 'Y
MIN
fove 34+1+1+1+1 24+2+1+1+1
MAX move

2+1+1+1+1+1

Symbol: Minimizer’s move [___] , Maximizer’s move NN

Fig. 4.12 (a): State Space for the NIM game.

In the MINIMAX algorithm, to be presented shortly, the following
conventions will be used. The MAXIMIZER’s success is denoted by +1,
while the MINIMIZER’s success by -1 and a draw by a 0. These values are
attached with the moves of the players. A question then naturally arises: how
do the players automatically learn about their success or failure until the game
is over? This is realized in the MINIMAX algorithm by the following
principle: Assign a number from {+1, 0, -1} at the leaves depending on
whether it is a success for the MAXIMIZER, MINIMIZER or a draw
respectively. Now, propagate the values up by checking whether it is a
MAXIMIZER'’s or MINIMIZER'’s move. If it is the MAXIMIZER's move then
its value wiil be the maximum value possessed by its offsprings. In case it is
a MINIMIZER s move then its value will presume the minimum of the values
possessed by its offsprings.



If the values are propagated up to the root node by the above principle,
then each player can select the better move in his turn. The computation
process in a MINIMAX game is illustrated below vide fig. 4.12 (b).

MIN move 7 |
1 5+1+1 4+2+1 34242 3+3+1
MIN
move
2+2+2+1
MAX move
3+1+1+1+1 1 2+2+1+1+1 1
MIN move \
\

2+1+1+1+1+1 1
MAX move

Fig. 4.12 (b): The computation in the state space for the NIM game.

The MINIMAX algorithm is formally presented below.

Procedure MINIMAX
Begin
1. Expand the entire state-space below the starting node;

2. Assign values to the terminals of the state-space from
-1,0,+1}, depending on the success of the MINIMIZER,
draw, or the success of the MAXIMIZER respectively;

3. For each node whose all children possess values, do
Begin
if it is a MAXIMIZER node, then its value will be maximum



of its childrens’ value; if it is a MINIMIZER node, then its
value will be the minimum of its children;
End For;
End.

4.4.2 The Alpha-Beta Cutoff Procedure

The MINIMAX algorithm, presented above, requires expanding the entire
state-space. This is a severe limitation, especially for problems with a large
state-space. To handle this difficulty, an alternative approach is to evaluate
heuristically the status of the next ply move of the player, to select a current
move by the same player. We will demonstrate the process of computation of
the heuristic measures of a node below with the well-known tic-tac-toe game.

Consider a heuristic function e(n) [3], [5] at node n that evaluates the
difference of possible winning lines of the player and his opponent. Formally,

e(n) =M (n) - O (n)

where M (n) = number of my possible winning lines
and O (n) = number of opponent’s winning lines.

For example, in fig. 4.13 M (n) =6 , O (n) = 5 and hence e(n) = 1.

Now, we will discuss a new type of algorithm, which does not require
expansion of the entire space exhaustively. This algorithm is referred to as
alpha-beta cutoff algorithm. In this algorithm, two extra ply of movements are
considered to select the current move from alternatives. Alpha and beta denote
two cutoff levels associated with MAX and MIN nodes. The alpha value of
MAX node cannot decrease, whereas the beta value of the MIN nodes cannot
increase. But how can we compute the alpha and beta values? They are the
backed up values up to the root like MINIMAX. There are a few interesting
points that may be explored at this stage. Prior to the process of computing
MAX / MIN of the backed up values of the children, the alpha-beta cutoff
algorithm estimates e(n) at all fringe nodes n. Now, the values are estimated
following the MINIMAX algorithm. Now, to prune the unnecessary paths
below a node, check whether

i) the beta value of any MIN node below a MAX node is less than or
equal to its alpha value. If yes, prune that path below the MIN node.



ii) the alpha value of any MAX node below a MIN node exceeds the beta
value of the MIN node. If yes prune the nodes below the MAX node.

g

"\ Fd
0 10 | ' 0
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o \ ,
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’

(a) A state M (n) =6 O (n) =5

Fig. 4.13: Evaluation of e (n) at a particular state.

Olmin :1 Max

Node

Bmax =1 Min
B Node

Max
C E Node

e(n) = 1 2 3
Pass - 1

Fig.4.14: Two-ply move of the MAXIMIZER with computed e(n) at the
fringe nodes: C, D, E; backed up values at node B and A and
setting of Olmax and PBrmin values at nodes A and B respectively.



Based on the above discussion, we now present the main steps in the o-f
search algorithm.

1) Create a new node, if it is the beginning move, else expand the
existing tree by depth first manner. To make a decision about the
selection of a move at depth d, the tree should be expanded at least
up to a depth (d + 2).

ii) Compute e(n) for all leave (fringe) nodes n in the tree.

iii) Compute O min (for max nodes) and B max values (for min nodes) at
the ancestors of the fringe nodes by the following guidelines.
Estimate the minimum of the values (¢ or o) possessed by the
children of a MINIMIZER node N and assign it its PBma value.
Similarly, estimate the maximum of the values (e or B) possessed
by the children of a MAXIMIZER node N and assign it its O min

value.
Olmin :l
A
Bmax =1
B Bmax = '1 F
C E
e(n) = 1 2 3 -1
Pass - 11

Fig. 4.15: A thinks of the alternative move F, and also mentally generates
the next ply move G; e(G) =-1;50 Pumax atF is —1. Now, PBumax
at F is less than Ounin of A. Thus there is no need to search below
F. G may be pruned from the search space.



Olmin :1

Bmax =1

B Bmax = '1 F

Olmin =2 C

e(n) = 2 -1 Pass 1 TII -1

Fig. 4.16: The node G has been pruned; The nodes C, D and E have been
expanded;The e(n) is estimated atn =H, I, J and K and the Otmin
values are evaluated at nodes C, D and E. Since the Oty value of
C is greater than the Bum.. value of B and Olmin value of D = B
value of B, there is no need to search below nodes C and D.

iv) If the MAXIMIZER nodes already possess Oimin values, then their
current Olmin value = Max (Omin Value, o min); on the other hand, if the
MINIMIZER nodes already possess Pmax values, then their current
Brmax value = Min (Bmax value, B max).



V) If the estimated B value of a MINIMIZER node N is less than the
Omin value of its parent MAXIMIZER node N then there is no need
to search below the node MINIMIZER node N. Similarly, if the
Olmin Value of a MAXIMIZER node N is more than the B, value of
its parent node N then there is no need to search below node N.

The above steps are continued until the game is over. If we call these five
steps together a pass, then the first three passes are shown in fig. 4.14-4.16.
The interested reader may on his own work out the tic-tac-toe game using the
definition of e (n) and the last 5 steps. We could not present it here because of
the page size of this book, which cannot accommodate large trees.

4.5 Conclusions

We presented a large number of search algorithms in this chapter. We started
with the breadth first and the depth first search algorithms and analysed their
complexities. It is clear from the analysis that the breadth first search is not
appropriate for large state space as the memory requirement is excessively
high. The depth first search algorithm works well for most of the typical Al
problems. Sometimes, we may not be interested to explore below a given
depth. The iterative deepening search is useful under this context. Recently,
the iterative deepening algorithm has been formulated in A* fashion and is
called the IDA* algorithm. The IDA* algorithm has a great future, as it has
been seriously studied by many researchers for realization on parallel
architecture [4]. We shall take up these issues in chapter 22.

Among the heuristic search algorithms presented in the chapter, the
most popular are A* and AO* algorithm. A* is used on a OR graph, while
AO* is employed in an AND-OR graph. The A* is applied in problems to
find the goal and its optimal path from the starting state in a state space,
while the AO* determines the optimal paths to realize the goal. Heuristic
search, since its inception, has remained an interesting toolbox for the
researchers working in Al. Recently, Sarkar et al. [8] extended the A*
algorithm for machine learning by strengthening the heuristic information at
the nodes of the state-space. We, however, do not have much scope to discuss
their work here.

Besides the search algorithms presented in the chapter, there exist a few
more problem solving techniques we introduced in chapter 1. These are
constraint satisfaction techniques, means and ends analysis and problem



reductions. Constraint satisfaction techniques, being an emerging research
area, will be presented in detail in chapter 19. Means and ends analysis and
problem reduction techniques, on the other hand, are available in most text
books [7] and we omit these for lack of space.

Exercises

1. Using the Euclidean distance of a node (x, y) from a fixed node (2, 2),
ie.,

h=[(x-2"+(y-2°1"

solve the water-jug problem by paper and pencil by A* algorithm. Does
this heuristic function return an optimal path? Consequently, can you call
it an admissible heuristic?

The 8-puzzle problem is similar to the 4-puzzle problem we discussed in
chapter 1. The only difference is that there exist 9 cells and 8 tiles instead
of the 4 cells and 3 tiles of a 4-puzzle problem. Can you select a heuristic
function for the 8-puzzle problem? Solve the 8-puzzle problem by the A*
algorithm with your selected heuristic function.

Show the computation for the first 3 ply moves in a tac-tac-toe game using
the o-B cut-off algorithm.

Consider a room whose floor space is partitioned into equal sized blocks.
Suppose there is a mobile robot (MR) in one block, and we want to move
to a distant block. Some of the blocks are occupied with obstacles. The
robot has to plan its trajectory so that it reaches the goal position from a
given initial position without touching the obstacles. Can you design a
heuristic function for the problem? If yes, solve the problem using the A*
algorithm on a graph paper. Assume the location of the obstacles and the
starting and the goal positions.
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The Logic of
Propositions and
Predicates

The chapter presents various tools and techniques for representation of
knowledge by propositions and predicates and demonstrates the scope of
reasoning under the proposed framework of knowledge representation. It
begins with the syntax and semantics of the logic of propositions, and then
extends them for reasoning with the logic of predicates. Both the logic of
propositions and predicates require the formulation of a problem in the form
of a logical theorem and aim at proving it by the syntactic and the semantic
tools, available in their framework. The ‘resolution principle’ is the most
common tool that is employed for reasoning with these logics. To prove a
goal, complex sentences are first represented in ‘clause forms’ and the
principle of resolution is employed to resolve the members of a given set,
comprising of the axiomatic rules (clauses) and the negated goal. One main
drawback of the predicate logic lies in its semi-decidablity that fails to
disprove a statement that does not really follow from the given statements.
The chapter discusses all these in detail along with the formal proofs of
‘soundness’ and ‘completeness’ of the resolution principle.



5.1 Introduction

Production systems, covered in chapter 3, has been successfully used for
reasoning in many intelligent systems [1],[6]. Because of its inherent
simplicity, it has been widely accepted as a fundamental tool to knowledge
representation. The efficiency of production systems, however, degrades with
the increase in complexity of knowledge in real world problems. For instance,
a production system does not support simple rules like if (X is a son of Y )
OR ( X is a daughter of Y)) then (Y is a father of X). The logic of
propositions (also called propositional logic) is an alternative form of
knowledge representation, which overcomes some of the weakness of
production systems. For instance, it can join simple sentences or clauses by
logical connectives to represent more complex sentences. Due to the usage of
logical connectives, propositional logic is sometimes called logical calculus.
However, it needs mention that such logic has no relevance with Calculus, the
popularly known branch of mathematics. This chapter will be devoted to
representing knowledge with propositional logic. Generally, the reasoning
problems in propositional logic are formulated in the form of mathematical
theorems. For instance, given two facts : i) Birds fly, ii) Parrot is a bird, and
one has to infer that parrot flies. This can be formally stated in the form of a
theorem: given the premises birds fly and parrot is a bird, prove that parrot
flies. We can now employ tools of propositional logic to prove (or disprove)
the theorem. The chapter presents various tools and techniques for theorem
proving by propositional logic.

Predicate Logic (also called first order predicate logic or simply first
order logic or predicate calculus) has similar formalisms like the propositional
logic. It is more versatile than the propositional counterpart for its added
features. For instance, it includes two quantifiers, namely, the essential
quantifier (V) and the existential quantifier (3) that are capable of handling
more complex knowledge.

The chapter is organized as follows. It starts with a set of formal
definitions and presents the methodology of knowledge representation by
propositional logic. It then covers the semantic and syntactic methods of
theorem proving by propositional logic. Next predicate logic is introduced
from the first principles, and a method to represent large sentences in clause
form is described. Later two fundamental properties of predicate calculus: the
unification algorithm and the resolution principle, which are useful for
theorem proving, are introduced. The issues of soundness and completeness
are discussed briefly in the chapter.



5.2 Formal Definitions

The following definitions, which will be referred to occasionally in the rest of
the book, are in order.

Definition 5.1: A connective is a logical operator that connects simple
statements for constructing more complex statements.

The list of connectives in propositional logic and their meaning is tabulated
below.

Table 5.1: Connectives in propositional logic

Operators Notations
AND A

OR v
Negation -, ~

If p then q p—>q
If pthen q and

if q then p peq
Implication =

Bi-directional
Implication (IFF) <

Identity

Logical entailment |
|>

Derivability

It should be noted that AND and OR operators are sometimes
referred to as conjunction and disjunction respectively. It may further be
added that the provability and implication symbols have been used in an
interchangeable manner in this book. The author, however, has a strong
reservation to use implication symbol in place of if-then operator and vice
versa [3]. The symbol “x |-y ” implies that y has been derived from x by
Jollowing a proof procedure. The logical entailment relation: “x 'y ” on
the other hand means that y logically follows from x.



Definition 5.2: A proposition is a statement or its negation or a group of
statements and/or their negations, connected by AND, OR and If-Then
operators.

For instance,

p )

it-is-hot, the-sky-is-cloudy ,
it-ischot A the-sky-is-cloudy,
it-is-hot — the-sky-is-cloudy

are all examples of propositions.

Definition 5.3: When a statement cannot be logically broken into smaller
statements, we call it atomic.

For example, p, q, the-sky-is-cloudy are examples of atomic propositions.

Definition 5.4: A proposition can assume a binary valuation space, i.c.,
for a proposition p, its valuation space v (p) € {0,1}.

Definition 5.5: Let r be a propositional formula, constructed by
connecting atomic propositions p, q, s, etc. by operators. An interpretation
for r is a function that maps v (p), v (q) and v (s) into true or false values that
together keep r true.

For example, given the formula: p A q. The possible interpretation is
v(p) = true and v (q) =true. It may be noted that for any other values of p and
q the formula is false.

There may be more than one interpretation of a formula. For instance,
the formula: — p V q has three interpretations given below.

Interpretations:
{v (p) = true, v (q) = true}, {v (p) = false, v (q) = false}, and
{v (p) = false, v (q) = true}.

Definition 5.6: A propositional formula is called satisfiable if its value is
true for some interpretation [2].

For example the propositional formula p \VV q is satisfiable as it is true
for some interpretations {v (p) = true, v (q) = true}, {v (p) = false, v (q) =
true} and {v(p) = true, v (q) =false}.

Generally, we use | p to denote that p is satisfiable.



Definition 5.7: A propositional formula is unsatisfiable or contradictory
if it is not satisfiable, i.e., for no interpretation it is true.

Definition 5.8: A propositional formula is called valid or tautology,
when it is true for all possible interpretations.

For example, (pAq)Ar= pA (qA r)is a tautology, since it is
true for all possible v (p), v (q) and v (r) € { 0,1}. Here we have 8 possible
interpretations for the propositional formula, for which it is true.

The sub-sethood relationship of all formulas, and satisfiable and valid
formulas is presented in Venn diagram 5.1

All formula

Satisfiable

Valid c Satisfiable, Satisfiable < All formula,
Unsatisfiable = All formula — Satisfiable.

Fig. 5.1: Sub-sethood relationship of valid, satisfiable and all formulas.
5.3 Tautologies in Propositional Logic

The tautologies [1] may be directly used for reasoning in propositional logic.
For example, consider the following statements.

p1 = the-sky-is-cloudy, p, = it-will-rain, and p; =if (the-sky-is-
cloudy) then (it-will-rain) = p; — pa.

“p1” and “p,” above represent premise and conclusion respectively for the if-
then clause. It is obvious from common sense that p, directly follows from p;



and ps. However to prove it automatically by a computer, one requires help of
the following tautology, the proof of which is also given here.

ps = p1 = P2
=—(p1 A —p2), since p; true and p, false cannot occur together.

=—-p V2 (by De Morgan’s law)

However, to prove p, from p; and p; we have to wait till example 5.1.
List of tautologies in propositional logic

- p=p
pAg=qA p

pVq= qVp

- (PA q)Ar= pA (@A 1)
.pVqQVr= pV(qVr)

.pPA (QVr)= pA @QV(pA T
-pV(@@A D= PVYA (pVr)
(P AQ@=-pV—q

- (pVg=-pA-gq

.pV p=rp

-PA p=p

-pPAq—p

.pPAq—q

I N

[
A WO = O

.p—> pVq
.q—> pVq

—_
(9]

5.4 Theorem Proving by Propositional Logic

We present here two techniques for logical theorem proving in propositional
logic. These are i) Semantic and ii) Syntactic methods of theorem proving.



5.4.1 Semantic Method for Theorem Proving

The following notation will be used to represent a symbolic theorem, stating
that conclusion “c” follows from a set of premises pi ,pz2, ..., Pn

P, P2, . Pn=C or Pi, P25 -5 Pn |: C

In this technique, we first construct a truth table representing the relationship
of p; through p, with “c”. Then we test the validity of the theorem by
checking whether both the forward and backward chaining methods, to be
presented shortly, hold good. The concept can be best illustrated with an
example.

Example 5.1: Let us redefine p;= the-sky-is-cloudy, p, = it-will-rain and
ps = p1— p2 to be three propositions. We now form a truth table of py, p2
and ps, and then attempt to check whether forward and backward chaining
holds good for the following theorem:

P, P3 = P2

Table 5.2: Truth Table of pi, p2, and p1 — p>.

p1 P2 Pps Epi— P2

= plVp2
0 0 1
0 1 1
1 0 0
111

Forward chaining: When all the premises are true, check whether the

conclusion is true. Under this circumstance, we say that forward chaining
holds good.



In this example, when p; and ps are true, check if p, is true. Note that in
the last row of the truth table, py = 1, p; = 1 yield p, = 1. So, forward
chaining holds good. Now, we test for backward chaining

Backward chaining: When all the consequences are false, check whether at
least one of the premises is false.

In this example p, = 0 in the first and third row. Note that when p, = 0,
then p; = 0 in the first row and p; = 0 in the third row. So, backward chaining
holds good.

As forward and backward chaining both are satisfied together, the
theorem: pi, ps = p- also holds good.
Example 5.2: Show that for example 5.1, ps, ps =/> pi.

It is clear from the truth table 5.2 that when p,;=0, then p,=0 (first row ) and
ps = 1 (first row), backward chaining holds good. But when p,= p; =1, p;=0
(second row), forward chaining fails. Therefore, the theorem does not hold
good.

5.4.2 Syntactic Methods for Theorem Proving

Before presenting the syntactic methods for theorem proving in propositional
logic, we state a few well-known theorems [4], which will be referred to in the
rest of the chapter.

Standard theorems in propositional logic

Assuming p, q and r to be propositions, the list of the standard theorems is
presented below.

ppq=pAgq

p,p 2 q = q (Modus Ponens)
-p, pVq=4q

—q, p—>q = —p (Modus Tollens)
pVqp—orngor=r

p— q, q =>r = p—> r (Chaining)

O o A

P, p—>q q—>r=1 (Modus Ponens & Chaining)



8. pV (@ A —-q & p

9. pA (V=9 p

10. p>q&e —-pVgq

. =(p—> 9= pA —q
12.peqe (p—>9 A@—p)
13.pegqe AV (=p Aq)
14. pr— @ ne P Ag-or

15. p>q & —q— —p (contraposition theorem)

The syntactic approach for theorem proving can be done in two ways,
namely, i) by the method of substitution and ii) by Wang’s algorithm.

5.4.2.1 Method of Substitution

By this method, left-hand side (or right-hand side) of the statement to be
proved is chosen and the standard formulas, presented above, are applied
selectively to prove the other side of the statement.

Example 5. 3: Prove the contraposition theorem.

The contraposition theorem can be stated as follows. When p and q are two
propositions, the theorem takes the form of p>q& —q— —p.

Now, L.HS. = p—>gq
=-pV q [by(10)]
= q V=p
=29V ap

Analogously, starting with the R.H.S, we can easily reach the L.H.S. Hence,
the theorem bi-directionally holds good.

Example 5.4: Prove theorem (14) by method of substitution.

Proof: LHS. = p—> (q— 1)



= p=> (= qV n [by(10)]

=-pV(=qVn [by(10)]
= (=wpV=qVr [since this is a tautology by (5)]

= a(pArqQVr [by De Morgan’s law]
= (A1  [by(10)]

= RHS.

Analogously, the L.H.S. can be equally proved from the R.H.S. Hence, the
theorem follows bi-directionally. i

5.4.2.2 Theorem Proving by Using Wang’s Algorithm

Any theorem of propositional logic is often represented in the following form:
Pi,P2, -« Pn = q1, 92, -5 (m

where pi and q; represent propositions. The comma in the L.H.S. represents
AND operator, while that in the R.H.S. represents OR operator. Writing
symbolically,

PPAPA AP = q V@ V.. Vg

This kind of theorem can be easily proved using Wang’s algorithm [10]. The
algorithm is formally presented below.

Wang’s algorithm

Begin
Step I: Starting condition: Represent all sentences, involving only A, V
and — operators.

Step II: Recursive procedure: Repeat steps (a), (b) or (c) whichever is
appropriate until the stopping condition, presented in step III,
occurs.

a) Negation Removal: In case negated term is present at any side
(separated by comma) bring it to the other side of implication symbol
without its negation symbol.

c.g., p,q, 0 I = 8

Fp, g = 1,58



b) AND, OR Removal: 1f the L.H.S. contains A operator,
replace it by a comma. On the other hand if R.H.S. contains V
operator, also replace it by a comma.

e.g., pATILrLs = sVt

|=p,rasz> Sst

¢) Theorem splitting: 1f the L.H.S. contains OR operator, then
split the theorem into two sub-theorems by replacing the OR
operator. Alternatively, if the R.H.S. contains AND operator, then
also split the theorem into two sub-theorems.

eg, pVr= st
= p_:> s, t & 1r = s, t . Sub-theorems
eg, pr = s At

-pr=s & pr= t . Sub-theorems

Step III: Stopping Condition: Stop theorem proving process if either of (a)
or (b), listed below, occurs.

a) If both L.H.S. and R.H.S. contain common atomic terms,
then stop.

b) If L.H.S. and R.H.S. have been represented as a collection of
atomic terms, separated by commas only and there exist no
common terms on both sides, then stop.

End.

In case all the sub-theorems are stopped, satisfying condition III (a), then
the theorem holds good. We would construct a tree structure to prove theorems
using Wang’s algorithm. The tree structure is necessary to break each theorem
into sub-theorems.

Example 5. 5: Prove the chaining rule with Modus Ponens using Wang’s
algorithm.



Proof: The chaining rule with Modus Ponens can be described as

p, P49 q>r =1

where p, q and r are propositions (atomic).

We now construct the tree. A node in the tree denotes one propositional
expression. An arc in the tree denotes the step of Wang’s algorithm, which is
applied to produce the next step. The bold symbols in both the left- and right-
hand side of the implication symbol describe the termination of the sub-tree

by step 111 (a).

p, P> q q2r =1

By I

P, pVv(Qq HqQVIr=r

By Il (¢)

Byll(c)

p, °pv(q nq=r1

p, °pvq r=r

Byll(¢)

By Il (c) By III (a)

p, 7p, °q=T71

p, o 7q=7r1

By II (a)

p, /9= p,

T

By Ili(a)

Fig. 5.2: Tree used to prove a propositional theorem by Wang’s algorithm.

By Il (a)

p.q = q, T

By III(a)



Since all the terminals of the tree have been stopped by using III (a), the
theorem holds good. O

5.5 Resolution in Propositional Logic

The principle of resolution in propositional logic can be best described by the
following theorem [7].

Resolution theorem: For any three clauses p, q and r,
pv I, qv—ar = pvq.
Proof: The theorem, which can be proved by Wang’s algorithm, is left as an

exercise for the students. m]

The resolution theorem can also be used for theorem proving and hence
reasoning in propositional logic. The following steps should be carried out in
sequence to employ it for theorem proving.

Resolution algorithm

Input: A set of clauses, called axioms and a goal.
Output: To test whether the goal is derivable from the axioms.

Begin
1. Construct a set S of axioms plus the negated goal.

2. Represent each element of S into conjunctive normal form (CNF) by the
following steps:
a) Replace ‘if-then’ operator by NEGATION and OR operation by
theorem 10.

b) Bring each modified clause into the following form and then drop
AND operators connected between each square bracket. The clauses
thus obtained are in conjunctive normal form (CNF). It may be
noted that p; may be in negated or non-negated form.

[ Pt V P2V ... Vpln]/\

[Pz VvV p22v..... ... V P ] A



3. Repeat

a) Select any two clauses from S, such that one clause contains a
negated literal and the other clause contains its corresponding
positive (non-negated) literal.

b) Resolve these two clauses and call the resulting clause the
resolvent. Remove the parent clauses from S.

Until a null clause is obtained or no further progress can be made.
4. If anull clause is obtained, then report: “goal is proved”.

The following example illustrates the use of resolution theorem for reasoning
with propositional logic.

Example 5.6: Consider the following knowledge base:

1. The-humidity-is-high v the-sky-is-cloudy.
2. If the-sky-is-cloudy then it-will-rain

3. If the-humidity-is-high then it-is-hot.

4. it-is-not-hot

and the goal : it-will-rain.

Prove by resolution theorem that the goal is derivable from the knowledge
base.

Proof: Let us first denote the above clauses by the following symbols.

p = the-humidity-is-high, q = the-sky-is-cloudy, r = it-will-rain, s = it-
1s-hot.
The CNF form of the above clauses thus become

l.pvgq
2. aqvr
3.apvs
4. s

and the negated goal = — 1. Set S thus includes all these 5 clauses. Now by
resolution algorithm, we construct the graph of fig. 5.3. Since it terminates
with a null clause, the goal is proved.



pvq

—qQVvr

pvr

1 pVvs

Fig. 5.3: The resolution tree to prove that it-will-rain.

5.6 Soundness and Completeness

Soundness and completeness are two major issues of the resolution algorithm.
While soundness refers to the correctness of the proof procedure, completeness
implicates that all the possible inferences can be derived by using the
algorithm. Formal definitions of these are presented here for convenience.

Definition 5.9: A proof process is called sound, if any inference o has
been proved from a set of axioms S by a proof procedure, i.c., Sta,

follows logically from S, i.e., SFa.

0




Definition 5.10: A proof process is called complete, if for any inference
o, that follows logically from a given set of axioms S, i..e., S o, the proof
procedure can prove Q. i.e., Sko.

Theorem 5.1: The resolution theorem is sound.

Proof: Given a set of clauses S and a goal o.. Suppose we derived o from S
by the resolution theorem. By our usual notation, we thus have S F o.. We
want to prove that the derivation is logically sound, i.e., S |- .. Let us prove
the theorem by the method of contradiction. So, we presume that the
consequent S |- o is false, which in other words means S |- — o. Thus — o is
satisfiable. To satisfy it, we assign truth values (true / false) to all
propositions that are used in . We now claim that for such assignment,
resolution of any two clauses from S will be true. Thus the resulting clause
even after exhaustion of all clauses through resolution will not be false. Thus
S + a is a contradiction. Hence, the assumption S |- — « is false, and
consequently S |- a is true. This is all about the proof [5]. O

Theorem 5.2: The resolution theorem is complete.

Proof: Let o be a formula, such that from a given set of clauses S, we have
S |- a, i.e., o can be logically proved from S. We have to show there exists a
proof procedure for ., i.e., S - o

We shall prove it by the method of contradiction, i.e. let S+ a not
follow, i.e., S F —o.. In words o is not derivable by a proof procedure from S.
Therefore, S| = S U o is unsatisfiable. We now use an important theorem,
called the ground resolution theorem, that states “if a set of ground clauses
(clauses with no variables) is unsatisfiable, then the resolution closure of those
clauses contains the ‘false’ clause. Thus as S; is unsatisfiable, the resolution
closure of S; yields the null clause, which causes a contradiction to S I o.
Thus the assumption is wrong and hence S |- o is true. O

We now prove the ground resolution theorem, stated below.

Theorem 5.3: If a set of ground clauses S is unsatisfiable, then the
resolution closure T of those clauses contains the false clause.

Proof: We prove the theorem by the method of contradiction. So, we
presume that resolution closure T does not contain false clause and will
terminate the proof by showing that S is satisfiable.



Let As = {Ay, Az, ..... ,An} be the set of atomic sentences occurring in S.
Note that A, must be finite. We now pick up an assignment (true / false) for
each atomic sentence in As in some fixed order {A,, A, ....Ax} such that

1) if a clause in T contains — A, with all its other literals connected
through OR being false, then assign A; to be false.
ii) Otherwise, assign A; to be true.

We can easily show that with this assignment, S is satisfiable, if the closure
T of S does not contain false clause [9]. O

5.7 Predicate Logic

Predicate logic (also called first order predicate logic) has a similar formalism
like propositional logic. However, the capability of reasoning and knowledge
representation using predicate logic is higher than propositional logic. For
instance, it includes two more quantifiers, namely, the essential quantifier (V)
and the existential quantifier (). To illustrate the use of the quantifiers, let us
consider the following pieces of knowledge.

Knowledge 1 : All boys like sweets.

Using predicate logic, we can write the above statement as

V X (Boy (X) — Likes (X, sweets))
Knowledge 2 : Some boys like flying kites.

Using predicate logic, the above statement can be represented as

JX (Boy (X) —» Likes (X, Flying-kites))

Before describing predicate logic (PL) or first order logic (FOL) in a
formal manner, we first present the alphabets of FOL.

Alphabets of FOL
The alphabets of FOL are of the following types:



1. Constants: a, b, ¢

2. Variables: X,Y,Z

3. Functions: f, g h

4. Operators: A,v,—,—
5. Quantifiers: V , 3

6. Predicate: P, Q,R

Definition 5.11: A term is defined recursively as being a constant,
variable or the result of application of a function to a term.

e.g., a,Xx, t(x), t(g(x)) are all terms.

To illustrate the difference between functions and predicates, we give their
formal definitions with examples.

Definition 5.12: Function denotes relations defined on a domain D. They
map n elements (n >0) to a single element of the domain. “father-of”, “age-of”
represent function symbols. An n-ary function is written as f(ti, t,.., t.) where
ti s represent terms. A O-ary function is a constant [7].

Definition 5.13: Predicate symbols denote relations or functional
mappings from the elements of a domain D to the values true or false. Capital
letters such as P,Q, MARRIED, EQUAL are used to represent predicates. P(t,
t2, ..., ta) represents an n-ary predicate where t; are terms. A O-ary predicate is a
proposition, that is a constant predicate.

Definition 5.14: The sentences of FOL are well-formed-formulas (WFF),
defined as follows:

1. If P(t,t, ..., t) is an n-ary predicate, then P is an atomic formula.

2. An atomic formula is a well-formed formula (WFF).

3. IfPand Q are WFFthenP A Q,Pv Q,—P, P — Q are all WFF.
Note that VX R (X) is also an WFF.



4. IfPis a WFF and X is not a quantified variable in P, then P remains a
WFF even after quantification

e.g., VX P or IX P are WFF.
Example 5.7: Rewrite the following sentences in FOL.
Coconut-crunchy is a biscuit.

Mary is a child who takes coconut-crunchy.

John loves children who take biscuits.
John loves Mary.

EESOS I Sl

The above statements can be represented in FOL using two quantifiers
X & Y.

1. Biscuit (coconut-crunchy)

2. Child (mary) A Takes (mary, coconut-crunchy)

3. VX ((Child (X) A3JY (Takes (X, Y) A Biscuit (Y ))) —>Loves
(john, X)

4. Loves (john, mary)

5.8 Writing a Sentence into Clause Forms

We now present a technique for representing a complex sentence into
simple sentences. The technique is described below. As an example, we
consider statement 3 for conversion into clause forms. The resulting
expressions after application of each step are presented following the step.

Algorithm for representing a sentence into clauses

Step I: Elimination of if-then operator: Replace “—” operator by —
& v operator.

By replacing ‘if-then’ operator by negation and OR operator, in expression (3)
above, we find:

V X (= (Child (X) A Y (Takes (X, Y) A Biscuit (Y))) v Loves (john, X)

Step II: Reduction of the scope of negation: Replace — sign by choosing
any of the following:

a)—|(P VQ):—|P /\—|Q

b) —|(P/\Q):—|P \4 —|Q



C) —|(—|P):P

In the present context, we rewrite the sentence as
V X (= Child (X) v = (Y (Takes (X, Y) A Biscuit (Y))) v Loves (john, X))

=VX (= Child (X) v VY (= Takes (X,Y)v —Biscuit(Y))v Loves
(john, X))

Step III: Renaming the variables within the scope of quantifiers:
Rename 3X by 3 Y when {3 X} is a subset/ proper subset of {V X}. In
the present context, since X and Y are distinct, the above operation cannot be
carried out.

Step IV: Moving of quantifiers in the front of the expression: Bring all
quantifiers at the front of the expression.

Applying this on the example yields:

=V XV Y — Child (X) v — Takes (X,Y) v — Biscuit (Y) v Loves (john, X)

Step V: Replacing existential quantifier as Skolem function of essential
quantifiers: When an existential quantifier (Y) precedes an essential quantifier
(X), replace Y as S (X), where S is the Skolem function [3]. In this example,
since Y is not a subset of X, such a situation does not arise. Also the essential
quantifier is dropped from the sentence.

Step VI: Putting the resulting expression in conjunctive normal form
(CNF): For example, if the original expression is in the form P v (Q A R),
then replace it by (P v Q) A (P v R).

In the present context, the resulting expression corresponding to

expression (3) being in CNF, we need not do any operation at this step.

Step VII: Writing one clause per line: If the original expression is of the
following CNF, then rewrite each clause/ line, as illustrated below.



original expression:
(—|P1| VvV = P]z ...\/—|P1n\/Q11 \/Q|2.... VQ]m)/\

(—| P21 VvV = P22 . V.7 Pzn \Y Q21 \Y sz . V sz) A

(wPav=aPo.. vaPuavQuVv Qg.. VvV Qum).

After writing one clause per line, the resulting expressions become as follows.
P11, Pia,..; Pia = Qui, Quz,ee ,.Qim

P21, P, yPon = Qai, Qz,eee, Qom

Py, Po,..., Pu— Qu, Qu,..... , Qum

With reference to the above, we get the following line as the final expression.
Child (X), Takes (X, Y), Biscuit (Y) — Loves (john, X).

It may be noted that the resulting expression, derived above, is not much
different from the expression (3). This, however, is not the case for all
complex sentences. For example, let us consider the following complex
sentence and the clause forms corresponding to that.

Expression: V X ( Loves (john, X) - Female (X))
Ad X (= Loves (X, Brother-of (X) A Female (X)))

The clause forms for the above expression are:

a) Loves (john, X) — Female (X)
b) Loves (s(X), Brother-of (s (X))), Female (X) »> |

where the meaning of the first clause is obvious, while the second clause
means that it is impossible that there exists a female X, who loves her
brother. The inverted T is called a Falsum operator, which is opposite to
Truam (T), meaning that the expression is true [2]. The symbol s(X) denotes a
Skolem function of X, which may be read as some of X.



5.9 Unification of Predicates

Two predicates P (t,ts,..., ta) and Q (si, Sa,..., S») can be unified if terms t;
can be replaced by s; or vice-versa.

Loves (mary, Y) and Loves (X, Father-of (X)) , for instance, can be unified by
the substitution S ={ mary / X, Father-of (mary)/Y }.

Conditions of Unification:

i)  Both the predicates to be unified should have an equal number of terms.

ii) Neither t; nor s; can be a negation operator, or predicate or functions of
different variables, or if t; = term belonging to s; or if s; = term belonging
to t; then unification is not possible.

The Unification Algorithm

Input: Predicates P(ti, tz,..., t) and Q(s1,S2,...,5m)
Output: Decision whether the predicates P and Q are unifiable
and a set S that includes the possible substitution.
Procedure Unification (P, Q, S, unify)
Begin
S:= Null;
While P and Q contain a Next-symbol do
Begin
Symbl: = Next-symbol (P);
Symb2: = Next-symbol (Q);
If Symbl # Symb2 Then do
Begin Case of
Symb1 or Symb2 = Predicate: Unify: = fail;
Symbl = constant and symb2 = different-constant: Unify: = fail;
Symbl1 or Symb2 = — : Unify: = fail;
Symb1 and Symb2 = function: Unify: = fail;
Symbl=variable and Symb2 =term and variable € term: Unify: = fail;
Symb2=variable and Symbl=term and variable € term: Unify: = fail;
Else If Symbl = variable or constant and Symb2 =term Then do
Begin
S: =S v {variable or constant / term};
P: = P[variable or constant / term];
End;
Else If Symb2 = variable or constant and Symb1 =term Then do
Begin



S: =S v {variable or constant / term};
Q: = P[variable or constant / term];
End;
End Case of;
End while;
If P or Q contain a Next-symbol Then Unify: = fail
Else Unify: = Success;
End.

5.10 Robinson’s Inference Rule

Consider predicates P, Q;, Q, and R. Let us assume that with appropriate
substitution S, Q;[S] = Q2 [S].

Then (P v Qi) A (Q2v R) with Q,; [S] = Q2 [S] yields (P v R)[S].

Symbolically, PV Qu—-Qav R Q[S] =Q, [S]
(Pv R)I[S]

The above rule is referred to as Robinson’s inference rule [8]. It is also
referred to as the resolution principle in predicate logic. The following
example illustrates the rule.

Let P = Loves (X, father-of (X)),

Q= Likes (X, mother-of (X))),

Q, = Likes( john, Y),

R = Hates (X, Y).
After unifying Q, and Q,, we have
Q= Q, = Q, =Likes (john, mother-of (john))
Where the substitution S is given by
S= { john /X, mother-of (X) / Y}
= {john / X, mother-of (john) / Y}.

The resolvent (P v R) [s] is, thus, computed as follows.
(PVvR)[S]
=Loves (john, father-of (john)) v hates (john, mother-of(john)).



5.10.1 Theorem Proving in FOL with Resolution Principle

Suppose, we have to prove a theorem Th from a set of axioms. We denote it
by

{ A, Ay, ..., An} Th
Let

A, = Biscuit (coconut-crunchy)
A, = Child (mary) A Takes (mary, coconut-crunchy)

A;=V X (Child(X) A 3Y (Takes (X,Y) A Biscuit (Y))) —
Loves (john, X)

and Th = Loves (john, mary) = A, (say).

Now, to prove the above theorem, we would use Robinson’s inference
rule. First of all, let us express A; through A4 in CNF. Expressions A; and A4
are already in CNF. Expression A, can be converted into CNF by breaking it
into two clauses:

Child (mary) and
Takes (mary, coconut-crunchy).

Further, the CNF of expression Aj; is
—Child (X) v —Takes (X,Y) v —Biscuit (Y) v Loves (john, X)

It can now be easily shown that the negation of the theorem (goal) if
resolved with the CNF form of expressions A; through Aj, the resulting
expression would be a null clause for a valid theorem. To illustrate this, we
will now form pairs of clauses, one of which contains a positive predicate,
while the other contains the same predicate in negated form. Thus by
Robinson’s rule, both the negated and positive predicates will drop out and
the value of the variables used for unification should be substituted in the
resulting expression. The principle of resolution is illustrated below (fig. 5.4)
to prove the goal that Loves (john, mary).

5.11 Different Types of Resolution

The principle of resolution can be extended to different forms. But an over-
extension may cause fatal errors. This section illustrates the diversified use of
the resolution principle with the necessary precautions to avoid the scope of
mistakes by the beginners.



— Loves (john, mary) —Child (X) v —Takes
(X,Y) v —Biscuit (Y) v
Loves (john, X)

N

—Child ( mary ) v
—Takes (mary, Y) v Biscuit (coconut-
—Biscuit (Y) crunchy)

N

—Child (mary) v
—Takes ( mary, Child (mary )
coconut-crunchy)

N

—Takes (mary, Takes (mary,
coconut-crunchy) coconut-crunchy)

0

Fig 5.4: A resolution graph to prove that Loves (john, mary).

5.11.1 Unit Resulting Resolution

Typical resolutions, where two clauses of the form (p v — q) and (q v 1) are
resolved to generate ( p v r), are called binary resolutions. The definition,



though illustrated with propositions, is equally valid for predicates. On the
other hand, when more than two clauses are resolved simultaneously to
generate a unit clause, we call it a unit resolution. Under this circumstance,
all excluding one input clause are unit clauses, and the remnant clause has as
many literals as the number of unit clauses plus one. For example, consider
the following clauses:

Father (Y, Z) v —Married ( X, Y) v — Mother (X, Z)

—Father (a, b).

Married (c, a)

Resolving these three clauses simultaneously yields the unit clause:

—Mother (c, b), where the set of instantiation S is given by
S={a/Y,c/X, b/Z}.

5.11.2 Linear Resolution

Suppose two clauses Cl,, Cl, are resolved to generate Cls, then Cl; and Cl, are
called the parents of Cl;. Now, for i = 1 to n, if Cl; is the parent of Cl;. |,
then the resolution process by which Cl, + ; is generated is called linear
resolution. When one of the parents in linear resolution comes from the given
set of CNF clauses, we call it linear input resolution [7].

5.11.3 Double Resolution: A Common Mistake

Sometimes more than one literal is present with opposite signs in two CNF
clauses. For instance consider the following two clauses.

pv-oqvVvr
and —-pVv qVvs.

Resolving the above clauses twice, we may derive r v s, which is
incorrect. To understand the implication of this, let us represent these rules in
the following format:

qopvr
and p— qVs.

Replacing p in the first clause by the second clause, we have

q— qVvsvVv r,



which implies that if q is true then either q or r or s is true, but this does not
mean (q v 1) only is true.

A simpler but interesting example that illustrates the scope of mistakes
in double resolution is given below. Let us consider the following clauses:

—pVvq
and —qVvDp

Resolving these twice yields a null clause, which is always false. But
the above system comprising of { p— q, q—p} implicates p—p and q — q
by chain rule, which in no way supports the falsehood of the resulting clause
after resolution [3].

5.12 Semi-decidability

A logic is called decidable if there exists a method by which we can correctly
say whether a given formula is valid or invalid. Readers may remember that
validity of a formula o means satisfiability of the formula for all possible
interpretations. A sound and complete proof method is able to prove the
validity of a formula [3]. But if the formula is invalid, the proof procedure (by
resolution principle or otherwise) will never terminate. This is called semi-
decidablity. FOL is semi-decidable, as it is unable to prove the invalidity of a
formula.

5.13 Soundness and Completeness

The issues of soundness and completeness of the resolution principle for
propositional logic have already been discussed in a previous section. This
section discusses these issues for predicate logic. To prove the completeness
of the resolution theorem of predicate logic, the following definitions and
theorems are presented in order.

Definition 5.15: The Herbrand Universe (Hs) for a given set of clauses S
is defined as the set of all possible ground terms, constructed by replacing the
variables in arguments of functions by the same or other functions or
constants, so that they remain grounded (free from variables) after substitution.
It is to be noted that Hs is an infinite set [9].

For example, suppose that there exists a single clause in S, given by

QX, fX,a))AP(X,a) » R(X,b)



where {a, b} is the set of constants, {X} is a set of variables, {f} is a set of
functions, {P, Q, R} is a set of predicates. Here Hs = {a, b, f(a, a), f (b, a),
f(a, f(a, a), f(a,f(a,b))...... } 1s an infinite set.

Definition 5.16: Let S be a set of clauses and P be the set of ground
terms. Then P (S), the saturation of S with respect to P, is defined [9] as the
set of all ground clauses obtained by applying all possible consistent
substitutions for variables in S with the ground terms in P.

For example, let P = {a, b, f(a, b)} and S= {Q (X, f (X, a)) A P( X, a) —>
R (X, b)}. Then P (S) is computed as follows.

P (S)={Q(a, f(a,a)) AP(a,a) > R (a, b),
Q(, f(b,a)) A P(b,a) > R (b, b),
Q(f(a, b), f(f(a, b), a)) A P(f(a, b), a) > R (f(a, b), b)}

Definition 5.17: The saturation of S, a set of clauses with respect to the
Herband universe Hs, is called the Herbrand base Hs (S).

For example, with S= {Q (X, f(X,a)) AP(X,a) > R (X, b) }, Hs = {a
’b?
f(a, a), f (a, b), f (f (a, a), a), f (f (a, b), a).....}, we find Hg (S) as follows.

Hs (S)= {Q(a, f(a, a)) AP(a,a) > R (a, b),
Q(b, f(b,a)) A P(b,a) > R (b, b),
Q(f(a,b), f(f(a, b),a)) A P(f(a, b),a) > R (f (a, b), b),

Q (f(f(a, b), a), f(f(f(a, b), a), a)) A P(f(f(a, b), a), a) >
R (f(f (a, b), a), b)}
It may further be noted that Hs (S) too is an infinite set.

The following two theorems will be useful to prove the completeness of the
resolution theorem. The proofs of these theorems are beyond the scope of this
book and are thus excluded.

Herbrand’s Theorem: If a set of clauses S is unsatisfiable, then there
must exist a finite subset of Herband base Hs (S) that too is unsatisfiable [ 5].

Lifting Lemma: Given that C; and C; are two clauses with no shared
variables. Further given that C, and C, are the ground instances of C; and
C; respectively. If C_ is a resulting clause due to resolution of C; and C,
then there exists a clause C that satisfies the following criteria:



i) C is resulting clause due to resolution of Cl and C2, and
ii) C_ is a ground instance of C [9].

For example, let

Ci=QX, f(X,a) AP(X,c) > R(X, D)
C,=W(f(f(a,b),a),Z)—>P(f(a,Y),2Z)
Ci=Q(f(a,b),f(f(a,b),a)) AP(f(a,b),c) >R (f(a,b),b)
C=W(f(f(a,b)a),c)—>P(f(a,b),c)

Now, C=Q (f(a, Y), f(X,a) AW (f(f(a,b),a),Z) - R(f(a, Y),b)
and C =Q(f(a,b), f(f(a,b),a)) AW(f(f(a,b),a),c) - R(f(a,b),b)
Thus we found C_ as a ground instance of C.

Let us now prove the completeness theorem of predicate logic.

Theorem 5.4: The resolution theorem of predicate logic is complete.

Proof: Given a set of clauses S and a formula o such that S l-o.. We have

to prove that S F o, i.e. there exists a logical proof of oo from S. We shall
prove it by the method of contradiction. Thus let S+ — o, i.e., S is not

logically provable from S. Thus S; =S U {— o}, all expressed in clause form
is unsatisfiable. So, by Herbrand’s theorem, there must exist a Herbrand base
Hs(S)) that is also unsatisfiable. Now, by ground resolution theorem, we find
that the resolution closure of Hs (Si) contains the clause ‘false’. Now, by
lifting the lemma, if the false clause occurs in the resolution closure of Hs (S))
then that must also appear in the resolution closure of S;. Now, the resolution
closure of S; containing the false clause is a contradiction to the assumption
that S+ — o is wrong and hence S + o follows. O

Now, we narrate the proof of soundness of the resolution theorem in predicate
logic.

Theorem 5.5: The resolution principle of predicate logic is sound.
Proof: To prove the soundness, we first look at the proof procedure for a

particular problem that proves a formula o from a given set of clauses S, i.e.,
S | a. Let it be a linear resolution. It can be shown that if the soundness can



be proved for linear resolution, it can be proved for other resolutions (like
unit resolution) as well. To prove the soundness of the resolution theorem,
we use the following three steps:

Step 1: After the proof procedure terminates, back substitute the constants by
variables in the tree.

Step 2: Now instantiate these clauses with all possible constants. We thus get
the Herbrand base corresponding to the clauses that participated in the proof
procedure.

Step 3: The resolution theorem of propositional logic is now applied to that
subset of the Herbrand base. Note that the propositional resolution theorem,
employed here, is sound.

Since the elements of Herbrand base also include the clauses that participated
in the resolution proof of predicate logic, the proof procedure of the resolution
theorem in predicate logic is also sound [2]. O

5.14 Conclusions

The chapter presented the syntax and semantics of propositional and predicate
logics and demonstrated their applications in logical theorem proving. Many
Al problems, which can be represented as theorem proving problems, thus can
be handled with the concept outlined in the chapter. The resolution theorem,
being the fundamental theorem under the proposed framework of knowledge,
its soundness and completeness have been discussed in detail. The semi-
decidablity of FOL has also been covered briefly. The shortcomings of double
resolution, as a common mistake, have also been pointed out. This will help
the students to properly identify the use of the resolution theorem.

Exercises

1. Prove that for the atomic propositions p, ¢, r and s
a) pmq =>r=p=gq, r and
b) p,q=—-r18 =p,q, r=s

Could you remember the use of the above tautologies in Wang’s algorithm? If
yes, in which steps did you use them?

2. Verify the following theorems by Wang’s algorithm.

a pvVqp—orngqor=r



b)p> @ ne Aot
) pP=>PA @—p & PA 99V (—=p A —q)

[Note: For (b) and (c ), prove the theorems first from left to right and then
from right to left.]

3. Apply resolution theorem to prove the following theorem:

4.

pVqgporngqor = r.

[Hints: Here, goal is r ; so resolve — r with the CNF form of premise
clauses to prove a resulting null clause.]

For a triangle ABC, it is given that the sum of the interior angles: ZA +
/B + ZC =180 degrees. Show by resolution theorem that the exterior
angle is the sum of the opposite interior angles.

[Hints: We denote the exterior angle ZA by EXTZA. Use the following
predicates:
Equal (sum (LA, B, £C) ,180)
Equal (sum (LA, EXT(ZLA), 180)
and rules
Equal (X, Y), Equal(Z, Y) ->Equal (X, Z)
Equal (sum (X, Y), sum (X, Z)) —»Equal (Y, Z).
Equal (Y, Z) —» Equal (Z, Y).

The rest of the proof is obvious.]
Represent the following sentences into clause form:

a) On(X,Y)A (Above (Y,Z)vOn(Y,Z)) AOn(Z, W) — On (X, W)
b) V X Fly (X) A 3 X Has-wings (X) —Bird(X) v Kite(X)
¢) V XMan (X)A VY (Child (Y) v Woman (Y)) — —Dislikes (X, Y)

Prove that Dog (fido) follows from the following statements by the
resolution theorem.

a) V X Barks (X) — Dog (X).

b) V XV Y 3Z Has-master (X, Y) A Likes (X, Y) A Unprecedented-
situation (Z) — Barks (X).

¢) Unprecedented-situation (noise).

d) Likes (fido, jim).

e) Has-master (fido, jim).



7.

Show that the following formula is valid.
AX)VB(Y)) > CZ)=(—-AX) Ar=BX)) Vv C2)
where X, Y and Z are variables and A, B and C are predicates.

List all the satisfiability relations in a tabular form with four columns A,
B, C and the entire formula (say, Y) for the last formula.

Given X € {al, a2}, Y e {bl, b2} and Z ¢ {cl, c2}, and S = {A(X) v
B(Y)) > C(Z) = (= AX) A = B(Y)) v C(2)}, find the Herbrand
universe and the Herbrand base.

10. Illustrate the lifting lemma with the following parameters.

(1]

(3]

Ci=PX fX)AQ(Y,c)— R(XDb)
C:=W(f(Y),Z)>Q(Y,Z)
Ci=P(a f(a)AQ(b,c)— R(a,b)

C=W(f(®),c)—=>Q(b,c)
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Principles
in Logic
Programming

This chapter is an extension of chapter 5 to study in detail a specialized class
of Predicate Logic based reasoning programs, called Logic Programs.
PROLOG, which is an acronym of PROgramming in LOGic, is commonly
used for handling this class of reasoning problems. Various issues of Logic
Programming have been narrated in this chapter with special emphasis on
the syntax and semantics of PROLOG programming language. It may be
mentioned here that besides PROLOG, another well-known programming
language, called LISP (LISt Processing language), is also used for
programming in Artificial Intelligence. However, LISP is well suited for
handling lists, whereas PROLOG is designed for Logic Programming.

6.1 Introduction to PROLOG
Programming

To introduce readers to the syntax and semantics of logic programming, we
first take a look at a few examples. Let us, for instance, consider the problem



of a ‘classroom scene’ interpretation We assume that the scene has been passed
through various stages of low and medium level image processing [7] and the
objects in the scene thus have been recognized [8] and labeled by a computing
machine. The data (clauses) received from the scene and the knowledge used to
analyze it are presented in both English and Predicate Logic below.

Database:

Object (board)

Writes-on (john, board, classhour)
Sits-on (mita, bench, classhour)
Sits-on (rita, bench, classhour)
Person (john)

Person (rita)

Person (mita)

The above are called clauses in PROLOG.

Fig. 6.1: A classroom scene, where John, the teacher, writes on
the board and Mita and Rita, the students, sit on a bench.

Knowledge base:

1. A board (blackboard) is an object, where teachers used to write in
classhours.

In Predicate Logic, the above sentence can be written as



Object (board) A Writes-on ( X, board, Time ) A Teacher (X)
—Equal (Time, classhour).

2. A Teacher is a person who writes on a board during classhour.
In Predicate Logic, the above sentence is written as

V X ( Person(X) A Writes-on (X, board, classhour) — Teacher (X))

3. A student is a person who sits on a bench during classhour.
In Predicate Logic, the above sentence can be written as

VY (Person (Y) A Sits-on (Y, bench, Time) A Equal (Time, classhour) —
Student (Y) )

4. If at least one person sits on a bench in classhour and a second person
writes on the board at the same time then time = classhour.

In Predicate Logic, the above expression can be described by

3Y ((Person (Y) A Sits-on (Y, bench, classhour )) A
3 X (Person (X) A Writes-on (X, board, Time)) — Equal (Time, classhour) )

The above 4 statements can be written in PROLOG language as follows:

1. Equal (Time, classhour) :-
Object (board),
Writes-on (X, board, Time),
Teacher (X).

2. Teacher (X) :-
Person (X),
Writes-on (X, board, classhour).

3. Student (Y) :-
Person (Y),
Sits-on (Y, bench, Time),
Equal (Time, classhour).

4. Equal (Time, classhour) :-
Person (Y),



Sits-on (Y, bench, classhour),
Person (X),
Writes-on (X, board, Time).

It may be added that the above pieces of knowledge are also called clauses in
PROLOG.

6.2 Logic Programs - A Formal Definition

We are now in a position to formally define Logic Programs. We first define
a Horn clause, the constituents of a logic program

Definition 6.1: A clause consists of two parts: the head and the body. One
side of the clause to which the arrowhead (if-then operator) points to is called
the head and the other side of it is called the body. A Horn clause contains at
most one literal (proposition / predicate) at the head of the clause [6].

Example 6.1: The following are two examples of Horn clauses.
NP (X),Q(Y)— W (XY)
iR X Y),Q(Y)— ?

In (i) W (X, Y) is the head and P (X), Q (Y) is the body. In (ii) R(X, Y),
Q(Y) is the body and the head comprises of a null clause (sub-clause). In fact
(i1) represents a query, asking whether R (X, Y), Q (Y) is true, or what are the
set of instantiations for X and Y, which makes R (X, Y) A Q (Y) true.

Definition 6.2: A Logic Program is a program, comprising of Horn
clauses.
The following example illustrates a logic program.

Example 6.2: Consider the following two sentences in Predicate Logic with
one head clause in each sentence.

Father (X, Y) < Child (Y, X), Male (X).
Son (Y, X ) « Child (Y, X), Male (Y).

The above two clauses being horn clauses are constituents of a Logic
Program. Let us now assume that along with the above knowledge, we have
the following three data clauses:

Child (ram, dasaratha).

Male (ram).



Male (dasaratha).

Suppose that the above set of clauses is properly structured in PROLOG
and the program is then compiled and executed. If we now submit the
following queries (goals), the system responds correctly as follows.

1. Goal: Father (X, Y)?

Response: Father (dasaratha, ram).

2. Goal: Son (Y, X)?

Response: Son (ram, dasaratha).

But how does the system respond to our queries? We shall discuss it
shortly. Before that let us learn a little bit of syntax of PROLOG programs. We
take up the scene interpretation problem as an example to learn the syntax of
PROLOG programming.

6.3 A Scene Interpretation Program

/* PROLOG PROGRAM FOR SCENE INTERPRETATION */

Domains
Time, X, Y, Z, W, board, classhour, bench = symbol

Predicates

Teacher (X)

Writes-on (X, board, Time )

Equal (Time, classhour)

Person (X) Person (Y) Person (Z) Person (W)
Sits-on (Y, bench, Time) Sits-on (Z, bench, Time)
Student (Y)

Student (Z)

Object (W)

Clauses
Object (board). 1

Writes-on (john, board, classhour). 2



Sits-on (mita, bench, classhour). 3

Sits-on (rita, bench, classhour). 4
Person (john). 5
Person (mita). 6
Person (rita). 7
Equal (Time, classhour):- 8
Object (board),
Writes-on (X, board, Time),
Teacher (X).
Equal (Time, classhour):- 9
Person (Y),
Sits-on (Y, bench, classhour),
Person (X),

Writes-on (X, board, Time).

Teacher (X):- 10
Person (X),
Writes-on (X, board, classhour).

Student (Y) :- 11
Person (Y),
Sits-on (Y, bench, Time),
Equal (Time, classhour).

This is all about the program. Readers may note that we mentioned no
procedure to solve the problem of scene interpretation; rather we stated the
facts only in the program. Here lies the significance of a logic program.

Now, suppose, the user makes a query:

Goal: Teacher (X)?

System prompts: Teacher (john).
Further, if the user asks:

Goal: Equal (Time, classhour) ?

System prompts: Yes.



6.4 Illustrating Backtracking by
Flow of Satisfaction Diagrams

To explain how the system answers these queries, we have to learn a very
useful phenomenon, called backtracking.

Let us now concentrate on the query: Teacher (X)?
Since
Teacher (X) «
Person (X),
Writes-on (X, board, classhour). (10)

to satisfy the Goal: Teacher (X), one has to satisfy the sub-goals: Person (X),
Writes-on (X, board, classhour). Now, PROLOG searches a sub-goal Person( )
for the predicate Person (X). At clause 5, it finds a match and X is instantiated
to john (fig. 6.2 (a)). PROLOG puts a marker at clause 5. Now, it continues
searching Writes-on (john, board, classhour) in the remaining clauses. But it
fails to find so, since Writes-on (john, board, classhour) is at o position in
the list of clauses (fig. 6.2 (b)). So, it has to trace back above the marker place
(fig. 6.2(c)) and then ultimately it finds Writes-on (john, board, classhour)
(fig. 6.2(d)). Since the sub-goals are succeeded, the goal also succeeds,
yielding a solution: Teacher (john). The concept of backtracking is illustrated
below with the help of flow of satisfaction diagrams [2] fig. 6.2(a) to (d)).

v

Teacher (X)

X = john, by (5)

! A

Person (X)

Writes-on (X, board, classhour)

Fig. 6.2 (a): Unification of the first sub-goal.



v

Teacher (X)

Person (X)

Y

Writes-on (X, board, classhour)

Sub-goal fails

X= john, by (5)
—

Fig. 6.2 ( b): Unification of the second sub-goal is not possible
inthe clauses following the marked unified clauses.

v

Teacher (X)

Pointer moves up

*4

Person (X)

Writes-on (X, board, classhour)

above the marked
place.

Person (john) (5)

Writes-on (john,
board, classhour)

@

Fig. 6.2 (¢ ): Back-tracking in the set of clauses.



|
v

Teacher (X)

v

Person (X) X = john

Writes-on (X, board, classhour)

v

Fig.6. 2( d): Successful goal: Teacher (john).

For answering the query Equal (Time, classhour), a number of
backtracking is required. We omit this for space constraints and ask the reader
to study it herself. The next important issue that we will learn is SLD (Select
Linear Definite clauses) resolution.

6.5 The SLD Resolution

We start this section with a few definitions and then illustrate the SLD
resolution with examples.

Definition 6.3: A definite program clause [1] is a clause of the form
A «<Bj, Bs,..., By

which contains precisely one atom (viz. A) in its consequent (head) and a null,
one or more literals in its body (viz. B; or B, or ... or B,).

Definition 6.4: A definite program is a finite set of definite program
clauses.



Definition 6.5: A definite goal is a clause of the form

<« BI1, B2, .., Bn
i.e., a clause with an empty consequent.

Definition 6.6: SLD resolution stands for SL resolution for definite
clauses, where SL stands for resolution with linear selection function.

Example 6.3: This example illustrates the linear resolution. Consider the
following OR clauses, represented by a set-like notation.

Let S = {A1, Ao, As, A, A1 = {P(X), Q (X)},  As= { P(X), = Q(X)},
As={=P(X), QX)}, As={=P(X), = Q(X)} and Goal = — P(X).

{Q(X)} As

{=PX)} {P(X)}

5

¢

Fig. 6.3: The linear selection of clauses in the resolution tree.



The resolution tree for linear selection is presented in fig. 6.3. It is clear
that two clauses from the set S; = S U { — Goal} are first used for resolution
and the resolvent is next used for resolution with a third clause from the same
set Si. The process is continued until a null clause is generated. In the linear
selection process, one clause, however, can be used more than once for
resolution.

An alternative way to represent the resolution process in a tree with
linear selection is presented below. Such trees are generally referred to as SLD
trees. Let us now consider the following Logic program and draw the SLD
tree for the program.

Example 6.4: The Logic program built with definite clauses and the goal
are presented below.

.LP(X,Z) < QX Y), P(Y,2)
2.P (X, X) «
3.Q(a, b) «

Goal: « P(X,b)

For the construction of the SLD tree, we would match the head of a
clause with the same consequent clause in another's body, during the process
of resolution of two clauses. This, however, in no way imposes restriction in
the general notion of resolution. Rather, it helps the beginners to mechanically
realize the resolution process. The SLD tree of a Logic Program becomes infi-
nite, if one uses the same rule many times. For instance using rule 1 many
times, we find an infinite SLD tree like fig. 6.4 for the current example.

6.6 Controlling Backtracking by CUT

Since a PROLOG compiler searches for the solution using a “depth first
search” strategy, the leftmost sub-tree in fig. 6.4 being infinite does not yield
any solution of the system. Such a problem, however, can be taken care of by
appropriately positioning “CUT” statements in the Logic Program. Since
depth first search in PROLOG programs are realized by stack, an infinitely
large SLD tree results in a stack overflow.



Example 6.5, presented below, illustrates how unnecessary search in SLD trees
can be avoided by placing CUT statements in the Logic Program.

«— P (X, b)

A

«— QX Y),P(Y,b) ()
(X=b) Success

— Q(X,Y), Q(Y,U), PU,Db) «— Q(X,b) \3

1 2

¢
(X=a)
Success

<Q X, Y),Q(Y,U),Q(U, V), P(V,b) < QX,Y),Q(Y.b)

infinite

Fig. 6.4: An infinite SLD tree.

Example 6.5: Consider the Logic Program, where “!” denotes the CUT
predicate.

) AeB,C
4) B&D,E
7)D «

and Goal: « A



The SLD tree for the above Logic Program is presented in fig. 6.5. Let
us now explain the importance of the CUT predicate in fig. 6.5. For all
predicates preceding CUT, if unifiable with other clauses, then CUT is
automatically satisfied. Further, if any of the predicates preceding CUT are not
unifiable, then backtracking occurs to the parent of that clause for finding
alternative paths. However, suppose all predicates preceding CUT are unifiable
and any of the predicates following CUT in the clause are not unifiable. Under
this circumstance, backtracking occurs to the root of the SLD tree and the
control attempts to find alternative solutions from the root.

«— A

1

When CUT is encountered
on backtracking, search is
resumed here.

< E,C This part of sub-tree with root
< B,C is not searched because

of the CUT.
Failed
Sub-tree

Literals preceding CUT are unifiable with the same literals in the head of other clauses. So, ! is
automatically satisfied. Since < E, C cannot be resolved with any more clauses, the control
returns to the root of the tree «<— A for generating alternative solution.

Fig. 6.5: Controlling backtracking by using CUT.



6.6.1 Risk of Using CUT

It is to be noted that while expanding a node in the SLD tree, the PROLOG
compiler attempts to unify the clause, representing the node with the
subsequently labeled clauses in order. Thus, if we have an additional clause,
say clause number 10, given by B « D, it will not be used to unify with
«B,C. So, due to failure of the sub-tree with root <~ E, C (fig. 6.5) the
control returns to the second alternative of the sub-tree with root <— A, thereby
keeping the option to lose a possible solution. Controlling backtracking in an
SLD tree, thus, undoubtedly saves computational time, but an improper use of
it is risky for it may lose solutions.

6.6.2 CUT with FAIL Predicate

FAIL is another built-in predicate, often used in conjunction with CUT in
order to intentionally cause a failure of the root clause and force the control to
backtrack to the root for finding alternative solutions, if available. In CUT-
FAIL combination, if all predicates preceding CUT are unifiable, then a failure
occurs, thereby initiating backtracking to the root. In the Taxpayer problem,
listed below, two successive possible paths leading from the root are forced to
fail by CUT-FAIL combinations and finally the third path yields a solution.

Example 6.6: Consider the following Logic Program.
1.  Taxpayer (X) <
Foreigner (X), !, fail.
2. Taxpayer (X) <
Spouse (X, Y), Annual-Inc (Y, Earnings),
Earnings > 40,000, !, fail.
3.  Taxpayer (X) < Annual-Inc (X, Earnings),
30000 < Earnings, 50000 > Earnings.
4. Foreigner (ram) <

5. Spouse (ram, mita) <



6. Annual-Inc (mita, Earnings) <

7. Earnings = 45,000 «

8. Annual -Inc ( lakshman, 35,000) <
Query : « Taxpayer (X)

The SLD tree for the above Logic Program is presented in fig. 6.6.

«Taxpayer ( X)
1

2
« Foreigner (X), / < Spouse (X,Y <Annual-Inc
1, fail. J/ Annual-Inc(Y, Earnings), (X, Earnings),
" Earnings > 40000, !, 4 30000< Earnings,
. fail. i 50000> Earnings.
4 7 5 H 8
! fail. i
< Annual-Inc (mita, Earnings), ,-"'. «30000< 35000,
i Earnings > 40000, !, K 50000> 35000.
7 fail.
fail. 6
; « 50000 >
< Earnings > 40000, ;’5
1, fail. i
7 _;"' )
«— Lfail _,.-": (X =lakshman)
fail. /

Fig. 6.6: CUT-FAIL combination forces the control to backtrack to the root
from the left two sub-trees and generate alternative paths (rightmost
sub-tree) for solutions.



In the SLD tree for the Taxpayer problem, the control first attempts to
find solutions from the leftmost sub-tree. On getting the fail predicate
following CUT, it backtracks to the root node and attempts to generate the
second alternative solution. Then expanding the second sub-tree, it finds FAIL
following CUT predicate and returns to the root. Finally, the third sub-tree
yields the solution: X = lakshman.

6.7 The NOT Predicate

An alternative of the CUT-FAIL combination in PROLOG is the NOT
predicate, defined below:

1. NOT (P) € CALL (P), !, FAIL.
2. NOT (P) ¢

In the above definition of NOT predicate, a CALL predicate has been
used. The CALL predicate simply treats its argument as a goal and attempts to
satisfy it. The first rule of the NOT predicate is applicable, if P can be shown
and the second rule is applicable otherwise. As a matter of fact, if PROLOG
satisfies CALL (P), it abandons satisfying NOT goal. If P is not provable,
CALL (P) fails, thus forcing the control to backtrack to the root from CALL
(P). Consequently, PROLOG uses the second definition of NOT predicate and
it succeeds, signifying that P is not provable.

Example 6.7: Consider the definition of income through a pension of
persons using a CUT-FAIL combination, which can be re-written using a NOT
predicate as follows:

Rule using CUT-FAIL combination
Annual-Inc (X, Y) < Receives-Pension (X, P),

P < 30,000,

!, fail.

Annual-Inc (X,Y) < Receives-Pension (X, P), Y =P.
The same rule using NOT predicate

Annual-Inc (X, Y) < Receives-Pension (X, P),

NOT (P <30,000),

Y=P.



6.8 Negation as a Failure in Extended

Logic Programs
It is evident from our background in Predicate Logic that negated clauses have
a significant role in representing knowledge. Unfortunately, however, the
HORN-clause based programs do not allow negated clauses in their body. To
facilitate the users with more freedom of knowledge representation, recently,
Logic programs have been extended to include negated atomic clauses in the
body of a non-Horn clause, presented below:

p < qr, —s,t

where p, q, 1, s and t are atomic propositions or predicates.

The principle of negation as failure [9] states: For a given formula P, if one
cannot prove P, then it is reasonable to deduce that — P is true.

For illustrating the principle consider the following extended logic program:
1. Subset (A, B) « — Non-subset (A, B).
2. Non-subset (A, B) < Member (X | A), = member (X | B).
Goal: Subset ( (2, 4, nil), (1, 2, 3, 4, nil)) >
To prove the above goal, we resolve the goal clause with clause (1) and get
< — Non-subset ((2,4, nil), (1, 2, 3, 4, nil)).
Now, by negation as a failure, we want to satisfy the sub-goal
< Non-subset ((2,4, nil), (1,2,3,4, nil)).
Now, by (2) we find that
Member (X | 2 ,4,nil) , = Member (X | 1,2,3,4, nil)

fails, which consequently proves that non-subset ((2,4, nil), (1,2,3,4,nil)) fails
and thus Subset ((2, 4, nil), (1, 2, 3, 4, nil)) is a valid inference.



6.9 Fixed Points in Non-Horn
Clause Based Programs

A non-Horn clause based program can have many minimal (least) fixed
points [3], i.e., many possible models / interpretations exist for a given
program. For instance, for the following logic program:

there exist two interpretations (P is true, Q is false) and (P is false and Q is
true). For determining minimal fixed points, one generally has to assign
values to a minimum set of literals so that the given clauses are consistent.
However, here none of the above models are smaller than the other and thus
determining the fixed points for such non-Horn programs is difficult.

One approach to evaluate fixed points for such programs is to write each
clause in a stratified [4-5] manner as follows.

P «

- Q.

The independent ground literals in the body of clauses are then assigned
Boolean values so that the head is true. The process is applied recursively to
all clauses until the set of clauses is exhausted. The interpretation, thus
obtained, will be minimal and the Boolean values of the minimal set of
literals together form fixed points. By this method, the fixed point for the
above clause is (P is true).

6.10 Constraint Logic Programming

Logic programming has recently been employed in many typical problems,
like game scheduling in a tournament, examination scheduling, flowshop
scheduling etc., where the goal is to find a solution by satisfying a set of
logical constraints. Such logic programs include a set of constraints in the
body of clauses and are called constraint logic programs (CLP). The
structure of a typical Horn clause based CLP is presented below:

P (t) <« Qi (), Q2(1),......,Qm(t),Ci(1),Cs (1),...... ,Cal1),

where P, Q; are predicate symbols, C; are constraints and t denotes a list of
terms, which need not be the same for all literals. In a constraint logic



program, all constraints are equally useful for finding viable solutions for the
problem. However, there exist situations, when no solution is found that
satisfies all the constraints. For handling these type of problems, the strengths
Si of the constraints C; are attached with them in the program clauses as
presented below:

P (1) &« Qi (1), Qa(t),......Qu(1), SICi(1),8:C5 (D),......,SuCult).

Logic programs built with such type of clauses are called Hierarchical
Constraint Logic Programs (HCLP) [11].

We now illustrate the formulation of an HCLP and the approach to its
solution for the problem of editing a table on a computer screen in order to
keep it visually appealing.

Here, the spacing between two successive lines is a variable, whose
minimum value, for obvious reason, is greater than zero. However, we want it
to be less than 10. We also prefer that the table fit on a single page of 30
lines. Further, there could be a default space of 5 lines, i.e., if other
constraints are satisfiable, then one may attempt to satisfy the default
constraint.

Let us define the strength of the constraints into following 4 levels,

essential,

strongly preferred,
preferred,

default.

The logic program for the above problem is presented below.

Table (page-length, type-size, no-of-lines, space) <
essential (space + type-size) * no-of-lines = page-length,
essential space >0,

strongly preferred space < 10,

preferred page-length <= 30,

default space =5.

For solving HCLP, one has to first find solutions satisfying the
essential constraints and then filter those solutions that satisfy the next labeled
constraints. The process is thus continued recursively until all the constraints
are satisfied or the solution converges to a single set of values for the
variables, whichever occurs earlier.



6.11 Conclusions

The main advantage of logic programming lies in the declarative formulation
of the problem without specifying an algorithm for its solution. Non-Horn
clause based logic programs are currently gaining significance for their inherent
advantage of representing negated antecedents. These programs have many
interpretations and determination of the least interpretation requires
stratification of the clauses. For the real world applications, the constraints of
a specific problem are also added with the classical definition of the problem.
These programs are referred to as CLP. When the constraints have unequal
weights, we call the logic programs HCLP. In HCLP, if solutions satisfying
all the constraints are not available, then the solutions that satisfy some of the
hierarchically ordered constraints are filtered. Logic programming has been
successfully used in many commercial applications including prediction of
the share market fluctuations [5] and scheduling teams of players in
tournaments [5].

Exercises

1. Draw the flow of satisfaction diagram to show that the clause: Equal
(Time, classhour) is true for the Scene interpretation program.

2. Design a logic program to verify the truth table of the CMOS Inverter,
presented below (fig. 6.7) with the given properties of channel conduction
with gate triggering.

Properties of the MOSFETS: When the Gate (G) is high for n-channel
MOSFET, the Drain (D) and the Source (S) will be shorted, else they are
open (no connection). Conversely, when the gate of a p-channel MOSFET
is low, its drain and source will be shorted, else they are open.

[Hints: Inverter (In, Out) «
Pwr (P),
Gnd (Q),
Ptrans (P, In, Out),
Ntrans (Out, In, Q).

Ntrans ( X, 1, X) « .

Ntrans (X, 0, Y) « .



Ptrans (X, 0, X) «.
Ptrans (X, 1, Y) «.

Goal: Inverter (1, Out) —
Inverter (0, Out) — ]

In —

n-channel

S

LTI T

|
GND.
Fig. 6.7: The CMOS Inverter.

3. Show how astack helps backtracking in PROLOG respectto the

Taxpayer program.

[ Hints: As you go down the SLD tree, go on pushing the address of
the parent nodenin the stack. On failure or success, when the control has

to move up the tree, popthe stack.]

4. Designan HCLP to get change for a US $500. Preferred atleast two
currency of US $50. Strongly preferred one currency of US $10.

[Hints: US$ (Xi00, Xso, X20, X10, X5, X2, X1)é—

essential 100* Xjo0 +50*X 50+
strongly preferred X,p >=1,

1 *X; =500,



(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

(10]

[11]

preferred Xso>=12,
default X]oo <= 4,

where Xj denotes the number of currency of value j.]

References

Alferes, J. J. and Pereira, L. M., Reasoning with Logic Programming,
Springer-Verlag, Berlin, pp. 1-28, 1996.

Clocksin, W. F. and Mellish, C. S., Programming in PROLOG,
Springer-Verlag, New York, 1981.

Dung, P.M. and Kanchanasut, K., A fixpoint approach to declarative
semantics of Logic Programs in LOGIC PROGRAMMING: Proceedings
of the North American Conference, MIT Press, Cambridge, MA, 1989.

Hogger, J. C., Essentials of Logic Programming, Oxford University
Press, Oxford, 1990.

Marek, V. W., Nerode, A. and Truszczynski, M., Logic Programming
and Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence
series, Springer-Verlag, Berlin, pp. 236-239, 1991.

Nerode, A. and Shore, R. A., Logic for Applications, Springer-Verlag,
Berlin, 1993.

Pratt, W. K., Digital Image Processing, Wiley-Interscience Pub., John
Wiley and Sons, New York, pp. 570-587, 1978.

Patterson, D. W., Introduction to Artificial Intelligence and Expert
Systems, Prentice-Hall, Englewood Cliffs, NJ, pp. 285-326, 1990.

Spivey, M., 4n Introduction to Logic Programming through Prolog,
Prentice-Hall Inter. Series, Englewood Cliffs, NJ, 1996.

Townsend, C., PROLOG, BPB Publications, Indian Reprint, New
Delhi, 1990.

Winston, M. and Borning, A., Extending hierarchical constraint logic
programming: Non-monotonicity and inter hierarchy comparison in
LOGIC PROGRAMMING: Proceedings of the North American
Conference, MIT Press, Cambridge, MA, 1989.



Default and
Non-Monotonic
Reasoning

This chapter briefly outlines the scope of automated reasoning in the absence
of complete knowledge about the world. The incompleteness of facts or
knowledge may appear in a reasoning system in different forms. There is no
general notion to treat the different types of incompleteness of data and
knowledge (clauses) by a unified approach. In this chapter, we cover 4
distinct techniques, all of which, however, may not be applicable to a
common problem. The techniques are popularly known as default logic, non-
monotonic logic, circumscription and auto-epistemic logic. Informally,
default logic infers a consequent, when its pre-conditions are consistent with
the world knowledge. The non-monotonic logic works with two modal
operators and can continue reasoning in the presence of contradictory
evidences. Circumscription is an alternative form of non-monotonic
reasoning, which attempts to minimize the interpretations of some predicates
and thus continues reasoning even in the presence of contradictions. The
auto-epistemic logic that works on the belief of the reasoning system,
occasionally changes inferences, as new evidences refute the existing belief.



7.1 Introduction

Predicate Logic is monotonic [3] in the sense that a derived theorem never
contradicts the axioms or already proved theorems [4], from which the former
theorem is derived. Formally, if a theorem T, is deduced from a set of axioms
A = {ay, a, a3,...,an}, 1.6., A |- T, then a theorem T,, derived from (A U T))
(i.e., (A U T)) |- T2), never contradicts T;. In other words T; and T, are
consistent. Most of the mathematical theorem provers work on the above
principle of monotonicity. The real world, however, is too complex and there
exist situations, where T, contradicts T,. This called for the development of
non-monotonic logic.

7.2 Monotonic versus Non-Monotonic Logic

The monotonicity of Predicate Logic can be best described by the following
theorem.

Theorem 7.1: Given two axiomatic theory T and S, which includes a set of
axioms (ground clauses) and a set of first order logical relationships like
Modus Ponens, Modus Tollens, etc. If T is a subset (or proper subset of) S
then Th(T) is also a subset (or proper subset) of Th(S), where Th(T) (or
TH(S)) means the theorems derivable from T (or S) [4].

An interpretation of the above theorem is that adding new axioms to an
axiomatic theory preserves all theorems of the theory. In other words, any
theorem of the initial theory is a theorem of the enlarged theory as well.
Because of default assumptions in reasoning problems, the monotonicity
property does not hold good in many real world problems. The following
example is used to illustrate this phenomenon.

Example 7.1: Let us consider the following information about birds in an
axiomatic theory T :

Bird (tweety)
Ostrich (clide)
V X Ostrich (X) — Bird (X) A — Fly (X).
Further, we consider the default assumption R, which can be stated as

R: ((T|~Bird (X)),

(T~ = FlyX)) = (T |~ Fly (X))



where |~ denotes a relation of formal consequence in extended Predicate
Logic and |~/ denotes its contradiction. The assumptions stated under R can be
presented in language as follows: R: “If it cannot be proved that the bird
under consideration cannot fly, then infer that it can fly.”

Now, the non-monotonic reasoning is started in the following manner.

1. Bird ( tweety)

2. T |~/ = Fly (tweety)

3. Monotonicity fails since T U{ Fly (tweety)} |-/ falsum

4. From default assumption R and statement (2) above, it follows that T |~
Fly (tweety).

A question then naturally arises: can |~ be a first order provability
relation |- ? The answer, of course, is in the negative, as discussed below.

The First Order Logic being monotonic, we have

{Tc S — Th(T)c< Th (S)} (Theorem 7.1)

Let
T |- Fly (tweety)
(7.1)
and S=T U { = Fly (tweety)}.
(7.2)

Now, since Fly (tweety) is a member of T, from (7.1) and (7.2) above, we
find

S |- Fly (tweety).
(7.3)

Again, by definition (vide expression (7.2)),

S|- = Fly (tweety).
(7.4)

Expression (7.3) and (7.4) shows a clear mark of contradiction, and thus
it fails to satisfy Th (T) € Th (S). This proves all about the impossibility to
replace |~ by first order relation |-.

7.3 Non-Monotonic Reasoning Using NML I

In this section, we will discuss the formalisms of a new representational
language for dealing with non-monotonicity. McDermott and Doyle [8]



proposed this logic and called it non-monotonic logic I (NML I). The logic,
which is an extension of Predicate Logic, includes a new operator, called the
consistency operator, symbolized by 4. To illustrate the importance of the
operator, let us consider the following statement.

V X Bird (X) » @ Fly (X) — Fly (X)

which means that if X is a bird and if it is consistent that X can fly then infer
that X will fly.

It is to be noted that NML I has the capability to handle default
assumptions. Thus the Default Logic of Reiter [11], to be presented shortly, is
a special case of NML 1.

Let us now attempt to represent the notion of the non-monotonic infer-
encing mechanism by the consistency operator. We will consider that

T~ = A
=>T|~ € A,
which means that if — A is not non-monotonically derivable from the

axiomatic theory T, then infer that A is consistent with any of the theorems
provable from T.

7.4 Fixed Points in Non-Monotonic Reasoning

To understand the concept on fixed points (also called fixpoints), let us
consider an example, following McDermott and Doyle [8].

Example 7.2: Let T be an axiomatic theory, which includes

Formally, T={4®P—> —-Q ,® Q— — P},

which means that if P is consistent with the statements of the axiomatic
theory T then—Q and if Q is consistent with the statements in T then — P.
McDermott and Doyle called the system having two fixed points ( P, — Q)

and (—P, Q). On the other hand, if T = { € P— — P}, then there is no
fixed points in the system.



Davis [4], however, explained the above phenomena as follows.

and {® P—> — P} |~ falsum.

Problems encountered in NML I

McDermott and Doyle identified two basic problems in connection with
reasoning with NML I. These are

i) @ A cannot be inferred from 4 (A A B)

i) T={®P > Q, =Q} |~ falsum,

which means that the axiomatic theory T is inconsistent in NML L.

7.5 Non-Monotonic Reasoning Using NML II

In order to overcome the above difficulties, McDermott and Doyle recast non-
monotonic logic with the help of another modal [4] operator like consistency,
called the necessitation operator and symbolized by . This operator is related
to modal operator 4 by the following manner:

oP = —|’—|P
or ¢ P= -0~ P

where the former notation denotes that P is necessary could be described
alternatively as negation of P is not consistent. The second definition
implicates that P is consistent could be written alternatively as the negation of
P is not necessary.

The significance of the necessitation operator can be understood from the
following example.

Example 7.3: Given that T |~ € A, i.e., A is consistent with the derived
consequences from T. Then it can be inferred that

T~ 0= A,

which means that it is not necessary to assume that — A is derivable from T.
This is all about the example.



We now present a few modal properties, as presented in NML II.
1.4 P=—0— P (bydefinition) (property 1)
2. (P> Q)= (OP - 0Q), (property 2)

which means, if it is necessary that P — Q, then infer that if P is necessary
then Q is necessary.

3. oP= P, (property 3)

which may be read as if P is necessary, then infer P.

4. OP= 0OOP, (property 4)

which is to be read as if P is necessary then imply that it is necessary that P
is necessary.

How the basic two limitations of NML I could have been overcome in NML II
are presented next.

Example 7.4: Show that® (AAB)= @ A

Proof: The proof consists of the following 6 steps.
Step 1: By Predicate Logic

Step 2: Preceding with necessitation operator in (7.5), we have

0(—A = — (A A B)) (7.6)

Step 3: Now by identity (2), we have

Step 4: Now, from (7.6) and (7.7) by Modus Ponens, we find

Step 5: Now by applying the contraposition theorem of Propositional Logic,
we find expression (7.9).



Step 6: Now, replacing — O — P by 4 P in expression (7.9), we get the
desired expression (7.10)

® (AAB) = €A (7.10)

The second difficulty of NML I can also be overcome in NML II, as
demonstrated by the following example.

Example 7.5: Given an axiomatic theory T, where T = {® P = Q, = Q}.
Prove that — P follows from T using NML II.

Proof: Given the expressions (7.11) and (7.12)

Step 1: = Q (7.11)
Step 2: € P = Q (7.12)
Step 3: =O0—= P = Q, by property 1 (7.13)
Step 4: = Q = O — P, by contraposition theorem (7.14)
Step 5: O— P, from (7.11) and (7.14) by Modus Ponens (7.15)
Step 6: 00—~ P= — P, by property 3 (7.16)
Step 7: — P, from (7.15) and (7.16) by Modus Ponens (7.17)

This is all about the proof.

In the next section, we discuss about a practical system for non-monotonic
reasoning.

7.6 Truth Maintenance System

Doyle’s truth maintenance system (TMS) [5] is one of the most practical
systems for non-monotonic reasoning. The TMS works with an expert or
decision support system and helps the reasoning system to maintain the
consistency among the inferences generated by it. The TMS itself, however,
does not generate any inferences. The functional architecture of an expert
reasoning system that employs a TMS for maintaining the consistency among
the generated inferences is presented in fig. 7.1.
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Fig. 7.1: Architecture of a reasoning system that includes a TMS.

In fig. 7.1, the inference engine (IE) in an expert reasoning system
interprets the database based on the available pieces of knowledge, stored in
the knowledge base. Since both the database and knowledge base are dynamic,
the process of reasoning would be continued as long as new data or knowledge
are entered into the system from the external world. The TMS asks the
inference engine about the current inferences that it derives and attempts to
resolve the inconsistency between the old and current inferences, after the
inference engine delivers the derived inferences to the TMS. The TMS then
groups the set of consistent information and reports the same to the IE [10].

The current status of all inferences/information is labeled by the TMS by
IN or OUT nodes. IN nodes mean that the nodes (information) are active,
while OUT nodes signify that the nodes have to be retracted from the current



reasoning space. It needs emphasizing that the dependency of the information
in the reasoning space is represented by a dependency-directed graph, where the
nodes in the graph denote information, while the arcs stand for cause-effect
dependency relation among the nodes. Justification records maintained for the
nodes are also attached with the nodes in the graph (network). There are two
types of justification, namely support list (SL) and conditional proofs (CP).
The data structure for these two justifications is discussed below:

(SL <in-nodes> <out-nodes>)
(CP <consequent> <in-hypotheses> <out-hypotheses>)

To illustrate the reasoning process carried out by the TMS, we take the
following example.

Example 7.6: Mita likes to accompany her husband when buying some
household items in the market place, located at Gariahat in Calcutta. Further,
she prefers to visit the market next Monday evening, since the crowd is
normally less on Monday evenings. However, on Saturday it was learnt that
the market offers a special rebate on a few items, starting next Monday. So,
Mita revised her decision not to go to the market this Monday and selects the
next Monday for her visit. Later it was found that her husband had an official
emergency meeting on the next Monday evening and accordingly Mita had to
postpone her visit on that evening. Later, the time of the emergency meeting
was shifted to an early date and Mita happily agreed to visit the market with
her husband the next Monday evening.

Let us attempt to resolve this kind of non-monotonicity by TMS. The
knowledge base for this system consists of the following production rules
(PR).

PR1: Crowd-is (large, at-market, at-time-T) —
—Visits ( Wife, market, at-time-T).

PR2: Visits (Wife, market-at-time-T) —

Accompanies (Husband, Wife, at-time-T).

PR3: Offers (market, rebate, at-time -T) —
Crowd-is (large, at-market, at-time-T).

PR4: Has-Official-meeting (Husband, at-time-T) —
Unable-to-accompany (Husband, Wife, at-time-T).



PRS5: —Visits (Wife, market, Monday-evening) —
Visits (Wife, market, next-Monday-evening).

Further, the database includes the following data:

1. Offers (market, rebate, Monday-evening)
2. Has-Official-meeting (Husband, next-Monday-evening)
3. Meeting-shifted (from, next-Monday-evening)
The TMS, now, resolves inconsistency in the following manner.

Node Status Meaning SL / CP

nl IN  Offers (mar, reb, mon-eve) (SL(O) ()
n2 IN Crowd-is (lar, at-mar, mon-eve) (SL(nl) ())
n3 IN —Visits (mita, mar, mon-eve) (SL (n2) ()
n4 IN Visits (mita, mar, next-mon-eve) (SL (n3) ()
ns IN Has-meeting (ram, next-mon-eve) (SL()())

né6 IN Unable-to-Acc. (ram, mita, next-mon-eve) (SL (n5) ())

n7 IN Accompanies (ram, mita, next-mon-eve) (SL (n4) (n6))
ng IN contradiction (SL (n6, n7) ())
n9 IN no-good n7 (CP n8 (n6, n7) ()

Now with a new data item 3

nl0 IN Meeting-shifted (from, next-mon-eve)  (SL ( ) (n5))
nll IN contradiction (SL (n5, n10) ())
nl2  IN no-good n5 (CP nl1 (n5, nl0) ())

n5 OUT (SL (n12) ()




The dependency-directed backtracking scheme, invoked by the TMS for the
above problem, is illustrated below.

IN (nl)

IN (n3) IN (n5)

IN (n4) IN  (n6)

IN (n9)

IN (nj) denotes node nj is IN. Sign against an arc denotes positive / negative
consequences of input antecedents.

Fig 7.2: A section of dependency graph, demonstrating the working
principles of the TMS.



IN (n2)
+ (nl1) retracts (n5)
OUT (n5) <
IN (n3) IN (n5)
+ + -
IN (n4) (n6) IN (n10)

IN  (n7) IN (nll)

IN (n8) IN (n12) >
+

IN (n9)

OUT (nj) denotes node nj is out.

Fig.7.3: The dependency directed graph, after receiving data 3.

Fig. 7.2 represents a dependency graph, where the nodes denote the
events and the arcs denote the causal relationship. The abbreviation used in the
figures is self-explanatory, and thus requires no explanation. A positive arc
from node Ni to node Nj represents that Ni causes Nj, whereas a negative arc
from Ni to Nj represents that Ni refutes Nj. The reasoning in fig. 7.2 is



based on the first two data: Offers (market, rebate, Monday-evening), Has-
Official-meeting (Husband, next-Monday-evening). When the third data:
Meeting-shifted (from, next-Monday-evening) is added to the reasoning
system, it starts backtracking and finally changes the status of node n5 (fig.
7.3) from IN-node to OUT-node. The TMS thus always maintains consistency
among the inferences derived by the inference engine.

7.7  Default Reasoning

Reiter’s default logic [11] is an alternative form of non-monotonic logic,
which includes a few First Order statements along with one or more default
assumptions. Formally, let Del be a set of statements, including a set of
axioms W and a set of Default statements D, i.e.,

Del = {D, W}

where the elements of D are of the form:

P: Q1, Q2,...,Qn
R

which may be read as: Given P is true, as long as Q; through Q, are
consistent with P, one may infer that R holds. Further, when P is absent from
the above statement, i.e.,

:Q1, Q2 ...,Qn
R

it means that as long as Q; through Q, are consistent with known beliefs, it
may be inferred that R holds.

Another special case of a Default statement is of the form

R

which means that “ if P is true, one may infer that R is true”. The last
statement is different from P — R, which means “if P is true then R is true”,
i.e, when P holds R must hold. But in the previous case “when P holds, R



may hold (and not must hold). An example, illustrating the concept of default
logic, is presented below.

Example 7.7: Let Del = { D, W} where
W = { Bird (parrot), Bird (penguin),
Bird (Penguin) — — has-aeronautical-prowess (penguin)}

Bird (X) : has-aeronautical-prowess (X)

D=
Fly (X)

The inference derived by the system is: Fly (parrot). Since has-aeronautical-
prowess (Penguin) is inconsistent with Bird (penguin), the default rule D
blocks Fly (Penguin) to be an inference.

Types of Default Theories: There exist varieties of Default theories.
Among them, i) Normal, ii) Semi-normal, iii) Ordered and iv) Coherent
theories need special mention.

Definition 7.1: Any Default knowledge of the form

A: B
Deli={——} , Del, being a subset of Del,
B

is called normal. Even when “A” is absent from the statement Del;, the
default knowledge remains normal.

Definition 7.2: Any default knowledge of the form

A: BAC
Del, = { }, Del; being a subset of Del,
B

is said to be Semi-normal.



The concept of Ordered Default Theory requires a detailed formalization of
“precedence relation” << and <<=, where the first and second relation are
referred to as strong and weak precedence relations. For example, in the
default knowledge:

BAa-=C

A
Deli = {
B
B has strong precedence over C, denoted by C<< B.

Definition 7.3: A semi-normal Default theory is said to be ordered if
there is no literal y, such that y <<y. For example, in the Default knowledge
base D, given by

:AA—= B : B A=C . C A=A
A B C

B << A, C<< B and A << C and consequently A << A and thus the
default theory is not ordered.

Definition 7.4: A Default theory that has at least one extension, i.e., that
can infer at least one inference, is called Coherent.

It is to be noted that an ordered semi-normal default theory has at least one
extension and thus is coherent.

Stability of Default Theory: The notion of stability in Default theory
is a significant issue for it helps partitioning the knowledge base under Del
into stable (time-invariant) fragments, if possible. For understanding the
concept of stability informally, let us consider the following example.

Example 7.8: Let Del = { D, W } where

A:BA=C A:CA = B
D-{Delhi=——, Deb=—}
B C

and W= {A}.

It is clear from common sense that both {Del;, W} and {Del,, W} are
consistent and stable extensions of the given default theory Del.



The resulting stable consequences that follow from the above extensions are
{A, B} and {A, C} respectively. The Default theory need not always yield
stable consequences. The following example illustrates this concept.

Example 7.9: Consider the Default theory Del = { D, W} where

= A
D=

yand W={ }.

The default statement under Del means as long as — A is consistent with the
known beliefs, infer that A holds good. However, from common sense
reasoning it follows that “A” cannot be inferred when — A is consistent with
known beliefs. Thus the Default theory itself is incoherent and the derived
consequence {A} is not stable (unstable).

7.8  The Closed World Assumption

The readers by this time can understand that non-monotonicity mainly creeps
into a reasoning system because of incompleteness of information. Thus for
reasoning in a non-monotonic domain, one has to presume either a closed
world assumption or add new facts and knowledge to continue reasoning.
The phrase “closed world assumption” means that the ground predicates not
given to be true are assumed to be false. For instance, consider the following
clauses.

Bird (X) A = Abnormal (X) — Fly (X)
Bird (parrot).

Suppose we want to derive whether Fly (parrot) is true. However, we cannot
derive any inference about Fly (parrot), unless we know — Abnormal (parrot).

The closed world assumption (CWA), in the present context, is the
assumption of the negated predicate: = Abnormal (parrot). In fact, the closed
world assumption requires the ground instances of the predicate to be false,
unless they are found to be true from the supplied knowledge base.

Thus the CWA of the following clauses:
Bird (X) A = Abnormal (X) — Fly (X)
Bird (parrot)

—Abnormal (parrot)

infers: Fly (parrot).



The following two points are noteworthy in connection with the closed world
assumption:

1) The CWA makes a reasoning system complete. For instance, given
the set of clauses {Bird (parrot), Bird (penguin), Bird(X) — Fly
(X)}, the Modus Ponens is not complete as neither Fly (penguin) or
— Fly (penguin) can be derived by Modus Ponens. But we can make
the Modus Ponens complete by adding — Fly (penguin) in the set.

ii) The augmented knowledge base, constructed by CWA, is
inconsistent. For instance, consider the following clause: Bird
(penguin) v Ostrich (penguin). Since none of the ground literal of the
clause is derivable, we add:

—Bird (penguin) and
— Ostrich (penguin)

to the reasoning space by CWA. But the reasoning system,
comprising of {Bird (penguin) v Ostrich (penguin), —Bird
(penguin), — Ostrich (penguin)} is inconsistent, as there exists no
interpretation for which Bird (penguin) or Ostrich (penguin) is true. It
may, however, be noted that if the knowledge base comprises of
Horn clauses and is consistent, then closed world extension is
consistent [10].

7.9 Circumscription

Circumscription [7] is the third main type of non-monotonic reasoning
following NMLs and default logic. Developed by John McCarthy,
circumscription attempts to minimize the interpretation of specific predicates,
thus reducing the scope of non-monotonicity. For instance, suppose that a
child knows only two kinds of birds: parrot and sparrow. Formally, we can
write this as

Bird (parrot) v Bird (sparrow).
So, he defines a rule:
V X Bird (X) — Bird (parrot) v Bird (sparrow).

The expression of the form: X = parrot v X = sparrow is called a predicate
expression. It is so named, because it seems to replace the predicate Bird (X).



In this example, we call y = Bird (parrot) v Bird (sparrow) a formula and X
is a distinguished variable [2]. We can now formalize circumscription as
follows.

CIR (KB: Bird)
=KBA[V Y KB (y) AV Xy (X)— Bird (X) )]

-V X ( Bird (X) - (X))

where KB denotes the set of the given pieces of knowledge, connected by
AND operator; KB (y) denotes a knowledge base, where every occurrence of
Bird is replaced by y [10].

It is to be noted that y has been quantified in the circumscription
schema above, thereby making it a second order formula.

The semantic interpretation that circumscription constructs a minimal
follows directly from the last example. We, for instance, found that

V X Bird (X) — (X = parrot v X = sparrow),
which is equivalent to

V X (( = X = parrot v X = sparrow) — — Bird (X)).

The last expression implicates there exists no interpretation of Bird(X), where
X is not a parrot or sparrow.

7.10 Auto-epistemic Logic

The word ‘auto-epistemic’ means reflection upon self-knowledge [9].
Developed by Moore in the early 80’s this logic attempts to derive inferences
based on the belief of the speaker. For instance, consider the sentence: “Are the
Olympics going to be held in Japan next year?" The answer to this: No,
otherwise I must have heard about it. Now, suppose, the next morning I found
in the newspaper that the Olympics will be held in Japan next year. Now, my
answer to the above question will be: yes. But it is to be noted that my long-
term knowledge that ‘if something is going to be held in my neighborhood,
then I will know about it” is still valid.



Generally, auto-epistemic expressions are denoted by L. For instance, to
represent that ‘I know that a tiger is a ferocious animal,” we would write it in
auto-epistemic logic by

V X L (Tiger (X) —Ferocious (X))
where L denotes the modal operator, meaning ‘I know’.
Some of the valid auto-epistemic formula are:

L@,LL®P)LEL@, (=L (=pv L)) wherp, q and r are
predicates or propositions. But what do they mean? L (L (p)), for example,
means that I know that I know p. The other explanations can be made
analogously.

One important aspect of auto-epistemic logic is stability. A deductively
closed set E of auto-epistemic formula is called stable, iff

1) pe E=LopeE
ii) o ¢E =-LoeE

The concept of stability reflects introspection of the auto-epistemic
reasoning. For instance, if A is in my knowledge, then I know A, or I know
that I know A. In other words, if I do not know B then I know that I do not
know B, i.e.,

Auto-epistemic formula are defined as the smallest set that satisfy the
following:

1) All closed FOL formula is an auto-epistemic formula.

i1) If ¢ is an auto-epistemic formula, then L ¢ will also remain as an
auto-epistemic formula.

1ii) If ¢ and y are auto-epistemic formula, then —@, (¢ v W), (¢ VvV V)
(¢ — ) are all auto-epistemic formula.

An auto-epistemic theory is a set of auto-epistemic formula.
7.11 Conclusions

The chapter presented four different types of non-monotonic reasoning and
illustrated each of the reasoning methodologies by examples. The most



important factor in non-monotonic reasoning is ‘stability’. Much importance
has been given to determine stability of many non-monotonic programs. The
closed world assumption seems to be a powerful tool for non-monotonic
reasoning. Circumscription and auto-epistemic theory are two different
extensions of the closed world assumption. There exists ample scope to unify
the theories by a more general purpose theory. We hope for the future when the
general purpose theory for non-monotonic reasoning will take shape. Further,
in the short run Logic Programming and Non-monotonic Logics will merge
together to provide users with a uniform theory for automated reasoning [1],

[6].

Exercises

1. Represent the following sentences by default logic. Also mention the sets D
and W.

a) Typically molluscs are shell-bearers [2].
b) Cephalopods are molluscs.
¢) Cephalopods are not shell-bearers.

[Hints: W = {Cephalopod (X) — Molluscs(X)} and
Molluscs (X): Shell-bearer(X)

D={ 4]
Shell-bearer(X)

2. Represent the following sentences by default logic.
a) John is a high school leaver.
b) Generally, high school leavers are adults.
¢) Generally, adults are employed.

Now, determine the extension of the default theory. Do you think that the
extension is logically rational?

3. Replace rule (c ) in the last problem by the following rule.

Adult(X): Employed(X) A— School-leaver (X)

Employed(X)

What do you gain by doing so? Can you hence identify the limitations of
‘normal defaults’?



4. Test whether the following default theory is ordered:

f: =P Agq fiaqAr fiar A

q r p

5. Test whether the following default theory is ordered.

= QAP(a) = RAQ .= P(b) AR

P(a) Q R

[Hints: Q < P(a), R< Q, P(b) < Q; No circularity and hence ordered.]

6. Find the stable extensions for the following default theory.
Given Del ={W, D} where

W = {a, b} and
a: cAb b: bAa—=c

D= { , }
¢ b

[Ans. {a, b, c} and {a, b}]
7. Show that € P — Q, = Q = — P by using the following axiomatic theory
[4].
a) (6P->Q)= P> (®P—Q),
b) P> (®P—>Q)=(P—>®P)—> (P —Q) and
c) P— &P
[Hints: With given € P — Q and (a) by Modus Ponens get (P — (@ P
— Q)). Next with this result and (b ) by Modus Ponens derive (P — 4 P)
— (P — Q), which with (¢ ) by Modus Ponens yields P — Q. Now given
— Qand P — Q, we derive — P by Modus Tollens.]

8. Show by definition that the ground instances of the following statements
generate an auto-epistemic theory.



a) Boy(X) A = L — Likes (X, chocolates) —Likes (X, chocolates)

b) Boy (ram)

¢) Boy (john)
[Hints: Get 4 formulas: Boy (ram), Boy (john) and the ground instances of
(a) with X = ram and X= john. Since these are closed first order formula,
these must be auto-epistemic formula. Then the collection of these formula
is the auto-epistemic theory (see text for the definition).]

9. Add the following fact and knowledge with Mita’s marketing visit problem
and show with the dependence graph: how the TMS works.

Fact: Carries-Influenza (mita, next-Monday-evening).

Knowledge: Carries-Influenza (X, Day) — — Visits (X, market, Day).
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Structured Approach
to Knowledge
Representation

The chapter addresses various structured models for knowledge
representation and reasoning. It starts with semantic nets and provides in
detail its scope in reasoning with monotonic, non-monotonic and default
knowledge bases. The principles of defeasible reasoning by semantic nets
have been introduced. The concept of partitioned semantic nets to represent
complex knowledge including quantifiers has been illustrated with examples.
Among the other structured approaches special emphasis has been given to
frames. The principles of single and multiple inheritance have been elucidated
for frame structures. The rest of the chapter includes discussions on
conceptual dependency graphs, scripts and Petri nets.

8.1 Introduction

This chapter provides an alternative approach for knowledge representation
and reasoning by structured models. Such models have immense significance
over the non-structured models by the following counts. Firstly, the
knowledge base can be easily represented by modular fashion, thus ensuring a



compartmentalization of the related chunks of knowledge for efficient access.
Secondly, explanation tracing in knowledge based systems becomes easier
with structured models. Thirdly, a structured model offers provision for
representing monotonic, non-monotonic and default logic on a common
platform. Fourthly, the fragments of a piece of knowledge can be accessed
concurrently by many modules, thereby providing the reasoning systems a
scope for sharing of resources. Such sharing of resources call for minimal
structure and consequently less hardware / software devices for realization of
the knowledge bases. Finally, many modules of the structural models can be
made active concurrently, thus providing a scope for massive parallelism in
the reasoning process. The time efficiency of the inference engines thus can
be improved with structured models.

In this chapter, a number of structured models for knowledge
representation will be covered. Among these structures, some include very
rigid dependence relationships among the events. These structured models are
called strong filler and slot methods. Conceptual dependencies and scripts are
ideal examples of such structured models. The other type of structural models
does not impose much restrictions on the dependence relationships among
events and is hence called weak filler and slot methods. This includes
semantic nets and frames. The next section will explore the reasoning
mechanism with semantic nets.

8.2. Semantic Nets

Semantic nets at the time of its origin were used mainly in understanding
natural language, where the semantics (meaning) of the associated words in a
sentence was extracted by employing such nets. Gradually, semantic nets
found a wider application in reasoning of knowledge based systems. A
semantic net consists of two elementary tuples: events denoted by nodes and
relationship between events, denoted by links / arcs. Generally, a linguistic
label is attached to each link to represent the association between the events.
A simple semantic net that describes a binary predicate: Likes (X, Y) is
presented in fig 8.1.

: Likes :

Fig.8.1: A semantic net corresponding to the predicate Likes(X, Y).

Readers should not confuse from the last figure that a semantic net  can
represent only a binary predicate, i.e., a predicate having two arguments. It
can represent non-binary predicates as well. For instance, consider the unary



predicate boy (jim). This can be represented by a binary predicate Instance-of
(jim, Boy) and consequently can be represented by fig 8.2.

Instance-of

Fig 8.2: Representation of instance-of (jim, Boy).

Further, predicates having more than two arguments can also be
represented by semantic nets [6]. For example, consider the ternary predicate:
Gave (john, the-beggar, 10$). This can be represented by semantic nets, vide
fig 8.3.

Agent Instance-of

Object

Beneficiary

Fig. 8.3: A semantic net, representing a ternary predicate.

It is thus clear fro fig 8.3 that a predicate of arity >2 can be
represented by a number of predicates, each of arity 2, and then the resulting
predicates can be represented by a semantic net. For instance, the ternary



predicate Gave(john, the-beggar, 10$) has been represented in fig 8.3. as a
collection of 4 predicates given by

Agent (john, event)
Beneficiary (the-beggar, event)
Object (108, event)
Instance-of (give, event).

It may be added here that the representation of a higher-arity predicate in
binary form is not unique; consequently, the semantic net of predicates of
arity > 2 is also not unique.

- ~<

4
Consequent ~

Instance-of

........................................ Instance-of

Fig 8.4: A semantic net to represent Instance-of (X, Child) A
Instance-of (Y, sweet) — Likes (X, Y) .

Another important issue of discussion on semantic nets is its capability
of representation of quantifiers. For example, suppose we like to represent
FOL based sentence:

VX 3Y (Child (X) A Sweet(Y) > Likes(X,Y)).

This can be transformed into the following forms of binary predicates:

VX 3Y (Instance-of (X, child) A Instance-of (Y, sweet)
- Likes (X, Y)).



Consequently, we represent the above clause by a semantic net (vide fig 8.4).

The semantic net shown in fig 8.4 describes a mapping from
relationships Instance-of (X, child) and Instance-of (sweet, Y) to relationships
Likes (X, Y). To represent the given clause by an alternative form of semantic
nets, we, for example, first express it in CNF. The CNF of VX 3Y (Instance-

of (X, child) A Instance-of (Y, sweet)> Likes (X, Y)) is VX 3Y ( —Instance-
of (X, child) v —Instance-of (Y, sweet) v likes(X, Y)).

Fig . 8.5: A representation of — Instance -of ( X, Child ) V
— Instance- of (Y, Sweet) V Likes (X, Y).

Semantic nets can be partitioned into modules, where one or more
modules are subsets of the others. Such modular structure helps reasoning in a
hierarchical fashion and thus is more time efficient. For instance, consider the
semantic net of fig. 8.6, where node ‘g’ corresponds to the assertion given in
the above problem, whereas GS is a general statement. In other words, g is a
special instance of GS. The form of node g, and VX, are also shown clearly in

fig. 8.6. It is to be further noted that the entire semantic net is now partitioned
into two modules, one called SI, while the entire space is called SA. The
spaces in a partitioned semantic net [3] are associated with each other by a
subsethood hierarchical relation. For instance, space SI in fig. 8.6 is included
in space SA. The search in a partitioned semantic net thus can be done from
inner to outer space; searching variables or arcs in an opposite direction (i.e.,
from outer to inner space) is not allowed [9].



8.3 Inheritance in Semantic Nets

A binary relation x <y is a partial order if i) x </ x (i.e., x < x fails
unconditionally) and ii ) when x <y and y <z, we have x <z, i.e., transitive
relationship holds good. If the concept in a semantic net has a partial order,
we call the net an inheritance system. While drawing the net, we, however,
always omit the arc representing transitive inheritance, i.e., if there is a
directed edge from node u to v and v to w, the edge u to w is obvious and thus
omitted.

Fig. 8.6: Induction of VX in the semantic net of fig 8.5.

Example 8.1: In this example, we demonstrate an inheritance relationship
among various biological species connected through Is-a relationship. It is
clear from fig 8.7 that since bacteria is-a protozoa, and protozoa is an
invertebrate, therefore, bacteria is an invertebrate. By reasoning in the same
line, it further can be shown that bacteria is a biological mass.

8.4 Manipulating Monotonic and Default
Inheritance in Semantic Nets

In this section we present a uniform notion to handle both the FOL and default
inheritance in semantic nets. The following nomenclatures will be used to
discuss these issues.



Biological
mass

Living
organism

Nonliving
organism

Vertebrate

Fig. 8.7: The Is-a hierarchy of biological species.

i ) The monotonic / absolute links will be denoted by ‘>’ , whereas
default links will be denoted by * ------ >

ii ) Nodes in the graph denote either constants / predicates. No links
should point towards a constant. The monotonic edges and their
negations may point away from a constant.

iii) A link p—q denotes the predicate Q(p), when p is constant; otherwise
it denotes

VX (p(X)> q(X))



when p and q are predicates.
iv) Consequently, a link p /=>q denotes —Q(p) when p is a constant and
VX (p(X) /=2q(X)),
when p and q are predicates. Further,
VX (p(X) /2q(X)), VX (p(X)>—q(X)) and
VX (=p(X)>—q(X))
are equivalent.

The following rules of inference may be used for reasoning with ‘>~
operator.

i) Symmetry: If p/->q, where p is not a constant then q />p .
The proof of the above is simple as follows.
p/=q
I=p = —q (by definition )
|=—p Vv —q (by rule of implication)
J==qV—p

~q>—p

~q/>p
ii ) Positive domains: If p> q> r> s then p>s.

The proof follows directly from the elementary definition of inheritance.

iii ) Negative link: If p; = p, 2p; 2ps — 2 p and ;2> —— >

and py /> qu then p; / 2qi, provided q; is not a constant.



Example 8.2: This example illustrates that the /= links have definitely

some significance. The knowledge base of fig 8.8 represented in FOL is given
by

Green-bird (parrot)
Singer-bird (cuckoo)
Bird (Green-bird)
Bird(Singer-bird)
Avis (Bird)
—Singer-bird (parrot)

—Green-bird (cuckoo)

Fig. 8.8: A semantic net used to illustrate ‘—’and ‘/—’ operation.

The validity of the system inferential rules (i) — (iii) is illustrated here in
this example. For instance, since parrot /= singer-bird is existent in fig 8.8,
by inferential rule (i) we may add Singer-bird /- parrot as well.

Secondly, since
Parrot = green-bird = bird - avis,

we may add a link parrot = avis by inferential rule (ii).
Lastly, we have in fig. 8.8,



Parrot 2 green-bird - bird = avis
cuckoo > singer-bird - bird = avis,
parrot /> singer-bird and

cuckoo /> green-bird.

Now, suppose we add one extra rule: green-bird /- singer-bird. Let p, =
green-bird, g, = singer-bird, p; = parrot and q; = cuckoo; thus, we have

P12Pn 1>, P2/ D Q.

So, by inference rule (iii), we derive: p; /= qy, i.e., parrot /= cuckoo.

So far in our discussion, we have considered only monotonic inheritance
system. Now, we will consider the significance of ----> and --/--> operators.

One point that needs mention in this regard is the following observation:

P-/->q
= (> p)

which is in contrast to the well-known property

p/=>q
= q/2p

property

Instance-of

property

Has-
wings(X)

Instance-of

Fig. 8.9: A semantic net showing contradictions: Tweety(X) = Fly (X)
and Tweety (X) /= Fly (X).



A common question that may be raised is why to use --> and /-->
operators, when there exist monotonic = and /- operators. The answer to
this is that the --> and -/--> operators can avoid contradiction, which is not
possible with 2 and /> .

The following example illustrates how the contradiction that arises due
to use of > and /- only can be avoided by employing ---> and -/-->.

Example 8.3: Consider the symantic net shown in fig 8.9. Here, by
inheritance we have
Tweety(X) = Bird(X)—> Has-wings(X) = Fly(X) and thus
Tweety(X) = Fly(X).
Next, we have
Tweety(X) = Diseased (X) /2>Fly(X)
i.e., Tweety(X) /2>Fly(X).
So, we find a contradiction:
Tweety(X)~> Fly(X) and
Tweety(X) />Fly(X) .
This contradiction, however, can be avoided if we use ---> operator as
shown in fig 8.10. Here, Has-wings(X) --> Fly(X) denotes that it is a default

property that anyone having wings should fly. But the specialized property
states that

Diseased(X) /> Fly(X)

or, Diseased(X) > —Fly(X).

Since specialized property should be given importance, we infer

Tweety(X) 2> —Fly(X).



Fig .8.10: A modified semantic net that includes Has- wings(X) --->
Flv(X) instead of Has-winegs(X) — FIv(X).

8.5 Defeasible Reasoning in Semantic Nets

The last example demonstrates whenever we have inconsistent inferences like
Fly(X) and —Fly(X), we resolve it by giving favour to the “more restrictive”

rules. But how to determine which rule is more restrictive? This section
presents a principle, by which one will be able to select a better inference,
even when the reasoning is constrained with contradictions.

Rules em ploying --> type of im plications are called defeasible rules
[71-[8]. Rules using > are called absolute / monotonic. Rules using -/--> are
called ‘defeaters’ [2]. For reasoning with defeasible and defeater rules we
now present the following principle. We define three possible kinds of
derivations [1], 1) monotonic / absolute derivation, 2) defeasible derivation
and 3) defeating.

1) Monotonic / absolute derivation: If p>q is in the knowledge and p
is a conjunction of literals pi,ps,ps, --- , pa , all of which are either
available or absolutely derivable, then q is absolutely derivable.

Formally,  pi,p2-—-,pn > q
P, <
P, &

€



q is true.

2) Defeasible derivation: It has already been mentioned that defeasible
rules employ --> type of implication.

Given that, the knowledge base includes p -->q, where p is a conjunction
of literals py, p, ---,pn- Now q is defeasibly derivable if

a) q is absolutely derivable by another absolute rule r= q, where r is
either available in the knowledge base or absolutely derivable.

or b) py, p2, ---, Pn all are defeasibly derivable, if p = q is not defeated, i.e.,
p /-->— q s guaranteed.

or ¢) p --->q is not defeated, when py, py, -- ,pn all are defeasibly derivable
literals.

3) Defeating: An absolute rule p>q can be defeated by an absolute
contradictory rule or fact. A defeasible rule p--> q can also be defeated by
a defeasible rule r---> —q or r -/--> q, if p is not ‘more restrictive’ than r.

The definition of ‘more restrictiveness’ will be presented under c(ii).

A rule p—>q is defeated by (a) and (b) below, while a rule p---> q is
defeated by (a), (b) and (c) below.

(a) —qis available in the knowledge base.

(b) r>—q is present in the knowledge base, where r is a conjunction of
defeasibly derivable literals [1].

(c) ris aconjunction of defeasibly derivable literals 1j , so that

i) r-->—qorr --/-->q isin the knowledge base.

ii) One or more 1j is not absolutely derivable from p; ps, .., p, and
the absolutely derivable rules in the knowledge base.

The principles stated above are illustrated with the following example.

Example 8. 4: Consider the following knowledge base:

Rulel: Person(X) ---> Mortal(X)
Rule2: Poet(X) -/--> Mortal(X)
Rule3: Person (tagore).

Rule4: Poet (tagore).



In the example, we illustrate the concept of defeating by c(i) and c(ii),
presented above. Here rule 1 is defeated by rule 2 as c(i) and c(ii) are both
satisfied. c(i) is satisfied by rule 2 of the example and c(ii) is satisfied as Poet
(tagore) (= 1}, say) is not absolutely derivable from Person (tagore) (= py, say)
from the rules in the knowledge base.

It is to be noted from this example that both the p |, p», -- ,p, and the rules
in the knowledge base should be used to prove that one of the rjs is not
absolutely derivable.

8.6 Frames

A frame [4] is defined as a structure that contains a number of slots, where the
attributes of the frame are sorted. Usually the slots in a frame are filled with
values, but it may contain a frame as well. Two important issues in a frame
are 1) containment and ii) specialization.

Containment: It means that a slot in the frame contains another frame. For
example, the ‘seat arrangement’ slot of frame B contains the default frame C
and the ‘preferential arrangement’ slot of frame C contains the default frame
D (fig. 8.11). It is to be noted that default containment is denoted by ---> . A
solid arrow (=) , on the other hand, corresponds to specialization of frame,
presented below.

Specialization: The frame B, describing an examination hall of Jadavpur
University, is a specialization of the frame A, representing a generic
examination hall (fig. 8.11). Here, the frame B has some specialized
properties, where it may override the elementary properties of frame A, but
otherwise it will maintain the property of frame A. For instance, the slot of
question paper is inherited in frame B from A, while the slot of answer scripts
is specialized in B and is thus different from A.

8.7 Inheritance in Tangled Frames

In fig 8.12, we presented a hierarchical frame, where a node ‘Tweety’ has
more than one parent. Such a directed acyclic structure is called a tangled
hierarchy. The most important issue for tangled hierarchy is how to inherit
the features of parents. For inference, should Tweety inherit the features of a
Bird or ‘Bird having lost aeronautical powers’?
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Seat
Arrangement

Invigilators
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Question

Paper : 1Qu/
Candidate
Answer

Scripts:
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Fig. 8.11: A frame describing an examination hall.
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Altitude: high
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Has- wings: 2

Broken -wings: 1

Fig. 8.12: Illustrating reasoning in a frame.

This is resolved here through a principle called “follow minimal inferential
distance path” [11]. Since ‘>’ type of implication is more specific than the
default ‘--->’ type of implication , we prefer

Tweety = Birds, having lost acronautical prowess

with respect to

Tweety ---> Birds.

The former rule being predominant, the reasoning goes in favor of Birds
having lost aeronautical power ----/--> Fly.

So, finally we have
Tweety --/--> Fly as the conclusion.

8.8 Petri Nets

Another structured model that is gaining popularity currently is Petri nets. A
Petri net is a directed bipartite graph consisting of places and transitions. It is
getting popular for its capability of reasoning in a parallel and distributed
manner. In this section we limit our discussion on FOL based reasoning with



Petri nets [5]. It, however, does not mean that Petri nets can be used as an
automated tool for FOL based reasoning only. In fact, Petri nets can be used
for reasoning with a rule based system or (and) can be extended to handle
uncertainties modeled with stochastic and fuzzy techniques. A separate
chapter on fuzzy Petri nets thus has been covered in the book, keeping in mind
its increasing demand in knowledge engineering. Let us now represent the
following FOL clauses by a Petri net.

FOL clauses

Rulel: Father (X,Y)—> Son (Y,X) v Daughter (Y,X).
Rule2: Daughter (Y,X) A Female (X) = Mother (X,Y).

The Petri net of 8.13 describes the above rules. It is to be noted that the
variables are recorded against the arc. The argument of the valid predicate
recorded against the arc is called an arc function. The input arc functions of a
transition are positive, while the output arc functions are negative.

Reasoning: For reasoning, one has to assign the atomic clauses in the Petri
net. For instance let us assume that we are given the following clauses:

Rule3: Father (d, 1) €
Rule4: —Son (r, d) €

Rule5: —Mother (k, 1) €
Rule6: Female (k) €

The arguent of the above clauses along with the sign of the predicates
is assigned as tokens (inside places) in the Petri net (vide fig. 8.14). The
following rules of transition firing are then used to derive the resulting
instances.

1. A transition is enabled in the forward direction, if all its input places
and all but one of its output places possess properly signed tokens with
‘consistent variable bindings’. Consistent variable bindings are checked
by the following procedure:

i) The value of signed variables in the arc function is bound with the
signed tokens of the associated places.

i) The above process is repeated for all the arc functions associated with
the transition.



iii) The common value of each (sign-free) variable is then identified. The
value of the set of variables, thus obtained, for each transition is called
consistent bindings.

2. A transition is enabled in the backward direction, if all its output places and
all but one of its input places possess consistent bindings.

Son
—~(Y.X)

< A place
Father *Y)

A transition

Pl P3

try
—(Y, X) (Y, X)

/ Daughter

An arc function
X)
tr,

Female Ps

P4

Mother

An arc function at the output (input) arc of a transition is negative (positive).

Fig. 8.13: A Petri net representing FOL clauses.

An enabled transition fires by generating tokens following the arc function
but with opposite sign of the arc functions and saves it at appropriate places,
associated with the transition. However, a multiple copy of the same token is
not kept at a given place.

With reference to fig. 8.14, we find for transition tr; two set of bindings

X=d,Y=r (see place p; and the associated arc function)
and —Y=-r,-X=-d (seeplace p, and the associated arc function).

The resulting consistent binding for tr; is thus X=d & Y=r.



Since p; and p, contain tokens and the variable bindings for transition tr;
are consistent, try is enabled and thus fires, resulting in a new token <r, d> in
place ps, following the opposite sign of the arc function —(Y,X).

Analogously, for transition tr,, the bound value of variables is
—X=-=k, =YY=l (see token at place p, and the associated arc function)
X=k (see token at place ps and the associated arc function)

-~.the consistent bindings are X=k , Y=1.

X) tr2

Mother
Female

Fig. 8.14: A Petri net of fig. 8.13 with tokens.

Since the output place ps and one of the two input places ps contains
consistent bindings, transition tr, fires, resulting in a new token at place ps.
The value of the token is —<I, k>, following the opposite sign of the arc
function (Y, X). So, at place p; we have two resulting tokens —<I, k> and <r,

d>. It may be noted that these two tokens can be generated concurrently.
Chapter 22 covers in detail the concurrent realization of the Petri net models.

8.9 Conceptual Dependency

Conceptual dependency, abbreviated as CD, is a specialized structure that
describes sentences of natural languages in a symbolic manner. One
significant feature of CD is its structural independence on the languages in



which it is expressed. The basic difference between semantic nets and CD lies
in the naming of the connecting links. In semantic nets, one may name the
connecting links between events according to its relevance to the context and
consequently the name differs for different users. A CD, on the other hand,
requires a standard assignment of a dependence relationship and is, therefore,
independent of the users. An English sentence and its corresponding CD
representation is presented below to visualize the issues discussed above.
Consider the sentence ‘She gave me a flower’. This is represented below in
fig. 8.15.

to
HI
P 0 R
She < ATRANS € flower< I
from
> She

Fig 8.15: Representation of 'She gave me a flower' in CD .

In the last figure, R denotes a recipient case relation, o denotes an object
case relation, p denotes past tense, € denotes a two way link between the
actor and action and ATRANS stands for transfer of possession. It is called a
primitive action. The set of primitive actions in CD, proposed by Schank and
Abelson [10], is presented below.

Primitive actions

PTRANS: Transfer of physical location by an object ( like move )
ATRANS: Transfer of abstract relationship ( like give )

MOVE: Movement of a pair of one’s body ( like stretch )

PROPEL: Application of force to an object ( like pull )

GRASP: Catching hold of an object ( like clutch )

INGEST: Ingestion of food by animals

EXPEL: Expulsion of material from the physique of an animal ( like cry )
MBUILD: Building information from existing information ( like decide )
MTRANS: Transfer of mental ideas ( like say )

ATTEND: Activating sensory organ toward stimulus ( like listen )
SPEAK: Generation of sounds ( like say )



For building dependency structures, we also require 4 primitive conceptual
categories.

Conceptual categories:

Conceptual categories Meaning
ACTs Actions
PPs Picture
PAs Picture aiders
AAs Action aiders

Schank defined a set of conceptual tenses also, as presented below [9].

Conceptual Tenses Meaning
p past
f future
t transition
t, start transition
te finish transition
continuing
? interrogative
/ negative
nil present
c conditional
delta timeless

Schank listed 14 typical dependencies, the details of which are
explained in [9]. We here illustrate a few to make the readers aware of the
concept.

In the dependencies, presented below, ‘o’ stands for object. The rest of
the notations in the above dependencies being obvious are not discussed
further.

Like any representations CDs too have merits and demerits from the
point of view of reasoning. The following points support knowledge
representation by CD [9].



i) A few inferential rules are required, when knowledge is represented by CD.
This, however, is not feasible when other forms of knowledge
representation are used.

ii) Inferences, in many circumstances, are directly available in the
representation itself.

iii ) The initial structure of CD that corresponds to one sentence must have
many holes (gap), which will be used as an attention focusser in the
program that recognizes the subsequent sentences.

CD notation Application Meaning

1.PP&ACT Birds <»PTRANS Birds fly.

2.PP<PP John &child John is a child.
0 p 0

3.ACT € PP John & PROPEL < door John pushed the door.

4. PP Flower A Beautiful flower

PA beautiful
5. PP Parrot

poss-by Jim’s parrot
PP Jim
jim
i p 1 ¢ Jim ate rice

6. ACT €¢ Jim <:> INGEST < with a spoon

*0 do
rice T 0

spoon

Fig. 8.16: Samples of CD.



The most significant drawback of CDs is that it can merely represent the
events but there exists other information in complex programs, which CDs fail
to represent.

8.10 Scripts

Scripts represent stereotyped sequence of events in a particular context. For
instance, it can represent scenes in a restaurant, marketplace or examination
hall. A script of a restaurant includes the scenes of ordering the waiter, to
bring the menu card, then ordering him to bring desired food, then taking up
the food items, paying the bill and leaving the restaurant. In each scene there
exists a sequence of operations. For example, when the waiter is ordered, he
keeps the ordered item in his memory; then moves to the cook; the cook
serves him items; he brings the items to the table, where from the order was
placed and finally places the dishes on the table.

A script consists of a number of components, as defined below:

i) Entry conditions: The conditions that must be satisfied before the
events described in the script occur.

ii) Scenes: The sequences of events that occur. The events are
described following the formalisms of CDs.

ii) Roles: These are slots representing people / actors involved in the
events.

iv) Props: Slots used for objects involved in the events of a script.

V) Track: It stands for ‘specific variations on a more general pattern

that is represented by a particular script [9].

vi) Results: The consequences after the events in the script have
occurred.

A script of an examination hall is represented in fig. 8.17. These are 8
scenes altogether; each is clearly defined. The components of the scripts are
illustrated in the left side margin.



Script: Example
Track: Hall no.1
Props:

Seats (S)

Questions (Q)
Answer Scripts (AS)
Desk

Stapler

Roles:

C= Candidates
H= Helping Staff
I = Invigilator

Scenel: Candidates entering the hall

C PTRANS C into hall

C ATTENDS his seat

C PTRANS C towards his seat
C MOVES his body part to sit

Entry Conditions:

C has the seat no. in the
particular hall.

I has duty in the
particular hall.

Results: AS filled with
Writing and returned.

Q exhausted.

Scene2: Invigilator enters the hall

IPTRANS I into hall
T ATTENDS his seat
TPTRANS I towards his seat
I MOVES his body part to sit

Scene 3: Answer scripts distributed

I GRASPS AS
TPTRANS I to each seat
I MOVES hand down to place the AS to seat

Scene 4: Question papers distributed

TGRASPS Q
TPTRANST to each seat
I MOVES hand down to place Q to seat

Scene 5: Invigilator verifies candidature

TPTRANS to each seat
TATTENDS AS

Scene 6: Candidates writing and submitting
scripts after writing

C ATRANS AS , C GRASPS AS, C PTRANS
AStol

Scene 7: Candidates leaving out of the hall

C PTRANS C out of the hall

Scene 8: Invigilator leaving out of the hall

TPTRANS I out of the hall

Fig. 8.17: A script of an examination hall.




Once a script structure for a given context is desired, answering queries for a
particular incident that can be mapped to the given script is possible.

For instance, suppose we have the examination script of fig 8.17. We are now
told a story as follows:

“ Jim entered the examination hall and came out with a question paper .”
Now, if we ask, “Did Jim appear at the examination?”
We immediately answer “Yes”.

A program that realizes a script can also answer such queries. One
important issue that we do not discuss here is that the capacity of inheritance
of the slots in a script. A script is a collection of slots. So, it also supports the
capability of inheritance like a frame.

8.11 Conclusions

The chapter covered a wide range of structured models, including semantic
nets, frames, Petri nets, scripts and conceptual dependency graphs (CDs).
Semantic nets are useful for their application in monotonic, non-monotonic
and defeasible reasoning. CDs are more powerful tools for knowledge
representation, but have limited use in monotonic systems. Scripts are
mainly useful to represent complex scenes, which by other means are too
difficult to be realizable. The work of Schank and his group in building a
Script Applier Mechanism (SAM) system at Yale University, in this regard,
needs special mention. The above system reads a text and reasons with it to
understand stories.

Among the recently developed structured models, Petri nets are the
most popular for their parallel and distributed architecture. They can also
handle the inexactness of data and knowledge by fuzzy or stochastic tools.
However, if someone wants to use binary logic only, then semantic nets and
their inheritance in the presence of defeasible reasoning should be adopted.
There exists an ample scope of work on defeasible reasoning and its
realization on different structured models. A unified model that can handle all
typical kinds of reasoning has yet to be developed.

Exercises

1. Represent each of the the following pieces of knowledge by a semantic
net. (a) Loves (mary, john), (b) Loves (mary, john) A Hates (john, mita),

(c) Loves (mary, john) —Hates (mita, john).



(1]

(2]

(3]

(4]

(5]

Draw a partitioned semantic net to represent the knowledge: VX Adult
(X) —Loves (X, children).

Draw a script to represent a restaurant, explaining the entry at the
restaurant, ordering of items, waiting for the items, serving the items,
enjoying the meals, collecting the bills for payment and exiting from the
site.

Represent the following statements by a Petri net: (a) Graduate-
Student(X) — Married (X), (b) Employed (X) — Married (X), (c¢)
Married(X) — Has-son (X) v Has-daughter (X).

Adding the data clauses (a ) —Has-daughter (john) <, (b) Graduate-
student (john) «, (c ) —Has-son (john) <« to the previous clauses, can we
derive —Employed (john) and —Married (john)?— justify. Clearly show

the forward and / or the backward firing of the transitions. Does more
than one transition fire concurrently here?

Construct examples to illustrate the cases when a given rule is defeated.
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Dealing with
Imprecision and
Uncertainty

In the various methods of knowledge representation, discussed in the last few
chapters, it has been presumed that the database consists of precise data
elements and the knowledge base contains no uncertainty among its
constituents. Such an assumption restricts the scope of application of the
proposed techniques. In fact, for many real world problems, imprecision of
data and uncertainty of knowledge are, by nature, part of the problem itself
and continuing reasoning in their presence without proper modeling tools
may lead to generating inaccurate inferences. This chapter discusses the tools
and techniques required for handling the different forms of inexactness of
data and knowledge. We here cover the stochastic techniques including
Pearl’s evidential reasoning and the Dempster-Shafer theory, the certainty
factor based schemes and the fuzzy relational algebra for modeling
imprecision and uncertainty of data and knowledge respectively. Examples
have been given to illustrate the principles of reasoning by these techniques.

9.1 Introduction

This chapter covers various tools for reasoning in the presence of imprecision
of facts and uncertainty of knowledge. Before formally presenting the



techniques, we first introduce the notion of imprecision and uncertainty and
their possible sources with examples. Consider a problem of medical
diagnosis. Here, the pieces of knowledge in the knowledge base describe a
mapping from symptom space to disease space. For example, one such piece
of knowledge, represented by production rules, could be

Rule: IF Has-fever (Patient) AND
Has-rash (Patient) AND
Has-high-body-ache (Patient)

THEN Bears-Typhoid (Patient).

Now, knowing that the patient has fever, rash and high body pain, if the
diagnostic system infers that the patient is suffering from typhoid, then the
diagnosis may be the correct one (if not less) in every hundred cases. A
question then naturally arises: is the knowledge base incomplete? If so, why
don’t we make it complete? In fact, the above piece of knowledge suffers from
the two most common forms of incompleteness: firstly, there is a scope of
many diseases with the same symptoms, and secondly, the degree or level of
the symptoms is absent from the knowledge. To overcome the first problem,
the knowledge engineer should design the knowledge base with more specific
rules (i.e., rules with maximum number of antecedent clauses, as far as
practicable; see the specificity property in chapter 3). For rules with identical
symptoms (antecedent clauses), some sort of measures of coupling between the
antecedent and the consequent clauses are to be devised. This measure may
represent the likelihood of the disease, as depicted in the rule among its
competitive disease space. Selection of the criteria for this coupling may
include many issues. For example, if the diseases are seasonal, then the
disease associated with the most appropriate season may be given a higher
weightage, which, in some ways should be reflected in the measure of
coupling. The second problem, however, is more complex because the setting
of the threshold level at the symptoms to represent their strength is difficult
even for expert doctors. In fact, the doctors generally diagnose a disease from
the relative strength of the symptoms but quantification of the relative levels
remains a far cry to date. Besides the above two problems of incompleteness /
inexactness of knowledge, the database too suffers from the following kinds of
problems. Firstly, due to inappropriate reporting of facts (data) the inferences
may be erroneous. The inappropriate reporting includes omission of facts,
inclusion of non-happened fictitious data, and co-existence of inconsistent
data, collected from multiple sources. Secondly, the level or strength of the
facts submitted may not conform to their actual strength of happening, either
due to media noise of the communicating sources of data or incapability of the
sources to judge the correct level/ strength of the facts. Further, the observed
data in many circumstances do not tally with the antecedent clauses of the
knowledge base. For example, consider the following piece of knowledge and



the observed data. The degree of the data is quantified by the adjective “very”.
How can we design an inference engine that will match such data with clauses
of the knowledge to infer: IS-Very-Ripe (banana)?

Rule: IF IS-Yellow (banana)

THEN IS-Ripe(banana).

Data: IS-Very-Yellow (banana).

Inference: IS-Very-Ripe (banana).

The last problem discussed is an important issue, which will be

analyzed in detail in this chapter.

For reasoning in an expert system in the presence of the above forms of

inexactness of data and knowledge, the following methodologies are presented
in order.

)

2

3)

Probabilistic techniques, which have been developed by
extending the classical Bayes’ theorem for application to a specialized
network model of knowledge, representing the cause-effect relationship
[4] among the evidences. An alternative form of probabilistic reasoning
using the Dempster-Shafer theory is also included in this section.

Certainty factor-based reasoning is one of the oldest
techniques for reasoning, used in MYCIN experiments of Stanford
University. This is a semi-probabilistic approach, where the formalisms
are defined in a more or less ad hoc basis, which do not conform to the
notion of probability.

Fuzzy techniques, which are comparatively new techniques, based
on the definition of Fuzzy sets and Logic, proposed by Zadeh. Both
Probabilistic and Fuzzy techniques are stochastic in the sense that each
variable in the system has a finite valuation space and for each value of
the variable, we attach a probability or fuzzy membership value (to be
discussed shortly).

9.2 Probabilistic Reasoning

Probabilistic techniques, generally, are capable of managing imprecision of
data and occasionally uncertainty of knowledge. To illustrate how the degree



of precision of data and certainty of knowledge can be modeled with the
notion of probability, let us consider example 9.1.

Example 9.1: Consider the following production rule PR;.

PR;: {IF (the-observed-evidences-is-rash) (x),
AND  (the-observed-evidences-is-fever) o),
AND  (the-observed-evidences-is-high-pain) (z ),
THEN (the-patient-bears-German-Measles)}! (CF)

where X, y, z denote the degree of precision / beliefs / conditional probabilities
that the patient bears a symptom, assuming he has German Measles. On the
other hand, CF represents the degree of certainty of the rule or certainty factor/
probability that the patient bears German Measles, assuming the prior
occurrence of the antecedent clauses. It is, now, clear that the same problem
can be modeled by many of the existing techniques; of course, for the purpose
of reasoning by a technique we need a particular kind of parameter.

9.2.1 Bayesian Reasoning

Under this context, we are supposed to compute P( H;/ Ej) or P ( Hi / Ey, Es,
. En) where H; represent a hypothesis and E; represents observed evidences
where 1 £j<m. With respect to a medical diagnosis problem, let H; and E;
denote the i-th disease and j-th symptoms respectively. It is to be noted that
under Bayesian reasoning we have to compute the inverse probability [P (H;/
E; )], rather than the original probability, P(E; /H;). Before describing the
Bayesian reasoning, let us revise our knowledge on conditional probabilities.

Definition 9.1: Conditional probability [1] P (H/ E) is given by
P(H/E)=P(H N E)/ P(E) = P(H & E) / P(E),

where H and E are two events and P (H N E) denotes the joint occurrence of
the events H & E. Analogously,

P(E/H)=P(E & H)/P(H) .
Now, since P(E & H) = P(H & E), we find

P(E& H)= P(E/H).P (H) = P(H/E).P (E)



P(E/H).P H)
So,P(H/E) = 9.1
P (E)

which is known as Bayes’ theorem.

Example 9.2: Consider the following problem to illustrate the concept of
joint probability of mutually independent events and dependent events.

A box contains 10 screws, out of which 3 are defective. Two screws are
drawn at random. Find the probability that none of the two screws are
defective using a) sampling with replacement and b) sampling without
replacement.

Let A: First drawn screw is non-defective.

B: Second drawn screw is non-defective.

a) Sampling with replacement
P(A) =7/10
P(B) = 7/10
P(A n B) = P(A).P(B) = 0.49
b) Sampling without replacement
P(A)=7/10
PB/A)=6/9=2/3

P(A N B)=P(A).P (B/A)=14/30 = 0.47

Now, for reasoning under uncertainty, let us concentrate on the well-known
Bayes’ theorem. With reference to our medical diagnosis problem,

P(D/S)= P (S/D).PD) /P(S) 9.2)



where D and S stand for disease and symptoms respectively. Normally, P(S)
is unknown. So to overcome the difficulty the following formalism is used in
practice.

We compute: P(—= D/ S)=P(S/— D). P(— D)/P(S). 9.3)
Now from expressions (9.2) and (9.3) we find,
P(MD/S) P (S/D) P(D)

X

P(=D/S) P(S/~D) P(=D)

ie,0(/S)=L(S/D)x O (D) (9.4)

where O and L denotes the odds of an event and the likelihood ratio [1].

However, in some circumstances, where P (S) is known, we can directly
use the Bayes’ theorem.

In our formal notations, consider the set H and E to be partitioned into
subsets, vide fig. 9.1.

(a) (b)
Fig. 9.1: (a) Partitioned Hj, 1< j < n and (b) Partitioned E;, 1<1 < m.

The expression (9.1) can now be extended to take into account the joint
occurrence of E; with all Hj for 1 < j<n.

P (E)

=PEMNH)+PEN H)+..+P(E N Hy

=P ((E/H)xPMH,)+P(E/H)xP (H)+... +P(Ei/Hy) x P (Hy)
9.5)



It may be noted that some of the probability of joint occurrences [ P (E; & H;)]
may be zero. It follows from expression (9.5) and expression (9.1) that

P (Ei/ Hj) x P (H)
P (H;/E) = (9.6)
X P(Ei/Hx)xP (Hx)
1€k<n

In the real world, however, the hypothesis H; depends on a number of E; s.
Thus,

P (H;/Ey, Es, ..., En)
P { (E., Es,..., Eu) / H} x P (H))

= 9.7)
2P {(EyE2, ..., En) / Hx} x P (Hx)
1€k <n

However, the conditional probability of the joint occurrences of E,,
E,,...., E, when H; has happened, in many real life problems, is unknown. So
E; is considered to be statistically independent, which unfortunately is never
true in practice.

When E;s are independent, we can write
P (Ei, Es,..., Em / Hj)

=P (E|/HJ)XP(E2/HJ)X XP(Em/HJ)
m

= II1 P (Ei/H) (9.8)
i=1

Substituting the right-hand side of expression (9.8) in (9.7) we find,

m
{I1 P(E/H)}xP(H)
i=1
P (H;/ E4, Es,..., Em) = 9.9)
n m
2{IIP(E/H)} xP (Hy)
k=1 i=1




To illustrate the reasoning process using expression (9.9), let us consider the
following example.

Example 9.3: Consider the hypothesis space and the evidence space for a
medical diagnosis problem. The rules, representing the cause-effect
relationship between the evidence space and the hypothesis space, are also
given along with the conditional probabilities.

Determine the probable disease that the patient bears.

T CP
02/ GM \ 0.5 F HBA R
0.3
T = Typhoid F = Fever
GM = German Measles R =Rash
CP = Chicken Pox HBA = High Body Ache
Hypothesis space Evidence Space

Fig. 9.2: The hypothesis and the evidence space for example 9.3.

Here,

P(T) =0.2,
P (CP) =0.5,
P (GM)=0.3

where P (X) denotes the probability that a patient has disease X.

Set of Rules

Rule 1: IF symptoms are
F  (P((F/T)=10Y9),
HBA (P (HBA / T) = 0.6)
THEN the Patient hopefully bears T.

Rule 2: [F symptoms are
F (P(F/ GM) = 0.8),
R(P(R/GM)=0.7),
HBA (P (HBA/GM) = 0.8)
THEN the patient hopefully bears GM.



Rule 3: IF symptoms are
F(P((F/CP)=0.56),
R (P (R/CP)=10.9),
HBA (P (HBA/CP) =0.8)
THEN the patient hopefully bears CP.

We compute P(CP/ R, F, HBR), P(T / F, HBA) and P(GM /R, F, HBA) and
then find the highest among them and hence draw a conclusion in favor of the
disease with the highest probability. Now,

P (CP) P (R/ CP) P (F / CP) P (HBA / CP)
P (CP /R, F, HBA) =

Y P (F/x) P(HBA /x) P (x) {P (RIGM) +
P(R/CP)}
x € {CP,GM, T}

(9.10)

Analogously, we can compute P(GM / R, F, HBA) and P(T / F, HBA).
It is to be noted that the denominator of (9.10) is common to the three
conditional probabilities. So, evaluation of their numerators only is adequate
for comparison.

Now, P (CP) .P (R/CP). P (F/CP). P(HBA/CP)
= 05x09x0.6x0.7=0.189
P (GM). P (R/GM). P (F/GM). P(HBA/GM) = 0.134
and P (T). P (F/T).P (HBA/T)=0.108
From the above results it is clear that the patient bears CP. The system
would respond to the user in the following manner. “/¢ is highly probable that

the patient bears CP for P (CP/ conditional events) is the highest among the
competitive conditional probabilities for other diseases.”

Limitation of Bayesian reasoning
n
1. Since X P (H;) = 1, if a new hypothesis is discovered,
j=1

P(H;) for all 1 £ j < n+1 then have to be redefined by an expert
team.



2. It might happen that none of the H; has happened. This, in general,
does not occur in a conventional Bayesian system, unless we
intentionally put a Hy in the Hypothesis set with a given
probability.

3. That observed evidences, which are considered to be statistically
independent, do not behave so in realistic situations.

9.2.2 Pearl’s Scheme for Evidential Reasoning

A Bayesian belief network [2]-[3] is represented by a directed acyclic graph or
tree, where the nodes denote the events and the arcs denote the cause-effect
relationship between the parent and the child nodes. Each node, here, may
assume a number of possible values. For instance, a node A may have n
number of possible values, denoted by Aj,A,,...,A,. For any two nodes, A
and B, when there exists a dependence A—B, we assign a conditional
probability matrix [P (B/A)] to the directed arc from node A to B. The
element at the j" row and i" column of P(B/A), denoted by P(B; /A),
represents the conditional probability of B; assuming the prior occurrence of
A,;. This is described in fig. 9.3.

P (B/A) °

Fig. 9.3: Assigning a conditional probability matrix in the
directed arc connected from A to B.

Given the probability distribution of A, denoted by [P(A:) P(A,) ..... P(A)]"
we can compute the probability distribution of event B by using the following
expression:
P(B) = [P(B)) P(B2) ....P(Bu)]"m u
= [P(B/A)]mxn [P(A) P(A2) ....P(An)]"nx1

= [P(B/A)]m xn X [P(A)]n x 1.

We now illustrate the computation of P(B) with an example.



Example 9.4: Consider a Bayesian belief tree describing the possible causes
of a defective car.

Car does not
start

e

Battery Fuel system Switches
defective defective defective
B C D
Battery Battery Fuel ngition Power-on
loose exhausted Exhausted switch relay
defective defective
E F G
H I

Fig. 9.4: A diagnostic tree for a car.

Here, each event in the tree (fig. 9.4) can have two possible values: true or
false. Thus the matrices associated with the arcs will have dimensions (2 x 2).
Now, given P(A) = [P(A = true) P(A = false)]”, we can easily compute P(B),
P(C), P(D), P(E), ...,P(I) provided we know the transition probability
matrices connected with the links. As an illustrative example, we compute
P(B) with P(B/A) and P(A).

Let P(A) = [P(A = true) P(A = false)]"

=[ 07 03 1

Bj—>
ANB =true B = false
P(B/A)=A =true | 0.8 0.2
A = false] 04 0.6

So, PB)= P(B/A).P(A)=[0.62 046]



One interesting property of Bayesian network is that we can compute the
probability of the joint occurrence easily with the help of the topology. For
instance, the probability of joint occurrence of A, B, C, D, E, F, G, H, I ( sce
fig. 9.4) is given by

P(A7 B’ C7 D’ E’ F’ G’ H’ I)
=P(A /B).P(A/ C).P(A / D).P(B /E, F).P(C / G).P(D / H, T) (9.11)

Further, if E and F are independent, and H and I are independent, the
above result reduces to

P(B/A).P(A/C).P(A/D).P(B/E).P(B/F).P(C/G).P(D/H).P(D/I).

Thus, given A,B,C,...,H all true except I, we would substitute the
conditional probabilities for P(B= true / A = true), P(A = true /C =
true).....and finally P(D = true / I = false) in the last expression to compute
P(A= true, B = true,....H = true, I = false).

Judea Pearl [2-3] proposed a scheme for propagating beliefs of evidence
in a Bayesian network. We shall first demonstrate his scheme with a Bayesian
tree like that in fig. 9.4. It may, however, be noted that like the tree of fig.
9.4, each variable, say A,B,...., need not have only two possible values. For
example, if a node in a tree denotes German Measles (GM), it could have three
possible values like severe-GM, little-GM, moderate-GM.

In Pearl’s scheme for evidential reasoning, he considered both the
causal effect and the diagnostic effect to compute the belief function at a
given node in the Bayesian belief tree. For computing belief at a node, say V,
he partitioned the tree into two parts: i) the subtree rooted at V and ii) the rest
of the tree. Let us denote the subset of the evidence, residing at the subtree of

V by e, and the subset of the evidence from the rest of the tree by e,”. We
denote the belief function of the node V by Bel(V), where it is defined as

Bel (V) =P (V/e, e )
=P (e,/V).P(V/e,) /o
=A(V) IT (V) (9.12)
where, A (V) = P(e,/V),

[1(V) = P(V/e,'), 9.13)



and o is a normalizing constant, determined by
o=, < (true, false) P(ev'/V). P(V/ev+) (914)
It seems from the last expression that v could assume only two values:

true and false. It is just an illustrative notation. In fact, v can have a number of
possible values.

Let node V have n offsprings, vide fig. 9.5. For computing A(V), we
divide e, into n disjoint subsets ez, 1< 1 <n, where Zi is a child of V.

So, M(V) = P(e,/V).
= P(ezf, sz_, ey eZn'/ V)

= P(ez1_/V). P(ezz—/V).... P(eZn"/V).

= Hnj:17LZi.(V) (915)
U
\'%
A (V) 7 /M(U)
Z1 Z2 Z3 Zn

Fig. 9.5: Propagation of As from the children to the parent
in an illustrative tree.

We now compute [1(V) using the message [Iv (U) = P(U|ev+) from the parent
U of V.
[1(V) = P(Ule,)
= Zue (true, false) P ( \'% | eV+, U= u) P(U =u |ev+)
= Zue (true, false) P(V |U = u). p(U =u | eer)
= Zue (true, false) P(Vl U= u). HV(U = u)

=[P(VIU)] 252 x [T1.(0) TL.(D]2u (9.16)



We now compute the messages that node V sends to its parents U and each of
its children Z,, Z,, ...,Z, to update their values. Each of these two messages is
a conditional probability, given that the condition holds and the probability
given that it does not.

Now, the message from V to parent U, denoted by A, (U), is computed as
}\’V(U) = ZVE(Irue, false) P(ev- |U, V= V) P(V =V | U)
= ZVg (true,false) P(ev- |,V: V) P (V =V |U)
= 2\/ e (true,false) P(V =V |U) 7\4 (V = V)
=[P(V]| U)lzx2 x [M0) O I (9.17)

Lastly, the message from V to its child Z; is given by

[Tz (V)
=P(V|es)

=P(Vl]e ez exr . .. ezii ez . ezn)
=B IL,i Plesi | V, &) P(V] &)

=B IT.P(e. | V) P(V e,

=B( [Tz (V) TI(V)

=BV Az(V)) TI(V)

=B Bel (V)/ Az(V) (9.18)
where [ is a normalizing constant computed similarly as o.

The belief updating process at a given node B (in fig. 9.4) has been
illustrated based on the above expressions for computing the A and [I
messages. We here assumed that at each node and link of the tree (fig. 9.4) we
have one processor [7]. We call these node and link processor respectively. The
functions of the node and the link processors are described in fig. 9.6.



A Node Processor A

[Is(A) Mg (A)
s

1.As (A)=[P (B/ A)] A (B), where
AB)=[A(B=B)),..A(B=B,)],

2. TIB)=[P B/ A)] IIs (A), where
[e(A) = [TT (A = A)), ...., [T(A= A,)]

Link Processor B

o f / /o

1. Bel (B) = A(B) [1(B), where
AB)= At (B) Ar (B)

2. TIz (B)=P Bel B)/As (B)
Bel (B)

3. IIr (B) =B Bel (B)/As (B)

Node Processor B

Iz B) \ I @
/xﬁ B) e (B)\ P (B

Link Link
processor E processor F
Node Node
E processor E Processor F F

Fig. 9.6: The computation and propagation of A and [] messages
from and to node B of fig. 9.4.



The main steps [8], [12] of the belief-propagation algorithm of Pearl are
outlined below.

1.

During initialization, we set all A and [] messages to 1 and set
IIs(A) messages from root to the prior probability [ P (A))
P(A,)....., P(An)]" and define the conditional probability matrices.
Then estimate the prior probabilities at all nodes, starting from the
children of the root by taking the product of transpose of the
conditional probability matrix at the link and the prior probability
vector of the parent. Repeat this for all nodes up to the leaves.

Generally the variables at the leaves of the tree are instantiated.
Suppose, the variable E= E, is instantiated. In that case, we set [7]

Ae B)=[0 100 0 0...0],
where the second element corresponds to instantiation of E = E,.

When a node variable is not instantiated, we calculate its A values
following the formula, outlined in fig. 9.6.

The A and [] messages are sent to the parents and the children of the
instantiated node. For the leaf node there is no need to send the ]
message. Similarly, the root node need not send the A message.

The propagation continues from the leaf to its parent, then from the
parent to the grandparent, until the root is reached. Then down
stream propagation starts from the root to its children, then from the
children to grandchildren of the root and so on until the leaves are
reached. This is called an equilibrium condition, when the A and []
messages do not change, unless instantiated further. The belief value
at the nodes now reflects the belief of the respective nodes for ‘the car
does not start’ ( in our example tree).

When we want to fuse the beliefs of more than one evidence, we can
submit the corresponding A messages at the respective leaves one
after another, and repeat from step 3, otherwise stop.

The resulting beliefs at each node now appear to be the fusion of the joint
effect of two or more observed evidences.

We presented Pearl’s scheme for evidential reasoning for a tree structure only.
However, the belief propagation scheme of Pearl can also be extended



to polytrees, i.c., graphs where the nodes can have more than one parent, but
there must be a single arc between each parent to a child and the graph should
not have any cycles [12]. We do not derive the formula for belief propagation
here, but only state it and illustrate with an example.

9.2.3 Pearl’s Belief Propagation Scheme on a Polytree

Let U and V be predecessors of node X, and Y and Z are the successors of
node X, as shown in fig. 9.7. Here, we denote the value of a variable, say V,
by lower case notations, say v. Let P(x/ u, v) be the fixed conditional
probability matrix that relates the variable to its parents u and v. Let Ilx (u)
be the current strength of the causal support, contributed by U to X. Let Av(x)
be the current strength of the diagnostic support contributed by Y to X. Causal
support represents evidence propagating forward from parents to children,
while diagnostic support represents feedback from children to their parents.

AN

/'
Ax () Ax (V)

g

Iy (x) o\ 2K

/ Ay (X) Az (X) \

Fig. 9.7: Propagation of belief through a piece of belief network.



Updating a node X thus involves updating not only its belief function (Bel
(x)) but also its A and IT functions. Belief updating is carried out by the
following formula.

Bel X) =0 Ay(X) Az (x) X P (x/u,v) IIx (u) IIx (v)
(9.19)

u, v
where o is a normalizing constant that makes Y Bel (x) = 1.
Vx

The process of A and IT updating is now presented below with reference to fig.
9.7.

M=o X[IxWXE Ay XAz (x)Px/u,v)]]
(9.20)
Vv X

Ny =0 Az(x)[XTx (u) Hx (V)P (x/u,v)]
9.21)
u v

For leaves in the network, A-values are set to one, while for roots (axioms)
in the network the Il-values are set equal to their prior probabilities.

Example 9.5: To illustrate the process of computing Bel (x) at a node X,
let us consider fig. 9.8.

GM CP

A g o

C e o D
Body-Temp. Rash

Fig. 9.8: A causal network, representing hypothesis (disease)
and evidence (symptom) relationship.



Let the possible value of the hypothesis and evidences be as follows.
GM = {high-GM, low-GM}
CP = {high-CP, little-CP}

Body-Temp = { BT <= 98°F, BT > = 100° F}
Rash = {round, oval-shaped}

The matrices that are associated with the links (arcs) of fig. 9.7 are presented
below.

1—
\BTS 98°F BT= 100° F
%
Let MAC =
high-GM 0.2 0.8
low-GM 0.7 0.3 = P (C/A)
i—
il BT<98°F BT2> 100°F
Mgpe =
High-CP 0.3 0.7
Low-CP 0.6 0.4 = P(C/B)
i—
. \ round oval-shaped
J
Map = high-GM 0.9 0.1

= P(D/A)

low-GM 0.8 0.2



i—

round  oval-shaped
id

and Mgp = high-CP 0.3 0.7

- P (D /B)
low-CP | 0.4 0.6

Suppose, we are interested to compute:

Bel (BT <98°F)

and Bel ( BT 2100° F).

Now, with reference to Pearl’s nomenclature, we thus assume the following
items in fig. 9.8:

st (high—GM) =0.6

Igr (IOW-GM) =0.1

IIgr (high-CP) = 0.25 and

ITgr (low-CP) =0.05

Here, Ay (body-temp) =1.0 and
Az (body-temp) = 1.0

Since body-temp (C) is a terminal node in fig, 9.8. the A values incoming to
it should be unity. Thus by expression (9.19), we find

Unnormalized Bel ( BT < 98° F)

= Msr (high-GM) x TTsr (high-CP) x P (BT < 98° F/ high-GM, high-CP)
+ gy (high-GM) x TTsr (low-CP) x P (BT <98° F / high-GM, low-CP)
+ Tgr (Iow-GM) x ITgr (high-CP) x P (BT < 98° F / low-GM, high-CP)
+sr (low-GM) x ITgr (low-CP) x P (BT < 98° F / low-GM, low-CP)



= (0.6x 0.25x 0.2x 0.3) + ( 0.6x 0.05x 0.2x 0.6) + ( 0.1x 0.25x 0.7x 0.3) +
(0.1x 0.05x 0.7x 0.6)

=0.01995

Suppose analogously, we find Bel (BT=100° F) = f3 (say).
Then oo =1/(0.01995 +B).

So, normalized Bel (BT £ 98°F)= o x 0.01995

and normalized Bel (BT = 100° F)=a x B

The A and IT messages can also be calculated by the formulas supplied.
According to Pearl [2], the belief computation in the polytree is done in an
asynchronous manner, and at some point of time, the beliefs at all nodes do
not change. We call it an equilibrium condition. The belief of the nodes in
the polytree at this condition is consistent with the theory of probability.

9.2.4 Dempster-Shafer Theory for
Uncertainty Management

The Bayesian formalism assigns a positive belief to a proposition, but it does
not take into account of the disbelief of the propositions. Dempster-Shafer
(DS) theory, on the other hand, allows information integration by considering
both their belief and disbelief. To illustrate this point, let us consider an
example. Suppose that one of the three terrorist groups: A, B and C planted a
bomb in an office building in a country. Further, suppose, we have adequate
evidence to believe that group C is the guilty one with a measure of belief
P(C) = 0.8, say. On the other hand, without any additional knowledge / fact,
we do not like to say that P(B)+ P(A) = 0.2. Unfortunately, we are forced to
say so using conventional probability theory as it presumes P(—=C) = 1- P(C)
=P(B) + P(A). This prompted Dempster and his follower Shafer to develop a
new theory, well known as the DS theory in the Al community.

In the DS theory, we often use a term, frame of discernment (FOD)
0.To illustrate this, let us consider an example of rolling a die. In rolling a
die, the set of outcomes could be described by a statement of the form: “the-
number-showing-is-i” for 1 < i < 6. The frame of discernment in the die
example is given by

FOD 6= {1,2,3,4,56}.



Formally, the set of all possible outcomes in a random experiment is called
the frame of discernment. Let n= |0 |, the cardinality of 0.  Then all the
2" subsets of theta are called the propositions in the present context. In the die
example, the proposition, “the-no-showing-i-is-even” is given by {2, 4, 6}.

In the DS theory, the probability masses are assigned to subsets of 0,
unlike Bayesian theory, where probability mass can be assigned to individual
elements (singleton subsets). When a knowledge-source of evidence assigns
probability masses to the propositions, represented by subsets of 6, the
resulting function is called a basic probability assignment (BPA).

Formally,a BPA is m

where m: 2° — [0,1]

where 0<m(.)<10, m(d

and ¥ m(x) = 1.0 (9.22)
xcCO

Definition 9.2: Subsets of 6, which are assigned nonzero probability
masses are called focal elements of 0.

Definition 9.3: A belief function [5-6] Bel (x), over 0, is defined by

Bel (x) = X m(Y) (9.23)
Yc X

For example, if the frame of discernment 0 contains mutually exclusive
subsets A, C and D, then

Bel ({A,C,D})

= m ({ ACD}) + m ({A, C}) + m ({A.D}) + m ({C,D}) + m ({a}) + m
({c}) + m ({d}).

In DS model, belief in a proposition is represented by the belief
interval. This is the unit interval [0,1], further demarcated by two points j and
k, k = j. Suppose that the belief interval describes proposition A. Then the
sub-interval [o, j) is called Belief (A) and the subinterval (k,1] is called the
disbelief (A) and the remainder [j, k] is called Uncertainty (A). Belief (A) is



the degree to which the current evidence supports A, the Disbelief (A) is the
degree to which the current evidence supports — A and Uncertainty (A) is the
degree to which we believe nothing one way or the other about proposition A.
As new evidences are collected, the remaining uncertainty will decrease [5],
and each piece of length that it loses will be given to Belief (A), or Disbelief
(A). The concept can be best described by fig. 9.9. We denote Belief (A),
Disbelief (A), Plausibility (A) and Uncertainty (A) by Bel (A), Disbel (A), Pl
(A) and U (A) respectively.

Further, PI (A) = Bel (A) + U (A)
and D (A) = Disbel (A) + U (A).

It can be easily shown that

i) Pl(A)=Bel (A)

ii) PI(A)+Pl(=A)>1

iii) Bel (A) + Bel (= A) <1.
Further, for A being a subset of B,

Bel (A) < Bel (B) and
PI (A) £ P1 (B).

0 ] k 1
| |
|--Belief------- |---Uncertainty--|--Disbelief--- |
(Bel) U) (Disbel)
|--m-mmm- Plausibility------------- |
(P1)
|-===mmm - Doubt--------------
(D)

Fig. 9.9: The belief interval.



The orthogonal summation of belief functions

Assume that two knowledge sources KB1 and KB2 submit two frames of
discerrnments 6, and 6, respectively. Let m, (.) and m; (.) be the BPA at the
subsets of 6, and 0, respectively. The new BPA, m (.) can be computed based
on m; (.) and m; (.) by using

mX) =K ¥ m (X).m (X) (9.24)
X= Xi M Xj

and K=1- ¥ m (X).m (X))
Xiij:(D

where X and X are focal elements of 0, and 0, respectively. We denote the
orthogonal summation operation, referred to above, by m=m; @ m.

To illustrate the orthogonal summation process, let us consider
the BPAs that are assigned by two knowledge sources through a image
recognition process.

Let us assume that knowledge source 1 (KS1) claims that an unknown object
in a scene could be

a chair with m;({C}) =0.3,

a table with m;({T}) = 0.1,

a desk with m;({D}) = 0.1,

a window with m;({w}) = 0.15,

a person with m;({P}) = 0.05,

and the frame 0, with m; ({6}) = 0.3.

The assignment of BPA = 0.3 to 6 means that knowledge source 1 knows
that something in 0 has occurred, but it does not know what it exactly is.
Analogously, knowledge source 2 (KS2) claims the same object in the scene
to be

a chair with my({C}) = 0.2,

a table with my({T}) = 0.05,

a desk with m,({D}) = 0.25,

a window with my({W}) = 0.1,

a person with my({P) = 0.2,

and the frame 6 with my({6}) = 0.2

Now, suppose, we are interested to compute “What is the composite belief of
the object to be a chair ?”



To compute this we construct the following table.

T 0
KS, (0.2)

P
(0.2)

W
(0.1)

D
(0.25)

T
(0.05)

C
(0.2)

C T D W P 0
0.3)  (0.1) (0.1) (0.15) (0.05) (0.03)

KSl—>

Fig. 9.10: Illustrating the principle of orthogonal summation.
Now, my, ({C})

mi ({C}). m2 ({C}) + mu ({6}). mo({C}) + mi({C}). m({6})

Sum of the area of the shaded blocks

02x03 +02x03+02x 0.3

0.555
=0.32

i.e., Bely( C) + Bel, (C ) = 0.32.



The orthogonal summation operations of more than two belief functions can
be computed in an analogous manner, by taking two belief functions, one at a
time. The major drawback of this technique is high time-complexity, which in
the worst case may be as high as p; x p,, where p; and p, represent the
hypothesis space of the two sources of evidences. Thus for combining belief
from n sources, the overall time-complexity in the worst case is p; X p2 X....
Ps, Where p; represents the number of hypothesis in the i-th knowledge source.
Summarizing, the above concept, the worst case time-complexity for n
composition of beliefs from n sources is O (p" ), where pi = p2 =.... pn = P,
say. This exponential time-complexity can be reduced [7], by performing
belief combinations on local families, instead of combining beliefs on the
entire frames.

9.3 Certainty Factor Based Reasoning

The Bayesian reasoning technique, though successfully applied in many areas
of science and technology, is not appropriate for applications in the domain
of problems, where the hypotheses are not mutually exclusive. An alternative
technique for evidential reasoning was, therefore, needed to meet the
crisis. In the early 1970°s, a new technique based on certainty factors was
developed under the aegis of the Heuristic Programming Project of
Stanford University [9], [11]. The context was the development of
computer-based medical consultation systems and in particular the MYCIN
project [94 ] which was concerned with replicating a consultant in the anti-
microbial therapy.

‘Certainty factor’ (CF) in the treatises [9-10] was considered to be
associated with a given priori hypothesis. This factor ranges from -1,
representing the statement ‘believed to be wholly untrue’, to +1, representing
the statement ‘believed to be wholly true’. Further, there is no assumption
like CF(i) =1 fori= 1 to n, where n is the number of the
hypotheses. Thus the method is not in any sense probabilistic in its origin or
basis. The CF itself is computed as the difference between two measures:
the current measure of belief (MB) and the current measure of disbelief
(MD):

CF (H:E)= MB(:E) -MD (H:E)

for each hypothesis H, given evidence E.



The belief and disbelief measures both range from 0 to 1. The belief updating
of a hypothesis supported by evidences El1 and E2, as reported in the
literature [95] is given by
MB (H: E1,E2)=MB (H: El1) + [ MB (H:E2) * {1 - MB (H :E1)}]

=MB (H: E1) + MB (H:E2) -MB (H:E1)* MB (H:E2).

This formula has a number of pragmatic attractions:

1) It is symmetric with respect to the accrual of evidence from different
sources. It does not matter whether we discover evidence El or
E2 first.

ii) It is a cumulative measure of beliefs for different evidences which

confirm the hypothesis and, therefore, accords both with intuition
and information theory.

We do not discuss much of certainty factor based reasoning as it is obsolete
nowadays. Interested readers may get it in any textbook [12], [1] or in
Shortliffe’s original works [9].

9.4 Fuzzy Reasoning

Fuzzy sets and logic is a relatively new discipline that has proved itself
successful in automated reasoning of expert systems. It is a vast area of
modern research in Artificial Intelligence. In this section, we briefly outline
this discipline and illustrate its application in reasoning with inexact data and
incomplete knowledge.

9.4.1 Fuzzy Sets

In conventional set theory an element (object) of a universal set U may (or
may not) belong to a given set S. In other words, the degree of membership of
an object in set S is either zero or one. As an example, let us consider the set
S of positive integers, formally defined as

S = { s : s = positive integer}.

Since the definition of positive integer is very clear, there exists no
doubt to identify which elements of the universal set of numbers U belong to
this set S. In case the universal set contains only positive and negative



integers, then we can definitely say that elements like -1, -2,...up to - o<, all
belong to set S with a membership value zero, while the elements 0, +1,
+2,..to + o Dbelong to set S with membership value one. We can express
this as follows.

S={0/1.0,+1/1.0,+2/1.0,+3 /1.0, ..., + .0,
0

o /1
-1/0.0, -2/ 0.0,-3/0.0, ..., - /0.0 }

EE)

where b in (a/ b) form in set S represents the degree of membership of “a
Unlike such sets where membership values could be either zero or one, fuzzy
sets represent sets, whose elements can possess degree of membership lying in
the closed interval of [0,1]. As an example, let us consider a set named AGE
which has a range from (0 - 120) years. Now, suppose one assumes the age of
a person by observation, since he (she) does not have a proof of age. We may
classify the person under subset: Young with certain degree of membership,
Old with other membership, Very-Old with a third membership value. For
example, if the age of the person seems to be between (20-22), say, then he
(she) is called young with a degree of membership = 0.9, say, old with a
degree of membership = 0.4, say, and very-old with a degree of membership =
0.2, say. It is to be noted that the sum of these three membership values need
not be one. Now, assume that in the universal set U we have only four ages:
10, 20, 30, 40. Under this circumstance, subsets Young, Old and Very-Old
might take the following form.

Young = { 10/0.1,20/0.9, 30/ 0.5, 40/ 0.3}
Old= {10/0.01,20/0.3,30/0.9,40/0.95 }

Very-Old = { 10 / 0.01, 20 / 0.1, 30 / 0.7, 40/ 0.9}

A question may be raised as to how to get the membership value of the
persons. To compute these from their respective ages, one can use the
membership distribution curves [14], generated intuitively from the
commonsense knowledge (fig. 9.11).

To represent the membership value of an object u in set (subset) A, we
use the notation: U (u). As an example, the membership value of a person
having age = 80 to belong to subset very-old = 0.7 can be represented as

W very-ola  (age = 80) = 0.7.



1.0 _]
_ Young
0.6 _|
02 | Very-old

| | | | | |
10 30 50 70 90 110

AGE —
Fig. 9.11: Membership distribution for subsets of AGE.

9.4.2 Fuzzy Relations

For modeling a physical system, whose variations of output parameters with
input parameters are known, one can use fuzzy relations. To illustrate this
point, let us consider a relational system that relates Fast-Runners with Young
by the following production rule PR1.

PR1: IF X-is Young
THEN X-is-a Fast-Runner.

Suppose the membership distribution of subset Young is given in the

following form:
Young = {10/0.1,20/0.6,30/0.8, 40 / 0.6},

where a / b in subset Young represents Age / membership value of having that
age. Further, let us consider the subset Fast-Runner, which can be stated as:

Fast-Runner = {5/0.1,8 /0.2, 10/ 0.4, 12/ 0.9}



where a / b in fast-runner subset represents [(speed of persons in meters /sec)
/(membership of having that speed)].

Now, to represent a system (fig. 9.12) whose input is the membership
value of a person being young, and output is the membership value of the

person being a fast-runner, we construct a fuzzy relational matrix by taking a
Cartesian product of the two subsets.

H Young (age = ai)

[l

FUZZY RELATIONAL

SYSTEM

T

W Fast-runner (speed = bj )

Fig. 9.12: A fuzzy system which relates L rast.rumer (Speed= b;)
t0 U youne (ag€ = aj).

The relation obtained through a Cartesian product can be denoted as
Ur(age,speed). To illustrate the Cartesian product operation we first consider
this example by forming the relational matrix [15].

Age —
10 20 30 40
Speed )
Ur (age, speed) = 5] 0.1*0.1 0.6*0.1 0.8*%0.1 0.6*0.1

8 0.1*0.2 0.6*0.2 0.8*0.2 0.6*0.2

10| 0.1*0.4 0.6*0.4 0.8*0.4 0.6*0.4
12| 0.1*0.9 0.6*0.9 0.8*0.9 0.6*0.9




The “*” operation in the above relational matrix could be realized by different
implication functions. For example, Zadeh used fuzzy AND (MIN) operation
[14] to represent the implication function. When “*” denotes fuzzy MIN
operator, we can formally write it as follows:

a; *bj=a;, if a; <b; and
=D ifbjSai.

Many researchers prefer a decimal multiplication operation to describe the “*”

operation [15]. Polish logician Lukasiewicz described the “*” operator as
follows:

a*by=Min [ 1, (I- a; + b))].

If we consider the “*” to be Zadeh’s fuzzy AND operator, then the above
relational matrix reduces to

Age—
10 20 30 40
Ur (age, speed) = speed |

5 0.1 0.1 0.1 0.1
8 0.1 02 0.2 0.2
10 0.1 04 04 04

12 0.1 0.6 0.8 0.6

Now, suppose that the measured distribution of a young person is as follows:
Young = { 10 /0.01,20/0.8,30 /0.7, 40 / 0.6}

which means that the same person has an age 10 with a membership value
0.01, age 20 with a membership value 0.8 and so on. Now, the fuzzy
membership distribution of the person being a Fast-Runner can be estimated
by post-multiplying the relational matrix by the Young vector. Thus,

HFasl»runner (Speed = b}) = I-LR (age, Speed) o l-LYoung (age = ai)



where the “0” denotes a fuzzy AND-OR composition operator, which is
executed in the same way, while computing product in matrix algebra, with
the replacement of addition and multiplication operators by fuzzy OR
(Maximum) and AND (Minimum) operations respectively.

The estimated membership distribution in the present context becomes

Wrast-runner (Speed =b;) = {5/0.1, 8/0.2,10/0.4, 12/0.7}.

Thus the person is a fast-runner having an estimated speed of 5 m / s
with a membership value of 0.1, 8 m / S with a membership value of 0.2 and
SO on.

9.4.3 Continuous Fuzzy Relational Systems

Consider the following set of rules, where x and y represent two variables and
Aj and B; denote fuzzy sets.

Rules:

IF x-is A; Then y-is B,.

IF x-is A; Then y-is B

IF x-is A, Then y-is B,.

In more specific cases, x and y, for example, could be age and speed,
while A; could be fuzzy subsets like Young, Old, Very-Old, etc. and B; could
be fuzzy sets like Slow-Runner, Medium-Fast-Runner, Fast-Runner, etc. It
may be noted that all rules, as stated above, are applicable to measure the
membership distribution of y-is B, given the distributions of x-is A;.
Suppose the measured distribution of x-is A; and y-is B; for 1< i < n is
known. With these known distributions we can design the fuzzy relations.
Then if we know the observed distribution of x-is A’ we would be able to
infer the distributions for y-is Bi’ for 1< 1 <n. Then to arrive at a final
decision about the distribution of y-is B’, we would OR the resulting
distributions of y-is B’ for 1<1 <n.



e () = V{dn (x y)Apa (x) }
Vxe A’

where Ui (X, ¥)=A { L a1 (X), Wei(y) }
VX e A]
Vye B1

We2 (y) = V {ltr (X, ¥) A la (%) }
Vxe A’
where U2 (X, ¥)=A { L a2 (X), Wpa(y) }

VXE Az
Vye Bz

Wen () = V {tra (X, ¥) A Ha (X) }
Vxe A
L | where Urn (X, ¥)=A {1 an(X), WBa(Y) }

Vx e A,
VyeB,

| Has ()

Fig. 9.13: Evaluation of g (y) from pa- (X).

We (y)



This may be formally written as

Wer () =V {uri(x, YA (%)}
Vx e A’

e (y) = V{us(y)}

Vi
where Uri(X, Y)= A {Hai(X), Usi(y)}
VXSAi
Vye Bi

The complete scheme for evaluation of W g- (y) from pa- (X) is presented in
fig. 9.13.

It is clear from fig. 9.13 that

e ()= V. {ri (X, y) A fai (X)}
Vx e X

=V [{ta N wsi (0N Har (0]
xe X

=V [{tai X" Har X))} " usi (y)]
xe X

=V it 0 "Har ®) F T2 usi (Y)
xe X

=a; N Wsi (y)

where ai= V {Uai (X) * Uar (X)}.
xe X

Finally, us (y)= V {use (y) }-
1< 1<n



The computation of us' (y) by the above expressions was proposed by
Togai and Watanabe [13], who first realized a fuzzy inference engine on
a VLSI chip. The architecture of their inference engine will be discussed now.

9.4.4 Realization of Fuzzy Inference Engine
on VLSI Architecture

Togai and Watanabe [13] considered a set of fuzzy production rules of the
following form.

Rule: IF x-is A;j Then y-is B;

where A; and B; each can assume 16 possible subsets, i.e. 1<= i <= 16.
Moreover, the membership distributions Wai (x) and Usi (y) can assume
membership values from the following set:

Membership set = { 0, 1/15, 2/15, 3/15,...., 14/15, 1},

the elements of which, if multiplied by a scale factor of 15, can be converted
to 4-bit binary numbers. Thus to represent [(ai (X) Haz (X) ..... Hate  (X)]
they used 64 bit registers, 4-bit each for one field depicting Wi (x), as
presented in fig. 9.14.

4 4

bits bits
L | |
Hat (X) Laz (X) ... Uats (X)
| 64 Dt ~-ecenenmmmnee |

Fig. 9.14: The 64-bit register to hold ;i (X).

For wsi (y) s, la (x) and us- (y) s, we also use 3 more registers, each of 64
bits. For computing o s, Togai and Watanabe used the computational scheme
(vide fig. 9.15).The fuzzy MIN boxes in fig. 9.15 determine the minimum of
the two input signals applied to them. The 4-bit shift register holds the



cumulative maximum of the two successive outputs of the MIN box. The o s
thus produced are ANDed with W g; (y) s to yield g (y) s, which finally are
ORed to produce the pg- (y) distribution. The 16-input OR function is carried
out with the help of an OR tree, shown in fig. 9.16. The system implemented
by Togai and Watanabe [13] has an execution speed of 80,000 fuzzy logical
inferences per second, when a 20.8 M-Hz crystal is used as a basic timing
unit.

Mai (X) Hais (X) Mar (X) Mais (X)

v v oy v
[T] ] [T L]

i# —v v

MIN MIN

B ‘i

v v

UB1(y) Us16(y)

v v

MIN MIN

MBI‘(Y)* + + + + Heie - (Y)

16:i'r.1[').ut OR function

v

us: (y)

Fig. 9.15: The logic architecture of the fuzzy inference engine.
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Fig. 9.16: The OR-tree realizing the 16-input OR function in the logic
architecture of fig. 9.15.

9.5 Comparison of the Proposed Models

We covered the Bayesian, Dempster-Shafer and fuzzy reasoning model based
on Zadeh’s implication function and also briefly outlined the certainty factor
based model for reasoning with incomplete data and knowledge. A common
question naturally arises: which model to use when? If we prefer a
mathematically sound model then one should prefer Pearl’s model or the
Dempster-Shafer theory. But it is to be noted that Pearl’s model requires a
number of conditional probabilities, which are difficult to extract for most of
the real world problems. The Dempster-Shafer theory, on the other hand,
requires only the Basic Probability Assignments to the propositions, which
can be done easily by a knowledge engineer for the problems of her domain.
But due to its exponential computational costs, it cannot be used on a large
frame of discernment. The certainty factor based reasoning has no formal
mathematical basis, and thus it should not be used nowadays, when other
models are available. The fuzzy models require defining the membership
functions only, which can be done from the intuitive knowledge of the
problem domains. Further, fuzzy computation is not at all costly. So, it has a
good potential in the next generation expert systems. So, what is the rule of
selecting the models? A simple thumb rule is presented below.



“If you can manage to evaluate the conditional probabilities, then use
Pearl’s model. If your frame of discernment is small or you can afford to
spend computational time, use the Dempster-Shafer theory. If you are happy
with less accurate but quick results, use fuzzy logic.”

Another important question that may appear to the readers: can we
use any of these models to any problem? The answer depends on whether we
can represent the problem by a given model. Shenoy and Shafer [7] in one of
their recent papers claim that Pearl’s model is a special case of their extended
model of local computations on a qualitative Markov tree. It is thus evident
that both Pearl’s model and the DS theory can perform the problem of data
fusion [2]. But the user has to determine the appropriate data sets required for
solving the problem by any of these methods. The same line of reasoning is
equally valid for fuzzy logic.

Exercises

1. List the set of parameters (conditional probabilities by name) and the
inputs (a priori probabilities and As at the instantiated leaf node) required
to apply the belief propagation scheme, when node E (in fig. 9.4) is
instantiated at E = E,.

2. After instantiation of node E (in fig. 9.4), compute manually the Bel

values, A and IT messages at the equilibrium state, based on your initial
assignments. Can you construct a program to realize this?

3. Suppose a crime was committed by either of three suspects A, B, or C.
There are two knowledge sources. The knowledge source 1 submits the
following data:

m{(A)} = 0.1, m;{(B)}= 0.3, m{(C)} =0.3 and m; {(0)} = 0.3.
The knowledge source 2 submits the following data:

m>{(A)}= 0.4, my{(B)} = 0.2, m>{(C)} = 0.2 and m,{(0)} =0.2.

Find m2{(A)}, m2{(B)} and m;»{(C)} and hence comment on the
culprit.

4. Find the relational matrices for the following systems:



(1]

(2]

(3]

(4]

(5]

(6]

a) when x, ye {10, 20, 30} and x = y;

b) when x, ye {10, 20, 30} and membership = 0.6, if x >y,
=0.3, if x <y and
= 1.0, if x =y.

Given pa (x)=[0.1 05 03]andps (y)=[0.7 08 04].
Compute

R (x,y) = [1a ] 0 [us ()]
Now, with R (x, y) and a given s (x) =[0.3 0.4 0.7], find ps (y).

Prove the closure of A> B & — B — — A by the Lukasiewicz
implication function f (a;, bj) = Min [1, (1 — a; + b;) ] for the implication
rule A— B.

[Hints: For a; —»b;, f=Min [1, (1 —a;+ b;) ]. Now, for = b; >— a;, f =
Min [ 1, (1-(1-bj) + (1-a))] = Min [1, (1 — a; + b;j) ]. Hence the result
follows.]
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10

Structured Approach
to Fuzzy Reasoning

Reasoning in expert systems in the presence of imprecision and inconsistency
of the database and uncertainty of a knowledge base, is itself a complex
problem, and becomes intractable when the knowledge base has an explicit
self-reference to itself. A self-referential knowledge base, if instantiated with
appropriate data elements, gives rise to formation of cycles in the reasoning
space. The chapter presents a structured approach to fuzzy reasoning using
Petri nets to handle all the above problems of inexactness of data and
knowledge by a unified approach.

A structural analysis of the model has been undertaken to examine its
properties with respect to 'reachability of places' in the network for
subsequent applications in the detection of cycles. A behavioral analysis of
the model, with special reference to stability, reciprocity and duality, has also
been presented. The results of the above analysis have been applied to fuzzy
reasoning of a diverse nature including Modus Ponens, Modus Tollens,
Abduction and non-monotonism.



10.1 Introduction

Databases associated with the real world problems are invariably
contaminated with imprecision and inconsistency of data. Besides, the
knowledge base is found to contain pieces of knowledge, with doubtful
certainty. A number of techniques have, of late, been developed for the
management of imprecision [12],[38],[2] and inconsistency [25],[4] of data
and uncertainty of knowledge[2], [6], [14],[39], [28] to facilitate reasoning in
expert systems (ES). However, none of them are adequate if one or more of
the above forms of incompleteness of data and knowledge coexist in a given
situation.

More recently, fuzzy logic has been successfully applied to a
specialized structure of knowledge, called Fuzzy Petri nets (FPN), [1],[3]-
[9], [19], [23], [37] for handling one or more of the above problems. The
concept of the management of imprecision of data with FPN was pioneered by
Looney [24], who considered an acyclic model of FPN, for estimating the
degree of truth of a proposition with a foreknowledge of its predecessors in
the network. Chen et al. [7] presented an alternative model and an interactive
algorithm for reasoning in the presence of both imprecision and uncertainty.
Bugarin and Barro [1] refined the underlying concept of the model in [9] and
extended it in the light of classical fuzzy logic [42]. The most challenging part
of their work was reasoning under incomplete specification of knowledge. Yu
improved the concept of structural mapping of knowledge onto FPN [40]
and presented a new formalism [41] for reasoning with a knowledge base,
comprising of fuzzy predicates [42], instead of fuzzy propositions [7].
Scarpelli et al. presented new algorithms for forward [36] and backward [35]
reasoning on FPN which is of much interest. A completely different type of
model of FPN using fuzzy t and s norms [13] was proposed by Pedrycz [29]
for applications in supervised learning problems. There exists an extensive
literature on FPN models [11], [1], [3], [8], which cannot be discussed here
for lack of space. However, to the best of the author’s knowledge, none of the
existing models of FPN can handle the complexities in a reasoning system
created by the coexistence of imprecision and inconsistency of data and
uncertainty of knowledge. The complexity of the reasoning system is further
complicated, when the knowledge base has an explicit self-reference to itself.
The chapter presents new models of FPN [20], pivoted around the work of
Looney, for dealing with the above problems by a unified approach.

In this chapter a FPN has been constructed first from a set of rules and
data, represented by predicates and clauses respectively. The FPN, so formed,
with a self-referential knowledge base under the instantiation space of
appropriate clauses, may contain cycles, which, when subjected to reasoning,
may result in sustained oscillation in the level of precision of the inferences
[16]. The detection of cycles in a FPN, if any, and the analysis of stability of
the model, which is of paramount importance, are discussed. Among other



significant issues discussed in the chapter are 'backward reasoning' and
'reciprocity under bi-directional IFF' type reasoning. Backward reasoning has
been carried out with the help of a new definition of inverse fuzzy relational
matrix, Q, which when pre- or post-composed with a given relational matrix,
R, yields a matrix which is closest to the identity matrix, I, in a global sense.
The condition of reciprocity, which ensures regaining of fuzzy tokens [26] at
all places of the FPN after n-forward steps followed by n-backward steps of
reasoning (and vice versa), has been derived. Since the condition of
reciprocity imposes relationships between the structure of the FPN and its
relational matrices, determination of the matrices for a given network
topology, therefore, is a design problem. Networks whose relational matrices
support reciprocity conditions can generate tokens at all places consistently,
when the tokens of only a few terminal or non-terminal places are given. Such
networks may ideally be used for diagnostic problems, where the tokens of the
terminal places, representing measurement points, are known and the tokens
of the independent starting places, representing defects, are to be evaluated.
Another problem of interest, considered in the chapter, is the transformation
of a given primal FPN into its dual form, using the classical modus tollens
property of predicate logic. The dual FPN is useful for estimation of the
degree of precision of the negated predicates, when the degree of precision of
one or more negated predicates is known. Lastly, the principle of management
of contradiction of data and knowledge, hereafter called non-monotonic
reasoning, has been presented briefly in the chapter.

In section 10.2 of the chapter, an algorithm for form ation of FPN is
presented along with an algorithm for detection of cycles in a FPN with the
help of reachability analysis. Section 10.3 is devoted to the state-space
formulation of the model and its stability analysis. Section 10.4 includes an
algorithm for forward reasoning. In section 10.5, the formulation of the
backward reasoning problem along with its solution with inverse fuzzy
relational matrix is presented. Reciprocity analysis under bi-directional IFF
type reasoning is presented in section 10.6. Details of primal to dual
transformation and its application are covered in section 10.7. The principles
of non-monotonic reasoning are presented in section 10.8. The conclusions
are summarized in section 10.9.

10.2 Structural Model of FPN and
Reachability Analysis

In this section, an algorithm for formation of FPN from a set of database and

knowledge base is presented. An analysis of reachability with special
reference to detection of cycles in a FPN is also included in this section.

Definition 10.1: A FPN is a directed bipartite graph with 9 tuples, formally
denoted by FPN= {P,D,N, Tr, t, th, I, O, R;} where P ={p;, p2 ..., Pn } 1S



a finite set of places, D= {d;, d; ..., d, } is a finite set of predicates, each d;
having a correspondence to each p; for ISi<n, N-={n, n,..,n,}isa
finite set of discrete fuzzy membership distributions, called belief
distributions, each distribution n; having correspondence to each predicate d;.
Tr = {tr; , tr2, ..., try, } is a finite set of transitions; PN Trn D =. "'t and
'th' represent respectively sets of fuzzy truth token (FTT) distribution and
thresholds, associated with each transition. I and O: Tr — P represent

mapping from transitions tr; to their input and output places. R;, associated
with each transition tr;, represents the certainty factor (CF) of a rule: I(tr; )
—O0 (tr; ) and is represented by a fuzzy relational matrix.

Example 10.1: To bring out the implications of the above definitions, let us
consider the following production rules and database.

Production Rules (PR)

PRI: Tall(x), Stout (x) —Fast-runner (x)
PR2: Fast-runner (x) —Has-nominal-pulse-rate (x), Stout (x).

Database: Tall (ram ), Stout (ram).

In the PR above, Tall (x), Stout (x), etc. denote predicates and the
comma in the left and right hand sides of the implication sign (—) denote
AND and OR operations respectively. Given the measured membership
distribution of Tall(x), Stout (x) and Fast-runner (x) in PR1, one can easily
construct a relational matrix, representing the CF of the rule for each possible
membership values of the antecedent and consequent predicates under the
rule. For example, let us consider the membership distribution of Tall (x),
Stout (x) and Fast-runner (x) as shown in fig. 10.1. The relational matrix for
the rule can be constructed first by ANDing the distribution of Tall (X) and
Stout (x) and then by using an implication function [30-32] over the derived
distribution and the distribution of Fast-runner (x).

u'tall(x) A ustout (X)

=[0.20.40.60.8]" A [0.10.20.90.2]=[0.10.20.60.2]".

Here T denotes the transposition operator and the ' A' operation between

two vectors has been computed by taking component-wise minimum of the
two vectors.

l(1 = [ u' tall (X) A "l' stnut(x)] V] “J' fast-runner (X)]T
=10.10.20.60.2]" o [0.10.20.60.9]



5 6 8 10 Speed (in m/S)
5'A40 kg 0.1 0.1 0.1 0.1
6'A50 kg 0.1 02 02 02
= 7'A60 kg 0.1 02 0.6 0.6
8'A80 kg 0.1 02 02 02

where 'o' denotes the fuzzy AND-OR composition operator [31]. This,
however, is not a unique method for estimation of Ry. In fact, Ry can be
constructed by several ways [21] by substituting appropriate operators in
place of the composition operator. A set of relational matrices is thus formed,
each corresponding to one rule.
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Fig. 10.1: Membership distribution of (a) tall(x), (b) stout (x) and
(c) fast runner (x).

With the given set of database and knowledge base, a Petri net (vide
fig.10.2) is now constructed. The algorithm for formation of the Petri net will
be presented shortly. However, before describing the algorithm, let us first
explain the problem under consideration. Assuming that the observed
membership distributions for Tall (ram) and Stout (ram) respectively are

W n(ram) =[0.6/5' 0.8/6' 0.9/7' 0.4/87" = n,
I sout (ram) = [0.2/40kg 0.9/50kg 0.6/ 60kg 0.3/80kg]" = n,

and the distribution of all other predicates to be null vectors, one can estimate
steady-state distribution [17] for all predicates. Such estimation requires
updating of FTT distributions t; and t; in parallel, followed by updating of
membership distribution at all places in parallel. This is termed a belief
revision cycle [16]. A number of such belief revision cycles may be repeated
until fuzzy temporal membership distributions at the places become either
time-invariant or demonstrate sustained oscillations. Details of these issues
will be covered in section 10.3.

The following parameters in the FPN in fig.10.2 are assumed for
illustration. P = {py, p», p3, ps}, D = {d;, d», d3, d4} where d;=Tall (ram),
d,=Stout (ram), d; = Fast-runner (ram), d, = Has-nominal-pulse-rate (ram). n;
=10.6 0.8 0.9 0.4]", n; =[0.2 0.9 0.6 0.3]", n3 = ng= null vector. It may be
added here that these belief vectors [33] are assigned at time t = 0 and may be
updated in each belief revision cycle. It is therefore convenient to include
time as argument of n;'s for 1<i < 4. For example, we could refer tom;att =0

by n; (0). Tr set in the present context is Tr = {tr;, trp}; t; and t, are FTT



vectors associated in the tr; and tr, respectively. Like n;'s, t;'s are also time
varying quantities and are denoted by t;(t). R; and R, are relational matrices
associated with tr; and tr, respectively. I(tr;) ={p1,p2}, I(trz) = {ps}, O(tr;)
={ps},0(tr2) ={p2,ps}.

dy

d; P4

P ° N Ps t
d;
.

p2 try
T

d,=Tall (Ram), d,=Stout (Ram), d;=Fast runner (Ram),
d,= Has-nominal-pulse-rate (Ram)

tr;

Fig. 10.2: An illustrative FPN.

10.2.1 Formation of FPN

Given the database in the form of clauses (Predicates with constant
arguments) and knowledge base in the form of if-then rules, comprising of
Predicates with variable arguments, one can easily construct a FPN by
satisfying the knowledge base with the data clauses.

Procedure FPN-Formation (DB-file, KB-file, FPN)
Begin
Repeat
While not EOF of KB-file do Begin // KB file consists of Rules //
Pick up a production rule;
If the Predicates in the antecedent part of the rule are
unifiable with clauses in the DB-file and instantiation of
all the variables is consistent (i.e., a variable in all the
predicates of the antecedent part of the rule assumes same value)
Then do Begin
Substitute the value of the variables in the predicates



present in the consequent part;
Augment the derived consequent predicates(clauses) in the DB-file;
For each of the antecedent and consequent clauses of the rule
If the place representing that clause is absent from the FPN
Then augment the place in the FPN;
End For;
Augment a transition tr; for that rule PR;, such that the antecedent
and consequent clauses of the rule are input and output places of
the transition tr;;,
End If;
End While;
Until augmentation of places or transitions in FPN is terminated,;
End.

Time-complexity: The estimated worst case time-complexity of the FPN-
formation algorithm is found to be

TFPN:(NprZ/z)[Pp-NPr/3+ Vz]

where N, P, and V represent the number of PR in the knowledge-base, the
maximum number of predicates per PR and the maximum number of
variables per PR respectively.

10.2.2 Reachability Analysis and Cycle Identification

While analyzing FPNs, reachability of places [7], [1] and reachability of
markings [28] are commonly used. In this chapter, the concept of reachability
of places, as defined below, is used for identifying cycles in the FPN.

Definition 10.2: If p; € I(tr,) and p; € O(tr,) then p; is immediately

reachable from p;. Again, if p; is immediately reachable from p; and py is
immediately reachable from p;, then py is reachable from p;. The reachability
property is the reflexive, transitive closure of the immediate reachability
property [9]. We would use IRS (p;) and RS (p;) operators to denote the set of
places immediately reachable and reachable from the place p; respectively.

Moreover, if p; € [IRS{IRS(IRS... k-times (p ;)}], denoted by IRS k (p),

then pj is reachable from p; with a degree of reachability k. For reachability
analysis two connectivity matrices [12] are defined.

Definition10.3: A place to transition connectivity (PTC) matrix Q is a
binary matrix whose elements qj = 1 if p, € I (tr; ), otherwise qjc = 0. If the
FPN has n places and m transitions, then the Q matrix is of (m X n)
dimension.



Definition 10.4: A transition to place connectivity (TPC) matrix P is a
binary matrix whose element p;; =1 if p; € O (trj), otherwise p;; = 0. With n

places and m transitions in the FPN, the P matrix is of (n X m) dimension.

Since the binary product (AND-OR composition) (P o Q) represents mapping
from places to their immediately reachable places, therefore, the presence of a
'one' in the matrix My = (P o Q) at position (j, i) represents that p; € IRS(p;).
Analogously, a 'one' at position (j, i) in matrix M, = (P o Q)" for positive
integer r represents p; € IRS' (py), i.e., pj is reachable from p; with a degree of
reachability r.

Definition 10.5: If an element m;; of matrix My = (P o Q)" is unity for
positive integer k, then p; and p; are called associative places with respect
to m;; .

Theorem 10.1: If the diagonal elements m;; of the matrix My = (P 0 Q)* are
unity, then the associative places p; for all i lie on cycles through k
transitions in each cycle.

Proof: The proof is presented in Appendix C.

Corollary 1: In a purely cyclic FPN [34], where all transitions and places lie
on a cycle, My, = (P o Q)* = I, where k is the number of transitions (places) in
the FPN.

For identifying cycles in a FPN, the matrix M, =(P 0 Q)* fork=1tom
is to be computed, where m is the number of transitions in the network. Then
by theorem 10.1, the associative places corresponding to the diagonal
elements of My will lie on a cycle with k transitions on each cycle. However,
if more than k number of diagonal elements are unity, then places lying on a
cycle are to be identified by finding immediate reachability of places on the
cycle using M; = (P o Q) matrix.

The algorithm for cycle-detection consists of several procedures.
Procedure Find-places-on-cycle determines the set of places Sy that lie on
cycles with k transitions. Procedure Find-IRS-places saves in Ly the
connectivity between pairs of immediately reachable set of places, lying on
cycles with k transitions. Procedure Find-connected-places-on-cycles
determines the list of places ordered according to their immediate reachability
on cycles with k transitions and saves them in Newlist,. Procedure Put-
transitions positions appropriate transitions in the list of places in Newlisty,
so that places preceding and following a transition in the modified list
Finallisty are its input and output places on a cycle with k-transitions. The
variable 'cycles' in procedure Cycle-detection denotes the list of cycles.



Procedure Cycle-detection (P, Q, m, cycles)
Begin
cycles := J;
For k := 1 to m do Begin // m = no. of transitions in the FPN //
Find-places-on-cycles( P, Q, k, Sy );
If Sy = & Then L, .= J;
Find-IRS-places (S, Ly);
Find-connected-places-on-cycles (Ly, Newlisty);
Put-transitions (Newlist,, Finallist);
cycles := cycles U Finallisty;
End For;
End.

Procedure Find-places-on-cycles ( P, Q, k, Sy)
Begin
Sk =0
M,:=(PoQ)";
For i:=1ton // n=no. of places in the FPN //
Forj:=1ton
If mj; in Mk =1
Then Sk = Sk v {pi};
End For;
End For;
End.

Procedure Find-IRS-places (S, Ly)
Begin
If Sy # Then do Begin
Ly:=@; M;: = PoQ ;End;
For all places p;,pj € Sk
If My pj in M] =1
/I'pi and p; are row & column indices in M, //
Then Ly := Ly U {p; = pi};
End For;
End ;
End.



Procedure Find-connected-places-on-cycle (Ly, Newlisty)
Begin
Newlisty := J;
While Ly # & do Begin
For all j, h do Begin
If {p; —=pn } € Ly Then do Begin

List, == {p; = pu}; Stringfirst:= p;;
End ;
If for some j, h {pj-—pn} is a terminal string in List
/1 e.g., In Py-—py—>pr = Pj—Dn, Pj-—>Pn is the terminal string//
Then do Begin
Temp := {h}; S:=D R:=O;
For w € Temp do Begin
For i:= 1 to n do Begin
augmentation :=0;
If {pw — pi} € L Then do Begin
Stringlast :=p;; Listy := Listy V {—p;};
// Vis an augmentation operator//
While (augmentation <(k-1)) do Begin
If (Stringfirst = Stringlast) Then do Begin
If (augmentation =(k-1)) Then do Begin
Newlist, := Newlist, UListy;
Save the string in Newlisty starting with p,,
where r is the minimum index among the

indices of places in the string;
End
Else List,.= Listy A{ —p; };//Ais the de-
augmentation operator//
Else do
Begin S:= {i}; R:=R US; Temp:=R;
End;
End While;
End ;
End For;
End For;
End ; Li: = Li-{pj  pn};
End For;
End While;
End.



Procedure Put-transition (Newlisty, Finallisty)
Begin
If Newlist, = & Then Finallist, := J;
For all i, j
If {p;/—p;} is in Newlist
Then for all tr, in Q
IfQ(try,pi))=P(pj,try)=1
/1 pi, pj, try are indices of P and Q //
Then replace {pi—p;} of Newlist, by {p;i—=>tr,—p;}
and re-write the entire string as many times as the
number of tr, 's in Finallist, ;
End For;
End.

The merits of the algorithm cycle detection stems from the Procedure
Find-places-on-cycles. In fact a priori identification of the set of places on
cycles significantly reduces the search time-complexity for detecting the
cycles. Quantitatively, with no foreknowledge about the places on cycle, the
worst case search complexity for identifying cycles with k transitions = k.n *.
Consequently, the overall complexity for 1< k < m becomes

Tkn’~0(m.n)>

However, when z number of places on cycles are identified, the overall search
complexity is reduced to O (m. z ) > = O (m?), since in most realistic cases z
<<m.

Example 10.2: The trace of the algorithm for cycle-detection is illustrated
with reference to the FPN of fig. 10.3. The P and Q matrices for the FPN are
first identified from fig. 10.3 and My = (P o Q)" for k=1 to m (= 6, here) are
evaluated. The diagonal entries of My for k = 1 to 6 are presented in Table-
10.1 for quick reference. My = (P 0 Q) matrix is also presented below for
ready reference in connection with estimation of Ly in Procedure Find-IRS-
places.

From Trans. From places
To try try trs try trs trg To P1 P2 P3 P4 Ds
places Trans.
p1 010 110 try [ 1.0 0 0 O
P2 100 00O tp,[ 01 0 0 O
P= p; 000 O0O0°1 Q= ts| 01 1 0 O
P4 000 10O try [ 00 0 0 1
Ps 001 00O trs| 000 I O
trtg[ 000 1 O




Table 10.1: The diagonal entries of matrix M.

Iteration M (1, 1) M (2,2) M (3,3) M (4,4) Mk (5,5)
k

1 0 0 0 0 0
2 1 1 0 0 0
3 1 1 1 1 1
4 1 1 0 1 1
5 1 1 0 0 1
6 1 1 1 1 1
From places
To places P1 P2 P3 P4 Ps
pr |01 0 11
po[10 0 00O
M, = P3 00 0 10
ps {00 0 01
ps |01 1 0O
P1 |
trs
tre

C

Fig. 10.3: A FPN for illustrating the cycle detection.

P4




The trace of the algorithm cycle- detection is presented in table 10.2, where

cycles= U {finallisty }.
1£k<6
Table 10.2: Trace of the algorithm cycle-detection.
k Sk Ly Newlisty finallist;
1 %) %) %) %)
2 {p1.p2} | {p1—p2.p>—p1} {P1 —p2 —p1} {p1—>tr—>pr—>tn—
P}
3 [ Apip2s | {p1—=p2,p2—pl, | {Pi—=P2—=ps—Dpi, | {pi—otri—pa—otr—
ps ,p}4 > | p2—=Ps, P3—Ps, P3—> Ps—Pa—p3} | psta—p1,
bs Ps—Dp1, Pa—p3, p3—trz—=>ps—try—
Ps—P1, Ps—P4} P4—>tre—ps §
4 | {p1.p2, | {p1—=p2.p2—D1, {P1—=P2—Ps—P4 {p1otr =>pr—tr—
P4, Ps} P2—Ps, Pa—DP1» —p1} ps—try—ps—
Ps—P1.Ps—P4 } trs—p; }
5 {p1.p2, {P1—=DP2,p2—P1 » %) %)
Ps} P2—Ps ,ps—P1 |
6 | {p1.p2, same as for k=3 (%) %]
P3, P4,
ps}
10.3 Behavioral Model of FPN and
Stability Analysis

The dynamic behavior of a FPN is modeled by updating FTTs at transitions
and beliefs at places. In fact the enabling condition of transitions is first
checked. All enabled transitions are fireable; on firing of a transition, the FTT
distribution at its outgoing arcs [16] is estimated based on the belief
distribution of its input places and the relational matrix associated with the
transition. It may be noted that on firing of a transition, the belief distribution
of its input places are not destroyed like conventional Petri nets [26]. After
the FTTs at all transitions are updated concurrently, the belief distribution at
the places is also updated concurrently. The revised belief distribution at a
place pj is a function of the FTT of those transitions whose output place is p;.
The concurrent updating of FTT distribution at transitions followed by
concurrent updating of belief distribution at places is termed as a belief
revision cycle.




10.3.1 The Behavioral Model of FPN

Let us consider a transition tr;, where I(tr;)={px ,pm} and O(tr;) = {pu ,pv}-
Assume that th; is the threshold vector, associated with the transition. The
transition tr; is enabled if

Ri (0] (nkAnm)Z thl

An enabled transition fires, resulting in a change in the FTT vectors at
its output arcs. It is to be noted that the FTT vectors at all its output arcs are
equal. In case the transition tr; is not enabled, the FTT distribution at its output
arcs is set to null vector. The model of FPN, designed after Looney [24] and
based on the above considerations, is now formally presented.

HED=6O A[R; o (m () Any (1)) A
U[R; o (m(t) A ny (t))-th; | (10.1)

In expression (10.1), U denotes a unit step vector, each component of
which becomes one when its corresponding argument > 0 and becomes zero,
otherwise. In fact, the enabling condition of the transition tr; is checked by
this vector. Moreover, the A operation between two vectors is done
component-wise like column vector addition in conventional matrix algebra.
It may be noted that if tr; has m input places p; ,p,,...pm and k output places
Pm+1 >Pm+2 »---Pm+k (fig. 10.4) then expression (10.1) can be modified with the
replacement of

m

ni(t) A ny, () by An,(t).
w=1
After the FTT distribution at all the transitions in the FPN are updated

concurrently, the belief distribution at all places can be updated in parallel
following expression (10.2). Let us consider a place p; such that p; € [O(tr;)

NO(tr)N...NO(trs)] (fig.10.5). The updating of belief distribution n; at place
pj is given by

n; (t+1)

=nj(t) V [t; () V (2)V... V t,(t)]

S
=n; () V(V t.(1)). (10.2)
r=1
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Fig. 10.4: A transition tr; with m input and k output places.

t, (t+1)

I's
Fig. 10.5: A place p; that belongs to output places of s transitions.

10.3.2 State Space Formulation of the Model

For convenience of analysis and simplicity of realization of FPN by arrays,
instead of linked list structures, the dynamic behavior of the entire FPN is
represented by a single vector-matrix (state-space) equation. For the



formulation of the state space model, we first construct a belief vector N (t) of
dimension (z. n) X 1, such that

N@®) =[n; (®) nz(t) cna (O 1",

where each belief vector n; (t) has z components. Analogously, we construct a
FTT vector T and threshold vector Th of dimension (z. m) X1, such that

T@®) =[ t; ) t,(t) ..tw(t)] and Th=][thy thy ... thy]

where each t j(t) and th; have z components. We also form a relational matrix
R, given by

R, ) o - ¢
) R; o - 0
) ) R; (0

R = - - - -

q) q) (I) - lzm

where R; for 1 < i< m is the relational matrix associated with transition tr; and
@ denotes a null matrix of dimension equal to that of Rj's, with all elements =

0. It may be noted that position of a given R; on the diagonal in matrix R is
fixed. Moreover, extended P and Q matrices denoted by P'and Q'
respectively may be formed by replacing each unity and zero element in P and
Q by square identity and null matrices respectively of dimensions equal to the
number of components of t; and n; respectively. Now consider a FPN with n
places and m transitions. Omitting the U vector for brevity, the FTT updating
equation at a given transition tr; may now be described by expression (10.3)
n
t(t+tD)=t(t) AflRio( Any,(t))] (10.3)
Jw=1

n
=t;(t) A[R;0 { V0, ()} ]
dw=1

n
=t () A[Rio{Vq, {Vn',1®1}]
Y w=1



where the elements qw/ € {0, 1} and c over a vector denote the one’s
complements of its corresponding elements.

Combining the FTT updating equations for m transitions, we have

Tt+1)=T@®A[Ro(Q' oN ()] (10.4)

Similarly the belief updating equations for n places can now be combined
using expression (10.2) as follows:

N@+1)=N@®) V[P o T(t+1)]. (10.5)
Combining expressions (10.4) and (10.5) yields

N(t+1) = N) V[P' o {T) A{Ro(Q"oN“(1)}} ] (10.6)
Including the U vector in the expression (10.6), we have

N(t+1)=N () VP' o [{T(t) A {R 0 (Q'0 N° (1)) }}
AU{R o (Q 'o N (t))°- Th}]. (10.7)

Estimation of N(r) for r>1 from N(0) can be carried out by updating N(r)
iteratively r times using expression (10.7) .

10.3.3 Special Cases of the Model

In this section, two special cases of the above model, obtained by eliminating
state feedback [21] from FTT and beliefs, are considered. This renders the
belief that any given place is influenced by not only its parents [20], as in the
general model, but its global predecessors also [27].

Case I: In expression (10.1), the current value of FTT distribution is used for
estimation of its next value. Consequently, the FTT distribution t; (t+1) at a
given time (t+1) depends on the initial value of t;(0). Since t; (0) for any
arbitrary transition tr; in the FPN is not always available, it is reasonable to
keep t ;(t+1) free from t; (t). If t; (¢t) is dropped from expression (10.1), the
modified state space equation can be obtained by setting all components of
T(t) = 1 in the expressions (10.6) and (10.7). The revised form of expression
(10.6), which will be referred to frequently, is rewritten as expression (10.8).

N(t+1)=N(@®) V[P'o {Ro (Q' o N° (1))} A
{U {Ro(Q"'oN () -Th}}. (10.8)



Case II: A second alternative is to keep both t; (t+1) and nj (t+1), Vi,

independent of their last values. However when n; (t) is dropped from
expression (10.2), places with no input arcs, called axioms [35], cannot
restore their belief distribution, since t; (t) for r=1 to s in expression (10.2) are
zero. In order to set n; (t+1) = n; (t) for axioms, we consider self-loop around
each axiom through a virtual transition try , such that the Ry and thy are set to
identity matrix and null vector respectively. The P', Q' and R matrices are
thus modified and denoted by P'y,, Q ', and Ry, respectively. The state space
model for case II without U is thus given by

N(t+1) = P' 0 Rin 0 (Q'm 0 N (1))°. (10.9)

Example 10.3: In this example, the formation of P', Q' and R matrices
(vide fig. 10.6) and P' ,, Q'm, and R, matrices (vide fig.10.7) are
demonstrated for the models represented by expression (10.7) and (10.9)
respectively.

The P and Q matrices for the FPN of fig.10.6 are given by

From From

\ tr; try trs \ Pt P2 P3
To To

pi| 0 0 1 [0 1 0
P= p| 0 0 0 Q= tm |1 1 0
ps| 1 1 0 s |0 0 1

Assuming the n; and t; vectors of dimension (3x1) we construct the P' and Q'
matrix

®© o 1 ® I @
p'= ® @ |, Q = I 1 @
I @ ® @ I

where @ and I denote null and identity matrices each of dimension ( 3 x 3).

The relational matrix R in the present context is given by

R, ® @
R= b Rz D
® ® Ry

Further, N =[ n; n; n; ]T T=[t t, t3]T Th = [ th th, th; ]T. Expression
(10.7) can be used for updating N with the above parameters. For updating N
with expression (10.9), we , however, redraw the FPN with a virtual self loop
around place p, [ vide fig. 10.7] and reconstruct P, Q and consequently P'y,,



Q'  and Ry, matrices. It may be noted that the virtual transitions around place
p;j should be named tr; (j=2, here ) for satisfying equation (10.9 ) and
other transitions should be renamed distinctively.

<
trs

t
'y
$ try

Fig. 10.6: A FPN for illustrating the formation of P', Q'
and R matrices.

P1

try
P1

Fig. 10.7: The modified form of fig. 10.6 with self-loop around
place p, and renamed transitions.



10.3.4 Stability analysis

In this section, the analysis of the dynamic behavior of the proposed model
will be presented. A few definitions, which are used to understand the
analysis, are in order.

Definition 10.6: A FPN is said to have reached an equilibrium state (steady-
state) when N(t' +1) = N(t" ) for some time t= t*, where t is the minimum
time when the equality of the vectors is first attained. The t is called the
equilibrium time.

Definition 10.7: A FPN is said to have limit cycles if the fuzzy beliefs n;
of at least one place p; in the network exhibits periodic oscillations, described
by n; (t + k) =n; (t) for some positive integer k>1 and sufficiently large t,
numerically greater than the number of transitions in the FPN.

The results of stability analysis of the proposed models are presented in the
Theorems 10.2 through 10.4.

Theorem 10.2: The model represented by expression (10.1) is
unconditionally stable and the steady state for the model is attained only
after one belief revision step in the network.

Proof: Proof of the theorem is given in Appendix C.

Theorem 10.3: The model represented by expression (10.8) is
unconditionally stable and the non-zero steady state belief vector N * satisfies
the inequality (10.10).

N*2P'0{Ro(Q'oN*°)°},

when R o (Q o N° (1)) 2Th,V t20. (10.10)

Proof: Proof is given in Appendix C.

The following definitions will facilitate the analysis of the model represented
by expression (10.9) .

Definition 10.8: An arc tr; X p; iscalled dominant at time 7 if for p;e
(Fk NO(try )), t; (T ) > t (T ); alternatively, an arc py X tr, at time T is
dominant if Vw, p,el(try) ,n.(t ) < ny (r), provided R, o (Vw,

A ny )>Th,.



Definition 10.9: An arc is called permanently dominant if after becoming
dominant at time t = T, it remains so for all time t> T .

The limit cycle behavior of the model, represented by expression (10.9), is
stated in Theorem (10.4).

Theorem 10.4: If all the n number of arcs on any of the cycles of a FPN
remains dominant from r; -th to ry- th belief revision step, by using the model
represented by expression (10.9), then each component of the fuzzy belief
distribution at each place on the cycle would exhibit

i) at least 'a’ number of periodic oscillations, where a= integer part of

{(ry -r; )/n} and

ii) limit cycles with ry — ce.

Proof: Proof is available in [16] and omitted for space limitation.

The model represented by expression (10.9) also yields an equilibrium
condition, if none of the cycles have all their arcs permanently dominant. The
number of belief revision steps required to reach the equilibrium condition for
this model is estimated below.

Let1; = the worst number of belief revision steps required on the FPN for
transfer of fuzzy belief distribution from the axioms to all the places on the
cycles, which are directly connected to the axioms through arcs lying outside
the cycle,

l, = the worst number of belief revision steps required for the transfer of
fuzzy belief distribution from the places on the cycles to the terminal places in
the network,

n = number of transitions on the largest cycle,

I3 = the worst number of belief revision steps required for the transfer of
fuzzy belief distribution from the axioms to all the terminal places through the
paths, which do not touch the cycles.

Theorem 10.5: In case steady state is reached in a FPN, by using the model,
represented by the expression (10.9), then the total number of belief revision
steps required in the worst case to reach steady state is given by

T worss=Max {13 ,(l; + 1, +n-1)}. (10.11)

Proof: Proof is available in [16] and hence omitted for space limitations.



It may be added that the number of belief revision steps required for the
model, represented by (10.8), is the same as computed above.

10.4 Forward Reasoning in FPN

Forward reasoning is generally carried out in fuzzy logic by extending the
principle of generalized modus ponens (GMP) [36]. For illustration, consider
the following rule having fuzzy quantifiers and the observed antecedent.

Rule: if x-is-A AND y-is-B Then z-is-C
Observed antecedent: x-is-A' AND y-is-B'

Conclusion: z-is-C'

The conclusion z-is-C ' is inferred by the reasoning system based on
the observed level of quantifiers A' and B'. While representing the above
problem using FPN, we consider that two discrete membership distributions
are mapped at places p; and p, with proposition d; = x-is-A and d,= y-is-B
respectively. Further, let p; ,p, € I(tr;), then p; which corresponds to d; = z-is-
C is an element of O(tr; ). Here, the membership distribution of z-is-C' may be
estimated using the distribution of x-is-A' and y-is-B'.

Further, for representing chained  modus ponens, Petri net is an ideal
tool. For example, consider the second rule z-is-C— w-is-D and the observed

antecedent z-is-C'. We subsequently infer w-is-D'. This too can be realized by
adding one transition trj and a place p4 such that p; € I(trj) and ps € O(tr;).

The most coplex and yet unsolved problem of forward reasoning,
perhaps, is reasoning under self-reference. This problem too can be easily
modeled and solved by using FPN.

We, now, present an algorithm for forward reasoning that is applicable
to all the above kinds of problems independent of their structures of the FPNs.
Procedure forward reasoning is described below based on the state space
equation (10.8) , which is always stable.

Procedure forward-reasoning ( FPN,R,P',Q',N(0), Th )
Begin

N(®): =N(0) ;

While N(t+1) # N(t)

Temp:= Ro (Q'o N°(t)°;
N(t+1):=N({t) VP 'o [ Temp A U ( Temp - Th))];
N(t) := N(t+1);
End while;
End.



The procedure forward reasoning is used to compute the steady state
belief of N (t) from its initial value N(0). In application, like criminal
investigation [20], these steady state values of the predicates are used to
identify the culprit from a given set of suspects. After the culprit, described by
a terminal place of the FPN, is identified, procedure reducenet, presented
below, is invoked to find the useful part of the network for generating an
evidential explanation for the culprit.

Procedure reducenet ( FPN, axioms, goal, parents );
Begin
nonaxioms:= goal;
Repeat
Find-parents (nonaxioms); //Find parents of non-axioms.//
Mark the generated parent place, hereafter called parents and
the transitions connected between parents and nonaxioms;
nonaxioms:=parents - axioms; //nonaxiom parents detection.//
Until parents € axioms;

trace the marked places and transitions;

End.

SR(r,s)
Ps
trg
M(r,s)
P7
> M(l,s)
P2 Q > tr, Ps

L{,r)
L =Loves, T = Tortures, SR = Strained-relationships-between ,
M = Murders, r= Ram, s= Sita, |= Lata

Fig.10.8: A FPN representing a murder history of a housewife 's' where
the husband 'r' and the girl friend 'l' of 't' are the suspects.



—>

np,np

No. of precedence of murder —

Shared hours of fun —

Fig. 10.9(a): Initial belief distribution Fig. 10.9(b): Steady-state distribution
of n; and n,. of ns and n;, denoted by
ns*, n;*.

The worst case time complexity of the Procedure Forward reasoning and
Procedure Reducenet are O (m ) and O (a . n ) respectively, where 'm' , 'n' and
'a’ denote the number of transitions, number of places before reduction of the
network and number of axioms respectively.

Example 10.4: In the FPN (fig. 10.8) the fuzzy belief distribution
corresponding to places p; and p, is shown in fig. 10.9(a). The initial belief
distribution of all other places are null vectors. Further, we assumed R = I.
The steady-state belief distribution at all places in the entire FPN is obtained
after 5 iterations using forward reasoning algorithm, and their distributions at
places ps and p; are shown in fig. 10.9(b). Since for all components, n; is
larger than ns, p; is marked as the concluding place and then Procedure
reducenet is invoked for tracing explanation for the problem.

10.5 Backward Reasoning in FPN

'Backward reasoning ' [33] in fuzzy logic is concerned with inferring the
membership distribution of the antecedent clauses, when the if-then rule and
the observed distribution of the consequents are available. For example, given
the rule and the observed consequent clause, the inference follows.

Rule: If x-is-A AND y-is-B THEN z-is-C
Observed evidence: z-is-C'

Inferred: x-is-A' AND y-is-B'




In the above example, A, B, and C are three fuzzy quantifiers. C' is an
observed quantifier of z and A'and B' are the inferred quantifiers of x and y
respectively. Here, given the membership (belief) distribution of z-is-C', one
has to estimate the distribution x-is-A' and y-is-B'.

The classical problem of fuzzy backward reasoning m ay be extended for
application in cycle-free FPNs. In this chapter, we consider the model,
described by expression (10.9). Given the observed distribution of the clauses,
corresponding to terminal places, the task is to estimate the membership
distribution of the predicates for axioms.

For solving the above problem , we have to estim ate the inverse of fuzzy
matrices with respect to fuzzy AND-OR composition operators. Before
describing the algorithm for estimation of fuzzy inverse matrices [34], let us
first highlight its significance. Given that

Nt+1) =P 'y [Rtm 0(Q"'tm 0 N(1)° | (10.9a)

where the suffix 'f" represents that the model corresponds to forward
reasoning.

Pre-multiplying both sides of the above equation by the fuzzy inverse(pre-
inverse to be specific [34] ) of P "¢y, denoted by P ' ¢ ', we find

P'im™ ON(t+) =Rin0(Q ' rm 0o N (1)"
After some elementary fuzzy algebra, we get
NO=[Q" tm ™ 0 {Rem™ 0 (P "m0 N(t+1)}°]". (10.12)

For estimation of the belief distribution of the axiom predicates, from the
known belief distribution of the concluding predicates, the following steps are
to be carried out in sequence.

1) All the concluding predicates at terminal places should have
self-loops through virtual transitions. This would help maintain
the initial belief distribution at these places. The threshold and
the relational matrices for the virtual transitions should be set to
null vector and identity matrices respectively to satisfy the
above requirement.

ii) The N(t+1) vector in expression (10.12) is to be initialized by
assigning non-zero vectors at the concluding places and null
vectors at all other places. Call this belief vector Njy;.



iii)  The expression (10.12) should be updated recursively in backward
time until N(t) =N(t+1).

The algorithm for backward reasoning may be formally stated as follows:

Procedure backward-reasoning ( FPN, P ', , Rem, Q 'tm > Nini)

Begin
t:=m // m=no. of transitions in the FPN //;
N(t+1) = Nini;

While N(t) # N(t+1) do Begin
N®:=[Q"tm” 0 {Rem™ (P o NI ;
N(t+1) : = N(t);
End while;
End.

The worst case time complexity of the procedure backward-reasoning is
proportional to O(m), where m denotes the number of transitions in the FPN.

It is apparent from the above procedure that for estimating N(t) from
N(t+1), the inverse of the fuzzy / binary matrices with respect to fuzzy
composition operators is to be computed. Now, we present an algorithm for
estimation of pre-inverse of a fuzzy matrix.

Definition 10.10: A matrix Q is called the pre-inverse of a fuzzy / binary
matrix R if Q o R =I'> I, where I is the identity matrix and I ' — I means I

is close enough to I in the sense of Euclidean distance.

Definition 10.11: Q. is called the best pre-inverse of R if ||(Qpest 0 R) -
I| < [/(Q o R) - I|| for all real matrix Q, with elements 0 < q;; < 1, where || 8 ||

means sum of square of the elements of matrix 8.

It may be added here that Q is called the post-inverse of matrix R, if R 0 Q
=I'>I. Analogously, Qp.s is called the best post-inverse of R if ||(R 0 Qpest) -

I|| < |(R 0 Q) - I]| for all real matrix Q, where 0 < q; < 1.

For estimation of Q, the pre-inverse matrices of R of dimension (n x n) let us
consider the k-th row and i-th column of (Q o R), given by

n
(QoR); = V(q; At).

j=1
For obtaining Q, one has to satisfy Q o R=1", sufficiently close to I, which
requires



n
V  (qkj.rjk)tobe close to 1 ( criterion 1)

j=1
n
and V (qjAaTji) tobe close to O ( criterion 2 )
j=Li#k

Criterion 1 may be satisfied, without much constraint, by choosing each of the
individual terms (qx A 11%), (Qk2 A 12k),-,(Qn A Ty) close to 1 [34]. Similarly,
the second criterion may be satisfied if each individual term (qu A 135 ), (Qe A
T2 ),(Qin Alni ) [1 k] is close to zero. Further, it can be proved, without

any loss of generality, that the choice of q ; may be confined to the set {rj;,
Tj2 5 «ooolji »eee 5 Tin § (vide a theorem in [38]) instead of the wide interval [0, 1]
which will result in significant saving in computational time. The choice of
qQuj» Vk, j from the set {rj; , 1j2 ,.....tjk, ..., Tjn } 18, therefore, governed by the
following two criteria

i) (qqg A1) is to be maximized.
i) (qi A rji) is to be minimized for 1 <Vi <n buti#k.

The above two criteria can be combined to a single criterion as depicted
below

n
(g Artik) -V (qq Ar) is to be maximized, where qij€ {rj1, Tj2, ....,Tjn }- !
i=lizk

Procedure pre-inverse is designed based on the last criterion.

Procedure Pre-inverse (Q, R);

Begin
Fork:=1ton
Forj:=1ton
Forw:=1ton n
compute O4: = (L Arx)- V (tjw A 150)
i=1,izk
End For;

" For post -inversion of R
n

(rjkA qj) -V (rix Aqyj) isto be maximized, where qij€ {rii, T2, T nk }-
i=1,i#



sort (o, ,Bw) || this procedure sorts the elements of the array o
and saves them in B, in descending order ||
For w:=1 to n-1

if Bl = Bw+l
ij‘ T Tw,
print qy;;
End For;
End For;
End For;
End.

It may be added that for identifying Q pe¢ among all the Qy's, one has
to estimate XX * for all j, for all I, where O is the (i, ] )th element of

((Qx 0 R) - 1) for each Qy. The Qy with the smallest ( (Qx o R) - 1) is declared
as the Qyest [34]. In case more than one Qi yields the smallest value of ( (Qk o
R) - I), any one of them may be picked up as the best.

Example 10.5: Consider a relational matrix R,

0.3 0.5 0.6
R =104 06 09
0.8 0.7 0.2

By using procedure pre-inverse ( Q, R), we find eight inverse matrices,
namely Q 1,Q ; through Qg for R. The best pre-inverse matrix, Q pest, is then
computed by the method described above. Here,

0.3 04 0.8
Qpst = (030402
0.6 0.9 0.2

The algorithm for backward reasoning is applied to a diagnostic reasoning
problem in example 10.6.

Example 10.6: Consider the problem of diagnosis of a 2-diode full wave
rectifier circuit. The expected rectifier output voltage is 12 volts, when the
system operates properly. Under defective condition, the output could be close
to 0 volts or 10 volts depending on the number of defective diodes. The
knowledge base of the diagnosis problem is extended into a FPN (vide fig.
10.10). The task here is to identify the possible defects: defective
(transformer) or defective(rectifier). Given the belief distribution of the
predicate close-to (rectifier-out, 0 v) and more-or-less (rectifier-out, 10 v)
(vide fig. 10. 11 and 10.12), one has to estimate the belief distribution of the
predicate: defective (transformer) and defective (rectifier). However, for this
estimation, one should have knowledge of the relational matrices

corresponding to input-output place pairs of each transition and the thresholds.



Let us assume for the sake of simplicity that the thresholds are zero and the
relational matrices for each input-output pair of transition tr; through tr; are
equal. So, for 1 <i1<7 let

0.3 0.5 0.6
04 0.6 0.9
0.8 0.7 0.2

z
I

be the same matrix, as chosen in the example 10. 5. The R; for 8<1i <9 will be

the identity matrix. Thus Rgy, in the present context will be a (27 x 27) matrix,
whose diagonal blocks will be occupied by R;. Further, since all the non-
diagonal block matrices are null matrix, the Ry can be constructed by
substituting R; in R, by R; 1 The P 'tm and Q ', in the present context are
also (27 x 27) matrices. Ny,; is a (27 x 1) vector, given by

Nini = [ 000 000 000 000 000 000 000 0.2 0.1 0.0 0.4 0.5 0.6 1"57,1

d1 d4
P4
P1 tl'l Q % try
d;
P2
'y
ds

P7

P > O—;

d,= defective (transformer), d, =close-to (primary, 230), d;=defective (rectifier), d;= Close-to
(trans-out, 0V), ds = Open (one half-of-secondary-coil), d¢ = Defective (one-diode), d; =
Defective (two-diodes), dg =Close-tp (rectifier-out, 0V), dy =More-or-less (rectifier-out, 0V)

r-

Fig. 10.10: A FPN representing diagnostic knowledge of a 2- diode full wave
rectifier.
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Fig. 10.11: Belief distribution of Close-to (rectifier-out, 0V).

25 0.6

o o

72

S5 05

O 9

G

()

<E 04 /

L3

2 |

0 6 8 10 12
rectifierout(V) —— 9
Fig. 10.12: Belief distribution of Close-to (rectifier-out, 0V).

The P '¢,, " and Q'tm 1 are now estimated and the algorithm for backward
reasoning is then invoked. The steady-state belief distribution obtained after 3
iterations is given by

Ngs =

[54.6 5.4.6.2.22.222645.64.5.2.2.2.2.100.456]"



It is evident from the above distribution that the steady-state values of each
component of n; is larger than the corresponding components of n;. The
reasoning system thus infers predicate d;: defective (rectifier) as the possible
defect for the system.

10.6 Bi-directional IFF Type Reasoning
and Reciprocity

In a classical bi-directional if and only if (IFF)[15] type reasoning, the
consequent part can be inferred when the antecedent part of the rule is
observed and vice versa. In a fuzzy IFF type reasoning, one can infer the
membership distribution of the one part of the rule, when the distribution of
the other part is given. This principle has been extended in this section to
estimate the belief distribution of all the predicates in the FPN, when the
belief distribution of the predicates corresponding to the terminal places or the
intermediate (non-terminal) places [16] are available. The bi-directional IFF
type reasoning in FPN has, therefore, a pragmatic significance.

Like backward reasoning, bi-directional IFF type reasoning too has
been modeled in this chapter for acyclic FPNs only by using the expression
(10.9). For convenience of analysis, let us reformulate two basic fragments of
expression (10.9), as

Ti(t+1) = Ripn 0 (Q 't 0 Nt (1)° (10.13)
Ne(t+1) =P ' ¢ 0 Te(t+1). (10.14)

The above two expressions together represent the forward reasoning
model of the IFF relation. An extra suffix (f) is attached to denote the
'forward' direction of reasoning. For backward (back-directed) reasoning
using IFF relation, however, one has to reverse the direction of the
arrowheads in the FPN and then update Ty, and N}, by using expression (10.15)
and (10.16) in sequence till convergence in Ny(t) is attained.

To(t+D) =R pm 0 (Q ' bm 0 Np* (1)) (10.15)

Ny (t+t1)= P 'y 0 Ty (t+1). (10.16)
The suffix 'b' in expression (10.15) and (10.16) stands for the backward

direction of reasoning. It may be noted that, once P 'g,, and Q "¢, are known,

P 'y and Q 'y, may be obtained using Theorem (10.6).

Theorem 10.6: P' o = (Q'tm ) and Q' ym =P 'tm )" .
Proof:  Proof is presented in Appendix A. O



When the belief distribution of the axiom predicates are given, one has
to use the forward reasoning model. On the other hand, when the belief
distribution of the predicates for the concluding places is known, one should
use the back-directed reasoning model of the IFF relation. Moreover, when
the belief distributions of the predicates at the non-terminal places are
available, one has to use both forward and back-directed reasoning models to
estimate the belief distribution of the predicates corresponding to respective
predecessors and successors of the given non-terminal places. However, under
this case, the estimated beliefs of the predicates may not be consistent. In
other words, after obtaining steady-state beliefs at all places, if one re-
computes beliefs of the non-axiom predicates with the known beliefs of the
axiom predicates, the computed beliefs may not tally with their initial values.
In order to overcome this problem, one requires a special relationship, called
reciprocity [26]. It may be noted that in a FPN that holds (perfect) reciprocity
property, n successive steps of forward (backward) reasoning followed by n
successive steps of backward (forward) reasoning restores the value of the
belief vector N(t).

Definition 10.12: A FPN is said to hold reciprocity property if updating
FTT (belief) vector in the forward direction followed by updating of FTT
(belief) vector in the backward direction restores the value of the FTT (belief)
vector.
Formally, we estimate Ty(t+1) from given N¢(t) and N¢(t) from Ty (t+1) in
succession,

ie., T(t+1) = R 0 (Q ' 1m0 Nt € (1))° (10.17)

and Ngi(t) = P 'y, 0 Te(t+1). (10.18)
Combining equations (10.17) and (10.18), we have
Ni(®) = P' pm0Rn 0 (Q' ¢t 0 Nt (1)°

= (Q'tm) 0Rm 0 (Q 'tm 0 Ne€(t)°. [by theorem 10.5] (10.19)

Further, from the definition 10.14, one may first estimate N¢ (t+1) from Ty
(t+1) and then Ty (t+1) from N¢(t+1). Formally

N¢(t+1) =P "¢, 0 Ty (t+1) (10.20)
and Ty(t+1) =Ry 0 (Q "pm 0 N;© (t+1)). (10.21)
Combining (10.20) and (10.21) we have

Te(t+1) =R 0 (Q 'pm 0 N (t+1))°



=Rpm0 ((P'¢m)" 0 NF(t+1))° [ by theorem10.5]

=Rpmo[(P'sm)" 0 (P fmo Te(t+1))°]°. (10.22)
Expression (10.19) and (10.22), which are identities of Ny and Ty
respectively, taken together is called a reciprocity relation. For testing

reciprocity conditions, one, however, has to use the results of Theorem 10.7.

Theorem 10.7: The condition of reciprocity in a FPN is given by

Q' m)" ORmo(Q"' fmoI) =1 (10.23 (a))
and  Rymo[(P'tm) 0P '1m)]° =1 (10.23(b))
Proof: Proof is presented in Appendix C. €

Example 10.7: Consider the FPN given in fig. 10.13. Given R ¢, = I and
Rpm = I, we want to test the reciprocity property of the FPN.

— &
< o

Here, P'sm = and Q' =

o - &

— e ©
o

< o =

R=a

—

P1 P2

tl'3 tr2

P3

Fig. 10.13: A FPN used to illustrate the reciprocity property.



where ¢ and I denote null and identity matrices of dimension (3 x 3)

respectively. With these values of P'y, and Q'sy, we found that the reciprocity
conditions 10.23(a) and (b) hold good.

It is clear from expressions 10.23(a) and (b) that the condition of
reciprocity depends on both the structure of the FPN and the relational
matrices associated with it. Thus for a given structure of an FPN,
identification of the relational matrices (R¢y » Rpm) satisfying the reciprocity
conditions is a design problem. In fact, rearranging expression 10.23 (a) and
(b) ,we find R¢, and Ry, as follows

Rim=[Q " tm) 1Mpre 0 [(Q "m0 I) ] post (10.24)
Roym= [P tm)" 0 (' rm) 3 1 post (10.25)

where the suffix 'pre' and 'post' denote pre-inverse and post-inverse of the
matrices.

Fig. 10.14: The FPN of fig. 10.10 with self-loop around axioms (and renamed
transitions) that supports reciprocity theorem.



Since such choice of Ry, and  Rpy, satisfy the reciprocity condition, it is
expected that the belief distribution at a given place of the FPN would retrieve
its original value after n-forward steps followed by n-backward steps of
reasoning in the network. Consequently the steady-state belief distribution at
all places in the FPN will be consistent independent of the order of forward
and backward computation. This, in fact, is useful when the initial belief
distribution of the intermediate [12] places only in the FPN is known.

Example 10.8: Consider the diagnosis problem, cited in example 10.7. We
assume that the bi-directional IFF relationship exists between the predicates
corresponding to input-output place pairs of the transitions in the network of
fig. 10.14. We also assume that the belief distribution at places p4 and ps only
is known and one has to estimate the consistent beliefs at all places in the
network. In the present context, we first estimate R¢ ,, and Ry, by using
expressions (10.24) and (10.25) and then carry out one step forward reasoning
followed by two steps back-directed reasoning using expression (10.13)
through (10.16). It has been checked that the steady-state belief vector, thus
obtained, is unique and remains unaltered if one carries out one step back-
directed reasoning followed by two steps forward and two steps back-directed
reasoning.

10.7 Fuzzy Modus Tollens and Duality

In classical modus tollens [15], for predicates A and B, given the rule A—>B
and the observed evidence — B, then the derived inference is —A. Thus the
contrapositive rule: (A—>B)< (— B— — A) follows. It is known that in fuzzy

logic the sum of the belief of an evidence and its contradiction is greater than
or equal to one [22]. So, if the belief of an evidence is known, the belief of its
contradiction cannot be easily ascertained. However, in many real world
problems, the belief of non-occurrence of an evidence is to be estimated,
when the belief of non-occurrence of its causal evidences is known. To tackle
such problems, the concept of classical modus tollens of Predicate logic is
extended here to Fuzzy logic for applications in FPN.

Before form ulation of the problem , let us first show that im plication
relations (A—B) and (—wB— —A) are identical in the fuzzy domain, under the

closure of Lukasiewciz implication function. Formally let a; , 1< i <n and by,
1< j <m be the belief distribution of predicates A and B respectively. Then
the (i, j)th element of the relational matrix Ry for the rule A—B by
Lukasiewciz implication function is given by

Ry (i,j) =Min { 1,(1-a+b;)} (10.26)



Again, the (i, j) th element of the relational matrix R, for the rule =B —» —A
using Lukasiewciz implication function is given by

R,(i,j)=Min[ 1, {1- (1-b;) +(I1-a)}]=Min {1, (1-a;+b;) } (1027

Thus it is clear from expressions (10.26) and (10.27) that the two
relational matrices Ry and R, are equal. So, classical modus tollens can be
extended to fuzzy logic under Lukasiewciz implication relation. Let us
consider a FPN (vide fig. 10.15(a)), referred to as the primal net, that is
framed with the following knowledge base

rule 1: d;.d, — d;

rule2: d, —d,
rule 3: d3,d4 %d]

The dual of this net can be constructed by reformulating the above
knowledge base using the contrapositive rules as follows:

rule 1: —d; — —d;, —d;
rule 2: —dy; — —d,
rule 3: —vd1 %—vd3, —|d4

Here the com m a in the R.H.S. of the if-then operator in the above rules
represent OR operation. It is evident from the reformulated knowledge base
that the dual FPN can be easily constructed by replacing each predicate’s d; by
its negation and reversing the directivity in the network. The dual FPN of fig.
10.15(a) is given in fig. 10.15(b).

Reasoning in the primal model of FPN may be carried out by invoking
the procedure: forward reasoning. Let R=R;, P' =P, and Q' = Q , denote the
matrices for the primal model in expression (10.8). Then for forward
reasoning in the dual FPN, one should initiate P' = (Qp)T and Q' = (Pp)T (vide
theorem 10.5), and R = R;, prior to invoking the procedure forward reasoning.
If the belief distributions at the concluding places are available, the belief
distribution at other places of the dual FPN may be estimated by invoking the
procedure backward-reasoning with prior assignment of Q' ¢, = (P, )T P im
=(Q,)" and Rim = R,.

Example 10.9: Consider the FPN of fig. 10.15(a),where d; = Loves (ram,
sita), d, = Girl-friend (sita, ram), d; = Marries (ram, sita) and d4 = Loves(sita,
ram). Suppose that the belief distribution of —loves (ram, sita) and
—Loves(sita, ram ) are given as in fig. 10.16(a) and (b) respectively. We are
interested to estimate the belief distribution of —girl-friend (sita, ram). For the
sake of simplicity in calculation, let us assume that Th =0 and R =1 and

estimate the steady-state belief distribution of the predicates in the network by
using forward reasoning. The steady-state belief vector is obtained only after



one step of belief revision in the network with the steady-state value of the
predicates —d, equalsto [0.850.9 0.95] ".
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Fig. 10.15(a): The primal fuzzy Petri net.

—d,
P ,
itrg,
—d;
2 g
d,

V
| tl'l :

P3

O
tr, ,

—|d4

Fig. 10.15(b): The dual fuzzy Petri net corresponding to the primal
of fig. 10.15(a).

10.8 Non-Monotonic Reasoning in a FPN

Inconsistent information often enter into a FPN because of 1) the occurrence
of inconsistent data in the database, ii) presence of inconsistent rules in the



knowledge base and iii) imprecision of data in the database [16].
Inconsistencies are first detected by the reasoning system through consultation
with a list that contains pairs of inconsistent information. Once the
inconsistent pair of information are detected, the reasoning system attempts to
resolve inconsistency by eliminating one information from each contradictory
pair through voting. The voting in the present context is implemented by
opening the output arcs of the contradictory pairs, such that these information
cannot take part in the voting process and then continuing belief revision in
the entire network by using the model represented by expression (10.8) until
steady state is reached. The steady-state beliefs of the contradictory pairs are
compared. The one with higher steady-state belief is selected out of each pair
(for subsequent reasoning), while the belief of its contradiction is permanently
set to zero, so that it cannot influence the reasoning process. In case the
steady-state belief of both the contradictory pairs is equal, both of these are
discarded from the reasoning space, by setting their beliefs permanently to
zero. The arcs opened earlier are then re-established and the original beliefs of
each place are re-assigned to all places, excluding the places whose beliefs are
set to zero permanently [18].

In our prototype ES CRIMINVES [20], designed for criminal
investigation, we implemented the above scheme for non-monotonic
reasoning [16]. It may be mentioned here that reasoning of all possible types,
covered in the last few sections, can be similarly carried out in the presence of
contradictory evidences
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Fig. 10.16: Belief distribution of —Loves (ram, sita) and —Loves (sita, ram).



10.9 Conclusions

The chapter presented a new methodology for reasoning in ES, which is
contaminated with imprecision and inconsistency of database and uncertainty
of knowledge base. Most of the common types of first order logic tools, such
as modus ponens, modus tollens, and abduction, which are applicable to
monotonic systems only, have been extended in this chapter for inexact and
non-monotonic systems using FPN. Moreover, self reference in the
knowledge base, which was intractable so far, can be handled following the
techniques presented here.

The reasoning methodologies presented in this chapter have
applications to a wide range of real world problems. For example, fuzzy
modus ponens type of reasoning has been used for identifying criminals from
imprecise and inconsistent word description [20] of criminal history. The
fuzzy abductive reasoning scheme can be applied to diagnostic problems. For
instance, in medical diagnosis problems, the (steady-state) fuzzy belief of the
possible diseases, mapped at the axioms, can be computed if the initial fuzzy
beliefs of the observed evidences, mapped at the concluding places, are
supplied. The predicates corresponding to the axioms with the highest steady
state belief may be inferred as the possible disease for the given symptoms.
Since the fuzzy belief of an axiom predicate (a hypothesis) is computed from
the fuzzy belief of a number of concluding predicates (observed evidence), the
proposed scheme has analogy with data fusion [38] using Dempster-Shafer
theory.

The fuzzy Modus Tollens type of reasoning is applicable in systems,
where the fuzzy belief of the nonexistence of one or more facts is used for
computing the belief of non-existence of the other facts embedded in the
system. Suppose that in a criminal history one identifies four suspects and it
was found that one of the suspects, say A, cannot be a criminal. So, fuzzy
belief of A not being a criminal is known. In such circumstances, fuzzy
Modus Tollen type of reasoning can be used for computing the belief of not
being a criminal for any one of the remaining three persons. It may be pointed
out that Modus Tollen type of reasoning is useful in applications where
sensitivity analysis [15] of a system in fuzzy domain is required.

The reciprocity property has applications in estim ating consistent fuzzy
beliefs at all places from known beliefs of one or more predicates located at
the intermediate places.

The scheme for non-monotonic reasoning is used in an FPN for
deriving stable fuzzy inference in the presence of inconsistent / contradictory
evidences in a reasoning system. It may be noted that steady-state vector N
for such a system contains a stable fuzzy belief of each predicate with respect
to all others in the network, even in the presence of inconsistent predicates



like p and negation of p. The results of the reasoning process considered in
this chapter differ from that of McDermott's logic [25] on the following
considerations. In McDermott's logic, there exists two stable points in a
system represented by p— —q, and g——p, whereas the present method leads

to only one stable point, involving either p or q, depending on the initial fuzzy
beliefs of p, q and their supporting evidences.

Exercises

1. For the FPN given in fig. 10.3, identify the P, Q, Pm, Q'tm matrices.
Assuming that the relational matrices associated with the transitions to be
the identity matrix and an arbitrary belief vector N(0), compute N(2) by
an appropriate forward reasoning model. What guideline should you
suggest to identify the appropriate reasoning model for a given FPN?

2. Identify the cycle in the FPN of fig. 10.6 by using the algorithm for cycle
detection.

3. From the given belief vectors ns and n; in the FPN of fig. 10.8, determine
the belief vectors n; and n, by using the backward reasoning algorithm.
Assume that the relational matrices are 1.

4. Prove that for a purely cyclic net (P 0 Q) =1 when k = number of
transitions in the cycle.

5. Given that pre- and post-inverse of matrix I is I. Hence show that
reciprocity relations hold perfectly for a purely cyclic net. Also show that
Rim and Ry, for such net = 1.

6. Prove logically that a dual net can always be constructed by reversing the
arrowheads in a primal net.

7. Can you devise an alternative formulation of the fuzzy inversion of
matrices? [open ended problem]

8. Does the algorithm for computing fuzzy inverse apply to binary matrices?
If yes, can you use it for diagnostic applications in switching circuits?
[open ended problem] [32]-[33].
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11

Reasoning with
Space and Time

The chapter presents the models for reasoning with space and time. It begins
with spatial axioms and illustrates their applications in automated reasoning
with first order logic. Much emphasis has been given on the formalization of
the spatial relationships among the segmented objects in a scene. Fuzzy
spatial relationship among 2-D objects has been briefly outlined. The
application of spatial reasoning in navigational planning of mobile robots has
also been highlighted. The second half of the chapter deals with temporal
reasoning. The principles of temporal reasoning have been introduced from
the first principles by situation calculus and first ovder temporal logic. The
need for reasoning with both space and time concurrently in dynamic scene
interpretation is also outlined at the end of the chapter.

11.1 Introduction

The reasoning problems we came across till now did not involve space and
time. However, there exist many real world problems, where the importance
of space and time cannot be ignored. For instance, consider the problem of
navigational planning of a mobile robot in a given workspace. The robot has
to plan its trajectory from a pre-defined starting point to a given goal point. If



the robot knows its world map, it can easily plan its path so that it does not
touch the obstacles in its world map. Now, assume that the robot has no prior
knowledge about its world. In that case, it has to solely rely on the data it
receives by its sonar and laser sensors or the images it grabs by a camera and
processes these on-line. Representation of the space by some formalism and
developing an efficient search algorithm for matching of the spatial data, thus,
are prime considerations. Now, let us assume that the obstacles in the robot’s
world are dynamic. Under this circumstance, we require information about
both space and time. For example, we must know the velocity and
displacements of the obstacles at the last instance to determine the current
speed and direction of the robot. Thus there is a need for both spatial and
temporal representation of information. This is a relatively growing topic in
Al and we have to wait a few more years to get a composite representation of
both space and time.

Spatial reasoning problems can be handled by many of the known Al
techniques. For instance, if we can represent the navigational planning
problem of a robot by a set of spatial constraints, we can solve it by a logic
program or the constraint satisfaction techniques presented in chapter 19.
Alternatively, if we can represent the spatial reasoning problem by predicate
logic, we may employ the resolution theorem to solve it. But how can we
represent a spatial reasoning problem? One way of doing this is to define a set
of spatial axioms by predicates and then describe a spatial reasoning problem
as clauses of the spatial axioms. In this book we used this approach for
reasoning with spatial constraints.

The FOL based representation of a spatial reasoning problem
sometimes is ambiguous and, as a consequence, the ambiguity propagates
through the reasoning process as well. For example, suppose an object X is
not very close to object Y in a scene. Can we represent this in FOL? If we try
to do so then for each specific distance between two objects, we require one
predicate. But how simple is the representation in fuzzy logic! We need to
define a membership function of ‘Not-very-close’ versus distance, and can
easily obtain the membership value of Not-very-close (X, Y) with known
distance between X and Y. The membership values may later be used in
fuzzy reasoning. A section on fuzzy reasoning is thus introduced for spatial
reasoning problems.

Reasoning with time is equally useful like reasoning in space. How can
one represent that an occurrence of an event A at time t, and another event B
at time t+1, causes the event C to occur at time t+2? We shall extend the First
order logic to two alternative forms to reason with this kind of problem. First
one is called the situation calculus, after John McCarthy, the father of Al



The other one is an extension by new temporal operators; we call it
propositional temporal logic.

Section 11.2 describes the principles of spatial reasoning by using a set
of spatial axioms. The spatial relationship among components of an object is
covered in section 11.3. Fuzzy spatial representation of objects is presented in
section 11.4. Temporal reasoning by situation calculus and by propositional
temporal logic is covered in section 11.5 and 11.6 respectively. The
formalisms of interval temporal logic is presented in section 11.7. The
significance of the spatial and temporal reasoning together in a system is
illustrated in section 11.8.

11.2 Spatial Reasoning

Spatial reasoning deals with the problems of reasoning with space. Currently,
to the best of the author’s knowledge, there exist no well-organized
formalisms for such reasoning. So we consider a few elementary axioms
based on which such reasoning can be carried out. These axioms for spatial
reasoning we present here, however, are not complete and may be extended
for specific applications.

Axioms of Spatial Reasoning

Axiom 1: Consider the problems of two non-elastic objects O; , O; . Let the
objects be infinitesimally small having 2D co-ordinates (x;, y;) and (X;, y;)
respectively. From commonsense reasoning, we can easily state that

YO;, Oj > Xi #Xj and Yi#Yj -

Formally,
VO, O; Different (O;, O;) 2 —( Eq(x;, X)) A Eq (vi, ¥5) )-

An extension of the above principle is that no two non-elastic objects,
whatever may be their size, cannot occupy a common space. If S; and S; are
the spaces occupied by O; and O; respectively,

then Sin Sj:q),
=~ (SiNSj)=true

= =S, U —|Sj is true.



Formally,
VOi . Oj Si (O,) AN SJ(OJ) AN ﬂEq(Ol,OJ) > —|S,(Ol) =V SJ(OJ) .

In the above representation, the AND (A) and OR (V) operators stand for
intersection and union of surfaces or their negations (complements).

Further, VO, , O; means O;, O; €S, where S is the entire space that contains
O;, and O;, vide fig. 11.1.

S(0y)

Fig. 11.1: Space S containing object O; and O; having 2-D
surfaces S(O;) and S(O;).

In our formulation, we considered two dimensional spaces S , S(O;)
and S(O;). However, we can easily extend the principle to three dimensions.

Axiom 2: When an object O; enters the space S, S N S(O;) # ¢, which
implies
S A S(O)) is true .

Formally ,
VO; S(0;) A Enter(O;, S)=2S A S(O)).
Similarly, when an object O; leaves a space S, S N S(O;) = 0,
Or, = S v =S(0y) is true.
Formally, V O; S(O;) A Leaves (O;,S) 2> =S v =S(0;).

Axiom 3: When the intersection of the surface boundary of two objects is a
non-null set, it means either one is partially or fully embedded within the
other, or they touch each other. Further, when a two dimensional surface



touches another, the common points must form a 2-D line or a point.
Similarly, when a 3-dimensional surface touches another, the common points
must be a 3-D /2-D surface or a 3-D / 2-D line or a point. It is thus evident
that two objects touch each other, when their intersection of surface forms a
surface of at most their dimension. Formally,

VO, V Oj Less-than-or-Equal-to (dim( S(O;) A S(O;)), dim (S(Oy)) A
Less-than-or-Equal-to (dim(S(O;) A S(0j)), dim (S(O;)) — Touch (O;, Oy)

Where ‘dim’ is a function that returns the dimension of the surface of its
argument and dim (S(O;) A S(O;j)) represents the dimension of the two
intersecting surfaces: O; and O;. The A-operator between the predicates Less-
than-or-Equal-to denotes logical AND operation.

Axiom 4: Now, for two scenes if dij; and djj denote the shortest distance
between the objects O; and O; in scene 1 and 2 respectively, then if di<dj,
we can say the objects O; and O; are closer in scene 2 compared to that in
scene 1. Formally,

V O;, O Exists (O;, Oy, in-scenel) A Shortest -distance ( d;j; , Oi, Oj , in-
scenel ) A Exists ( O;, Oj, in -scene2) A Shortest -distance ( d; 2, O;, O;, in-
scene2) A smaller (d;j, , d;j; ) = Closer (O;, O;, in-scene2 , wrt-scene =1);

where the predicate Exists (O;,0; ,in-scene k ) means O; and O; exists in scene
k; Shortest distance (dj , O; , O; , in-scene k , wrt-scene =1 ) denotes that djj
is the shortest distance between O; , and O; in scene k with respect to scene 1.

The axioms of spatial reasoning presented above can be employed in
many applications. One typical application is the path planning of a mobile
robot. Consider, for example, the space S, where a triangular shaped mobile
robot has to move from a given starting to goal point, without touching the
obstacle O1, 02, 03,04, ...., O7.

We can construct a constraint logic program (CLP) to solve this
problem. We assume that the robot R can sense the obstacles from a distance
by ultrasonic sensors, located around the boundary of it. The CLP of this
problem is presented below.

Move(R, Starting -position , goal -position ) : -
Move S(R) in S,
not Touch(S(R ), S (0))) V O..

Move(R, goal-position, goal-position).



The above program allows the robot R to wander around its
environment, until it reaches the goal-position. The program ensures that
during the robot’s journey it does not hit an obstacle. Now, suppose, we want
to include that the robot should move through a shortest path. To realize this
in the CLP we define the following nomenclature.

1. Next-position( R): It is a function that gives the next-position of a robot
R.

2. S (next-position (R)): It is a function, representing the space to be
occupied by the robot at the next-position of R.

Starting position

02
01
O

:ﬂ >
.

06

: Goal position A

Space S
Fig 11.2: Path planning of a robot R in space S.

It is to be noted that the robot should select arbitrary next position from
its current position and then would test whether the next-position touches any
object. If yes, it drops that next-position and selects an alternative one until a
next-position is found, where the robot does not touch any obstacle. If more
than one next-position is found, it would select that position, such that the
sum of the distances between the current and the next-position, and between
the next position and the goal, is minimum.

The CLP for the above problem will be presented next. A pseudo
Pascal algorithm is presented below for simplicity.



Procedure Move-optimal (R , Starting-position, goal-position)
Begin
Current-position (R ) := Starting-position (R );
While goal not reached do
Begin
Repeat
Find-next-position ( R) ;
j=1;
If S (next-position( R)) does not touch S(O;) Vi;
Then do
Begin
Save next-position (R ) in A[j] ;
=L
End ;
Until all possible next positions are explored;
Vj Find the next-position that has the minimum distance from the
current position of R and the goal; Call it A[k].
current-position(R) := A [k] ;
End while
End

We now present the CLP that takes care of the two optimizing constraints: i)
movement of the robot without touching the obstacles, and ii) traversal of an
optimal ( near- optimal) path.

Move-optimal (R, Starting-position, goal-position):-
Move S(R) in S,
Not Touch( S(R), S (0y)) V i,
Distance ( next-position (R ), current-position ( R)) +
Distance (next-position (R ) , goal-position)

is minimum V feasible next-position(R ),

current-position (R ) < next-position (R ),
Move-optimal (R, current-position, goal-position).

Move-optimal (R, goal-position, goal-position).

It is to be noted that here we need not explicitly define Touch (S (R ), S (O;))

as it is presumed to be available in the system as a standard predicate,
following axiom 3. Further, we can re-define the distance constraint in the last
program by axiom 4 as follows:

Closer (next-position (R ), current-position (R ), in-scene k, w.r.t scene # k),



Closer (next-position (R ), goal-position, in-scene k, w.r.t scene # k).

The significance of the spatial axioms now is clear. It helps in declaring the
problem specifications in simpler terms, rather than formulating the problem
from the grass-root level.

11.3 Spatial Relationships among
Components of an Object

Many physical and geometric objects can be recognized from the spatial
relationship among its components. For instance, let us define a chair as an
object consisting of two planes abef and cdef having an angle 6 between them,
where 6 <90°+0. and where 0< o <45°. Further, one of its plane is
perpendicular to at least 3 legs ( the 4™ one being hidden in the image). So,
we define:

Object(chair):-
Angle-between (planel, plane2, 90+a) ,
Greater-than(a, 0),
Less-than (o, 45) ,
Parallel (linel, line2, line3) ,
perpendicular (linel, planel),!

For actual realization of the small program presented above, one has to
define equation of lines and planes; then one has to check the criteria listed
in the logic program. It may be noted here that finding equation of a line in an
image is not simple. One approach to handle this problem is to employ a
stochastic filter, such as Kalman filtering [1] . We shall discuss this issue once
again in chapter 17 on visual perception. However, for the convenience of
interested readers, we say a few words on the practical issues.

A skeleton of a chair, which can be obtained after many elementary
steps of image processings is presented in fig. 11.3. Now, the equation of the
line segments is evaluated approximately from the set of 2-dimensional
image points lying on the lines. This is done by employing a Kalman filter. It
may be noted that the more the number of points presented to the filter, the
better would be accuracy of the equation of the 2-dimensional lines. These 2-
D lines are then transformed to 3-D lines by another stage of Kalman filtering.
Now, given the equation of the 3-D lines, one can easily evaluate the equation
of the planes framed by the lines by using analytical geometry. Lastly, the
constraints like the angles between the planes, etc. are checked by a logic
program, as described above. The graduate students of the ETCE department



at Jadavpur University verified this method of recognizing a 3-D planer object
from its skeletal model.

h

Fig. 11.3: Spatial relations among components of a skeleton chair.

11.4 Fuzzy Spatial Relationships among Objects

Consider the objects A and B in fig. 11.4 (a) and (b). We would say that B is
left to A. It , however, is to be noted that B and A have some overlap in (a)

but there is no overlap in (b).

(2) (b)

Fig. 11.4: Object B is left to object A: (a) with overlap, (b) without overlap.
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Fig. 11.5: Object B is down to object A: (a) exactly down, (b) down but right
shifted.

Now consider fig. 11.5 where in both (a) & (b) B is down to A; but in
(a) B is exactly down to A, whereas in (b) it is right shifted a little. To define
these formally, we are required to represent the spatial relationships between
the objects A and B by fuzzy logic.

Let us first define spatial relations between points A and B. We
consider four types of relations: right, left, above and below. Here following
Miyajima and Ralescu [4], we define the membership function as a square of
sine or cosine angles 0 (vide fig. 11.6), where 0 denotes the angle between
the positive X axis passing through point A and the line joining A and B. The
membership functions for the primitive spatial relations are now given as
follows:

W right (0)= cos’(8) , when -[T/2<0<T1/2,
= 0, otherwise.

W 1er(0)= cos’(0) , when -TI <0 <-[12,
and [I/2<6<]]
=0, otherwise.

Whelow (0)=sin’® , when 0<0<TI,
= 0, otherwise.



L above(B) =sin’®@ , when -[1<6<0,
= 0, otherwise.

A common question that now arises is why we select such functions. As
an example, we consider the ‘below membership function’. Let us compute
Ubelow(0) at a regular interval of 6 =[]/4 , in the graph 0 < 6 <[ . Fig. 11.5
presents the membership values for different 0. It is clear from the figure that
when B is exactly below A (fig. 11.6(¢)) Hpetow(® =[1/2)=1 , which is logically
appealing. Again when 6=[1/4 or 0=3[1/4 (fig. 11.6 (b) & (d)), the
membership value of Wyeow (0)=1/2 ; that too is logically meaningful. When
0 =0 (fig. 11.6(a)) or I, Uyeiow(0) =0 , signifying that B is not below A. The
explanation of other membership functions like Lignt(0), Miea(0) , Hapove(0) can
be given analogously.

0= 00, pvbelow(e) =0

()

0=""/4, Wpelow () =1/2

(b)



>
0
=2
Y
6="/2, Upelow (6) =1
(c)
A
>
0 X
)

B
0=3"/4, Upelow (6) =1/2

(@

Fig. 11.6: Illustrating significance of the Llpelow (0) function.
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Here in (a) and (b) computation of angles (w.r.t the horizontal axis) of the lines joining the
vertices of the rectangle to the vertices p and q of the triangle have been illustrated. Similar
computations have to be performed for the line joining the vertices of the rectangle to the vertex r
of the triangle. All 8 angles have not been shown in the figure for clarity.

Fig. 11.7: Demonstrating f (6) / (m .n) computation.



So far we discussed spatial relationship between two points by fuzzy
measure. Now, we shall discuss the spatial relationships between two objects.
Let A and B be two objects and {a;, 1 <i<n }, { b; , I<j<m } be the set of
points on the boundary A and B respectively. We first compute the angle 6;;
between each two points a; and b; . Since there are n a; points and m b; points,
the total occurrence of 8; will be (m X n). Now, for each type spatial relation
like b; below aj;, we estimate Upeiow(03j). Since 0;; has a large range of value [0,
IT ], we may find equal value of Wpeow(6;) for different values of 0. A
frequency count of Uyeiow(0) versus 6; is thus feasible. We give a generic
name f (0) to the frequency count. Since f (8) can have the theoretical largest
value (n. m), we divide f () by (m. n) to normalize it. We call that
normalized frequency f(6) = f (0) /(m .n). We now plot f(8) versus 6 and
find where it has the largest value. Now to find the spatial relationship
between A and B, put the values of 0 in 0w(0) where f(8) is the highest.

In fig. 11.7 we illustrate the method of measurement of the possible
0;s. Since abced is a rectangle and pqr is a triangle, considering only the
vertices, m .n =3. 4 =12. We thus have 12 possible values of 6;. So f(6) =
f(0)/12. It is appearing clear that £ (6) will have the largest value at around

45 degrees (fig. 11.8); consequently Wyeow(0=45 ) gives the membership of
pqr being below abcd.

1.00 —

F(®)

0 45° 90" 135 180
0 —»

Fig. 11.8: Theoretical £ (0) versus 0 for example cited in fig. 11.7.



11.5 Temporal Reasoning by
Situation Calculus

‘Temporal reasoning', as evident from its name, stands for reasoning with
time. The problems THE real world contain many activities that occur at a
definite sequence of time. Further there are situations, when depending upon
the result of occurrence of one element at a time t, a second event occurs at
some time greater than t. One simple way to model this is to employ ‘situation
calculus’ devised by John McCarthy [3].

The reasoning methodology of situation calculus is similar with first
order predicate logic. To understand the power of reasoning of situation
calculus, we are required to learn the following terminologies.

Definition 11.1: An event stands for an activity that occurs at some time.
Definition 11.2: A fluent is a fact that is valid at some given time frame but
becomes invalid at other time frames.

Definition 11.3: A situation is an interval of time during which there is no

change in events.
The following example illustrates the above definitions.

Example 11.1: Consider the following facts:
1.It was raining one hour ago.

2.People were moving with umbrellas in the street.
3.The rain has now ceased.

4.1t is now noon.

5.The sky is now clear.

6.The sun is now shining brightly.

7.Nobody now keeps an umbrella open.

Statement 1, 2, 3, 6 and 7 in this example stand for events, while all
statements 1-7 are fluent. Further, it is to be noted that we have two situations
here; one when it was raining and the other when the rain ceased.



11.5.1 Knowledge Representation and
Reasoning in Situation Calculus

To represent the statements 1-7 in situation calculus, we use a new predicate
‘Holds’. The predicate Holds(s, f) denotes that the fluent f is true in situation
s. Thus statement (1-7) can respectively be represented as:

Holds (0, it-was-raining) (1)

Holds (0, people-moving-with-umbrellas) (2)

Holds (now, rain-ceased) (3)

Holds (now, it-is-noon) (4)

Holds (now, the-sky-is-clear) (5)

Holds (now, the-sun-shining-brightly) (6)

Holds (Results (now, the-sun-shining-brightly),

not (anybody-keeps-umbrella-open)) (7)

The representation of the statements (1-6) in situation calculus directly
follows from the definition of predicate ‘Holds’. The representation of
statement (7), however, requires some clarification. It means that the result
(effect) of the sun shining brightly is the non-utilization of the umbrella.
Further, ‘not’ here is not a predicate but is treated as a term (function). In
other words, we cannot write not(anybody-keeps-umbrella-open) as
—(anybody-keeps-umbrella-open).

For reasoning with the above facts, we add the following rules:

If it rains, people move with umbrellas. (8)

If the rains ceased and it is now noon then the result of sun shining brightly
activates nobody to keep umbrella open. (9)

The above two rules in situation calculus are given by

Vs Holds(s, it-was-raining)—> Holds(s, people-moving-with-umbrellas) (8)

Vs Holds(s, rain-ceased) A Holds(s, it-is-noon) — Holds (result (s, sun-

shining-brightly), not (anybody-keeps-umbrella-open)) )

Reasoning: Let us now try to prove statement (7) from the rest of the facts
and knowledge in the statements (1-9). We here call the facts axioms. So, we
have:



Holds( now, rain-ceased) Axiom (3)
Holds (now, it-is-noon) Axiom (4)
Vs Holds(s, rain-ceased) A Holds(s, it-is-noon)
-> Holds (results (s, sun-shining-brightly), not(anybody-keeps-
umbrellas-open)) Rule (9)
For reasoning, we substitute s = now in (9) .
Thus we have
Vs, Holds (now, raining-ceased) A
Holds(now, it-is-noon) ->
Holds (Results (now, the-sun-shining-brightly),
not(anybody-keeps-umbrella-open)) (10)
Now, by modus ponens of (3) (4) and (10) ,
Holds(Results(now, the-sun-shining-brightly),
not(anybody-keeps-umbrella-open))

which is the desired inference.

11.5.2 The Frame Problem

The causal rules employed for reasoning in situation calculus specify the
changes that occur, but they do not highlight which fluent remains unchanged
from one frame (scene) to the next frame. For instance, the causal rule (9)
indicates that “if the rain ceases at time s and s is noon then the result of sun
shining causes nobody to keep their umbrella open." But it did not mention
that the people who were moving in the earlier frame continue moving (with
only closed umbrellas).

We can add one additional rule as follows to resolve this problem.

Vs, s; Holds(s), it-was-raining) A
Holds (s;, people-moving-with-umbrellas) A
Holds (s2, rain-ceased) = Holds(s2, people-moving-without-

umbrella).



11.5.3 The Qualification Problem

In many real world problems, we do not explicitly mention the conditions
under which a given event will have a particular consequent. The problem of
correctly stating the conditions in order to activate the consequent of an event
in situation calculus is called ‘qualification problem’ [3]. The problem can be
solved by an appropriate use of non-monotonic reasoning. To illustrate the
above problem and its possible solution, we present the following example.

Example 11.2: Suppose a computer is powered on. If we, now, press the
reset key, it will start booting.

We can represent this by the following statement.

Vs, Holds(s, on(power))—>

Holds (result (s, press-reset), booting) .

It is, however, presumed that there is no abnormality like malfunctioning
of the keyboard or the system ROM or the booting software. Thus the above
piece of knowledge will be more complete, if we say:

Vs, Holds(s, on(power)) A—abnormal (s, system)—>
Holds(result (s, press-reset), booting)

This obviously is a qualification over the last situation calculus
expression.

Further, suppose that there is no abnormality in the system at time s but
the stabilizer or the C.V.T. supplying power breaks down at time s. Thus we
can write:

Vs , —mabnormal (s, system) =

Holds (result (s, CVT-failure), not(booting)).

Suppose result (s, CVT-failure) =s’. We now want to identify the
minimal abnormal interpretations such that Holds(s’, not(booting)) is true.
The following two interpretations in this regard are feasible. It is to be noted
that s>>s and s’ and s are both integers.



Interpretation I Interpretation II
1.Holds (0,on(power)) 1.Holds (0,on(power))
2.—abnormal (0, system) 2.—abnormal (0, system)
3.Holds (1, press-reset) 3.Holds (1, press-reset)
4.Holds (1, no(CVT-failure)) 4.Holds (1, CVT-failure)
5.Holds (2, booting) 5.Holds (2, not(booting))

The facts embedded in the above two interpretations are all consistent
(true); however interpretation I and II are contradictory. For instance, the
inferences (4) and (5) in interpretation I and II are just opposite. A natural
question then arises: which one of the interpretations is to be followed. Since
abnormal predicate has the same status in both the interpretations, we can
choose either of them. But in case abnormal (s, evidence) follows from one
interpretation and abnormal (s, evidence) does not follow from the other
interpretation, then the second one should be preferred. For more detailed
treatment on this issue see Dean et al. [3].

11.6 Propositional Temporal Logic

In this section we will present an alternative form of extension of
propositional logic for handling temporal variations of events. In fact, we shall
use most of the formalisms of the propositional logic with two modal
operators, always (A) and sometimes (S) [5]. Some authors [2], [7] denote
always by [ and sometimes by 4 . But as we already used them in non-
monotonic reasoning for a different purpose, we intentionally use our own
notations for these two operations.

Some elementary axioms of propesitional temporal logic (PTL) are
presented below:

1. A(prg)=Ap) AA(Q)
2. AA@p)=Ap)
3. SAP)=A(S(p))
4 =S(P=S—-(
6. S(p)=—A(-p)
7. A 29>(AP)~> AW@)



11.6.1 State Transition Diagram
for PTL Interpretation

Consider a state transition graph where the nodes denote the temporal states
and the arc denotes the transition from one state to another through passage of
time. For instance, the state transition graph of fig. 11.9 describes the
transition of temporal states from s; to s, and sz, from s, to s; and s4, from s; to
s, and s4 to s, itself. Further, each state s; corresponds to a temporal value of
the propositions p and q. For brevity of representation, we use the positive or
negative literals like {p, q} or {—p, q} instead of {p= true, q= true} or {p=
false, g= true} respectively.

Now, suppose we want to evaluate the truth value of the formula
X =A(p) v A(q)

in each state.

In state s;, X 1is true as its next states s, and s; both satisfy X. X is also
true in s,, as its next state s; satisfies A. X is also found to be true in s; as its
next state s, supporting X. X is not true in s, as itself and its net state, which
too is s4, does not support A.

= T

S;

Fig. 11.9: A state transition graph representing PTL interpretation.

We now formally prove a few identities using the concept of the state
transition graphs.



Example 11.3: Prove that A(p) = =S(—p).

Proof- Let at state s, A(p) be true.
We write formally,

sEA@). (1

Let us suppose that

s ES (=p). by
Then there exists a state s’ , the next state of s such that
sk —p. 3)
However, since s FA(p),
S p. @)

Consequently, the supposition that s |= S(—p) is wrong, i.e. s |# S(—p) ,
Or, s F—=S(—p),
which yields

A(p) = —S(=p) - O

Example 11.4: Prove that A (p=>q) = (A(p) = A(q)).
Proof- Given that at state, say, s, A (p=>q),

ie,s FA(p>q (1)
also given s |= A(p) 2)
Let us assume that
i.e., A(q) does not follow from state s.
Further, as A(q) = =S —q. 4)
= AQ) =S —q. (5)
Substituting (5) in (3) we have
s ES—q.

If there exists a next state of s, say s’ , then



s” F—q. (6)

But by the first two assumptions,

s Fp>q (7)
and s” F p. (8)
So by Modes Ponens from (7) & (8)

s Fa. ©)

Now, (9) is a contradiction to (6).
Hence, the initial assumption s f — A(q) is false. Consequently s F A(q) is
true. Thus

A(p>9) > (Ap) > A@).

is a valid expression. O

11.6.2. The ‘Next-Time’ Operator

Normally, time in a computer system is discrete; i.e., if the current instant is
defined the third, next will be the fourth. This is due to the hardwired clocking
of the system resources including processor, memory and peripheral circuit
modules. Thus it makes sense to express the ‘next’ instant of time. The next
instant of time or next-time is denoted by the ‘O’ symbol. Thus to represent
that proposition p follows from the next instant of s; we write

si FOp.
From the meaning of the ‘O’ operator, it is thus clear that
EA(p) > Op and
FOp—>Sp.
Further, linear-time temporal logic is characterized by
Op F—O-p.
We now present a few elementary axioms using O operator.
i) fO(A>B)> (0OA>O0OB)
i) A(A>O0A)> (A>AA).
Further, for any proposition p
iii) FAp>Op
iv) fFOp>Sp.



11.6.3 Some Elementary Proofs in PTL

A few example proofs are presented below to make the readers familiar with

the proof procedures in PTL.

Example 11.5: Prove that

F O(pAq)=(Op A Oq)

Proof: |— PAQ2p (1) ( by propositional logic)
[ O(pAq) > Op )
F (pAq) > q (3) ( by propositional logic)
| O(pAq) > O(a) )
| O(pAa)> O(p) A O(q) (5

FO(p>—q)>(©Op>0-q (6)

-0pv—-0qvO —(p>-q) (7)

F—=Op v —Oqv =0

FOpA0q) >0 (g

F O(pAq) = Op A Oq. o
Example 11.6: Show that

F A A @) =Ap) A AdQ)

Proof: 1. | A(p A q) > Ap) A A(9)

2. FAP) AA(Q >O0pAaOgq

3. FA(p) AA(Q > O (p Ag)

4. |— A (p) AA(q) 2 A (pAq) by induction

5. FA(p A =A@p) AA@Q) . 0

Example 11.7: Show that
FA(p>q) > (Sp>Sq)
Proof: 1. F(p>q) > (—q > —p)
2. FA (p>q) >A(—q > —p)



3. F AP > @) > A=9)> A-p)
5. F A(p=> q) = (Sp > Sq). o

11.7 Interval Temporal Logic

For modeling physical processes, we often need to reason about the truth of
propositions over intervals of time. The propositions that correspond to the
attributes of the physical process or its world may change with time. For
instance, suppose when someone rings a calling bell, people inside the house
open the door, presuming some visitors have come. Once the visitors enter the
house, they close the door. So, the door is kept open for a small interval of
time. We may write this as follows:

Vi, (0<t<t) A (b =t) A (> ty) A closed (door, t) A rings (bell, t;)

- open (door, t,) A closed(door, t3)

The last expression means that if the door is closed in the interval 0< t
<t, and the bell rings at time t, then the door is open at t, > t; and closed at t;
> t, . In other words, the door is kept open for the interval of time t, t,<t<t;.
The above expression works well but we need formalization of the syntax.
Now, we present the formal definitions of the well-formed formulae (WFF)
under propositional interval logic. Let T" be a set of time point symbols, P be
a set of propositional symbols and I'v be a set of temporal variables. The
WFF here are defined inductively as follows.

LIf t;,t, € T UT'vand pe P, then t;<t, , t;<t;, and holds(t,, t,, t3) are
WEFEF.

2.If ¢; and ¢, are WFF , then ¢1A ¢2 and —¢1 also are WFFs.

3.If ¢ isa WFF and te I'v, then Vt, ¢ is a WFF.

The usual definitions of v , 2 , = and 3 are maintained in interval
temporal logic. The following transformations [3] are often useful to derive
logical proofs in interval temporal logic.

1. Holds (tl, t, q)]/\ ¢2 ) > HOldS(tl, t, ¢1) A hOldS(tl, t, ¢2) .
2. HOldS(tl, t, 4 (1)) 2> HOldS(tl, ta, q))



The second rule is generally called weak negation, which is in contrast to the
following rule, called strong negation.

Vt, (t <t) A (t2 2 t) A Holds(ty, t, = ¢) > — Holds(t, ¢) .
The weak and strong negation both support the following properties:

For weak negation,

F Holds(t;, t5, = — q)

F —Holds(t;, t2, = q)

|- ——Holds(t, t;, q)

F Holds (t;, ta, q).

For strong negation,

FVt,(t<t)A(t2t) A Holds(ty, th, = —p)

F Vi, (t<t)A(t=t) A= Holds(ty, ta, —p)

FVt,(tst)A(t2t) A——Holds(t, t, p)

F Vi, (ti<t) A (t,2t) A Holds(ty, t, p).

But there exists evidence of proving Holds(t;, t,, p) v Holds(t;, t, q) from
Holds(ty, t,, pvq), which is not feasible by strong negation [3].

11.8 Reasoning with Both Space and Time

We have discussed various schemes for reasoning with space and time
independently. However, there exist circumstances, when both are required
concurrently. A formalization of reasoning techniques in variation of both
spatial and temporal events is an open area of research till date. We here just
illustrate the justification of such reasoning with an example.

Example 11.8: Suppose one summer evening, a hot burst of wind moving in
the west causes a fire at the hill, which gradually started spreading in the
village (Fig. 11.10). A villager reports to the fire brigade station at time t;. A
fire brigade now has to plan the route, so that it can reach the village at the
earliest. There are only two roads, one the hillside road (road1l) that requires
longer time of traversal and the other road (road2) which requires crossing a
river through a bridge to reach the village. The pilot of the fire brigade car
thinks that it can reach E; end of the bridge within 15 minutes, but crossing
the river after 15 minutes will be difficult, as by that time many villagers too
will rush to cross it from other end E, of the bridge. But traversal through the
roadl will require 20 minutes more than the time required through road2 had



there been no rush. So, the main question that remains: will the villagers, who
reached the end E, of the bridge within 15 minutes of the breaking out of fire
in the village, vacate the village within 35 minutes? The decision of the pilot
in selecting the right road depends solely on this answer. To resolve this, the
fire brigade station-master observed the scenario in the village by moving up a
high tower and found a few villagers rushing towards E, and instructed his
men to go to the spot through road?2.

forest T T
«
’ wind€
flow
village
roadt,

Fire brigade station

Fig. 11.10: The topological map of a hillside village and its surroundings.

The above story requires a spatial representation of the map and then
reasoning about time. Here the spatial changes of the villagers and the fire
brigade must be taken into account at specific time slots. Readers may try to
formulate the (temporal part of the) problem by situation calculus and define
the spatial part as FOL clauses. So, spatial changes can be reflected in
different time frames. The non-monotonism in the problem can also be
resolved by the qualification method presented under situation calculus.



11.9 Conclusions

The chapter demonstrated the scope of the extension of the predicate logic
formalisms for reasoning with time and space. The principles of spatial
reasoning have been covered with FOL and fuzzy logic, whereas the temporal
reasoning is introduced with situation calculus and propositional temporal
logic. These are active research fields and we have to wait a few more years
for its complete formalization. Most important applications of spatio-temporal
reasoning include co-ordination and task planning of multiple robots for
handling a complex problem like machine repairing, where active
participation of a number of robots is required to share time and space. It
may be added here that some aspects of the co-ordination problems could
have been solved with timed Petri nets. We, however, will introduce timed
Petri nets and their application in co-ordination problems in chapter 24.
Another interesting topic, which we could not discuss here for lack of space,
is reasoning with shape [6]. This is important because, in any practical path
planning problems of mobile robots, knowing the 2-D and the 3-D shapes of
obstacles are useful for decision making. This also is an active area of
research and will require a few more years to take final shape.

Exercises

1. Write a logic program to describe the spatial relationships among the
components of a 4 legged table, assuming that at least three legs are
visible in the image.

2. Justify the definitions of g (8) by taking © = -90 °, 0°, 45 ° and 90 °.
Can you define it in an alternative manner?

3. Graphically compute the membership of a triangle below a rectangle
following the method presented in the text. Also plot the f (8).

4. Identify the events, fluents and the situations from the following
sentences: a) The teacher called John, the student, to the board. b) He
then handed over the chalk to John. ¢) He insisted John write what he
was talking to his classmates. d) Then he asked John to write what he was
teaching. ) John could not write anything but started trembling. f) The
teacher then advised John to leave the classroom.

5. Add the following rule to the previous facts and then show by situation
calculus that ‘the teacher advised John to leave the classroom’ directly
follows from the other facts.



(1]

(6]

(7]

Rule: If a student talks in the classroom at time t and cannot write what
the teacher was teaching at time t; (> t), he advises the student to leave the
classroom at time t, (> t;).

Draw a state transition diagram consisting of two states that describes the
facts: p A—q holds at time t;, g A—p holds at time t,; again: p A—q holds
at time t3, and q A—p holds at time t,. The process thus repeats infinitely.
Show that the formula A(—q v—p) is always true following the state
transition diagram.

Prove that A (p —q) = S (p —q).

Represent the ‘fire extinguishing problem’ presented in the last example
of the chapter by situation calculus and solve it to determine the right
road for the fire brigade.
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12

Intelligent
Planning

This chapter provides an exhaustive survey of the various planning strategies,
employed to complex decision-making problems. It begins with a formal
introduction to forward and backward chaining methods for planning. The
Jorward or backward chaining schemes exhibit exponential growth of the
search space and thus are of limited use. An alternative scheme for planning
based on the principles of ‘least commitment’ is then introduced. The abstract
classification of a planning problem by a hierarchical approach and its
possible expansion to primitive (elementary) plans is covered next in the
chapter. The chapter also provides a brief discussion on ‘multi-agent
planning’. The principles of heuristic planning have also been illustrated here
with a ‘flow-shop scheduling’ problem.

12.1 Introduction

The word ‘planning’ informally refers to the generation of the sequence of
actions to solve a complex problem. For instance, consider the problem of
placing the furniture in your new-built house, so that i) you can fully utilize
the available free space for common use and ii) the rooms look beautiful. An
analysis of the problem reveals that there exist many possible alternative
solutions to the problem. But finding even a single solution is not so easy.
Naturally, the question arises: why? Well, to understand this, we explore the
problem a little more.



Suppose, you started planning about the placement of the following
furniture in your drawing room:

a) one computer table
b) one TV trolley

c) one book case

d) one corner table

e) two sofasets and
f) one divan

We also assume that you know the dimensions of your room and the
furniture. You obviously will not place the furniture haphazardly in the room
as it will look unimpressive and it will not provide you with much space for
utilization. But where is the real difficulty in such planning?

/ SB

A O
C
TV Computer
Trolley T able
Divan
Book
Case
Corner table
Sofa Sofa
i B Set Set D

Fig.12.1: One possible plan regarding the placement of furniture in your
drawing room.

To answer this, let us try to place the corner table first. Since only two
corners B and D are free, you have to place it at either of the two locations. So
if you do not place it first, and fill both the corners with other furniture, you
will have to revise your plan. Fixing the position of your corner table at the
beginning does not solve the entire problem. For example, if you fix the
position of the corner table at B then the place left along AB allows you to
place the bookcase or one sofa set or the TV trolley or the computer table. But
as the switchboard (SB) is on the wall AC, you will prefer to keep your
computer table and TV trolley in front of it. Further, you like to keep the sofa



sets opposite to the TV. So they occupy the positions shown in fig. 12.1. The
bookcase thus is the only choice that could be placed along the wall AB;
consequently, the divan is placed along the wall CD. The following steps thus
represent the schedule of our actions:

Place the corner table at B.
Place the TV trolley and computer table along the wall AC.
Place the two sofa sets along the wall BD.

Place the bookcase along the wall AB.

A

Place the divan along the wall CD.

What do we learn from the above plan? The first and foremost, with
which all of us should agree, is minimizing the scope of options. This helps in
reducing the possible alternatives at the subsequent steps of solving the
problem. In this example, we realize it by placing the TV set and the computer
close to the switchboard. Another important point to note is the ‘additional
constraints imposed to subsequent steps by the action in the current step’. For
example, when we fix the position of the TV set, it acts as a constraint to the
placement of the sofa sets. There are, however, instances, when the new
constraints generated may require revising the previous schedule of actions.

The subsequent sections of the chapter will cover various issues of
planning. Section 12.2 will cover the different aspects of ‘linear planning’ [6]
by STRIPS approach [4], [9] using if-add-delete operators. In section 12.3 we
shall present the principle of ‘least commitment planning’ [2]. The issues of
‘hierarchical task network planning” will be presented in section 12.4. The
principles of ‘multi-agent planning’ will be presented in section 12.5. The
problems of scheduling are illustrated with the well-known ‘flow-shop
scheduling’ problem in section 12.6. Conclusions are summarized in section
12.7.

12.2 Planning with If-Add-Delete Operators

We consider the problem of blocks world, where a number of blocks are to be
stacked to a desired order from a given initial order. The initial and the goal
state of the problem is given similar to fig. 12.2 and 12.3. To solve this type of
problem, we have to define a few operators using the if-add-delete structures,
to be presented shortly.



Fig.12.2: The initial state of Blocks World problem.

Fig: 12.3: The goal state of Blocks World problem.

The database corresponding to the initial and the goal state can be represented as
follows:

The initial state:

On (A,B)
On (B, Table)
On (C, Table)
Clear (A)
Clear (C)
The goal state:
On (B, A)
On (C, B)
On (A, Table)
Clear (C)



where On (X, Y) means the object X is on object Y and clear (X) means there is
nothing on top of object X. The operators in the present context are given by the
following if-add-delete rules.

Initial state

On (A,B)
On (B, Table)
On (C, Table)
Clear (A)
Clear (C)

Rule 2 x—\
Y=B

On (A, Table)
On (B, Table) State S1
8{1((3’ Zable) Added: clear (B)
ear (A) Deleted: on (A,B)
Clear (B)
Clear (C)
X=B, Z=A Rule 3
4
On (B,A)
On (C, Table)
State S2
On (A, Table
Clee(lr ( C) ) Added: On (B, A)
Clear (B) Deleted: Clear (A), On (B, Table)
Rule 3
X=C,Z=B
On (B, A)
On (C, B)
Clear (C)
On (A, Table) Goal State
Added: On (C, B)
Deleted: Clear (B), On (C, Table)

Fig. 12.4: The breadth first search of the goal state.



Rule 1: If On (X, Y)
Clear (X)
Clear (Z)

Add List:  On (X, Z)
Clear (Y)

Delete List: On (X,Y)
Clear (X)

Rule 2: If On (X,Y)
Clear (X)

Add List: On (X, Table)
Clear (Y)

Delete List: On (X, Y)

Rule 3: If On (X, Table)
Clear (X)
Clear (Z)

Add List:  On(X, Z)

Delete List:  Clear (Z)
On (X, Table)

We can try to solve the above problem by the following sequencing of
operators. Rule 2 is applied to the initial problem state with an instantiation of X
=A and Y =B to generate state S1 (fig. 12.4). Then we apply Rule 3 with an
instantiation of X =B and Z =A to generate state S2. Next Rule 3 is applied once
again to state S2 with an instantiation of X =C and Z =B to yield the goal state.
Generating the goal from the given initial state by application of a sequence of
operators causes expansion of many intermediate states. So, forward reasoning is
not appropriate for such problems. Let us try to explore the problem through
backward reasoning.

12.2.1 Planning by Backward Reasoning

Much effort can be saved, if we generate a plan for the current problem by
backward reasoning. While planning through backward reasoning, we should
check the required preconditions to satisfy a given goal. Further, to satisfy
new sub-goals generated, we should check the existence of their preconditions
in the ADD-list of rules, which on firing generate the sub-goals. To illustrate



this, let us consider the last problem. Here, the goal is given by On (B, A) A
On (C, B) A On (A, Table) A Clear ( C).

Now to satisfy On (B, A) by Rule 3 we have three sub-goals:
Clear(A), On (B, Table) and Clear(B), out of which the first two are available
in the initial problem state. Further to satisfy the goal cause: On (C, B), we are
required to satisfy the sub-goals: Clear (C), Clear(B) and On (B, Table), the
first and third of which are available in the list. So, we are required to satisfy

On (A,B) | —P[Clear () Pon (B, A)
B, Tabl
On (B, Table) »On (B, Table) on(C.B)
On (C, Table) Clear (B)
i On (A, Table)
Clear (A) Add: On (B,A) —k ’
Clear (C) Del: Clear (A) »Clear ©
Initial state State 1 Goal
L—P On (A,B)
“»(Clear (A)
Add:
On (A, Table)
Clear (B)
Del: On (A,B) —‘ PClear(C)
PClear (B)
State 3 L »{0n (B, Table)
Add: On (C, B)

Del: Clear (B)

State 2

Fig 12.5: A solution by backward reasoning.



one new sub-goal: Clear(B). This can be achieved by employing rule 2. It may
be noted that in the Add-list of rule 2, we have Clear (Y), where we can
instantiate Y with B. The application of rule 2 in the present context gives rise
to On (A, Table) also, which is required to satisfy the goal state. The
dependence graph of states for the above problem is presented in fig. 12.6.
Here, in state 1 and state 2, we generate the sub-goals On (B, A) and On (C,
B) respectively by using rule 2. Further, for satisfying the pre-condition [Clear
(B)] ofrule 2, we generate state 3 by applying rule 2 on the initial state. The
goal On (A, Table) is a bi-product at state 3 to generate the sub-goal Clear

(B).

Starting
State

Fig 12.6: The dependence graph of states.

It is to be noted that the delete list of any state in fig. 12.5 does not
require altering the dependence relationship of the existing states. This is too
good a solution. But there exist problems, where the delete list of a new state
may threaten the dependence relationship of the existing states. We shall now
take a look at “threatening of states”.

12.2.2 Threatening of States

Consider the same problem we were discussing. Assume that we shall be
trying to satisfy the goal On (C, B) first and then take into account of the goal
On (B, A). We do not change the name of the states to keep our understanding
comprehensible. So, On(C, B) goal can be generated in the add-list of old
state 2 (fig. 12.7). The pre-condition of old state 2: Clear (C) and On (B,
Table) are available in the initial state. Now, to satisfy the pre-condition Clear



(B), we generate the old state 3, whose pre-conditions are all available in the
initial state. Thus the goal On(C, B) is satisfied.

On (A,B) | P Clear (C) i On(B, A)
On (B, Table) P Clear (B )
Lyt On (C, B)
On (C, Table On (B, Table
( ) P On ) On (A, Table)
Clear (A) Add: On (C,B) |
Delete: Clear (C)
Clear (C) Clear B
Initial State Old State2 Goal State
;' Old Statel
—> On( AB) — | Clear (A)
I
I
—®»| Clear (A) : On ( B, Table)
I
Add: ! Clear (B)
On(A, Table) _>i
Clear (B) ¢ Add:On (B,A)
Del: Clear (B)
Delete:
On (AB)
Old State 1
Old State 3 Threatens

Fig.12.7: Demonstrating threatening of old statel by old state 2.

Now, let us try to satisfy the On (B, A) in the goal. This fortunately
can be made available by the add-list of old state 1. But can we satisfy the
preconditions of old state 1? It is to be noted that the pre-conditions Clear(A)
and On (B, Table) are available in the initial state and have not been deleted
yet. But the third pre-condition Clear (B) of the state 1 has been deleted by old
state 2. In other words old state 2 [or the use of rule 3 (operator 3)] threatens
the link [Clear (B)] from old state 3 to old state 1. This has been represented
by dotted lines in fig. 12.7. The dependence of states with the threatening




operation is presented in fig. 12.8. The threatening of old state 2 to the link
between old state 3 and old state 1 can, however, be avoided if old state 1 is
generated prior to old state 2. We represent this by an additional ‘before link’
[9] denoted by a dotted line in the graph (fig. 12.9). The other links are
obviously before links and, therefore, are not labeled. Thus the selection of the
appropriate order of the rules (operators) can avoid the threatening of states.
The precedence graphs, shown below, could also be used to represent the
precedence of operators.

Old

Starti
arting State 2

State >

S

o p
State 3
Threatens \A /

Old
State 1

Goal
State

Fig. 12.8: The precedence graph for fig.12.7.

Starting Old
State > State 2

before % Goal
State
old
State 3 > /
Old

State 1

Fig. 12.9: The precedence graph of fig. 12.7 with an
extra before link.



12.3 Least Commitment Planning

The schemes of planning, described above, determine a list of sequence of
operators, by a forward or backward reasoning in the state-space. When the
number of blocks in the ‘Blocks world problem’ is large, determining the
complete order of the sequence of operators is difficult by the proposed
scheme. An alternative approach for planning is to determine ‘approximate
(partial) sequence of operators for each goal’ separately and defer the ordering
of their steps later. Such planning is referred to as least commitment
planning [9]. In the literature of Al this is also called non-linear planning
[6]. We now explain why it is called so. Since we delay in committing the
order of operator in the partial plan of a sub-goal, it is called the least
commitment planning. Further, the partial plan for each sub-goal is generated
in parallel, unlike the previous state-space reasoning method for planning. It
may be recollected that in the state-space approach, only after satisfying a
sub-goal, the next sub-goal is considered for satisfaction. Thus in contrast to
the state-space approach for linear planning, the current approach is termed
non-linear planning.

> 2

G5

Gl I

Lyl G [, a4

Fig. 12.10: Illustrating least commitment planning.

12.3.1 Operator Sequence in
Partially Ordered Plans

Suppose realization of a goal requires 5 steps (sub-goals), denoted by
operators, G1, G2, G3, G4 and G5 respectively. Let the order of the steps be
represented by a graph like that in fig. 12.10. Here the firm line (—) denotes
exact ordering, while dotted line (--) denotes the ‘least committed’
dependence relations (constraints) between two operators. Thus the above



plan is an order of partially planned operators. The partially ordered plans for
the problem of fig. 12.10 are listed below:

{G1, G2, G3, G4, G5}
{G1,G3,G2,G4,G5}  and
{G1, G3, G4, G2, G5}

We now have to select which of the above three partially ordered plans
leads to a complete plan for the goal or the sub-goal. So, in the least
commitment planning we first search in the space of partially ordered plans
and then select the correct complete plan among those plans.

12.3.2 Realizing Least Commitment Plans

For realizing a least commitment plan we require one or more of the following
operations [6]:

a) Step Addition: This stands for the generation of a partially
ordered plan for one sub-goal.

b) Promotion: This constrains one step to come before another in
a partially ordered plan.

c) Declobbering: Suppose state S1 negated (deleted) some pre-
condition of state S3. So, add S2 such that S2 follows S1 and
S3 follows S2, where S2 reasserts the negated pre-conditions of
S3.

d) Simple Assignment: Instantiate a variable to ensure pre-
condition of a step.

e) Separation: Instantiation of variables is sometimes not done
intentionally to keep the size of the plan manageable.

The following example of the well-known ‘blocks world’ problem,
discussed earlier, will best illustrate the above definitions. Remember the
problem was enlisted as follows:

Given: On (A,B) A Clear ( C) A Clear(A) A On(C, Table) A On(B, Table).
Find a plan for: On (B, A) A On(C, B).



To start solving the problem, we first generate partial plans to achieve On (B,
A) and On (C, B) separately.

The goal On (A,B) may be generated by the following rule: If X is clear and Y
is clear then put X on Y. Here the pre-conditions Clear (A) and On (B, Table)
are available in the in initial problem state. So, the partial plan for goal: On
(B, A) can be constructed. The partial plan for this goal is presented in fig.
12.11.

J—b Clear (A)
Satisfied from Clear (B)

initial database ____,|On (B, Table)

Del: Clear(A)

Goal
State S2

Fig. 12.11: The partial plan for the goal On (B, A).

Now, to satisfy On (C, B) we need to generate its predecessor (see fig. 12.12)
as follows:

. —p Clear( C)
Satisfied from Clear(B)

initial database
On(B, Table)

Add:
On(CB) — | OnCB)
Delete:
Clear(B) Goal
State S1

Fig. 12.12: The goal On (C, B) and its predecessor.

It may be noted that Clear (B) is a pre-condition of both the goals
On(C,B) and On (B,A), but the process of generating On (C,B) deletes Clear
(B). This posts an additional constraint that state S2 should follow state S1.



We denoted it by a dotted line (constraint link) in fig.12.13. Now to satisfy the
pre-conditions of S1 and S2, we need to add new steps. Note that Clear (A)
and On (B, Table) in both the states S1 and S2 are satisfied. So, we need to
satisfy Clear (B) only in state S2 and S1.

State S2 P On(B,A)
/l\
| Constraint link
|

State S1 9 On (C,B)

Fig. 12.13: Precedence relationship of states
by constraint (before) links.

To satisfy Clear (B) in S1 and S2, we employ the following rule:
If On (X,Y) A Clear (X)
Add: On (X, Table) A Clear (Y)
Delete: On(X,Y).

So, by backward reasoning, we generate the new state, vide fig. 12.14.

Satisfied from > On (A,B)
initial database —pp| Clear (A)

Add:
On (A, Table)
Clear (B) T Clear (B)

Delete:
On (A,B)

State S3

Fig.12.14: An approach to satisfy Clear (B).



We now have three partially ordered steps in our plan with one initial and one
goal condition. These five partially ordered plans are presented below in a
column structure.

Plan 1: /f Clear ( C) A Clear (B) A On (B, Table)
Add: On (C,B)
Delete: Clear (B)

Plan 2: [f Clear (A) A Clear (B) A On (B, Table)
Add: On (B,A)
Delete: Clear (A)

Plan 3: /fOn (A,B) A Clear (A)
Add: On (A, Table) A Clear (B)
Delete: On (A,B)

Plan 4: /f Nil
Add: On (A,B) A Clear (C) A Clear (A)A On (C, Table) A
On (B, Table)
Delete: Nil

Plan 5: /fOn (B,A) A On (C,B)
(goal) Add: Nil
Delete: Nil

The complete order of the plans that maintain satisfiability of the pre-
conditions of each partial plan is given by

plan 4 <plan 3 <plan 2 <plan 1 <plan 5
where plan j < plan k means plan j is to be executed prior to plan k.
In the above scheme for ordering a list of partially ordered plans, we
demonstrated only two steps: addition of steps and promotion by adding

constraints.

Let us now illustrate the principle of declobbering. Suppose, we choose
the totally ordered plan as follows:

plan 4 <plan 3 <plan 1 <planj <plan 2 <plan 5



where plan j will declobber the pre-condition (Clear (B)) of plan 2, which was
clobbered by plan 1. The necessary steps in plan j are presented below:

Plan j: If On (C,B) A Clear (C)
Add: On (C, Table), Clear (B)
Delete: On (C, B)

The incorporation of plan j between plan 1 and plan 2 serves the
purpose of declobbering, but On (C,B) being deleted by plan j has to be
executed later. Thus plan 1 has to be inserted again between plan 2 and plan 5.
The new total order of the plans thus becomes:

plan 4 <plan 3 <plan 1 <planj <plan 2 <plan 1 <plan 5

This undoubtedly is bad planning and the reader may think that
declobbering has no justification. But sometimes it is useful and the only
approach to refine a plan.

The operations of least commitment planning we described so far
include the first three. The operation of instantiating variables to ensure pre-
conditions of a step is also clear from our previous examples. But the last
operation of intentionally deferring a non-instantiation variable is useful in
planning. For example assume that there are two more blocks D and E on the
table. In that case, instead of putting A on table in plan 3, we could put it on D
and E as well; see our objective in plan 3 is to Clear (B). So, we employ the
following rule to generate plan 3:

Rule: 7f'On (X, Y) A Clear (X) A Clear (2)
Add: On (X, Z) A Clear (Y)
Delete: On (X, Y)

In the last rule Z could be a table or block D or E. We do not want to
explicitly set the value of Z, because it is no longer required by other partial
plans till now. Thus plan 3 could be:

Plan 3: [ On (A,B) A Clear (A) A Clear (2)
Add: On (A,Z) A Clear (B)
Delete: On (A,B)

In this example the instantiation of Z is no longer required. However if
Z is required to be instantiated later, we will then do it. It may be noted that
the main benefit of deferring instantiation of variables is to keep the size of
generated partial plans within limits.



12.4 Hierarchical Task Network Planning

The hierarchical task network planning, also called hierarchical planning, is
employed in complex decision making systems. It generates a relatively
abstract ordering of steps to realize the goal and then each abstract step is
realized with simpler plans. A hierarchical planning scheme looks somewhat
like a tree structure, where the steps at the higher level of the tree represent
more abstract and complex tasks. Let us, for example, consider the plan for
‘writing a book’. We, following the ABSTRIPS approach [8], first break the
plan into three linear abstract plans: i) get current books and journals, ii) study
them and iii) get pen and paper and write. Each abstract plan is then realized
by the children under it in a sequentially ordered fashion, denoted by the
dotted arrow (——) segment.

Fig.12.15 describes such a plan for ‘writing a book’. The steps in fig.
12.15 are simple and thus need no elaboration.

The planning scheme in the present context takes care of the plan at a
given level of the tree only before looking at the details in the next
hierarchical level. Such a plan is often referred to as length-first search [6].

In the illustrative scheme of a hierarchical plan (fig.12.15) we
demonstrated only the feasible solution; but in situations we cannot guarantee
the feasibility at the current level, unless we explored at lower levels, So we
may generate alternative abstract plans. In fig.12.16, we describe such a plan,
where the small dark rectangle denotes a primitive plan at a given level and
the large rectangle (Y) denotes a sequential ordering of the primitive plans at a
level. Let us assume that each level we select only one valid plan out of a
possible number of b plans, i.e., the branching factor is b. Further, let the
length of a selected plan at each layer be s. Thus, for executing such a plan,
we need to consider a total of P plans [7], where

P =bs+bs’ +bs’ +...+bs! !

= 3% b(sy =0 (bs.



Write a book

Get current books
and journals

Get pen and paper
and write

Study them

Pay concentration to
study

Manage free time

Be a member of a good
library

Start writing
Have money & buy

Get good books
>

Fig. 12.15: A hierarchical plan of writing a book.

Search library
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Fig. 12.16: A hierarchical plan with branching factor b=3, primitive steps
s =3 in a plan and depth (d) of the tree=3.

On the other hand, if we try to solve it by a linear planner it has to generate as
many as

bs + (bs)® + (bs)’ +...+ (bs) *!

=0 (bs)".

Further for linear ordering of these plans, we require a significant amount of
search among these plans. The total search complexity for linear ordering will
be O (bs)™. On the other hand, in a hierarchical plan, at each level, we select 1
out of b plans. So, the time required to eliminate inconsistent plans is O (b)
and the time required to find a linear ordering at each level is O (s). So, if
there are d levels, the ordering time of plans is O (s .d). Now, we can compare
the ordering time of a hierarchical planner with respect to a linear planner.
The factor of improvement of a hierarchical planner with respect to a linear
planner can be given by {(bs)** - (sd) /(sd) } =(b*¢s*?!/d) 1.



12.5 Multi-agent Planning

The least distributed form of multi-agent planner decomposes the goal into
sub-goals and assigns them to the other agents. Generally the decomposed
sub-goals should be mutually independent. The decomposition problem is
similar with that a single-agent planning. The allocation of sub-problems to
different agents is made through a knowledge about the agents. In other
words, the allocator agent must know: which plan which agent can execute
more efficiently. When all the agents are identical, the allocator (master)
should consider load balancing of the slave agents, so that the overall goal is
executed at the earliest. If the allocated tasks are dependent, synchronization
among the slaves is necessary. In single-agent planning dependencies are
handled during creation of the plan. However in multi-agent planning, since
the goal is distributed, an unpredictable amount of time may be required by an
agent; consequently the dependencies among the tasks are lost. Proper
synchronization from each slave to the master, or among the slaves, is
required for the execution of the independent plans.

The next section will present a special type of scheduling problems,
where a strategy-based planning serves the timing conflict among the agents.
Indeed, it is not a multi-agent planning, as the agents (machines) do not
participate in the planning process. It is to be noted that in a multi-agent
planning the agents must be active planners. The task co-ordination problem
among robots is an ideal example of such planning. For instance, two robots
have to carry a large board inside a room filled with many obstacles. How will
they plan interactively to transfer the object from one location to another? In
this wide book, we do not have much scope to provide a solution to this
problem. Interested readers, however, may attempt to solve it by assuming
that both the robots have common knowledge of their world and one robot can
sense the difficulty the other robot is facing in transferring the board.

12.6 The Flowshop Scheduling Problem

In flowshop scheduling there exists n different jobs, each of which has to be
processed through a sequence of m different machines. The time allotment for
a given job k to a machine, say, M; is constant. To illustrate this problem,
consider three machines, M, M, and M3, and the jobs J; and J, have to pass
through these machines in sequence (see fig.12.17)

The time requirement for processing the part of a job J; in all three
machines is supplied. One has to determine the job schedules (J; < J,) or (J, <
1)), where J, < J; for k, 1 € (1,2) denotes that job k is to be executed prior to
job 1, so that the completion time of the last job on last machine M; is
minimized. This time is often referred to as make-span [3].
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Fig.12.17: Illustrating the flowshop scheduling problem.

As a concrete example, let the machines M;, M,, M; be used for
turning, drilling and thread cutting operations respectively. The desired jobs in
this context are differently shaped wooden boxes, to be prepared from a large
rectangular timber of wood. Also assume that the time involvement of the jobs
on the machines is given as follows.

Table 12.1: The fixed times required for each Ji
on machine M;.

Time Involvement in Machines
Jobs M, M, M;
I 5 8 7
I, 8 2 3

We now consider the two schedules of jobs J;<J, and J,<J;, assuming
that the machine sequence M;-M,-Mj3 is fixed and identical for each job.

It is observed from the Gantt charts, fig.12.18 (a) & (b), that the
make-span for the two possible job schedules J;<J, and J,<J; is different. For
this example the schedule J;<J, is preferred as make-span for this case is
smaller (=23) in contrast to the other schedule where it is 28.

Now, consider a problem of n jobs and m machines. Drawing Gantt
chart for all possible factorial (n) schedules is difficult for large n. Such a
problem is often referred to as a non-deterministic polynomial (NP)



complete problem [1], for which no optimal solution is not known. To solve
this kind of problem we thus choose a near optimal solution.

Machine
M,
M,

Idle time

M;

0

7 3
Time—

13 20 23

Fig. 12.18(a): Job completion time of the schedule: J;<J, is 23.

Machines J, 1

M,

M,

M;

0 Time

Fig. 12.18 (b): Job completion time of the schedule: J, <J; is 28.

One important parameter in the flowshop scheduling problem is the
‘flow time’. The flow-time of job k means the absolute time of completion of



job k from time 0. For example, the flowtime of job J; and J, in the schedule
J1<J, is 20 and 23 respectively. Total Flow Time (TFT) is defined as the sum
of the flow-time of all the jobs in the schedules, which in this case is
20+23=43 units of time. The reduction in total flow time is an active research
on flowshop scheduling problem. One approach to solve the problem is
through selection of a set of heuristic strategies. We call it heuristic, as it
yields good results in most cases but is not guaranteed to produce good results
always. Rajendran and Chaudhuri [5] developed a set of three strategies of
R-C heuristics to solve this problem. The following notations will be required
to understand the R-C heuristics.

Let

> be a partial schedule of jobs; for instance if there exists jobs J;, J,, J; one
partial schedule could be J;<J;, when the complete schedule is J;<J3<J,.

Y. +J, denotes that job J, is appended with the partial schedule Y.

q( X +J,, k) denotes the completion time of a partial schedule at machine
k.

Obviously, q( X +J,, m) denotes the completion time of a partial schedule (X
+]J,) at the last machine.

12.6.1 The R-C Heuristics

A partial schedule Y, +J, is preferred to a partial schedule Y, +J, if the
following heuristics are satisfied:
) Max [q (X +., j-1)-q(Z, j), 0]
<=Max[q(X +ly)—- q(Z, j),0]
This heuristic attempts to reduce the sum of idle time of the machines.
ii) abs [q(X +a,j-1)-q( Z, j)]

<=abs [q(X Hpj-D—qZ, j)I

This criterion attempts to reduce both the idle time of machines and the
waiting time of jobs.



iif) abs[q(X +1,,j-1) —q( X, ) +qX + 1o, J)]

<=abs[q(X +Jp, j-D—qZ, )+aE  +b )]

This heuristic takes into account the criteria of the completion of the
resultant partial schedule at various machines, in addition to the factors
considered in heuristic 2.

The jobs like J, are thus appended to the partial schedule, if it satisfies all
the last three ( or most of the) criteria. The resulting schedule of jobs has been
found to be near-optimal from the point of view of TFT minimization [5].

12.7 Summary

This chapter covered an exhaustive survey of the existing methods of
intelligent planning. The drawbacks of linear planning have been overcome by
posting constraints in least commitment planning. The hierarchical task
network planning requires minimum search and thus is useful for complex
planning problems. A new type of complex task planning is illustrated with
the flow-shop  scheduling problem. Here the schedule of jobs is
interdependent and thus finding a complete plan for the problem is difficult. A
heuristic approach to solve the problem, however, saves much computational

time but cannot guarantee the optimal solution for the problem.
Exercises

1. Given the following initial and the goal state for the Blocks world
problem. Construct a set of operators (Rules) and hence generate a plan to
reach the goal state from the initial state.

Initial State: On (C, A),
Clear (C),
On (B, Table),
Clear (B).

Goal State: On (B, A),
On (C, B).

2. Realize the above plan by the least commitment planning.



3. Design a hierarchical plan for the construction of a house building. Clearly

[1]

[2]

[9]

mark at least two sub-plans, which cannot be realized at the next level of
the tree.

Given three machines M;, M,, M; and four jobs J;, J,, J3, Js. The
technological order of the machines is M;, M,, M3 in order. Assign a fixed
time to each job on a given machine and represent it in matrix form. Use
the RC heuristics to generate the schedule of jobs.
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13

Machine Learning
Technigues

The chapter outlines four different categories of machine learning
techniques, such as i) supervised learning, ii) unsupervised learning, iii)
reinforcement learning and iv) learning by inductive logic programming.
Among the supervised class of machine learning much stress is given to
‘decision tree learning’ and ‘versions space-based learning’. The
unsupervised class of learning is introduced briefly with an example
classification problem. The reinforcement learning covered in the chapter
includes Q-learning and temporal difference learning. The principle of
inductive logic programming is introduced from the first principle and
illustrated with an example, involving common family relations. The chapter
ends with a discussion on the computational theory of learning .

13.1 Introduction

Learning is an inherent characteristic of the human beings. By virtue of this,
people, while executing similar tasks, acquire the ability to improve their
performance. This chapter provides an overview of the principle of learning
that can be adhered to machines to improve their performance. Such learning
is usualy referred to as ‘machine learning’. Machine learning can be broadly
classified into three categories. i) Supervised learning, ii) Unsupervised
learning and iii) Reinforcement learning. Supervised learning requires a



trainer, who supplies the input-output training instances. The learning system
adapts its parameters by some agorithms to generate the desired output
patterns from a given input pattern. In absence of trainers, the desired output
for a given input instance is not known, and consequently the learner has to
adapt its parameters autonomously. Such type of learning is termed
‘unsupervised learning’. The third type called the reinforcement learning
bridges a gap between supervised and unsupervised categories. In
reinforcement learning, the learner does not explicitly know the input-output
instances, but it receives some form of feedback from its environment. The
feedback signals help the learner to decide whether its action on the
environment is rewarding or punishable. The learner thus adapts its
parameters based on the states (rewarding / punishable) of its actions. Among
the supervised learning techniques, the most common are inductive and
analogical learning. The inductive learning technique, presented in the
chapter, includes decision tree and version space based learning. Analogical
learning is briefly introduced through illustrative examples. The principle of
unsupervised learning is illustrated here with a clustering problem. The
section on reinforcement learning includes Q-learning and temporal difference
learning. A fourth category of learning, which has emerged recently from the
disciplines of knowledge engineering, is caled ‘inductive logic
programming’. The principles of inductive logic programming have also been
briefly introduced in this chapter. The chapter ends with a brief discussion on
the ‘computational theory of learning’. With the background of this theory,
one can measure the performance of the learning behavior of a machine from
the training instances and their count.

13.2 Supervised Learning

As aready mentioned, in supervised learning a trainer submits the input-
output exemplary patterns and the learner has to adjust the parameters of the
system autonomously, so that it can yield the correct output pattern when
excited with one of the given input patterns. We shall cover two important
types of supervised learning in this section. These are i) inductive learning and
ii) analogical learning. A number of other supervised learning techniques
using neural nets will be covered in the next chapter.

13.2.1 Inductive Learning

In supervised learning we have a set of {x, f (x)} for 1£i £ n, and our aim is
to determine ‘f* by some adaptive algorithm. The inductive learning [7-12] is
a special class of the supervised learning techniques, where given a set of {x,
f(%)} pairs, we determine a hypothesis h(x) such that h(x ) » f(x), "i. A
natural question that may be raised is how to compare the hypothesis h that
approximates f. For instance, there could be more than one h(x) where al of



which are approximately close to f(%). Let there be two hypothesis iy and h,
where hy(x) » f(x) and hy(%) = f(x%). We may select one of the two
hypotheses by a preference criterion, called bias [10].

When { x, f(%)}, 1£ " i £n are numerical quantities we may employ the
neural learning techniques presented in the next chapter. Readers may
wonder: could we find 'f' by curve fitting as well. Should we then call curve
fitting a learning technique? The answer to this, of course, is in the negative.
The learning algorithm for such numerical sets {x, f(x)} must be able to
adapt the parameters of the learner. The more will be the training instance, the
larger will be the number of adaptations. But what happens when x and ()
are non-numerical? For instance, suppose given the truth table of the
following training instances.

Truth Table 13.1: Training Instances

Input Instances | Output Instances
a, a®b by
&, a ® b o7}
&, a® by bn

Here we may denote b =f (a, a ® by) for all i=1 to n. From these training
instances we infer a generalized hypothesis h as follows.

h° "i(a,a® b)P b.

We shall now discuss two important types of inductive learning: i) learning by
version space and ii) learning by decision tree.

13.2.1.1 Learning by Version Space

This is one of the oldest forms of inductive learning, which was popularized
by Mitchell [8] in the early 80's. An application package LEX was also built
that works on the principles of version space. LEX was designed to perform
symbolic integration. We start this section with a few definitions and then
cover the well-known ‘candidate elimination algorithm’ [9] and finaly
demonstrate the application of the algorithm in LEX.



Definition 13.1: An object is an entity that can be described by a set of
atributes. For instance, a box is an object with attribute length, breadth,
height, color and the material of which it is made.

Definition 13.2: A class is a subset of a universe of objects, which have
common attributes. For example, ‘easy chair’ could be a class in the universe
of object ‘chair’.

Definition 13.3: A concept is a set of rules that partitions the universe of
objects into two sets; one set must satisfy the rules and the others should
not. Thus the concept of easy chairs should support the attributes of easy chair,
and should not match with the attributes of other chairs.

Definition 13.4: A hypothesis is a candidate or tentative concept that is
asserted about some objects in the universe. For example, a hypothesis of
‘easy chair’ should be a candidate concept that must be supported by most of
the attributes of the objectsin its class.

Definition 13.5 : The target concept is a concept that correctly classifies all
the objectsin the universe [11].

Definition 13.6: The exemplary objects and their attributes that support the
target concept are called positive instances.

Definition 13.7: The exemplary objects and their attributes that do not
support (or contradict) the target concept are called negative instances.

Definition 13.8: A rule that is true for all positive instances and false for all
negative instancesis called a consistent classification rule (concept).

Definition 13.9: ‘Induction’ refers to the process of class formation. In
other words it includes the steps by which one can construct the target
concept.

Definition 13.10: Selective induction is a form of induction by which class
descriptions are formed by employing the attributes and their relations that
appear only in the positive instances [11].

Definition 13.11: Constructive induction is a form of induction by which
new descriptors not found in any of the instances are constructed.

Definition 13.12: A specialization rule (or concept) is a rule that can
classify one sub-class of an object from its class. For instance, the
specialization rule for easy chair can easily isolate them from the class



“chair’. A specialization rule may employ one or more of the following
operators:

i) Replacing variables by constants; for instance, color
(red) could be specialized to color (ball, red).

i) Adding condition to a conjunctive expression; for
example, in the concept of chair, we may add one or
more conjunctive terms like has-a-slant-surface-of
(chair).

iii) Eliminating a disjunctive literal from an expression; for
example, one can eliminate Color (X, red) from Color
(X, red) U Size (X, large), to specialize arule.

iv) Replacing a property with its child in its class hierarchy;
for example, if we know primary color is a super-class
of (green) then we can replace color (x, primary color)
by color (x, green), for specializing arule.

Definition 13.13: A generalization of a set of rules is arule that can group
a set of classes (sub-classes) into a super-class (class) by employing inverse
operators, corresponding to those defined in specialization rule. Formally, the
operators are:

i) Replacing constants by variables,

ii) Deleting a condition from conjunctive expressions,

iii) Adding adisunctive literal to an expression, and

iv) Replacing a property with its parent in a class hierarchy.

Definition 13.14: The constructive generalization is a generalization of
the rules with the additional relations, not available in the existing instances.
For example, if block A is on the table, block B ison A and block C is on B,
we can write

On (A , table) U On (B, A) U On (C, B),

from which we can generalize, topmost block (C) U bottommost block (A),
which are not present in the previous descriptions.

Definition 13.15: Inductive bias is defined as a set of factors that influence
the selection of hypothesis, excluding those factors that are directly related to
the training instances. There exist two types of bias in general: i) restricting
hypothesis from the hypotheses space and ii) the use of a preferential ordering
among the hypotheses [11].



The restriction of hypotheses can be implemented by adding a conjunct
to the previous hypothesis. The preferentia ordering among the hypotheses
can be made by a heuristic evaluation function that excludes some objects
from the target concept. The hypothesis that is not supported by the excluded
classis preferred to the hypothesis that is supported by it .

The Candidate Elimination Algorithm

The candidate elimination algorithm is employed to reduce the concept
(version) space from both general to specific and from specific to general
form. It, thus, is a bi-directional search. Positive instances are used for
generalization and negative instances are utilized to prevent the algorithm
from over-generalization. The learned concept will, therefore, be genera
enough to include all positive instances and exclude all negative instances.
We now present the procedure candidate-elimination [5], [9].

Procedure Candidate-Elimination

Begin
Initialize G to be the most general concept in the space
Initialize Sto be the first positive training instance

For each new positive instance p do

Begin
Eliminate the members of G that do not match with p;
foral sl S, if sdoesnot match with p, replace s with its most
specific generalization that match with p;
Eliminate from S any hypothesis that is more general than some
other in S;
Eliminate from S any hypothesis, which is no more specific than
some hypothesisin G;

End For;

For each negative instance n do
Begin
Eliminate all members of S that match with n;
for each g1 G that matches with n, replace g by its most general
specialization that does not match with n;
Eliminate from G any hypothesis, which is more specific in some
other hypothesisin G;
Eliminate from G any hypothesis, which is more specific than
some other hypothesisin S;
End For
If G=/ and S=4 Then report “no concept supports all positive and
refutes all negative instances’;



If G=S and both contain one element, Then report “a single concept,

that supports al positive and refutes all negative instances, has been
found”.
End.

Example 13.1: This example illustrates the candidate elimination procedure

with the following positive and negative training instances.

G: {ob (xy.2)} Ob (large, blue, ball)

S {f} (positive)
c: {ob(xy,2)} Ob (small, yellow, ball)
(positive)

S: {ob(large,blue,ball)}

= —

Ob (small, blue, cone)
G{ob (x,y,ball)}

(negative)
S{ob (x,y,bal) }
G{ob (x, y, ball)} Ob(small,green,cube)
(negative)

S{ob (x, y, bal)}

E

c:{ob (x,y,ball)}

S: {ob (x,y,ball)}

Fig. 13.1: lllustrating the candidate elimination algorithm.



Positive instances:

1. Object (large, blue, ball)
2. Object (small, yellow, ball)

Negative instances:

1. Object (small, blue, cone)
2. Object (small, green, cube)

Fig. 13.1 illustrates the trace of the candidate elimination agorithm. In the
first step G is assigned to ob (X, y, z) and Sto {A} set. Then because of the
first positive instance, S is updated to {ob (large, blue, ball)}, but G remains
same. In the next state, the second positive instance is supplied and G and S
become

G={ ob(x,y,bal)} and
S={ ob(x,y,bal)}

It is to be noted that G=S, but the algorithm is continued further to take into

account the negative instances. The next two steps, however, caused no
changesin either G or S.

The LEX System
LEX learns heuristic rules for the solution of symbolic integration. The
system possesses about 40 rules (operators) of integration. A few rules of
integration are presented below.

OPL: 1*f(x) ® f(x)," rea f(x)

OP2: &*f(x)dx ® cd(x)dx, " constant c

OP3: df; (xX) +f, (X)}dx® d(X)dx + d,(X)dx

OP4: os(X)dx ® sin(x)

OP5: Gin(xX)dx ® -cos(x)

OP6: oudv® uv-0ovdu

When any of the left hand side occurs in an expression, LEX replaces it

by the right hand side of the‘*® ’ operator. This is called a heuristic. The most
significant feature of LEX is that it can control the bounds of the version



(concept) space by generalization and speciaization rules. Lex generalizes
expressions by replacing a symbol by its ancestors following a generalization
tree grammar. A portion of the generalization tree grammar is given in fig.
13.2.

Function(arguments)

T

primary Comb (f1,2)

Polynomial

trig

AN

Fig. 13.2: A segment of the LEX generalization tree.

The architecture of LEX comprises four basic modules, as shown in
fig.13.3. For the sake of training, the problem generator generates sample
training problems and the problem solver attempts to solve it by employing
available heuristics and operators. A solution is obtained when the operator
yields an expression free from integration. The critic analyses the solution
trace and produces positive and negative training instances from the solution
trace. The generalizer performs candidate elimination to learn new heuristics.

training solution
Problem instances Problem traces
—p| Generator +———Pp{ Solver P
labeled
learned training
hwr|a| Cs Opermors
Generdizer Critic
«— «——— <«

Fig. 13.3: The architecture of LEX.



To illustrate how LEX performs integration, let us assume that the
problem generator submits the integral I, where

| = 0 é*sin(x) dx.

The problem solver determines that the nearest rule is OP6 and thus
employs that rule. Thus two instances generated by the critic are

) f1(x) = €, fo(x) = sin(x)
i) f1(x) = sin(x), fo(x) = €~
The generalizer first initializes G= 0f;(X)* f,(X) dx. Further, initialy the

specialized function S= 0 €*sin(x) dx. The version space is thus formed like
fig. 13.4.

G: of1(x) f2(x) dx

—

otrig.exp dx oexp.trig dx

asin(x) & dx 0 sin(x) dx

S & sin(x)dx

Fig. 13.4: Version space of & sin(x)dx.

G=S occurs when the generalizer moves up to &in(x)e”dx or desin(x) dx.
The LEX system thus learns that OP6 is the best rule to be applied to some
tree problem.



13.2.1.2 Learning by Decision Tree

A decision tree receives a set of attributes (or properties) of the objects as
inputs and yields a binary decision of true or false values as output. Decision
trees, thus, generally represent Boolean functions. Besides a range of {0,1}
other non-binary ranges of outputs are also allowed. However, for the sake of
simplicity, we presume the restriction to Boolean outputs. Each node in a
decision tree represents ‘a test of some attribute of the instance, and each
branch descending from that node corresponds to one of the possible values
for this attribute’ [8], [10].

To illustrate the contribution of a decision tree, we consider a set of
instances, some of which result in a true value for the decision. Those
instances are called positive instances. On the other hand, when the resulting
decision is false, we call the instance ‘a negative instance’ [12]. We now
consider the learning problem of a bird’s flying. Suppose a child sees different
instances of birds as tabulated below.

Table 13.2: Training Instances

Instances| No. of wings| Brokenwingg Living statu§ Wing area/ Fly
if any weight of bird

1 2 0 aive 25 True
2. 2 1 dive 25 False
3. 2 2 aive 26 False
4. 2 0 aive 30 True
5. 2 0 dead 32 False
6. 0 0 dive 0 False
7. 1 0 alive 0 False
8. 2 0 aive 34 True
9. 2 0 dive 20 False

It is seen from the above table that Fly = true if (no. of wings=2)U
(broken wings=0)U(living status-alive)U((wing area / weight) of the bird 3 2.5)
istrue.

Thus we can write:

Fly = (no. of wings = 2) U (broken wings=0) U (living status = alive) U
(wing area/ weight (A/W)3 2.5)



No. of wings

2 1 0
Broken wings No No
Va
0 1 2
Living status No No

dead
Z=AW No

ZE£25 Z2>25

Yes No

Fig. 13.5: A decision tree describing the instance for aflying bird;
each leaf describes the binary value of ‘Fly’.

The decision tree corresponding to the last expression is given in
fig.13.5. In thisfigure if no. of wings is less than 2, Fly = false appears at the
next level of theroot. If no. of wings =2, then we test: how many wings are
broken. If it is 0, we check whether the living status = alive, else we declare



Fly =false. Further if living status =alive, we check whether Z=A/W 3 25. If
yes, Fly =true, else Fly is declared false.

A question then naturally arises: in what order should we check the
attribute value of the instances in a decision tree? In answering this question
we need to know: which attribute is more vital? To measure the vitality of the
attributes we require a statistical property called information gain, which will
be defined shortly. The information gain depends on a parameter, called
entropy, which is defined as follows:

Given a collection S of positive and negative instances for a target
concept (decision). The entropy S with respect to this Boolean classification
is:

Entropy (S) © -pos log, (pos) — neg log, (neg) (13.1)

where ‘pos’ and ‘neg’ denote the proportion of positive and negative instances
in S. While calculating entropy, we define Olog (0) =0 .

For illustration, let us consider S that has 3 positive and 6 negative
instances. We, following Mitchell [10], adopt the notation [3+, 6-] to
summarize this sample of data. The entropy of S with respect to the
Boolean classifier Fly isgiven by

Entropy [3+, 6-]

-(3/9)log,(3/9)- (6/9)log, (6/9)

-(U3) log » (1/3) - (2/3) log » (2/3)

-(W3) log » (1/3) - (U3)log »(4/9)

-(W3) [ log2(1/3) + log2(4/9) 1]

-(U3) [logo(4/27)]

0.9179.

It is to be noted that when all the instances are either positive or
negative, entropy is zero, as neg or pos =1. Further, when neg = pos = 0.5,
entropy is 1; when neg * pos, entropy must lie in the interval [0,1].

When the classifier has an output range that takes c different values,
then entropy of S with respect to this c-wise classification will be
c
Entropy (S) =4i=1 -P log (P) (13.2)



where P; denotes the proportion of S belonging to classi.

It has already been pointed out that the order of checking the
attributes requires a measure of information gain for those attributes.
Information gain of an attribute A in a set of training instances Sis given by

Gain (S, A)
° Entropy (S)- & ( IS/ |/ [S]) Entropy (S) (13.3)
vl vauesof A
where | §/| denotes the subset of S, for which attribute A has value v. The
[X| denotes cardinality of xfor x1 { S, ,S}.
For the sake of illustration, let us compute thegain ('S, living status). Here,
S= [ 3+1 6_] ’ Sa]ive = [3+1 5_] and Siead: [O+11_]'
Therefore,

Gain (S, living status)

=Entropy (S) - & (IS |/ |S|) Entropy (S,)
v 1 {aive, dead}

= Entropy (S) —(|Saivel / IS]) Entropy (Suive) — ( [Sseadl / IS]) Entropy ( Syead)
(13.4)
where
YSiuive”2 = 8, YSyead¥2 =1, ¥S/2 =9.

Entropy (Suive)

Entropy [ 3+, 5-]

-(3/8)log (3/8) - (5/8) log (5/8)

0.5835

and Entropy (Syead)
= Entropy [0+,1-]

= -(0/1)log » (0/1) — (L/4)log » (1/1) = 0-0 = 0.



Substituting the above values in (13.4) we found:
Gain (S, living status)
=0.9179 — (8/ 9) x 0.5835

=0.3992.

ID3 is one of such systems that employs decision trees to learn object
classifications from labeled training instances. For obtaining a decision tree of
smaller size (lesser no. of nodes), ID3 measured information gain of all
attributes and expanded the nodes of the tree based on the order of the
attributes, following the descending sequence of their information gain.

13.2.2  Analogical Learning

In inductive learning we observed that there exist many positive and negative
instances of a problem and the learner has to form a concept that supports
most of the positive and no negative instances. This demonstrates that a
number of training instances are required to form a concept in inductive
learning. Unlike this, analogical learning can be accomplished from a single
example. For instance, given the following training instance, one has to
determine the plural form of bacilus.

Problem Instance

Input (singular)| Output (plural)

fungus fungi

Obviously, one can answer that the plural form of bacillusis bacilli. But
how do we do so? From common sense reasoning, it follows that the result is
because of the similarity of bacillus with fungus. The analogical learning
system thus learns that to get the plural form of words ending with ‘us’ is to
replaceit with ‘i’. We demonstrate thisin fig.13.6.

The main steps in analogical learning are now formalized below.

1. Identifying Analogy: Identify the similarity between an
experienced problem instance and a new problem.

2. Determining the Mapping Function: Relevant parts of the
experienced problem are selected and the mapping is
determined.



3. Apply Mapping Function: Apply the mapping function to
transform the new problem from the given domain to the target
domain.

4. Validation: The newly constructed solution is validated for its
applicability through its trial processes like theorem or
simulation [11].

5. Learning: If the validation is found to work well, the new
knowledge is encoded and saved for future usage.

Singular form Plural form
us® i
New
Instance: bacillus A
I

‘us’ in last two Y +
letters Similarity: fung
Detect similarity Difference: Us

;_» us _>i

Fire
Mapping from
base to target
domain

Fig. 13.6: Learning from an example.



Analogical reasoning has been successfully realized in many systems.
Winston's analogical system [14] was designed to demonstrate that the
relationship between acts and actors in one story can explain the same in
another story. Carbonell’s [1] transformational analogy system employs a new
approach to problem solving. It solves new problems by modifying existing
solutions to problems until they may be applied to new problem instances.

13.3 Unsupervised Learning

In supervised learning the input and the output problem instances are
supplied and the learner has to construct a mapping function that generates
the correct output for a given input pattern. Unsupervised learning, however,
employs no trainer. So, the learner has to construct concepts by experimenting
on the environment. The environment responds but does not identify which
ones are rewarding and which ones are punishable activities. This is because
of the fact that the goals or the outputs of the training instances are unknown;
so the environment cannot measure the status of the activities of the learner
with respect to the goals. One of the simplest ways to construct concept by
unsupervised learning is through experiments. For example, suppose a child
throws a ball to the wall; the ball bounces and returns to the child. After
performing this experiment a number of times, the child learns the ‘principle
of bouncing'. This, of course, is an example of unsupervised learning. Most of
the laws of science were developed through unsupervised learning. For
instance, suppose we want to learn Ohm's law. What should we do? We
construct a simple circuit with one cell, one potentiometer, one voltmeter and
one ammeter. Each time we set the potentiometer to a position and measure
the reading of the voltmeter and ammeter. After taking around 100 readings,
suppose we plot ‘the current’ against the ‘voltage drop across the
potentiometer’. Then we find that the voltage across the potentiometer is
proportional to the current passing through it, what al of us know to be the
standard Ohm'’s law. It is to be noted that we do not perform experiments to
learn a specific law. Rather the experimental results reveal a new concept/law.
Let us take another example to illustrate the principles of concept formation
by unsupervised learning. Suppose, we want to classify animals based on their
speed and height/weight ratio. We, for example, take sample animals and
measure the above features and then plot these on atwo dimensional frame.

What result should we derive? It may be found from fig.13.7 that cows,
dogs, tigers and foxes form different classes. Further, there is an overlap in the
classes of foxes and dogs.

Now, if we are given a measured value of the speed and height/ weight
ratio of an unknown animal, we can easily classify it, unless it does not
coincide with the overlapping classes. An overlapped region cannot correctly



determine the animals because it does not include the sufficient features to
describe the animal. For illustration, both foxes and dogs have comparable
speed and height/weight ratio. So, other features like shape of face, etc. are
required to differentiate them.

® ° otiger
o 6 0 o
o 06 0 o
T v Vv Vv fOX
v v v
Height /
weight 0000
ratio X X 000 O dog
XX X X
X X X
cow

Fig. 13.7: Learning animals through classification.

In fact, the identification of the features itself is a complex problem in
many situations, especially when the problem characteristics are not clearly
known. We, for instance, consider an example from the biological
classification problems. ‘Phospholipid vesicles are the major components of
biological cell membranes and the classification of these vesicles is a
significant problem for the biologists. My colleague Lahiri [3-4] took up this
problem as part of hisPh. D. thesis and finally reached a conclusion that a 2-
dimension classification of the phospholipids can be carried out by two
features: i) porosity of the vesicles and ii) their mass fractal dimension. The
formal definitions [3-4] of these features are beyond the scope of the book.
Informally, porosity can be expressed as the normalized area of the porous
regions on the 2-D images of the vesicles. On the other hand, fractals are
specia type mathematical functions f(x) that are applied recursively on a
randomly selected point x in a given space. After a large finite number of
recursions, the graphical plot of the resulting points: {x, f(f(f(..x)))}, for rea x
and f, sometimes form interesting geometric shapes. Informally, the fractal
dimension has relevance with the smallest dimension of the repetitive
structures in the recursive functional plot. A formal definition of fractal
dimension can be given following Haussdorff-Besicovitch dimension [2], [6]



which, however, is not presented here to maintain continuity of the present
context.

The microscopic view of the three common vesicular aggregates, studied
by Lahiri [3], is presented below. It demonstrates that the 2-D spatial
periodicity

(@) b)

DMPC = Dimyristoyl phosphatidylcholine

Fig. 13.8: Digitized images for the vesicular clusters made by (a) DMPC,
(b) DMPC in presence of spectrin and (c) a mixed lipid system
made by DMPC and cholesterol, obtained from a Phase Contrast
Microscope.

(structural repetitiveness) of the texture of these vesicular clusters has
considerable differences in microscopic observation, and as a consequence
their classification from 2-D features is feasible. A non-linear 2-D
classification of these three vesicular aggregates has been presented in fig.
13.9. It is observed from the figure that the boundaries of the classes (b) and
(c) have a small separation, while that of () & (b), and (a) & (c) have a large
spatial gap. The results also intuitively follow from the microscopic view.

Not only in Biology, but in almost every branch of Science, pattern
classification is of immense importance. In Psychology, for example, pattern
classification is used to classify people of different mental diseases for
treatment by a common therapy. In criminology the fingerprint of a suspect is
classified into typical classes prior to matching it with known fingerprint
databases of that class. Whatever be the problem, the main task in pattern
classification is to extract the features, for which no automated methods is
known to date.

13.4 Reinforcement Learning

In reinforcement learning, the learner adapts its parameters by determining the
status (reward / punishment) of the feedback signal from its environment. The



simplest form of reinforcement learning is adopted in learning automata.
Currently Q-learning and temporal difference learning have been devised
based on the reward/ punishment status of the feedback signal.
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Fig.13.9: A classification scheme is made by constructing a two
dimensional feature space by fractal dimension and porosity to
classify the phospholipid vesicles from the images of their
aggregates.

13.4.1 Learning Automata

Among the well-known reinforcement learning schemes, the most common is
the learning automata. The learning mechanism of such a system includes
two modules: the learning automation and the environment. The learning
cycle starts with the generation of a stimulus from the environment. The
automation on receiving a stimulus generates a response to the environment.
The environment receives and evaluates the response and offers a new
stimulus to the automation. The learner then automatically adjusts its
parameters based on the last response and the current input (stimulus) of the
automation. A scheme for learning automation is presented in fig. 13.10.



Here the delay unit offers unit delay, to ensure that the last response and the
current stimulus enter the learner concurrently.

p | Environment
< Automation «——
TTITT e
_ _ parameters
—p P
Delay Learner |
Learning Automation

Fig. 13.10: The learning scheme in alearning automation.

The principles of |earning automata can be extended for applications to
many real world problems. One illustrative example, realized with the above
principle, is the NIM game. In a NIM game there are three sets of tokens
placed on a board, as shown in fig. 13.11. The game requires two players.
Each player, in his/ her turn, has to remove at least one token but cannot
access tokens from more than one row. The player who has to remove the last
token is the loser, and obviously the opponent is the winner.

0 o 0 o o

Fig. 13.11: The NIM game.



Let us now assume that the game is being played between a computer
and a person and the computer keeps a record of the moves it has chosen in al
its turns in a game. Thisis recorded in a matrix, where the (i, j)-th element of
the matrix stands for the probability of success, if the computer in its turn
makes a change from j-th to i-th state. It is to be noted that the sum of al
elements under each column of the above matrix is one. This directly follows
intuitively, since the next state could be any of the possible states under one
column. The structure of the matrix is presented in fig. 13.12.

It should be added that the system learns from a reward-penalty
mechanism. This is realized in the following manner. After completion of a
game, the computer adjusts the elements of the matrix. If it wins the game,
then the elements corresponding to al its moves are increased by d and the
rest of the elements under each column are decreased equaly, so that the
column-sum remains one. On the other hand, if the computer loses the game,
then the elements corresponding to its moves are decreased by d and the
remaining elements under each column are increased equally, so that column
sum remains one.

After alarge number of such trials, the matrix becomes invariant and the
computer in itsturn selects the state with highest probability under a given
column.

13.4.2 Adaptive Dynamic Programming

The reinforcement learning presumes that the agent receives a response from
the environment but can determine its status (rewarding/punishable) only at
the end of its activity, called the terminal state. We also assume that initially
the agent is at a state § and after performing an action on the environment, it
moves to anew state §. If the action is denoted by &, we say

23]
S ® S,

i.e., because of action &, the agent changes its state from § to S. Further, the
reward of an agent can be represented by a utility function. For example, the
points of a ping-pong agent could be its utility.

The agent in reinforcement learning could be either passive or active. A
passive learner attempts to learn the utility through its presence in different
states. An active learner, on the other hand, can infer the utility at unknown
states from its knowledge, gained through learning.



To
State

135

134

133

132

124

Fig. 13.12: A part of the state transition probability matrix in NIM game.

From state

135 134 133 125
# # # #| # #
19 # # #
1/9 18 # #
179 | 18 1/7 # #
# 18 # # 8| ...

‘# meansinvalid state.

Goal
S S S
S S ]
Start
S S S

S denoctesthe i-th state.

Fig. 13.13: A simple stochastic environment.



How can we compute the utility value of being in a state? Suppose, if
we reach the goa state, the utility value should be high, say 1. But what
would be the utility value in other states? One simple way to compute static
utility values in a system with the known starting and the goal state is given
here. Suppose the agent reaches the goal S; from § (fig. 13.13) through a
state say S. Now we repeat the experiment and find how many times S, has
been visited. If we assume that out of 100 experiments, S is visited 5 times,
then we assign the utility of state S, as 5/100=0.05. Further we may assume
that the agent can move from one state to its neighboring state (diagonal
movements not allowed) with an unbiased probability. For example, the agent
can move from S to S, or S (but not to Ss) with a probability of 0.5. If itisin
S, it could moveto S;, S,, Sg or S with a probability of 0.25.

We here make an important assumption on utility.

“The utility of sequence is the sum of the rewards accumulated in the
states of the sequence” [13]. The static utility values are difficult to extract as
it requires large number of experiments. The key to reinforcement learning is
to update the utility values, given the training sequences[13].

In adaptive dynamic programming, we compute utility U(i) of state i by
using the following expression.

U(i) = R{) + &~ M;; U() (13.5)

where R(i) is the reward of being in state i, Mij is the probability of transition
from statei to statej.

In adaptive dynamic programming, we presume the agent to be passive.
So, we do not want to maximize the & M;; U(j) term.

For a small stochastic system, we can evaluate the U(i), " i by solving
the set of al utility equations like (13.5) for all states. But when the state
space islarge, it becomes somewhat intractable.

13.4.3 Temporal Difference Learning

To avoid solving the constraint equations like (13.5), we make an alternative
formulation to compute U(i) by the following expression.

U@i) - U@)+a[ R@i)+(UG) -U(@) ] (13.6)

wherea isthelearning rate, normally set in [0, 1].



In the last expression, we updated U(i) by considering the fact that we
should allow transition to state j from state i, when U(j) >> U(i). Since we
consider temporal difference of utilities, we call this kind of learning temporal
difference (TD) learning.

It seems that when a rare transition occurs from state j to state i, U(j)-
U(i) will betoo large, causing U(i) large by (13.6). However, it should be kept
in mind that the average value of U(i) will not change much, though its
instantaneous value seems to be large occasionally.

13.4.4 Active Learning

For passive learner, we considered M to be a constant matrix. But for an
active learner, it must be a variable matrix. So, we redefine the utility
equation of (13.5) as follows.

U(i) = R(i) +Maxaa-j M2 U()) (13.7)
where M;;* denotes the probability of reaching state j through an action ‘&
performed at state i. The agent will now choose the action a for which M is

maximum. Consequently, U(i) will be maximum.

13.4.5 Q-Learning

In Q-learning, instead of utility values, we use g-values. We employ Q(a, i) to
denote the Q-value of doing an action a at state i. The utility values and Q-
values arerelated by the following expression:

U(i) = maxa Q(a, i). (13.8)

Like utilities, we can construct a constraint equation that holds at equilibrium,
when the Q-values are correct [13].

Q(a i) = R(i) + &M;;>maxy Q(a,i). (13.9)
The corresponding temporal-difference updating equation is given by
Qa i) = Q(a i) + a[ R(i) + max(a, j) - Q(a, i) ] (13.9(a))
which isto be evaluated after every transition from state i to statej.

The Q-learning continues following expression 13.9 (a) until the Q-values at
each statei in the space reaches a steady value.



13.5 Learning by Inductive Logic
Programming

Inductive logic programming (ILP) employs an inductive method on the first
order clauses through a process of inverse resolution. The ILP can generate
new predicates and is therefore called constructive induction.

Let us first start with the resolution theorem of predicate logic.
Suppose we have two clauses C; and G, given by

Ci. =Maeg(X) = Boy(X)

and C, = Boy(ram).

So,Ci= @ Boy(X) UMale(X). (13.10)
Let literal Ly = @ Boy (X) (13.11)
and L, = Boy (ram) (13.12)

Let the unifying substitution g={ram / X}. We can now write

L,g =9 L,q = I Boy (ram). Now, after resolving C; and C,, suppose we obtain
theresolvent C, where

C =Male(ram). Thus C is the union of (C;-{L;})q = Male(Ram)
and (C-{L2})q = f.
Formally, we can always write C = (C-{ L.})q E (C-{L2})q (13.13)
The unifying substitution g can be factored to q; and g, [10], i.e.
q=0102 (13.149)

whereq; contains all the substitutions involving variables from clause G, and
g2 contains all the substitutions involving variables from C,. Thus

C=(C-{L1})a1 E (Co{ L2} )2
where ' denotes set difference operator. We can re-express the above as
C—(C-{Li})a1 = (C-{ L2} )a2 (13.15)

whichfinally yields



C = (C-(C{L)an) a2 E Lo (13.16)
Further, L, = @ L1010 (13.17)
Substituting (13.17) in (13.16) we find

G = (C-(C-{Li))an)a ™ E (BL1as0z ") (1318)

The last expression describes an inverse resolution process. It is to be
noted that g, stands for inverse substitution, i.e. replacing constants by terms.

As an example, consider the two step inverse resolution shown in fig.
13.14, which ultimately yields a new piece of knowledge:

Grandfather (X, Z) = Mother (Y, Z) U Father (X, Y).
Let us now verify the steps of the computation .
First C, = Father (janak, sita) =L, and
C = Grandfather ( janak, lob).
Here, q;={ } and g, ={ X /janak }.
So, [C- (C-{La}) aul a2
= (Can)az*
= Grandfather (X, lob)
Further, @L.1q; g, ' = @Father (X, sita).
Thus the derived clause by (13.18) is Grandfather (X, lob) U @Father(X, sita).

The second step of inverse resolution can be verified easily in a similar
manner.

13.6 Computational Learning Theory

The main question on machine learning is. how does one know that his
learning algorithm has generated a concept, appropriate for predicting the
future correctly? For instance, in inductive learning how can we assert that our
hypothesis h is sufficiently close to the target function f, when we do not



know f ? These questions can be answered with the help of computational
learning theory.

Grandfather (X, Z) U @ Mother (Y,Z) U @ Father (X, Y)

Mother (sita, lob)

{Y / sita, Z / lob}

Grandfather (X, lob) V@ Father (X, sita)

Father (janak, sita)

{ X /janak }

Grandfather (janak , lob)

Fig. 13.14: A two step inverse resolution to derive: Mother (Y, Z) U
Father (X, Y) ® Grandfather (X,Z).

The principle of computational learning theory states that any
hypothesis, which is sufficiently incorrect, will be detected with a high
probability after experimenting with a small number of training instances.
Consequently, a hypothesis that is supported by a large number of problem
instances will be unlikely to be wrong and hence should be Probably
Approximately Correct (PAC).

The PAC learning was defined in the last paragraph w.r.t. training
instances. But what about the validity of PAC learning on the test set (not the
training set) of data. The assumption made here is that the training and the test
data are selected randomly from the population space with the same
probability distribution. This in PAC learning theory is referred to as
stationary assumption.

In order to formalize the PAC learning theory, we need a few notations
[13].

Let X = exhaustive set of examples,



D = distribution by which the sample examples are drawn,
m = cardinality of examplesin the training set,
H = the set of possible hypothesis,

and f = function that is approximated by the hypothesis h.

We now define an error of hypothesis h by
Error(h) = P(h(x) * f(x) ¥xeD)
A hypothesish is said to be approximately correct when
error(h) £ e,
where eis a small positive quantity.

When an approximate hypothesis h is true, it must lie within the e-ball around
f. When hlies outside the eball we call it abad hypothesis. [13]

Now, suppose a hypothesis h, T Hyaq is supported by first m examples. The
probability that a bad hypothesis is consistent with an example £(1-¢). If we
consider m examples to be independent, the probability that all m samples will
be consistent with hypothesis h, is £(1-€)™. Now, if Hpyyg has to contain a
consistent hypothesis, at least one of the hypothesis of Hpyy should be
consistent. The probability of this happening is bounded by the sum of
individual probabilities.

H yaq

Fig. 13.15: The ball around f.

Thus P(a consistent by T Hyag) £ | Hpaa | (1- €)™
EH@Q-em

where | Hpag | and |H| denotes the cardinality of them respectively. If we put a
small positive upper bound d to the above quantity: we find



[H| (1-9)"£ d
b m2 (Ve [In(L/d)+In (H)].

Consequently, if alearning algorithm asserts an hypothesis that is supported
by m number of examples, then it must be correct with a probability 3 (1-d),
when the error is £ e So, we can call it probably approximately correct.

13.7 Summary

The principles of learning have been introduced in the chapter through version
space, decision trees, inductive logic programming and learning automata.
The reinforcement learning is one of the most modern aspects of learning,
which has been covered thoroughly by Q-learning and temporal difference
learning. The concepts of computational learning theory have also been
outlined briefly to emphasize its significance to the readers. Computational
learning theory and inductive logic programming are two open areas of
research on machine learning. For instance, in inductive logic programming,
selection of one clause, say G, and the resolvent C for proving G from a
given set of clauses are not unique, and most selections will result in old
findings (existing in the knowledge base). Further, many possible Gs can be
generated from given clauses C and C,;. We hope that in the future the theory
could be extended to discover knowledge in practical systems.

Exercises
1. Draw adecision tree corresponding to the following expression:;

If (Weather = Hot U Humidity = High) U
(Weather = Cool U Humidity = Moderate) U
(Weather = rainy U Wind= Strong)

Then start reading a storybook.

2. Makealist of the entries: Weather, Humidity, Wind and Read storybook
of problem 1 in atabular form and hence find the information gain for
weather.

3. Show thetrace of the candidate elimination algorithm on the following
data sets.

Positive instances: a) object ( red, round, apple),
b) Object (green, round, mango);



Negative instances: a) Object (red, large, banana),
b) Object (green, round, guava).

4. Using the principles of inductive logic programming, determine the
clause C,, when C = Son (lab, ram) and C,= & Daughter (lob, ram).
5. Given the following clauses:
a Father (dasaratha, ram)
b) Grandchild (lob, dasaratha)
¢) Father (ram, lob).

Derive the following rule by the inverse resolution principle.

Grandchild (Y, X) U @ Father (X, Z) U @ Father (Z, Y)

(1]

(2]
(3]

(4]

(3]

(6]
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Machine Learning
Using Neural Nets

The chapter presents various types of supervised, unsupervised and
reinforcement learning models built with artificial neural nets. Among the
supervised models special emphasis has been given to Widrow-Hoff’s multi-
layered ADALINEs and the back-propagation algorithm. The principles of
unsupervised learning have been demonstrated through Hopfield nets, and the
adaptive resonance theory (ART) network models. The reinforcement learning
is illustrated with Kohonen’s self-organizing feature map. The concepts of
fuzzy neural nets will also be introduced in this chapter to demonstrate its
application in pattern recognition problems.

14.1 Biological Neural Nets

The human nervous system consists of small cellular units, called neurons.
These neurons when connected in tandem form nerve fiber. A biological
neural net is a distributed collection of these nerve fibers.

A neuron receives electrical signals from its neighboring neurons,
processes those signals and generates signals for other neighboring neurons
attached to it. The operation of a biological neuron, which decides the nature
of output signal as a function of its input signals is not clearly known to date.



However, most biologists are of the opinion that a neuron, after receiving
signals, estimates the weighted average of the input signals and limits the
resulting amplitude of the processed signal by a non-linear inhibiting function
[6]. The reason for the non-linearity as evident from current literature [26] is
due to the concentration gradient of the Potassium ions within a neuronal cell
with respect to the Sodium-ion concentration outside the cell membrane. This
ionic concentration gradient causes an electrical potential difference between
the inner and outer portion of the neuronal cell membrane, which ultimately
results in a flow of current from outside to inside the cell. A neuron, thus, can
receive signals from its neighboring neurons. The variation of weights of the
input signals of a neuron is due to the differences in potential gradient between
a neuron and its surrounding cells. After the received signals are processed in a
nerve cell, an invasion in diffusion current occurs due to the synaptic
inhibiting behavior of the neuron. Thus, the processed signal can propagate
down to other neighboring neurons.

A neuron has four main structural components [1]-[2]: the dendrites, the
cell body, the axon and the synapse. The dendrites act as receptors, thereby
receiving signals from several neighborhood neurons and passing these on to a
little thick fiber, called dendron. In other words, dendrites are the free
terminals of dendrons. The received signals collected at different dendrons are
processed within the cell body and the resulting signal is transferred through a
long fiber named axon. At the other end of the axon, there exists an inhibiting
unit called synapse. This unit controls the flow of neuronal current from the
originating neuron to receiving dendrites of neighborhood neurons. A
schematic diagram, depicting the above concept, is presented in fig.14.1.

Dendrites

Dendron
Synapse

¢ Cell body

Nucleus

Fig. 14.1: A biological neuron.



14.2 Artificial Neural Nets

An artificial neural net is an electrical analogue of a biological neural net [23].
The cell body in an artificial neural net is modeled by a linear activation
function. The activation function, in general, attempts to enhance the signal
contribution received through different dendrons. The action is assumed to be
signal conduction through resistive devices. The synapse in the artificial neural
net is modeled by a non-linear inhibiting function, for limiting the amplitude
of the signal processed at cell body.

w1 | ] =

Net —> Net —=>

Out = 1/(1+e N Out = tanh (Net/2)

(a) Sigmoid function (b) tanh function

Out T Out T

Net >
Out=+1, Net >0 Out=1,Net>0
=-1,Net<0 =0,Net=0
= undefined, Net =0. = undefined, Net < 0.
(¢) Signum function (d) Step function

Fig.14.2: Common non-linear functions used for synaptic inhibition. Soft non-
linearity: (a) Sigmoid and (b) tanh; Hard non-linearity: (c) Signum and
(d) Step.




The most common non-linear functions used for synaptic inhibition are:

sigmoid function
tanh function
signum function
step function

Sigmoid and tan hyperbolic (tanh) functions are grouped under soft non-
linearity, whereas signum and step functions are under hard type non-linearity.
These functions are presented graphically in fig. 14.2 for convenience.

The schematic diagram of an artificial neuron, based on the above
modeling concept, is presented in fig. 14.3.
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Fig. 14.3: An electrical equivalent of the biological neuron.

14.3 Topology of Artificial Neural Nets

Depending on the nature of problems, the artificial neural net is organized in
different structural arrangements (topologies). Common topologies (vide fig.
14.4) are:
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(@)




(e

Fig.14.4: Common topologies of artificial neural net: (a) single layered
recurrent net with lateral feedback, (b) two layered feed-forward
structure, (c) two layered structure with feedback, (d) three layered
feed-forward structure, (e) a recurrent structure with self-loops.

Single layered recurrent net with
lateral feedback structure,

Two layered feed-forward structure,
Two layered feedback structure,
Three layered feed-forward structure and

Single layered recurrent structure.

The single layered recurrent net with lateral feedback topology was
proposed by Grossberg [3], which has successfully been applied for
classifying analog patterns. The feed-forward structured neurals are the most



common structures for the well-known back-propagation algorithm [20]. Two
layered feedback structure, on the other hand, has been used by Carpenter and
Grossberg [3] for realization of adaptive resonance theory [4] and Kosko [13]-
[14] for realization of bi-directional associative memory. The last class of
topology shown in fig. 14.4(e) represents a recurrent net with feedback. Many
cognitive nets [12] employ such topologies. Another interesting class of
network topologies, where each node is connected to all other nodes bi-
directionally and there is no direct self-loop from a node to itself, has been
used by Hopfield in his studies. We do not show the figure for this topology,
as the readers by this time can draw it themselves for their satisfaction.

14.4 Learning Using Neural Nets

Artificial neural nets have been successfully used for recognizing objects from
their feature patterns. For classification of patterns, the neural networks should
be trained prior to the phase of recognition process. The process of training a
neural net can be broadly classified into three typical categories, namely,

e  Supervised learning
e Unsupervised learning

e Reinforcement learning.

Input Target
Feature Feature

Neural Net > <

Weight/ threshold Error
adjustment Vector

Supervised Learning Algorithm

Fig. 14.5: The supervised learning process.

14.4.1 Supervised Learning

The supervised learning process (vide fig. 14.5) requires a trainer that submits
both the input and the target patterns for the objects to get recognized. For
example, to classify objects into "ball", "skull", and "apple", one has to submit
the features like average curvature, the ratio of the largest solid diameter to its



transverse diameter, etc. as the input feature patterns. On the other hand, to
identify one of the three objects, one may use a 3-bit binary pattern, where
each bit corresponds to one object. Given such input and output patterns for a
number of objects, the task of supervised learning calls for adjustment of
network parameters (such as weights and non-linearities), which consistently
[19] can satisfy the input-output requirement for the entire object class
(spherical objects in this context ). Among the supervised learning algorithms,
most common are the back-propagation training [20] and Widrow-Hoff's
MADALINES [28].

14.4.2 Unsupervised Learning

The process of unsupervised learning is required in many recognition
problems, where the target pattern is unknown. The unsupervised learning
process attempts to generate a unique set of weights for one particular class of
patterns. For example, consider a neural net of recurrent topology (vide fig.
14.4 e) having n nodes. Assume that the feature vector for spherical objects is
represented by a set of n descriptors, each assigned to one node of the
structure. The objective of unsupervised learning process is to adjust the
weights autonomously, until an equilibrium condition is reached when the
weights do not change further. The process of unsupervised learning, thus,
maps a class of objects to a class of weights. Generally, the weight adaptation
process is described by a recursive functional relationship. Depending on the
topology of neural nets and their applications, these recursive relations are
constructed intuitively. Among the typical class of unsupervised learning,
neural nets, Hopfield nets [24], associative memory, and cognitive neural nets
[15] need special mention.

14.4.3 Reinforcement Learning

This type of learning may be considered as an intermediate form of the above
two types of learning. Here the learning machine does some action on the
environment and gets a feedback response from the environment. The learning
system grades its action good (rewarding) or bad (punishable) based on the
environmental response and accordingly adjusts its parameters [29], [30].
Generally, parameter adjustment is continued until an equilibrium state occurs,
following which there will be no more changes in its parameters. The self-
organizing neural learning may be categorized under this type of learning.

14.5 The Back-propagation Training Algorithm

The back-propagation training requires a neural net of feed-forward topology
[vide fig. 14.4 (d)]. Since it is a supervised training algorithm, both the input
and the target patterns are given. For a given input pattern, the output vector is



estimated through a forward pass [21] on the network. After the forward pass
is over, the error vector at the output layer is estimated by taking the
component-wise difference of the target pattern and the generated output
vector. A function of errors of the output layered nodes is then propagated
back through the network to each layer for adjustment of weights in that layer.
The weight adaptation policy in back-propagation algorithm is derived
following the principle of steepest descent approach [16] of finding minima
of a multi-valued function [5]. A derivation of the algorithm is given in
appendix B.

The most significant issue of a back-propagation algorithm is the
propagation of error through non-linear inhibiting function in backward
direction. Before this was invented, training with a multi-layered feed-forward
neural network was just beyond imagination. In this section, the process of
propagation of error from one layer to its previous layer will be discussed
shortly. Further, how these propagated errors are used for weight adaptation
will also be presented schematically.

Typical neurons employed in back-propagation learning contain two
modules (vide fig. 14.6(a)). The circle containing Y, w; x; denotes a weighted
sum of the inputs x; for i= 1 to n. The rectangular box in fig. 14.6(a) represents
the sigmoid type non-linearity. It may be added here that the sigmoid has been
chosen here because of the continuity of the function over a wide range. The
continuity of the nonlinear function is required in back-propagation, as we
have to differentiate the function to realize the steepest descent criteria of
learning. Fig. 14.6(b) is a symbolic representation of the neurons used in fig.
14.6(c).

In fig. 14.6(c ), two layers of neurons have been shown. The left side
layer is the penultimate (k —1)-th layer, whereas the single neuron in the next
k-th layer represents one of the output layered neurons. We denote the top two
neurons at the (k-1)-th and k-th layer by neuron p and q respectively. The
connecting weight between them is denoted by w,qr. For computing
Wy qk(ntl), from its value at iteration n, we use the formula presented in
expression (14.2-14.4).

We already mentioned that a function of error is propagated from the
nodes in the output layer to other layers for the adjustment of weight. This
functional form of the back-propagated error is presented in expression (14.4)
and illustrated in fig. 14.7. It is seen from expression (14.4) that the
contribution of the errors of each node at the output layer is taken into account
in an exhaustively connected neural net.

For training a network by this algorithm, one has to execute the
following 4 steps in order for all patterns one by one.
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For each input-output pattern do begin

1.  Compute the output at the last layer through forward calculation.

2. Compute Os at the last layer and propagate it to the previous layer by
using expression (14.4).

3. Adjust weights of each neuron by using expression (14.2) and (14.3) in

order.

4. Repeat from step 1 until the error at the last layer is within a desired
margin.

End For;

The adaptation of the weights for all training instances, following the
above steps, is called a learning epoch. A number of learning epochs are
required for the training of the network. Generally a performance criterion is
used to terminate the algorithm. For instance, suppose we compute the square
norm of the output error vector for each pattern and want to minimize the sum.
So, the algorithm will be continued until the sum is below a given margin.

The error of a given output node, which is used for propagation to the
previous layer, is designated by &, which is given by the following expression:

6 =F"'* (target — Out) = Out (1 — Out) (target — Out) (14.1)

Weight adaptation in back-propagation
The weight adaptation policy[28] is described by the following expressions:
A Wp gk =1 5,,} k Outp,‘,» (142)

Wy gk (WD) =w, k(M) + Aw, 4 & (14.3)

where  w, , (1) = the weight from neuron p to neuron q, at n™ step, where q

lies in the layer k and neuron p in (k—1)" layer counted from the input layer;
Op 1 = the error generated at neuron g, lying in layer k;
Out,, ; = output of neuron p, positioned at layer j.

For generating error at neuron p, lying in layer j, we use the following
expression:

8, = Out,, ; (1-Outy, )(X &) x Wy, 4,1) (14.4)

q
where

q € {q1, g2 g3} infig. 14.7.



Drawbacks of back-propagation algorithm

The back-propagation algorithm suffers from two major drawbacks, namely
network paralysis and trapping at local minima. These issues are briefly

outlined below.

Network paralysis: As the network receives training, the weights are
adjusted to large values. This can force all or most of the neurons to operate at
large Outs, i.e., in a region where F' ' (Net) —0. Since the error sent back for
training is proportional to ' ' (Net), the training process comes to a virtual
standstill. One way to solve the problem is to reduce 1, which, however,

increases the training time.
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Fig. 14.7: The computation of 3, at layer j.



Trapping at local minima: Back-propagation adjusts the weights to reach
the minima (vide fig. 14.8) of the error function (of weights). However, the
network can be trapped in local minima. This problem, however, can be solved
by adding momentum to the training rule or by statistical training methods
applied over the back-propagation algorithm [26].

Error
function
of
weights

Local
minima,

local
minima,

Weight ;

\j

Weight ,

Fig. 14.8:Valleys in error function cause back-propagation algorithm trapped at
local minima.

Adding momentum to the training rule: To eliminate the problem of
trapping at local minima, recently a momentum term was added to the right
hand side of the adaptation rule [17]. Formally,

Wp,q,k(nﬂ) = Wp,q,k(n) +mM 6q, k Outp,j +0oA Wp, g, k (1’1-1).

The last term in the right hand side corresponds to momentum. The addition of
the momentum term forces the system to continue moving in the same
direction on the error surface, without trapping at local minima. A question
may naturally arise: why call this momentum term? The answer came from the
analogy of a rolling ball with high momentum passing over a narrow hole.



14.6 Widrow-Hoff's Multi-layered
ADALINE Models

Another classical method for training a neural net with a sharp (hard limiting)
non-linearity was proposed by Widrow and Hoff in the 60's. The back-
propagation algorithm, which was devised in the 80's, however, is not
applicable to Widrow-Hoff's neural net because of discontinuity in the non-
linear inhibiting function. Widrow-Hoff"’s proposed neuron is different from
the conventional neurons we use nowadays. The neuron, called ADALINE
(ADAptive LINEar combiner), consists of a forward path and a feedback loop.
Given a desired scalar signal di , the ADALINE can adjust its weights using
the well-known Least Mean Square (LMS) algorithm. The signum type non-
linearity on the forward path of the ADALINE prevents the signal level from
going beyond the prescribed limits. A typical ADALINE is shown in fig. 14.9.
For linear classification (vide fig. 14.10), where the entire space can be
classified into two distinct classes by a straight line, a single ADALINE
neuron is adequate. For example, to realize an 'AND' function by an
ADALINE, we can choose the weights such that w;, = w, > 0 in the following
expression:

Wix; twox, > 0,' X, X2 € {—], +1} (145)
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Fig. 14.9: A typical ADALINE neuron.
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Fig. 14.10: Linear classification by ADALINE.

However, a single ADALINE cannot be used for non-linearly separable
classes. For example, consider the problem of realizing an "XOR' function,
where the two distinct classes are {(-1, -1), (1,1)} and {(-1,1), (1,-1)}. For
realizing such functions, we require three ADALINE neurons, where two
neurons should be organized to form the first layer, while the third neuron
forms the second (the last) layer, vide fig. 14.11 below.

The first layered neurons can do partial classification of the region (by
two line segments ac and bc) (fig. 14.12) and the third neuron satisfies the
joint occurrence of the convex region formed by these lines. In other words the
third region is an AND logic. The design of the ADALINEs [18] is left as an
exercise for the students.

ADALINEs are not only used for classifying patterns, but they have
application also in recognizing unknown patterns. In fact, for pattern
recognition by ADALINES, one has to consider the topology of a feed-forward
neural net of Fig.14.4 (d), with the replacement of the neurons referred to
therein by ADALINES.
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Fig. 14.11: A network of three ADALINES in two layers for realizing an ‘XOR’ gate.

The training process of an ADALINE neuron is realized by the Least
Means Square (LMS) algorithm presented below.

Procedure LMS
Input g, and X

Output weight vector py k

Begin
Randomize initial weight vector W ;
Repeat
= ; - T .
(S d k X k Wk

2
WLH:VLk-'—aEk)Lk/'Xk' ;

Until mod | (Wj4q~ wy) I< pre — defined limit;

Print Wi
End. ~



It can be easily proved that the LMS algorithm converges to stable points

when 0 <o <2. Fo

(-1,+1)

1 solution, see exercise of this chapter.
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Fig. 14.12: A convex region represented by three ADALINESs of fig. 14.11.

For training the neural net with ADALINE neurons (fig. 14.4(d)), one has to
make a trial adaptation starting from the Ist layer based on a principle, called
Minimum Disturbance Principle, which is presented below.

Identify a neuron at a given (i) layer whose Net value is
closest to zero, compared to all other neurons at the same
layer.

Reverse its Out value and check whether the norm of error
vector at the output layer (target vector minus computed
output vector) decreases.

-, _ T .
€= di Xpwk

If so, adjust the weights of that ADALINE using the LMS
algorithm described above.



. If not, select another ADALINE, whose value is next closest
to zero. Repeat the process for all ADALINEs in the same
layer.

The above principle is applied to each neuron starting from the first to the last
(output) layer. Then one has to choose two neurons together from each layer,
whose outputs are closest to zero. Then by flipping their outputs, one has to
check whether there is any improvement in the square norm of error at the
output layer. If so, train them by procedure LMS; else select two other neurons
from the same layer, whose outputs are next closest to zero. Such a process has
to be repeated from the first to the last layer, until error norm is minimized.

The principle is so called because it attempts to disturb the weights
minimally so as to get the near-zero error on the error surface (of weights).

Once the training is over, the trained weights are saved along with the
input vector for each input pattern in a file. During the recognition phase,
when an unknown pattern appears at the input of the network, the weights
corresponding to the input pattern, closest to the unknown pattern, are assigned
to the appropriate arcs in the network and the output pattern vector is
generated through a forward pass in the network.

Another interesting issue to be discussed is the capability of Widrow-
Hoff's neural net in recognizing translation, rotation and size-variant patterns.
For recognition of translation, rotation and size invariant patterns, Widrow
designed a specialized Majority Voter (MAJ) circuit, which receives signals
from a number of ADALINEs and generates a single bit output. The MAJ
output is 1, when majority of the ADALINEs connected to the input of the
MAJ generates 1 as output. The ADALINEs with a MAJ are placed on a plane
and there exist a number of such planes, located around the object from which
retinal signals are received by these planes. A two layered trained neural net is
used to decode the one-bit output of such planes of ADALINEs. For
maintaining translational invariance, the weights of the ADALINES in one
plane, called the reference plane, are assumed arbitrarily, and the weights of
other planes of ADALINESs are selected based on the weight of the reference
plane [27]. In fact, the possible shift of the object in the retinal plane is taken
care of by judiciously selecting the weight matrices of the planes. The weight
matrices of all planes are constructed by translating horizontally or vertically,
whichever is appropriate, the weight matrix of the reference plane.
Analogously, for rotational invariance, the weight matrices of each four planes
are grouped and the weight matrices of them are set by rotating the weight
matrices of one of them ( around a pivot ) by 0°, 90°, 180° and 270°. Thus each
group of planes can take care of 0°, 90°, 180°, and 270" rotations. It may be



added that since four planes are grouped, and output of such four planes is
connected to the input of a MAJ circuit, a 4:1 reduction takes place in the
number of signal carrying output lines of the invariance network. The output
of the invariance network, thus, can represent the scrambled version of the
rotated input patterns and, the scrambled pattern can be de-scrambled by a
two layer trained neural network. For maintaining size invariance, Widrow
devised an interesting means to adjust the dimension of the weight matrices
and the value of the weights in each plane of ADALINEs. A complete
implementation of this issue, however, remains a far cry to this date.

14.7 Hopfield Neural Net

Among the unsupervised learning algorithms, Hopfield neural nets [7] need
special mention. In fact, in the nineties, nearly one third of the research papers
on neural network include works on Hopfield nets. Hopfield nets can be of two
common types [24], namely,

. Binary Hopfield net
. Continuous Hopfield net

In a binary Hopfield net, the input and output of the neurons are binary,
whereas in a continuous Hopfield net, they could assume any continuous
values between O and 1. Hopfield neural nets find application in many
problems, especially in realizing ADCs as highlighted by John Hopfield in his
early papers. The principle of weight adjustment in Hopfield net is done by
optimizing a function of weights and signal values at nodes, popularly known
as Liapunov functions. Liapunov functions are energy functions, used to
identify system states, where the function yields the minimum value of energy.

Binary Hopfield Net

In a binary Hopfield model, each neuron can have two output states: ‘0’ and ',
(sometimes denoted as n,-o and n,-l ). Let us consider a neuron 'i’; then the total
input to neuron %', denoted by H;, is given below:

H, = 2 wyn; + 1, (14.6)

J#I
where, I; = external input to neuron 'I'

p— >
n; = inputs from neuron j
w; ; = synaptic interconnection strength from neuron j' to
neuron i’
0 .
n; ='0" output ( non-firing )



ni ="'1" output (firing ).

Each neuron has a fixed threshold, say, th; for neuron '’ Each neuron
readjusts its states randomly by using the following equations.
For neuron i :

Output n; =] K if Zsz n]. > l‘hl
J#
=0 ; otherwise (14.7)

The information storage for such a system is normally described by

s s
Wy= g,@ni -D2py;-D
where n;" represents set of states for s being an integer /,2,....., n.

To analyze the stability of such a neural network, Hopfield proposed a special
kind of Liapunov energy function given in expression (14.8)

E:—(I/Z)ZWy'ﬂiﬂj—Zliﬂi+2fhi nr. (14.8)
iZ 1 i

The change in energy AE due to change in the state of neuron i’ by an amount
A ny; is given by

AEZ—(ZW,-J-nj-Fl,-—th,-)An,- (14.9)
17

As A n; is positive only when the bracketed term is positive, thus any change in

E under the expression (14.9) is negative. Since E is bounded, so the iteration

of the Hopfield neural algorithm, given by the expression (14.8), must lead to
stable states.

Continuous Hopfield net

The continuous Hopfield net can be best described by the following
differential equation,

dui
Ci dtl=ZWynj_Mi/Ri+li (14.10)
J




where,

w; ; = synaptic intercomnection Sstrength (weight) from
neuron j' to neuron 'i’,
— : =
n; = output variable for neuron j',
u; = instantaneous input to neuron 'i’,

u; = instantaneous input to neuron ',

I; = external input to neuron 't’,

g =n;/u; . output-input sigmoidal relationship,
C; and R; represent dimensional constants.

Such symbols are used in the above nomenclature to keep these comparable
with parameters of electric networks. The continuous Hopfield model uses an
energy like function, the time derivative of which is given by:

dE i
dt Zdn (ZWyl’l] ul/Rl+l)

(14.11)

dnl du]
ZCI dt dr

where, g/ (n;) is a monotonically increasing term and C; is a positive constant.
It can be shown easily that when w; = wy;, the Hopfield net can evolve towards
an equilibrium state.

14.8 Associative Memory

The models of associative memory pioneered by Kosko [14] is a by-product of
his research in fuzzy systems. Associative memory to some extent has
resemblance with the human brain, where from one set of given input output
pattern, the brain can determine analogously the output (input) pattern when
the input (output) pattern is known. In Kosko's model, he assumed the fuzzy
membership distribution of the output patterns for a given input pattern and



designed the weights (W) of a single-layered feed-forward neural net by taking
the product of input feeder () and the transpose of the output feeder (O) :
T

W = Io0 O | where"o"denotes the max-min composition operator.

Once the weight matrix between the output and the input layer is formed, one

/ /

can estimate an output vector O when the input vector [ is given:

/ /

O =Wo I

/ /
Analogously, the input vector I can also be estimated, when O is given

/ T /

by[ :W 00_

Recently, Saha and Konar [22] designed a new methodology for estimation of

inversion of fuzzy matrix, W. By using their definition, one can compute /' by
/ -1 /

I - W o0, where W' is defined as W' o W — I, the '-' symbol

. . . . . n .
represents 'tends to' and I is the identity matrix. There exist p7 matrices for a

. . . . -1 .
(n X n) W matrix. The best inverse, which is defined as Wbest’ is where

is minimum for 1y — 1| and
2 z 5 l] 51] Wbevt W

/ /
-1
is generally used for estimation of /' using I = W bes: © 0

-1
It may be added that in very special cases ), = WT, and thus the inverse
matrix support Kosko's model [14].

14.9 Fuzzy Neural Nets

Conventional sets include elements with membership values zero or one.
However, for many real world problems, the membership value of an element



in a set need not be always binary but may assume any value between zero and
one. In fuzzy logic Max, Min, composition, t- norm, s- norm, and other
operators are used along with fuzzy sets to handle real world reasoning
problems. Fuzzy logic has been successfully used for modeling artificial neural
nets, [19] where the input and output parameters of the neural net are the
membership distributions.

Among the classical fuzzy neural nets, the OR-AND neuron model of
Pedrycz [19] needs special mention. In an OR-AND neuron, we have two OR
nodes and one AND node [vide fig. 14.13].

Here, Zl = A ( Wij \2 Xj)
1<j<n
22: Vv (Vl_l/\ Xj)
1<j<n

and y=(S;1 AZ) Vv(SuA Zy)

where ‘A’ and 'V’ denote fuzzy 't and s’ norm operators. The above two
operations are executed by using expressions (14.12) and (14.13).

XIAXZ:)C[.)Cg (1412)
X7 V)C2 = (XI+)C2—X1.)C2) (1413)

where '." and '+' are typical algebraic multiplication and summation operations.

Pedrycz devised a new algorithm for training an AND-OR neuron, when
input membership distributions x; for i =/ fo n and target scalar y are given.
The training algorithm attempts to adjust the weights, w;; so that a pre-defined
performance index, is optimized.

Pedrycz also designed a pseudo-median filter for using AND-OR
neurons, which has many applications in median filtering under image
processing. The typical organization of a pseudo-median filter for five delta
points is given in fig.14.14.



Output layer

Hidden layer

AND

R -|Input layer

Fig. 14.13. Architecture of an AND-OR neuron

In the figure, the pseudo-median is defined as:

pseudomedian (¥)
= (1/2) Max [Min (X1, X, X3), Min (X,, X3, X4), Min (X3, X4, X5)] +
(1/2) Min [Max (X1, X3, X3), Max (X,, X3, X4), Max (X3, X4, X5)],
which loses little accuracy w.r.t. typical median filter.
A set of 10 input-output patterns have been used to train pseudo-median
filter. The weights wy, after training the net, are saved for a subsequent

recognition phase. In the recognition phase, the neurons can compute the
pseudo-median, when the input data points are given.



AND-OR
Neuron

Fig. 14.14: A typical pseudo-median filter.

14.10 Self-Organizing Neural Net

Kohonen [9] proposed a new technique for mapping a given input pattern onto
a 2-dimensional spatial organization of neurons. In fact, Kohonen considered a
set of weights, connected between the positional elements of the input pattern
and a given neuron, located at position (7, j) in a two dimensional plane. Let us

call the weights’ vector for neuron ¥ ; to be WU Thus for a set of (n x n)

points on the 2-D plane, we would have n° such weight vectors, denoted by

Wl] , 1< i, j< n. In Kohonen's model, the neuron with minimum distance

between its weight vector Wl] and the input vector X" is first identified by

using the following criterion [10].

Find the (k, )" neuron, where



X ~wi| = Min| Min| X ~wy | (14.14)

I€j<n | ISj<n ||~

After the (k, )" neuron in the 2-D plane is located, the weights of its
neighboring neurons are adjusted by using

w;(t+1)=w,(t)+o X-w, (14.15)

~ ~

until the weight vector reaches equilibrium,

e, W, (t+1)=w; (1) (14.16)

~

A question, which now may be raised, is how to select the neighborhood
neuron N; ;. In fact, this is done by randomly selecting a square or circular
zone around the neuron ; ;, where the furthest neuronal distance with respect
to IV, ; is arbitrarily chosen.

Once the training of the neighborhood neuron around A; ; is over, the
process of selection of the next neuron by criterion (A) is carried out. After
repetition of the selection process of a neuron, followed by weight adaptation
of the neighborhood neurons for a long time, the system reaches an

equilibrium with all weight vectors W for /< i, j< n, being constant for a

given dimension of the neighborhood of neurons. The neighborhood of the
neurons is now decreased and the process of selection of neuron and weight
adaptation of its neighboring neurons is continued until the equilibrium
condition is reached. By gradually reducing the neighborhood of the neuron,
selected for weight adaptation, ultimately, a steady-state neighborhood of
neurons in the 2-D plane is obtained. The plane of neurons thus obtained
represents a spatial mapping of the neurons, corresponding to the input pattern.

The algorithm for a self-organizing neural adaptation for a input vector Y and

the corresponding weight vector Wy is presented below.

Procedure Self-organization ( Y, Wij)

Begin
Repeat



Fori:=1tondo

Begin
For j:=1tondo
Begin
X = wy | = Min| Min| X ~ W
-~ ~~ I<j<n| 1j<n ||~
Then Adjust weights of neighboring neurons of Ny
by the following rule:
For i":= (k- 9) to (k + d) do
Begin
For j=(1-29) to (1+ ) do
Begin
W ],(t +1)= Wi ()+a X— Wi',j'(t
~~/
End For;
End For;
8 := & —¢&; // Space-organization //
End For;
End For;

Until § < pre-assigned quantity;
End.

The above algorithm should be repeated for all input patterns.
Consequently, all the input patterns will be mapped on the 2-D plane as a n-

dimensional point, each having a Wy
14.11 Adaptive Resonance Theory (ART)

Another unsupervised class of learning, which takes into account the stability
[3] of the previously learnt pattern classes and plasticity [4] of storing a new
pattern class, is the ART network model, proposed by Carpenter and
Grossberg [3]. It is a two-layered network, where the input layer transforms
the received new pattern ( X ) into state vector ( J/) with the help of stored

patterns ( (), and the output layer identifies a weight vector (JJ) among a

stored set of competitive weight vectors (JJ). The new states V;, which are

components of J/, are given by



Vj=Sgn(Xj+2Wji0i +4-15)
Vi
X j, when all ;=0

xX; N\ éwﬁ O, otherwise

where A= Sgn ( zxj—NZOi—O.S)
J i

and Sgn(y) =+1,y>0
= 0,y<0.

The weight vector p * is identified by the output layer using the following

Competition Rule:

Select pr *  if

* x >w.x,forall .

=

The schematic architecture of the ART network model is given in fig.14.15.

Competitive (Output) Layer
-——
9
-N
w
w ~
| Comparison (Input) Layer .
L4
y

1 -~ p

A

Fig. 14.15: An ART network model.



The algorithm for weight adaptation (learning) in an ART network is given
below.

Procedure ART-learning;

Begin
Enable all ¢ vectors;
Receive a new pattern vector x ;
Repeat
For Jy € set of stored weight vectors
* —
If WX > WX
_*
Then select 7 ;
End For;
ol
X
If r= > predefined p
2 X j
J
Then (resonance occurs)
k
A =n(y ~1):
Else disable the (¢ vector which yields r <p;
Until all o vectors are disabled;
End.

14.12 Applications of Artificial Neural Nets

Artificial neural nets have applications in a wide range of problems like
pattern classification, machine learning, function realization, prediction,
knowledge acquisition and content addressable memory. In this book we have
demonstrated various application of the tools and techniques of artificial



neural nets in the fields mentioned above. For instance, in chapter 23 we used
the back-propagation learning for speaker identification from their speech
phoneme. Chapter 24 demonstrates the use of self-organizing neural nets and
the back-propagation learning algorithm in path planning of mobile robots.
Further, chapter 20 illustrates the use of the Hebbian type unsupervised
learning for acquisition of knowledge in an expert system. Self-organizing
neural nets have also been applied in chapter 17 for recognition of human
faces from their facial images. Some recent developments in cognitive learning
have been presented in chapter 16 for applications in psychological modeling,
which in the coming future will find applications in intelligent expert systems.
The complete list of applications of artificial neural nets would be as large as
this book. We thus do not want to make it complete any way.

Currently, fuzzy logic and genetic algorithms [25] are being used
together for building complex systems. The aim of their joint use is to design
systems that can reason and learn from inexact data and knowledge [11] and
can efficiently search data or knowledge from their storehouses. Such

autonomous systems will be part and parcel of the next generation of
intelligent machines.

Exercises

1. Draw a neural network from the specification of their connection strengths
(weights):

ny: Wyx: '17 WXZ:WZX:+17 WZV:WVZ:+27

WVW :WWV :+15 me :Wan :-17 Wmu :Wum = +37

Wuy = Wyu = +3, qu = Wux :'1, qu :Wuz :'15

sz :sz :+1 s Wuw = qu = '2
where the suffixes denote the two nodes between which a weight is
connected. Use the concept of binary Hopfield net to compute the next
states from the current state. The pattern P of the state variables and its
corresponding 4 instances P, P,, P; and P, are given below.

P=[xy zv wmu]

P,=[0000000]

P,=[1011000]

P,=[010001 1]



4.

P,=[0111001]

Compute the next instances of each pattern by using the rules of binary
Hopfield nets, set threshold = 0.

Repeat the above process by replacing 0 in the patterns by —1 ; do you get
any changes in the results?

Can you call these 4 patterns stable states (states that do not change)? If
so, in which of the two cases?

Take any other arbitrary patterns, comprising of 1 and 0s. Are they also
stable states?

Suppose the 4 patterns are only given. Can you compute the weights in
the
network by using the formula given in the text?

Show that the learning rule in Widrow-Hoff’s model, given by the
following expression, is stable, when 0 < o < 2, unstable for o > 2 and
oscillatory when o = 2.

2
Learningrule: Ay, =%er X /| x| »

where AW, = change in weight vector, X, = the input vector, whose
components are Xi, X, ...Xp.

R
[Hints: €= d« Xk Wi

SO,AEk:_Xi'AllI/k
=_a6ka/‘Xk|
=—Ocy

Now, (E-1+0) €,=0,
or,e=(1-0)".

Now, put 0 < <2, o> 2 and o = 2 to prove the results.]
Derive the gradient descent learning rule for the following error function:

E=(1/2) X (t - Out)® + 3 w;;’



(1]

(2]

(3]

(4]

(3]

(6]

[ 7]

(8]

9]

[10]

where the first summation is over all components of the output patterns, t,
for the scaler target and Out, for the scaler computed output at node k.
Wj; is the weight from neuron i to neuron j.

Realize an Ex-or function by three ADALINE: .
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15

Genetic
Algorithms

The chapter presents a new kind of classical algorithm that emulates the
biological evolutionary process in intelligent search, machine learning and
optimization problems. After a brief introduction to this algorithm, the
chapter provides an analysis of the algorithm by the well-known Schema
theorem and Markov Chains. It also demonstrates various applications of GA
in learning, search and optimization problems. The chapter ends with a
discussion on Genetic Programming.

15.1 Introduction

Professor John Holland in 1975 proposed an attractive class of computational
models, called Genetic Algorithms (GA) [1]-[19], that mimic the biological
evolution process for solving problems in a wide domain. The mechanisms
under GA have been analyzed and explained later by Goldberg [10], De
Jong [7], Davis [6], Muehlenbein [16], Chakraborti [3]-[5], Fogel [8], Vose
[19] and many others. GA has three major applications, namely, intelligent
search, optimization and machine learning. Currently, GA is used along with
neural nets and fuzzy logic for solving more complex problems. Because of



their joint usage in many problems, these together are often referred to by a
generic name: “soft-computing”.

A GA operates through a simple cycle of stages [9]:

i)  Creation of a “population” of strings,

ii) Evaluation of each string,

iii) Selection of best strings and

iv) Genetic manipulation to create new population of strings.

The cycle of a GA is presented below in fig. 15.1.

Offspring Decoded strings
New generation Population
ﬁ —
(chromosomes)
h 4
Genetic Fitness
Operators Evaluation
h 4
Parents
Selection
. . (Mating Pool) Reproduction
Manipulation

Fig. 15.1: The cycle of genetic algorithms.

Each cycle in GA produces a new generation of possible solutions for a
given problem. In the first phase, an initial population, describing
representatives of the potential solution, is created to initiate the search
process. The elements of the population are encoded into bit-strings, called



chromosomes. The performance of the strings, often called fitness, is then
evaluated with the help of some functions, representing the constraints of the
problem. Depending on the fitness of the chromosomes, they are selected for a
subsequent genetic manipulation process. It should be noted that the selection
process is mainly responsible for assuring survival of the best-fit individuals.
After selection of the population strings is over, the genetic manipulation
process consisting of two steps is carried out. In the first step, the crossover
operation that recombines the bits (genes) of each two selected strings
(chromosomes) is executed. Various types of crossover operators are found in
the literature. The single point and two points crossover operations are
illustrated in fig. 15.2 and 15.3 respectively. The crossover points of any two
chromosomes are selected randomly. The second step in the genetic
manipulation process is termed mutation, where the bits at one or more
randomly selected positions of the chromosomes are altered. The mutation
process helps to overcome trapping at local maxima. The offsprings produced
by the genetic manipulation process are the next population to be evaluated.

Crossover points

11010 1001 10101 1010 offsprings

Fig 15.2: A single point crossover after the 3-rd bit
position from the L.S.B.

Crossover points crossover points

10101 1001 10011 01101 1110

parents
10101 1110 10011 01101 10 01 11101
offsprings

Fig. 15.3: Two point crossover: one after the 4™ and the other after the 8"
bit positions from the L.S.B.



v

101011010101

v

101011110101

Fig. 15.4: Mutation of a chromosome at the 5™ bit position.

Example 15.1: The GA cycle is illustrated in this example for maximizing a
function f(x) = x* in the interval 0 < x < 31. In this example the fitness
function is f (x) itself. The larger is the functional value, the better is the
fitness of the string. In this example, we start with 4 initial strings. The fitness
value of the strings and the percentage fitness of the total are estimated in
Table 15.1. Since fitness of the second string is large, we select 2 copies of the
second string and one each for the first and fourth string in the mating pool.
The selection of the partners in the mating pool is also done randomly. Here in
table 15.2, we selected partner of string 1 to be the 2-nd string and partner of
4-th string to be the 2nd string. The crossover points for the first-second and
second-fourth strings have been selected after o-th and 2-nd bit positions
respectively in table 15.2. The second generation of the population without
mutation in the first generation is presented in table 15.3.

Table 15.1: Initial population and their fitness values

string  initial X f(x) strength
no. population fitness (% of total)
1 01101 13 169 14.4
2 11000 24 576 49.2
3 01000 08 64 5.5
4 10011 19 361 30.9

Sum-fitness 1170 100.00




Table 15.2: Mating pool strings and crossover

String Mating Mates Swapping  New

No.  Pool string population
1 01101 2 0110[1] 01100
2 11000 1 1100[0] 11001
2 11000 4 11[000] 11011
4 10011 2 10[011] 10000

Table 15.3: Fitness value in second generation

Initial X f(x) strength
population (fitness) (% of total)

01100 12 144 8.2

11001 25 625 35.6

11011 27 729 415

10000 16 256 14.7
Sum-fitness = 1754 100.00

A Schema (or schemata in plural form) / hyperplane or similarity
template [5] is a genetic pattern with fixed values of 1 or 0 at some
designated bit positions. For example, S = 01?1?71 is a 7-bit schema with
fixed values at 4-bits and don’t care values, represented by ?, at the remaining
3 positions. Since 4 positions matter for this schema, we say that the schema
contains 4 genes.

A basic observation made by Prof. Holland is that “4 schema with an
above average fitness tends to increase at an exponential rate until it becomes
a significant portion of the population.”



15.2 Deterministic Explanation of
Holland’s Observation

To explain Holland’s observation in a deterministic manner let us presume the
following assumptions [2].

i)  There are no recombination or alternations to genes.

ii) Initially, a fraction f of the population possesses the schema S and those
individuals reproduce at a fixed rate r.

iii) All other individuals lacking schema S reproduce at a rate s <r.

Thus with an initial population size of N, after t generations, we find Nf r'
individuals possessing schema S and the population of the rest of the
individuals is N(1 - f) st Therefore, the fraction of the individuals with
schema S is given by

(Nfr')/ [N(1-fs' +Nfr']

= f(r/s)"/ [ 1+ f{(r/9)' =1} ]. (15.1)

For small t and f, the above fraction reduces to f (r / s) ! , which
means the population having the schema S increases exponentially at a rate
(r /' s). A stochastic proof of the above property will be presented shortly, vide
a well-known theorem, called the fundamental theorem of Genetic
algorithm.

15.3 Stochastic Explanation of GA

For presentation of the fundamental theorem of GA, the following
terminologies are defined in order.

Definition 15.1: The order of a schema H, denoted by O(H), is the number
of fixed positions in the schema. For example, the order of schema H =
2001?17 is 4, since it contains 4 fixed positions.



Definition 15.2: The defining length of a schema, denoted by d(H), is the
difference between the leftmost and rightmost specific (i.e., non-don’t care)
string positions.

For example, the schema ?1?001 has a defining length d(H) =4 - 0 = 4, while
the d(H) of ??7?17? is zero.

Definition 15.3: The schemas defined over L-bit strings may be
geometrically interpreted as hyperplanes in an L- dimensional hyperspace
(a binary vector space) with each L-bit string representing one corner point in
an n-dimensional cube.

The Fundamental Theorem of Genetic Algorithms

(Schema theorem)

Let the population size be N, which contains my (t) samples of schema H at
generation t. Among the selection strategies, the most common is the
proportional selection. In proportional selection, the number of copies of
chromosomes selected for mating is proportional to their respective fitness
values. Thus, following the principles of proportional selection [17], a string i
is selected with probability

n
fi/3f (15.2)
i=1

where f; is the fitness of string i. Now, the probability that in a single
selection a sample of schema H is chosen is described by

my(t) n

> f/ X f

i=1 i=1
n

=muy(®) fu/ X f (15.3)
i=1

where f; is the average fitness of the my (t) samples of H.



Thus, in a total of N selections with replacement, the expected number of
samples of schema H in the next generation is given by

n
my (t+1)=N my () fu/ X £
i=1
= my (t) fy/f, (15.4)
n
where f,,= >, fi/N (15.5)
i=1

where f,, is the population average fitness in generation t. The last expression
describes that the Genetic algorithm allocates over an increasing number of
trials to an above average schema. The effect of crossover and mutation can be
incorporated into the analysis by computing the schema survival probabilities
of the above average schema. In crossover operation, a schema H survives if
the cross-site falls outside the defining length d(H). If p. is the probability of
crossover and L is the word-length of the chromosomes, then the disruption
probability of schema H due to crossover is

pe d(H) /(L-1). (15.6)

A schema H, on the other hand, survives mutation, when none of its
fixed positions is mutated. If p,, is the probability of mutation and O(H) is the
order of schema H, then the probability that the schema survives is given by

(1=pw) °"
= 1- p,O (H). (15.7)

Therefore, under selection, crossover and mutation, the sample size of
schema H in generation (t + 1) is given by

my (t+1) > (my (t) fy/fo) [1-pe d(H)/(L-1)—pn OH)]. (15.8)



The above theorem is called the fundamental theorem of GA or the
Schema theorem. It is evident from the Schema theorem that for a given set
of values of d(H), O(H), L, p. and p,, , the population of schema H at the
subsequent generations increases exponentially when fy; > f,,. This, in fact,
directly follows from the difference equation:

my (t+1)—my ()= (fu/fy —1/K) K my () (15.9)
where K=1—p, d (H) /(L - 1) —pm O(H). (15.10)
= Amy () 2K (fy /£y -1/K) my (b). (15.11)

Replacing A by (E —1), where E is the extended difference operator, we find
(E-1-K)myzx(t)=0 (15.12)
where K =K (fy / f,, -1/K). (15.13)

Since m y (t) in equation (15.12) is positive, E = (1 +K; ). Thus, the
solution of (15.12) is given by

my )= A(1+K)" (15.14)

where A is a constant. Setting the boundary condition at t = 0, and substituting
the value of K; by (14.13) therein, we finally have:

my (t) = my (0) (K i/ £) (15.15)

Since K is a positive number, and f y / f,, > 1, my (t) grows
exponentially with iterations. The process of exponential increase of my (t)
continues until some iteration r, when fy; approaches f,,. This is all about the
proof of the schema theorem.

15.4 The Markov Model for
Convergence Analysis
To study the convergence of the GA, let us consider an exhaustive set of

population states, where ‘state’ means possible members (chromosomes) that
evolve at any GA cycle. As an illustration, let us consider 2-bit chromosomes



and population size = 2, which means at any GA cycle we select only two
chromosomes. Under this circumstance, the possible states that can evolve at
any iteration are the members of the set S, where

S= { (00, 00), (00,01), (00,10), (00,11), (01, 00), (01, O1),
(01, 10), (01, 11), (10, 00), (10, 0O1), (10, 10), (10, 11),
(11, 00), (11, 01), (11, 10), (11, 11)}

For the sake of understanding, let us now consider the population size =
3 and the chromosomes are 2-bit patterns, as presumed earlier. The set S now
takes the following form.

S = {(00, 00, 00), (00, 00, 01), (00, 00, 10), (00, 00, 11),

(00, 01, 00), (00, 01, 01), (00, 01, 10), (00, 01, 11),

(11, 11, 00), (11, 11, 01), (11, 11, 10), (11, 11, 11) }

It may be noted that the number of elements of the last set S is 64. In
general, if the chromosomes have the word length of m bits and the number of
chromosomes selected in each GA cycle is n, then the cardinality of the set S
is2™"

The Markov transition probability matrix P for 2-bit strings of
population size 2, thus, will have a dimension of (16 x 16), where the element
pij of the matrix denotes the probability of transition from i-th to j-th state. A
clear idea about the states and their transitions can be formed from fig. 15.5.

It needs mention that since from a given i-th state, there could be a
transition to any 16 j-th states, therefore the row sum of P matrix must be 1.
Formally,

P =1, (15.16)
Vi

for a given i.



To j-th state
From
i-th state\_ (00, 00) (00, 01) ...... j an1n

(00, 00)

(00, 01)

1 Pij

(11, 11)

Fig. 15.5: The Markov state-transition matrix P.

Now, let us assume a row vector T;, whose k-th element denotes the
probability of occurrence of the k-th state at a given genetic iteration (cycle) t;

then T + | can be evaluated by
T+ = T P (15.17)

Thus starting with a given initial row vector T , one can evaluate the state
probability vector after n-th iteration T, by

T,=T,.P" (15.18)
where P" is evaluated by multiplying P matrix with itself (n-1) times.

Identification of a P matrix for a GA that allows selection, crossover and
mutation, undoubtedly, is a complex problem. Goldberg [10], Davis [6], Fogel
[8] and Chakraborty [3] have done independent work in this regard. For
simplicity of our analysis, let us now consider the GA without mutation.



The behavior of GA without mutation can be of the following three types.

i) The GA may converge to one or more absorbing states (i.e., states
wherefrom the GA has no transitions to other states).

ii) The GA may have transition to some states, wherefrom it may
terminate to one or more absorbing states.

iii) The GA never reaches an absorbing state.

Taking all the above into account, we thus construct P as a partitioned matrix
of the following form:

R Q

where I is an identity matrix of dimension (a x a) that corresponds to the
absorbing states; R is a (t x a) transition sub-matrix describing transition to an
absorbing state; Q is a (t x t) transition sub-matrix describing transition to
transient states and not to an absorbing state and 0 is a null matrix of
dimension (t X t).

It can be easily shown that P" for the above matrix P can be found to
be as follows.

Pn



where the n-step transition matrix N, is given by

Ny=1+Q+Q*+Q +...... +Q" ! (15.19)
As n approaches infinity,

Lt N,=(I-Q) " (15.20)
n—oc

Consequently, as n approaches infinity,
I

Lt P" =
n—o<

I-Q) 'R 0

_/

Goodman has shown [8] that the matrix (I — Q) ' is guaranteed to exist.
Thus given an initial probability vector T , the chain will have a transition to
an absorbing state with probability 1. Further, there exists a non-zero
probability that absorbing state will be the globally optimal state [8].

We now explain: why the chain will finally terminate to an absorbing
state. Since the first ‘a’ columns for the matrix P", for n —o<, are non-zero and
the remaining columns are zero, therefore, the chain must have transition to
one of the absorbing states. Further, note that the first ‘a’ columns of the row
vector T , for n —e denote the probability of absorption at different states,
and the rest of the columns denote that the probability of transition to non-
absorbing states is zero. Thus probability of transition to absorbing states is
one. Formally,

z Lt (nn)i

=1 n—oe



15.5 Application of GA in
Optimization Problems

Genetic algorithms have been successfully used in many optimization
problems. For instance, the classical travelling salesperson problem, the
flowshop and the jobshop scheduling problems and many of the constraint
satisfaction problems can be handled with GA. In this section, we illustrate the
use of GA in antenna design. There exist various types of antennas. We here
illustrate the design of a specialized antenna, called a monopole loaded with a
folded dipole. The whole antenna has 6 components (fig. 15.6), namely Z,, Z,,
Z3, Z4, Xy and X,. We want the electric field vector Eq to be optimized in one
half of the hemisphere. A non-specialist reader can easily understand the
meaning of E ¢ from fig. 15.7.

Altshuler and Linden [1] used an NEC, package that computes Eg for
given arm-lengths of the antenna (fig. 15.8). The GA program, used by them,
on the other hand evolves new chromosomes with 6 fields vide fig. 15.9. Each
field is represented by 5 bits, thus having a possible length in the range of 0
and 31 units. The selection criterion in the present context [1] is given by

Minimize Z= Y (E¢-Eqesied)”
180 < V<0



For realizing this problem, Altshuler et al. considered an initial population of
150 and selected 75 in each iteration. The normal single bit crossover and
mutation is used for mating in their scheme. For the best results, the mutation
probability is varied between 0 to 0.9.

X Z
2 4 X,

Zs < >

7,

Z

Ground plane

Fig. 15.6: A monopole loaded with a folded dipole.

zZ

Eo

X

Fig. 15.7: The electric field vector E ¢ for a given elevation angle 0 is kept
closer to its desired value for the variation of ¢ from 0 to —180
degrees.



NEC,
package

GA Program

Zla ZZs Z3a Z45 Xla XZ

Fig. 15.8: The NEC, package evaluates E ¢ from the evolved parameter set:
21,7y, 75, 74, X1, X, generated by the GA program.

Z, |z |z, |z X, X,

Fig. 15.9: The field definition of the chromosome, used in antenna design,
each field comprising of 5 bits.

15.6 Application of GA in
Machine Learning

Machine learning is one of the key application fields of Genetic algorithms. A
survey of the recent literature [14] on GA reveals that a major area of its
applications is concerned with artificial neural nets. It can work with neural
nets in three basic ways [15]. First it can adjust the parameters, such as
weights and non-linearity of a neural net, when the training instances are



supplied. Here it serves the same purpose of the neural learning algorithm. For
instance, we can replace the well- known back-propagation algorithm by a GA
based scheme. Secondly, GA can be employed to determine the structure of a
neural net. Thus when the number of neurons in one or more hidden layer
cannot be guessed properly, we may employ GA to solve this problem.
Thirdly, GA may be employed to automatically adjust the parameters of a
prototype learning equation. This has many useful applications in adaptive
control, where the adaptation of the control law is realized with GA.

15.6.1 GA as an Alternative to
Back-propagation Learning

The back-propagation learning adjusts the weights of a feed-forward neural
net by employing the principles of steepest descent learning. One main
drawback of this classical algorithm is trapping at local minima. Due to
mutation in a GA, it has the characteristics of hill climbing, and thus can
overcome the difficulty of trapping at local minima. The principle of using GA
for neural learning is presented below.

Xl Q Wl
G,

Y
X,
Y
\%% 6 G4
Fig.

Fig. 15. 10: Illustrating the use of GA in neural learning.

Here, we considered a three layered neural net with weights (fig.
15.10). Let the input pattern and the output patterns be [ X; X, X5]' and [ Y,
Y,]" respectively. Let the weights of the first layer and the second layer



be [W, W, W3 W, Ws W¢]" and [ G, G, ]" respectively. Let the non-
linearity of each neuron be F. Also, the desired output vector [d; d, ]" is
given, where d; corresponds to the top output neuron and d, corresponds to
the bottom output neuron. The selection function in the present context is to
minimize Z where

Z=[(d YY)+ (Y]~

The chromosome in the present context comprises of 10 fields, such as
Wi, Wy, W3, Wy, Ws, We, Gy, Gy, Gs, and Gy4. Each field may be represented
by a signed real number, expressed in 2’s complemented arithmetic. The
typical crossover and mutation operators may be used here to evolve the
weights. The algorithm terminates when the improvement in Z ceases. Thus
for a given input-output training instance, we find a set of neural weights. The
idea can be easily extended for training multiple input-output patterns.

15.6.2 Adaptation of the Learning Rule /
Control Law by GA

A supervised learning system has to generate a desired output problem
instance from a given input problem instance. Let us assume that a multi-
layered feed forward neural net is used as the learning agent. Let Oy be the
output node at node o in the output layer, I, be the input at the t-th node in the
input layer and Wj be the weight connected from node i to node j. The
learning rule in general can be written as

AWU- = f(L . OJ . WU) and
Wij(t‘i'l) = Wij (t) + AWij.
Let f(It . Oj . Wij)

:ZatItJerjOjJr ZthiLOi+22dnwnlt+zzeij0jwij4
t ] t 1 it 1]

Here, the chromosomes are constructed with the following parameters:
a, b | cg, di, € as the fields. The fitness of the chromosomes is measured by
the square norm of the error signals (target-output) at the output layered nodes.
The smaller the norm, the better are the chromosomes. The crossover and
mutation operators are comparable with their standard use. After a number of
genetic evolutions, GA determines the near optimal values of the parameters.
Since the parameters: a;, b; ,cq, di, € govern the learning rule, their adaptation
constructs new learning rules. Fig. 15.11 describes the adaptation process of
the learning rules.
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Fig. 15.11: Adaptation of the learning rule by using GA.

GA can also be used for the adaptation of the control laws in self-tuning
adaptive control systems. For instance, consider a self-tuning P-I-D controller.
Here, the control law can be expressed as

u(t) = Kpe(t) + K J e(t) dt + Kp (de/dt )

where e (t) denotes the error (desired output — computed output), u (t) the
control signal and Kp, K; and Ky, are the proportional, integral and derivative
co-efficients. The optimization of Kp, K; and Ky, is required to satisfy some
criteria, like minimization of the integral square error:

ISE =JeX(t) dt.
GA here may be employed to emulate various control laws by randomly

selecting different vectors [ K, K; Ky 1" . In other words these vectors
represent the population. The ISE, here, has been used as the fitness



function. So, GA in each evolution cycle (iteration) selects better
chromosomes from the population by minimizing the ISE. After each finite
interval of time (typically of the order of minutes) the GA submits the control
law, described by the optimal vector [ Kp K Ky ] . The schematic
architecture of the overall system is presented in fig. 15.12.

GA
Emulated N Plant N
Controller 1 Model |
Select Best
Emulated Plant N Controller
Controller 2 Model
Emulated | Plant
Controller n Model >
Set Point
; [
Ko* K* Kp* N PLANT
Controller C(t)
Sensors
<

Fig. 15.12: The working of GA-based P-I-D tuner.

15.7 Applications of GA in Intelligent Search

Most of the classical Al problems such as n-Queen, the water-jug or the
games are search problems, where GA has proved its significance. Other
applied search problems include routing in VLSI circuits and navigational
planning for robots [17] in a constrained environment. We just introduce the
scheme for navigational planning of robots here and will explain the details in
chapter 24.



15.7.1 Navigational Planning for Robots

The navigational planning for robots is a search problem, where the robot has
to plan a path from a given starting position to a goal position. The robot
must move without hitting an obstacle in its environment (fig. 15.13). So, the
obstacles in robot’s work-space act as constraints to the navigational planning
problem. The problem can be solved by GA by choosing an appropriate
fitness function that takes into account the distance of the planned path-
segments from the obstacles, length of the planned path and the linearity of
the paths as practicable.

Michalewicz [17] has formulated the navigational planning problem of
robots by GA and simulated it by a new type of crossover and mutation
operators. An outline of his scheme is presented in chapter 24.

Goal position

Starting position

Fig. 15.13: Path planning by a robot amidst obstacles.

15.8 Genetic Programming

Koza [13] applied GA to evolve programs, called Genetic Programming. He
represented the program by structure like a parse tree. For instance a function



f(x) =Sin (x) + [x *x +y] 12

can be represented by a tree, presented in fig. 15.14.

SN O.
OO

Fig. 15.14: A program tree representing the function f(x)= Sin(x)+V(x*+y).

The crossover operator here is applied on two trees as illustrated in fig.
15.15. From the parent program for x> + y and xy+ y’ the offsprings
produced by crossover are y* +y and xy+x".

Koza applied genetic programming to solve the blocks world problem.
He considered 9 blocks marked with U,N,I,V,E,R,S,A and L respectively and
placed a few of these blocks on a table and the remaining blocks at a block
stack in a random order. He employed genetic programming to place the
blocks on the stack in an ordered manner, so that the word ‘UNIVERSAL’
was generated.



Koza defined some operators for block placements and initialized the
population with programs for block movements. He considered 166 training
samples and then by his GP he discovered a new program that could solve
all the 166 training problems. His resulting program is given below.

Parents
/ \ X
(a) x*+y (b) xy+y’
Offsprings
@f{ f B
© y'+y (d) xy+x®

Fig. 15.15: Crossover between 2 genetic programs (a) and (b) yields new
programs (c¢) and (d).



(EQ (DU(MT CS) (NOT CS))
(DU(MS NN) (NOT NN)))

where DU (x, y) means Do x until y;

EQ(x,y) returns true when x=y and false otherwise;

MT x means transfer the block from the top of stack to the table;

CS refers to the topmost block in the current stack;

NOT x is true if x is false and vice versa;

MS x means ‘move the block x from the table to the stack top’;

NN refers to the next block required to be placed on the stack
top so that the ordering of the letters in UNIVERSAL is
maintained.

15.9 Conclusions

GA has proved itself successful in almost every branch of science and
engineering. Most of the applications employed GA as a tool for optimization.
In fact, when there exist no guidelines to optimize a function of several
variables, GA works as a random search and finds an optimal (or at least a
near optimal) solution. There exists a massive scope of GA in machine
learning, but no significant progress has been observed in this area to date.
The next generation intelligent machines are likely to employ GA with neuro-
fuzzy models to reason and learn from incomplete data and knowledge bases.
Such systems will find immense applications in robotics, knowledge
acquisition and image understanding systems.

A common question that is often raised is: can we use GA in
‘discovery problems’? The answer to this is in the affirmative. As GA is a
search algorithm, like other search algorithms, it may in association with
specialized genetic operators explore some undiscovered search space.
Formulation of the problem and selection of the genetic operators, however,
play a vital role in this regard.

Exercises

1. Show the first 3 cycles of genetic evolution for optimizing the function y
= x*> —27 in the interval 0 < x < 12. Use set P = { 1100, 1010, 1011,
0011} as the initial population.



(1]

(2]

(3]

How can you realize crossover probability = 0.7 (say) in the GA
program?

[Hints: Generate a random number in the interval [0, 1]. If the number
generated > 0.7, then allow crossover between the two selected
chromosomes. ]

List the possible states for population size =2 and length L of
chromosomes = 3. How many states do you obtain? What is the
dimension of the Markov state transition matrix P in this context?

Suppose in expression (15.8), d(H) = L-1, p,, O (H) — 0. Under this
setting,

my (t+1) 2 my (t) (F / o) (1= po).

It is evident from the above inequality that as p. — 0, my (t) grows at a
faster rate. Can you give a logical justification to this observation? If you
feel comfortable to answer this, then try to explain the situation when
p—1.

Unlike the standard GA, suppose you devise a new type of algorithm,
where in each cycle you randomly pick up M chromosomes and select
good chromosomes from these by a selection function, and keep copies
of the good schemata from the last cycle, the selected population size
taking into consideration of the two types = N. Further, assume there is
no crossover or mutation in your algorithm. Can you analyze the
performance of your algorithm? Can you compare the performance with
that of a standard GA?
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16

Realizing Cognition
Using Fuzzy Neural
Nets

The chapter presents various behavioral models of cognition, built with fuzzy
neural nets for applications in man-machine interface, automated
coordination and learning control systems. It starts with a simple model of a
fuzzy neural net that mimics the activities of “long term memory” of the
biological cognitive system. The model has the potential of both reasoning and
automated learning on a common structure. The model is then extended with
Petri nets to represent and reason with more complex knowledge of the real
world. A second model presented in this chapter is designed for application in
a learning control system. It emulates the task of the motor controller for the
limb movements in the biological cognitive system. An example of the
automated eye-hand coordination problem for robots has also been presented
here with timed Petri net models. The chapter ends with a discussion of the
possible application of the proposed models in a composite robotic system.



16.1 Cognitive Maps

The hippocampus region [2] of the human brain contains a specialized
structure, responsible for reasoning, recognition and control of the cognitive
activities in the biological brain. This structure is usually called the cognitive
map. The biological cognitive map stores spatial, temporal, incidental and
factual relationship among events. The cognitive maps are generally
represented by graphs, where the nodes denote the events and the directed
arcs denote the causal dependence of the events. The graph may include cycles
as well. Generally, a token representing the belief of the fact is assigned at the
corresponding node, describing the fact. The directed arcs in a cognitive map
are weighted. The weight associated with an arc in a cognitive map represents
the degree by which the “effect node” is influenced for a unit change in the
“causal node”. Sometimes, a plus (+) or a minus (-) sign [15] is attached with
a directed arc to describe whether the cause has a growing or decreasing effect
on the directed node.

A= Islamic Fundamentalism, B = Soviet Imperialism, C= Syrian Control on Lebanon, D= Strength
of Lebanese Government, E= PLO Terrorism, F =Arab Radicalism

Fig. 16.1: A cognitive map representing political relationship,
describing the Middle East Peace.



Cognitive maps are generally used for describing soft knowledge [6]. For
example, political and sociological problems, where a very clear formulation
of the mathematical models is difficult, can be realized with cognitive maps.
The cognitive map describing the political relationship to hold the middle east
peace is presented in fig. 16.1 [13]. It may be noted from this figure that the
arcs here are labeled with + or — signs. A positive arc from the node A to F
denotes an increase in A will cause a further increase in F. Similarly, a
negative arc from A to B represents an increase in A will cause a decrease in
B. In the cognitive map of fig. 16.1, we do not have weights with the arcs.
Now, suppose the arcs in this figure have weights between —1 to +1. For
instance, assume that the arc from A to B has a weight —0.7. It means a unit
increase in A will cause a 0.7 unit decrease in B. There exist two types of
model of the cognitive map. One type includes both positive and negative
weighted arcs and the events are all positive. The other type considers only
positive arcs, but the events at the nodes can be negated. In this chapter, we
will use the second type representation in our models.

The principles of cognitive mapping [12] for describing relationships
among facts were pioneered by Axelord [1] and later extended by Kosko [5].
Kosko introduced the notion of fuzzy logic for approximate reasoning with
cognitive maps. According to him, a cognitive map first undergoes a training
phase for adaptation of the weights. Once the training phase is completed, the
same network may be used for generating inferences from the known beliefs
of the starting nodes. Kosko’s model is applicable in systems, where there
exists a single cause for a single effect. Further, the process of encoding of
weights in Kosko’s model is stable for acyclic networks and exhibits limit
cycle behavior for cyclic nets. The first difficulty of Kosko’s model has been
overcome by Pal and Konar [8], who used fuzzy Petri nets to represent the
cognitive map. The second difficulty, which refers to limit cycles in a cyclic
cognitive map, has also been avoided in [3] by controlling one parameter of
the model. In the forgoing sections, we will present these models with their
analysis for stability. Such analysis is useful for applications of the models in
practical systems.

16.2 Learning by a Cognitive Map

A cognitive map can encode its weights by unsupervised learning [7] like the
Long Term Memory (LTM) in the biological brain. In this chapter, we employ
the Hebbian learning [5] following Kosko [6], which may be stated as
follows.

The weight W; connected between neuron N; and N; increases when the
signal strength of the neurons also increase over time.



In discrete timed system, we may write
Wii (t+1) = W;; (1) + AW (16.1)
where AWj;=f(n;) f(n;) (by Hebbian learning) (16.2)
and fis the nonlinear sigmoid function, given by
f(n) =1/ (1+ exp (- ny)). (16.3)

The model of forgetfulness of facts can be realized in a cognitive map by a
gradual decay in weights, which may be formally written as

AWU- =-o Wij. (164)
Taking into account the superposition of (16.2) and (16.4), we find
AWU- =- Oﬂwij + f(l’li) f(l'lj) (165)

The weight adaptation equation in a cognitive map may thus follow from
expression (16.1) and (16.5) and is given by

Wi (t+1) = (1 - o) Wy + £ (1) f(n)). (16.6)

16.3 The Recall in a Cognitive Map

After the encoding is over, the recall process in a cognitive map is started. The
recall model is designed based on the concept that the next value of belief n;
of node N; can never decrease below its current value. Further, the belief of
node N; is influenced by the nodes N;, when there exists signal flow from
nodes N; to N;. Thus formally,

n; (tH1)= n; (t) v [ v (Winn(t) ] (16.7)
Vi
It may be added here that the above model is due to Pal and Konar [8]. In

Kosko’s recall model, the term ni(t) is absent from the right hand side of
expression 16.7. This means that the recall model has no memory.

16.4 Stability Analysis

For the analysis of stability of the encoding and the recall model, we use the
following properties.



Theorem 16.1: With initial values of n(o) <I and Wy < 1, the n; remains
bounded in the interval (0,1).

Proof: Proof of the theorem directly follows from the recursive definition of
expression (16.7). a

Theorem 16.2: The recall model described by expression (16.7) is
unconditionally stable.

Proof: For oscillation, the value of a function f should increase as well as
decrease with time. Since nj(t+1) can only increase or remain constant, but
cannot decrease (vide expression (16.7)), therefore n;(t+1) cannot exihibit

oscillations. Further, since n;(t+1) is bounded and is not oscillatory, thus it
must be stable. O

It may be added here that the recall model of Kosko, which excludes n;(t) from

the right hand side of expression (16.7), is oscillatory for a cyclic cognitive

net.

Theorem 16.3: The encoding model represented by expression (16.6) is
stable, when 0< <2

unstable, when o >2
oscillatory, when o =2.

Proof': Replacing A by E - 1, we have
(E -l+t o ) Wij = f(l’li) f(l'lj) (168)

Since at steady-state f (n;), f (n;) become constant, then let f(n;) f(nj) at
steady-state be denoted by f (n;)* and f(n;)* respectively.

Thus, (E- 1+a ) Wj; (t) = f (ni)* f (n))*. (16.9)
The complementary function for the above equation is

(E-1+o) Wy =0

which yields W;; (t)=C (1-a) . (16.10)
The particular integral for equation (16.9) is given by

Wit)=(/0o) f(n)* f(ny)*. (16.11)

Combining expression (16.10) and (16.11), we find:



Wi (©=C(1-0) +(1/a)f(m)*f(m)*. (16.12)

Satisfying the initial condition we find from the last equation that

Wi(0) = [ W;;(0) - (1/ar) f(ny)* fin)* ] (1- o) '+ (1) f{m)* f(my)*.  (16.13)

The condition for stability, limit cycles and instability directly follows from
the last expression. O

It may be noted that from the last expression that for a stable cognitive
map (0<o<2), Wj(t) is nonzero when Wy (0) is nonzero. So, structural
stability of a cognitive map is ensured.

16.5 Cognitive Learning with FPN

The model of cognition, we present now, can represent one-to-one causal
dependence.  There are, however, instances when many-to-one causal
dependence exists in a problem. The FPN, which we covered in chapter 10,
can represent such many-to-one cause-effect relationships. In this section, we
thus realize the cognitive map with FPN. The model of FPN we shall use here
is somewhat different from the model we came across in chapter 10. The
modifications are as follows:

i) The places here have single valued tokens, unlike in chapter 10,
where the tokens were fuzzy distribution.

ii) Instead of relational matrices, each transition possesses a scaler
weight. Thus W is a weight associated with the arc connected
between transition tr; and place p;.

The modified belief updating equation, hereafter called the recall equation, in
vector-matrix form becomes

N(t+D)=N@®V[W' o T(t+])] (16.14)

where T (t+1)= (Q o N® (t))° AU [(Q o N€ ())° - Th]. (16.15)



Here W' s a transposed ~ weight matrix, whose (i, j)th element denotes the
weight from transition tr; to place p;. “Th’ is the threshold vector, the i-th
component of which is a scaler denoting the threshold of transition tr; ‘U’ is a
unit step vector, which applies step function to all its arguments. ‘N’ is the
belief vector, whose i-th component is a scaler, representing the fuzzy belief of
proposition d;. ‘T’ is the fuzzy truth token (FTT) vector, whose i-th component
is a scaler denoting the FTT of transition tr;. ‘Q’ is a binary place to transition
connectivity matrix, whose (i, j)-th element denotes the existence (or no
existence) of connectivity from the place p; to transition tr;.

A new weight adaptation rule, presented below, is used for the encoding of the
weights:

dWij

- = Wy 4 (1) .0 (b) (16.16)
dt

where t;(t) and n; (t) denote the FTT and the belief of the transition tr; and the
place p; respectively. The above equation can be discretized into the following
form

Wij (t+1) = (1- a) Wij + tl(t) . l'lj(t) (1617)
The vector-matrix form of the above equation is given by

W (t+]) =(1-0)W (t) +[(N(@®).T" ()" P] (16.18)

where P is a binary connectivity matrix from transition to places in a FPN.

The recall model, represented by expression 16.14 and 16.15, is stable, when

N(t+1)= N (t) = N* att=t*, the equilibrium time.

Now, the above relation holds good for (Q o N*¢ )¢ >Th if

N*>[W' o (QoN*C . (16.19)

The steady-state values of the components of N* thus can be easily
evaluated, with the known values of the Q and W matrix.

The conditional convergence: 0 < 0<2 of the encoding model can be
easily proved by solving (16.18) using E-operator. We omit the proof, as it is
similar with the proof of stability we derived from expression (16.8).



16.6 Application in Autopilots

Fig. 16.2 describes a cognitive map for an automated pilotless car driving
system. A vision system attached to the car receives visual information about
the road traffic and the pedestrians crossing the road. The belief of the
received signals is then mapped to the appropriate nodes (places) in the
cognitive map. The weights trained through unsupervised learning cycles are
also mapped to the appropriate arcs before the reasoning process is initiated.
The reasoning process continues updating the belief strength of the nodes
based on the signal strength of the received information and the weights. The
action is taken based on the concluding node with the highest belief.

Let the initial weights be as follows.

w41(0) = 0.95, wy3(0) =0.85, wy(0) = 0.75, wga(0) =0.8, wgs (0) = 0.4, wy17(0)
= 09, Wia, g(O) =0.85.

Let us also assume that the thresholds associated with all transitions = 0.1
and the mortality rate oo = 1.8. The P and Q matrices are now constructed and
the equations 16.15, 16.14 and 16.18 are recursively executed in order until the
steady-state in weights occurs. The steady-state values of weights, presented
below, are saved for use in the recognition phase.

Steady-state weights: wy* = 0.25, wyz® =0.25, wye* = 0.25, wse* =0.17,
Wg4* 20.31, WgS* = 033, W11~7* = 02, Wi, g* = 0.2 and all other Wij =0.

In recall phase suppose we submit the belief vector N(0) and the cognitive
network generates an N*, where

N(0)=[0.2 0.3 0.4 0.0 0.0 0.3 0.35 0.0 0.4 0.3 0.0 0.0]" and
N*= [0.2 0.3 0.4 0.25 0.17 0.3 0.35 0.33 0.4 0.3 0.17 0.17]".
It is observed from N* that among the concluding places {ps, ps,ps ,pi1,

P12} ps = ‘rear car speed decreases’ has the highest steady-state belief. So,
this has to be executed.

16.7 Generation of Control Commands
by a Cognitive Map

With gradual learning and self-adaptation [5], the cognitive memory in
human brain builds up a control model for muscle movements and determines
the valuation space of the control signals for the execution of a task. For



example, for moving one’s arm, the control model for arm movement is
encoded through learning (experience) by the person in his early life and the
same model is used for the estimation of neuronal control signals required for
proper positioning of the arm.

- <P

d;,V i, is the proposition corresponding to the place containing belief n;.

n; = Car behind the side car narrow in breadth,n, = Side car of the front car too close, n;=Car
behind side car is wide, nys= Front car speed decreases, ns = Front car speed increases, ns = Passer-
by changes her direction, n,= Passer-by crosses the road, ng =Rear car speed decreases, no = Front
car changes direction, n;o = Rear car changes direction, n;; =Rear car speed increases, n;; =Rear
car keeps safe distance with respect to the front car. n; = proposition associated with place p;.

Fig. 16.2: A fuzzy cognitive map representing an autopilot.



In this section, the encoding model, to be preserved by the cognitive system, is
presumed and a fuzzy relational algebra based approach [11] is used for
finding the valuation space of the control signals with the help of a specialized
“inverse function” model [11] for discrete fuzzy relations.

The section is organized as follows. In sub-section 16.7.1, a fuzzy
relationship between the control signals and the actuating signals for the
activation of the motor muscles is established. The learning model for
autonomous adaptation of neuronal weights in the motor muscles and its
stability is covered in sub-section 16.7.2. The input excitation of the motor
model, in absence of error [vide fig. 16.3], is generated automatically with an
inverse fuzzy weight matrix.

16.7.1 The Motor Model

The human brain receives composite signals from different receptors, which in
turn generates control commands for actuating the motor nerves and muscles.
Let the control commands generated by brain or spinal chord be x; for j =1 to
n, while the driving signal for the actuators is y; for i= 1 to m, where
n
=1
which in vector-matrix form can be written as

YK= Wkoxk, (1621)

where k denotes the iteration, Wy is the system matrix of dimension (n x n),
X and Yy denote the control (command) vector and the actuating signal
vector respectively of dimension (n x 1).

16.7.2 The Learning Model

The learning model autonomously adjusts the weights of the neurons to bring
the actuator signal vector Y close to the target vector D, which corresponds to
the desired signals for the motor muscles (for example, to lift an arm). The
intuitive learning equation for the model is given by

AWy = aE0 X"/ ((Xir) 0 KXo D)) (16.22)
where

Error vector E;, =D - Yy (16.23)



and the weight adaptation equation is given by

Wk+1 = Wk + AWk . (1624)

The feedback loop in fig. 16.3 first generates Y, arbitrarily and later makes
correction through a change in Wy, which subsequently helps to determine
controlled Xy and hence Yiu. Wi denotes the fuzzy compositional inverse
(strictly speaking, pre-inverse) for matrix W,. The stability of the learning
model is guaranteed, vide theorem 16.3.

Theorem 16.3: The error vector E; in the learning model converges to a
stable point for 0< o < 2 and the steady-state value of error is inversely
proportional to 0.

Proof: We have
Yy =Wy 0 Xiq
= (Wit AW) o Xy
= Wi+ 00 Ex0 Xt / ((Xir1) 0 (Xirn)) 3 0 Xiq
= {Wi+ 00 B0 Xt/ (Xir10 Kier) )} 0 (Wi oY)
<Y+ {0 E0 X"/ (Xien™) 0 (Xicr)} 0 (Wi 0 Y))

=Y, + {0 Eco Xi "/ (X1 D0 (Xie1))}0 Xicin

= Yk+ o Ek.
Thus, Yk+l < Yk + (XEk (1625)
=Y, + o (D- Yy)
= Yk+1 < oD+ (I - (XI) Yk (1626)

= [EI-(I- al)] Y= (@-a’)D, for 0<o’<ca (16.27)

where E is the extended difference operator and I is the identity matrix.



The complementary function for the equation (16.27) is given by

Y =A1-al) 5 (16.28)
where A is a constant matrix, to be determined from the boundary condition.
The particular integral for equation (16.27) is given by

Yy =[ EI- (I- oD)]" (ot- o ”)D. (16.29)

Since (o - o ”)D is a constant vector, we substitute E =I in (16.29), and thus
find the particular integral as follows:

Yy = [od]" (o- 0" )D
=D- (o /) D. (16.30)

The complete solution for Yy is thus given by

Yi=A(d-0D)*+ D-(/0)D (16.31)
Ek=D -Yk
=@/o)D-AI-oDk. (16.32)

For 0 < a0 < 2, as evident from expression (16.32), E, converges to a stable
point with a steady-state value of (o/ o ) D. The steady-state value of Ey is
thus inversely proportional to c.

16. 7.3 Evaluation of Input Excitation
by Fuzzy Inverse

The input neuronal excitation / control signal vector Xys; for the motor
actuation signal vector Yy is evaluated autonomously with the help of the
following relation:

Xi1 = Wk-l oYy

The estimation of W, from Wy, can be carried out by a new formulation of
AND-OR compositional inverse, as outlined in chapter 10.



AW = 0 E 0Xierr" / ((Xie") 0 (Xiern))

Wi = Wi+ AW,

X1

Wi

Yi

Yir1 = Wier1 0 Xy —»

17!

w,! oY, <

Fig. 16.3: An autonomous fuzzy learning ontroller.




16.8 Task Planning and Co-ordination

Planning a sequence of tasks and their co-ordination, as evident from the
model of cognition cycle in chapter 2, is an intermediate mental state of
perception and action. Timed Petri net [3] models are generally employed to
realize this state of cognition. In a timed Petri net, tokens are time-tagged and
the transitions are assigned with firing delays. A transition in a timed Petri net
fires, when all its input places possess tokens at least for a time T, where T
denotes its firing delay. On firing of the transition, the tokens of its input
places are transferred to its output places with new time labels, obtained by
adding the time last attached with the token plus the firing delay of the
transition [3]. The well known problems of deadlock and conflict [3] can be
overcome in a timed Petri net by suitably selecting the firing delays of the
transitions. A typical co-ordination problem between the movement of an arm
(with gripper) and positioning of the camera by a robot is illustrated below
with reference to a problem of fixing a screw by a screwdriver through a
narrow hole. Here, the camera and the gripper both are required to be
positioned at the same place to fix the screw.

Human beings, however, handle such problems by positioning their eye
and the hand at the same position in a time-multiplexed manner. A similar
model for co-ordination among tasks has been framed in fig. 16.4 with a timed
Petri net.

16.9 Putting It All Together

The models presented so far have been used compositely in this section for
eye-ear-hand co-ordination of a robot ( fig. 16.5 ) working in an assembly-line.
The robot receives sensory information through video, audio/ ultrasonic and
tactile sensors. The signal conditioner and fuzzifier converts the received
signals into linguistic levels (such as small, round, soft, high pitch, etc.) and
quantifies them in the interval [0,1], depending on the strength (amplitude) of
the signals. Any standard supervised learning network may be trained offline
with the fuzzified signals as the input and the recognized objects as the output
pattern. For instance, we can employ an FPN based supervised learning
algorithm [9], [3] to classify and recognize the objects. After the object is
classified, an FPN based model may be used for reasoning and a timed Petri
net model connected in cascade with the reasoning model may be used for
generating control commands (like move arm up, turn head left, etc.) for motor
activation. It may be noted that a single block in fig. 16.5, for brevity, has
represented the reasoning and the co-ordination models. Once the control
commands are issued, the control model generates actuation signals for the
motors through an unsupervised learning. The knowledge refinement model
in the fig., covered in chapter 20, adjusts the parameters of the FPN based
reasoning model through Hebbian type unsupervised learning.
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Fig. 16.4: Co-ordination of sensor (camera) and gripper by a robot.
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16.10 Conclusions and Future Directions

The chapter presented a simple mental model of cognition and demonstrated
its scope of application in intelligent systems capable of reasoning, learning,
co-ordination and control. The integrated view of designing complex systems
like co-ordination of eye-hand-ear of a robot for assembly-line applications
has been illustrated in the chapter in detail.

Much emphasis has been given in the chapter for the development of the
behavioral states of cognition and the analysis of their dynamism with fuzzy
network models. The condition for stability of the system states for the
models has been derived and the estimated range of system parameters for
attaining stability has been verified through computer simulation for
illustrative problems.

The fuzzy networks used in the model of cognition have a distributed
architecture and thus possess a massive power of concurrent computing and
fault tolerance [4]. It also supports pipelining [4] of rules, when used for
reasoning in knowledge-based systems. Further, its functional capability of
modeling neural behavior made it appropriate for applications in both
reasoning and learning systems. The methodology for building an intelligent
system of the above two types by FPN, to the best of the author's knowledge,
is the first work of its kind in Artificial Intelligence. The added advantage of
timed Petri nets in modeling co-ordination problems further extends the scope
of the proposed network in designing complex systems.

It may be noted that besides FPN, many other formalisms could also be
used to model cognition. For instance, Zhang et al. used negative-positive-
neutral (NPN) logic for reasoning [13-16] and co-ordination among distributed
co-operative agents [16] in a cognitive map. However, their model cannot be
utilized for handling as many states of cognition as an FPN can. Kosko’s
model [6] for cognitive map, however, may be considered as a special case of
the FPN-based model presented here.

Realization of the proposed systems in practical form is in progress. For
example, Konar and Mandal [4] designed an Expert System for criminal
investigation with the proposed models. Their system contains approximately
200 rules and an inference engine realized with FPN. It was implemented in
Pascal and tested with simulated criminology problems. Much work, however,
remains for field testing of such systems. The learning, co-ordination and
control models of cognition have yet to be implemented for practical systems.
The use of the proposed models in an integrated system like coordination of
the eye, hand and ear of a robot is an open problem for future research and
development.
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Exercises

Starting with the point-wise equations for belief and FTT updating, derive
the vector-matrix representation of the belief updating equations 16.14
and 16.15.

Verify the co-ordination model with appropriate timed tokens at the places
of fig. 16.4.

Design a reasoning model of fuzzy timed Petri nets that can handle
fuzziness of timed tokens. [ open ended for researchers]

Take an example from your daily life that includes concurrency and
temporal dependence of activities. Order them according to their time
schedule (absolute / relative) and dependence. Map them onto a timed
Petri net and test whether the Petri net model can handle this problem.

Design a supervised learning algorithm for a fuzzy Petri net. [open ended
for researchers]

[Hints: Represent the AND/ OR operator by smooth function, so that
their derivative with respect to the arguments of the function exists. Then
use a back-propagation style derivation (see Appendix B).]
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17

Visual Perception

Human beings can form perceptions about their 3-D world through many
years of their experience. Building perception for machines to recognize their
3-D world by visual information is difficult, as the images obtained by
cameras can only represent 2-D information. This chapter demonstrates one
approach for understanding the 3-D world from 2-D images of a scene by
Kalman filtering. Before employing Kalman filters, the images, however, have
to be pre-processed and segmented into objects of interest. The chapter thus
begins with low and medium level image processing that deals with pre-
processing and segmentation of images. Next the principles of perspective
projection geometry are covered to explain many interesting phenomena of
the 3-D world. The recognition of images with self-organizing feature maps
and the principal component analysis have then been taken up as case studies.
The chapter ends with reconstructing the 3-D world from multiple 2-D images
by using Kalman filtering.

17.1 Introduction

The phrase ‘Visual perception’ generaly refers to construction of knowledge
to understand and interpret 3-dimensional objects from the scenes that humans
and machines perceive through their visual sensors. The human eye can
receive a wide spectrum of light waves, and discriminate various levels of
intensity of light reflected from an object. Many lower class animals,



however, have a narrow spectrum of vision in the visible (400-700 nM) or
infrared ( > 700 nM) wavelength. Modern robots are equipped with sonar
(ultrasonic) or laser sensors and video cameras to capture the information
around its world for constructing the model of the neighborhood. The
knowledge about its neighboring world, derived from the sensory information,
also called the ‘perception of the robot’, is useful for generating navigational
plans and action (like arm movement) sequences by the robot.

In order to construct the models of visual perception, we, in this
chapter, will presume the camera to be the sensor. Though there exists some
similarity between the human eye and a camera with respect to image
(reflected light from an object grabbed by a camera) formation, the resolution
of acamera cannot be compared with the human eye. In fact, the resolution
of the human eye is more than 100 times the resolution of a good camera.
Another basic difference between the human eye and a camera lies in the
dimensionality of the devices. While a human eye can feel the third dimension
(the depth), a camera can extract only the 2-dimensional view of an object.
Getting the third dimension requires integration of the multiple cameraimages
taken from different directions. This is generally referred to as the 3-D re-
construction problem, which is a frontier area of research in imaging. There
are many approaches to re-construct 3-D objects from their 2-D partial
images. The 3-D reconstruction problem and its solution will be covered in
this chapter by Kaman filtering, which dates back to the early 60's and
remains auseful tool for signal recovery to date.

Another interesting and useful issue of image understanding is the
‘recognition problem’. Kalman filtering can be used for recognizing and
interpreting objects with planer surface boundaries. But it cannot identify
objects having complex 3-D surfaces. Alternatively, the features of an object
are extracted from its images and then a ‘feature matching algorithm’ may be
employed to search the extracted features in the model feature-space of the
objects. There exist many model-based feature matching algorithms in the
existing literature of Artificial intelligence, a detailed account of which is
beyond the scope of this book. Artificial neural nets, on the other hand, can
also be used for recognizing objects from their features. We, in this chapter,
will employ the self-organizing neural nets to recognize human faces from
their images.

From our background of chapter 1, we remember that the entire class
of vision problems can be subdivided into three typical classes: low, medium
and high level vision. Though there exist no clear boundaries of these three
levels, still the low and the medium levels include steps like pre-processing,
enhancement [5] and segmentation [6] of images, while the high level
corresponds to recognition and interpretation of scenes from their 2-D images.



Among these three levels, the high level vision utilizes many of the tools and
techniques of Artificial Intelligence. This chapter thus briefly outlines the
principles of the first two levels and demonstrates the application of Al and
soft computing tools in high level vision systems.

17.1.1 Digital Images

The reflected light from the surface of an object is received by a camera and
mapped onto a grid of cellsin a Cartesian plane, called the image plane. The
light received by the image plane is spatially sampled, quantized and encoded
in binary codes. The encoded information thus obtained is represented by a
two dimensional array of sampled points, called pixels, and the encoded

intensity level of each pixel is called its gray level. For instance, if 5 bits are
used to represent the coding, we can have gray levels ranging from 0 to 31.

For the sake of illustration, let us consider a (4 x 4) image, comprising of four

gray levels. Let us define the darkest gray level to be 0 and the brightest to be
3 and the rest are in between.

€Y (b)

Fig. 17.1: (a) Anillustrative gray image and (b) its encoding
of gray levelsin therange[0,3].

A digital image is a two dimensional representation of pixels like that
of fig. 17.1. The sampling and quantization process in a digital camera adds
noise to the image. Elimination of noise from an image is a prerequisite step
for understanding the image. In the next section, we discuss some elementary
methods to eliminate noise from a digital image.

17.2 Low Level Vision

Low level vision pre-processes the image for subsequent operations. The most
common type of pre-processing includes filtering the image from the noise



contaminated with it. However, for filtering an image, it is to be first
represented in frequency domain. Since an image is a two dimensional array
of pixels, we reguire two dimensional Fourier transforms to get the
frequency domain representation of the image. Let x and y denote the spatial
distance of a pixel (x, y) along x- and y-direction of the image. Let u and v be
the frequency of gray levels aong x- and y-direction respectively. The
Fourier transform of an image now can be stated as

n-1 n-1
Fuv)=@Wna afxy) epl2ux +vy)/n 17.1)
x=0 y=0

where n denotes the number of pixelsin x- and y-directions, and j is the well-
known complex number O(-1).

Let G (u, v) be the transfer function of a two dimensional filter of
known characteristics. For the reconstruction of the image after filtering it by
G (u, v), we need to compute the inverse transform of the product. Theinverse
Fourier transform of F (u, v) is defined below.

n-1n-1
f,y)=Fuv)=(L/ma & fuv)epl2 (ux +v y)/in (17.2)

u=0 v=0
where F* (u, v) denotes the inverse Fourier transform of F (u, v).

For retrieving noise-free image h (x, y), we thus need to compute

h(x,y)=F ' [F(u,V).G(u, V)] . (17.3)

Sometimes impulse response of G(u, v) are known. Under this circumstance,
one may use the convolution theoremto compute h(x, y).

TR
hxy)= & & fuv) g(x-u, y-v). (17.4)
U= V=4

The convolution of f(u, v) with g(u, v) is denoted by ‘* * , using the standard
nomenclature. Thus h (x, y) is written as



h(x,y) =f(u, v) * g (u, v). (17.5)

Thus one can obtain the noise-free image, when the impulse response
of the filter transfer function is known. A gaussian filter is one of the most
commonly used devices, represented by

gx,y) = (1/2ps?)exp[-(€+y?)/2s?] (17.6)
where the standard deviation s is a parameter of the user’s choice.

Thedigital filtering by gaussian function attempts to smooth the
frequency response F (u, v) of the image and is thus referred to as smoothing.
We describe different smoothing techniques in the next sub-section.

17.2.1 Smoothing

Smoothing, as evident from its name, is required to reduce the variations in
the amplitude of F(u, v) over a wide range of frequencies u and v. Gaussian
filter undoubtedly is a good scheme for smoothing. Besides gaussian filter,
there exist masking techniques for smoothing. Two such masks, referred to as
the 4-point and the 8-point masks, are presented below.

1/8 1/32 | 3/32 | 1/32
1/8 | 1/2 |1/8 3/32 | 1/2 | 3/32
1/8 1/32 | 3/32 | 1/32

@ (b)

Fig. 17.2: (a) 4-point and (b) 8-point masks used for smoothing.

It may be noted from fig. 17.2 that the sum of the weights assigned to
the pixels of a mask must add to unity. A question that naturally arises is how
to employ these masks for smoothing an image. The following steps may be
executed to solve the problem.



1.  Move the mask over the image, so that the central (x, y) pixel of the
mask is merged with a pixel of the image. The boundary pixels of
the image, however, cannot not be merged with the central pixel of
the mask.

2. Evaluate the changed gray level at pixel (x, y) by taking the sum of
the product of the mask weights and the gray level at the
corresponding pixels and save it.

3. If all feasible pixels on the image have been visited, replace the old
gray levels by the corresponding new (saved) values and stop, else
continue from step 1.

Among the other smoothing algorithms, most common are mean and
median filters. The mean filter takes the average of the gray levels of al 8-
neighboring pixels to compute the changed gray level at pixel (x, y). The
median filter, on the other hand, replaces the current gray level of pixel (X, y)
by the median of its 8 neighborhood pixels. Experimental evidences show that
mean filter blurs the image, but the median filter enhances the sharpness of
theimage.

17.2.2 Finding Edges in an Image

An edge is a contour of pixels that (artificially) separates two regions of
different intensities. It also can be defined as a contour aong which the
brightness in the image changes abruptly. Fig. 17.3 describes the edges in a
synthetic image.

edges

Fig. 17.3: Edges in a synthetic image.



There exists a vast literature concerned with edge findings in an image. The
simplest method to find edges is to evaluate the directional derivatives of g(x,
y) in x- and y-directions. Let us call them g and g respectively. Thus,

a = flo(x, y) /1x (17.7)
ad  @="Tg9(x,y)/ Ty. (17.8)
The resulting gradient can be evaluated by the vector addition of g and ¢ and
is given by
gradientg= [g ?+g2]*? (17.9)
andphase f =tan ™ (q / @). (17.10)

A pixel is said to lie on an edge if the gradient g is over a given threshold. An
extension of this principle has been realized by Sobel mask, presented below.

-1 0 1 1 2 1

2 0 2 0 0 0

-1 0 1 -1 -2 -1
mask for g mask for g

Fig. 17. 4: The Sobel masks.

One can thus evaluate g and @ by moving the Sobel masks over the
image and evaluating them by taking the sum of the products of the weights
and the gray level of the corresponding pixels. The gradient g at each pixel
then can be evaluated and a threshold may be used to check whether g
exceeds the threshold. If yes, that pixel is supposed to lie on an edge.

An dternative way to determine edgesis to use gaussian function. For
example, the Laplacian operator

RZ=9q2/9x + 12/9y?

may be applied on the convolution of g* f to evaluate



N?(@g* f)
= (RN?g)* f.

With g(x,y) = (1/2ps®)exp[- (€ +y?)/2 s*], vide expression
(17.6), we can now evaluate N2 (g* f) , which will be non-zero at the
pixels lying on edges in an image and will be zero as we go off the edges. The
present method of edge determination, thus, is a two step process that involves
smoothing and then application of Laplacian over the resulting image.

We now say afew words on texture of an image before closing this section.

17.2.3 Texture of an Image

A texture [6] is a repeated pattern of elementary shapes occurring on an
object’s surface. It may be regular and periodic, random, or partially periodic.
For instance, consider the image of a heap of pebbles. It is partidly periodic
as the pebbles are not identical in shape. But a heap of sand must have a
regular and periodic texture. Textures are useful information to determine the
objects from their images. Currently, fractals are being employed to model
textures and then the nature of the texture is evaluated from the function
describing the fractals. Various pattern recognition techniques are also used to
classify objects from the texture of their surfaces.

17.3 Medium Level Vision

After the edges in an image are identified, the next major task is to segregate
the image into modules of interest. The process of partitioning the image into
modules of interest is informally called segmentation. The modules in the
image are generally segmented based on the homogeneous features of the
pixel regions and/ or the boundaries created by the connected edges in low
level processing. The intermediate level requires combining the pieces of
edges of contiguous regions to determine the object boundaries and then
attaching a label to each of these boundaries. We now discuss some of the
well-known techniques of image segmentation and labeling.

17.3.1 Segmentation of Images

The most common type of segmentation is done by a specialized plot of
frequency versus intensity levels of an image, called a histogram. Fig. 17.5
describes a typical histogram. The peaks in the histogram correspond to
regions of the same gray levels. The regions of same intensity levels, thus,
can be easily isolated by judiciously selecting a threshold such that the gray



level of one module in the image exceeds the threshold. Thisis referred to as
thresholding. Selection of threshold, however, is a difficult issue as the range
of gray levels that exceed the thresholds may be present in more than one
disoint modules.

In fig. 17.5, we find three peaks, each likely to correspond to one
region. So, we select threshold at gray levels thy, th, and ths following the
peaks, so that we can expect to identify one or more regions. Since a gray
level may occupy more than one region, segmentation by histogram cannot
always lead to identification of the regions.

T

frequency

thy thy ths

graylevels —
Fig. 17.5: A typica histogram of an image.

Regional segmentation is accomplished by growing or splitting
regions. In the first instance, neighboring regions having some form of
homogeneity such as uniformity in gray level or color or texture are grouped
together to form a larger region. The process of building a larger region is
continued recursively, until a specific type of known structure is identified.
Region growing is generally called a bottom up approach, as the regions,
representing leaves of a tree, are grouped to get the intermediate node
(describing complex regions), which after grouping at severa levels form the
root, describing the complete image.

Region splitting starts with the entire image and splits it into large
regions of more or less uniform features including gray levels, texture or
color. The regions thus obtained are sub-divided recursively until regions
describing some known 2-D shapes are identified. Region splitting is called a
top down approach for regional segmentation.



It may be noted that segmenting an image into regions without any
knowledge of the scene or its modules is practically infeasible. Generally, the
partial knowledge about the image such as an outdoor scene or a classroom or
afootball tournament helps the segmentation process.

17.3.2 Labeling an Image

After segmenting an image into disjoint regions their shapes, spatial
relationships and other characteristics can be described and labeled for
subsequent interpretation. Typically a region description includes size of the
area, location of the center of mass, minimum bounding rectangles, boundary
contrast, shape classification number, chain code [6], position and type of
vertices and the like. We here explain the method for describing the boundary
of aregion by a chain code.

A chain code is a sequence of integers, corresponding to direction of
traversal of the segments around a region, starting from a fixed position. The
direction of traversals of a segment is compared with the set of primitive
directions and the nearest one is selected. The traversed segment is encoded
following the standard integer code of that direction. The traversal is
continued until the chain repeats. The minimum index in the closed chain is
identified to match it with known strings, constructed in the same manner.

One important point that needs mention is that the consecutive chain
indices may be identical, when we move along a large linear segment. Under
this circumstance the portion of the chain describing the same index is
replaced by the index, taken only once. Constructing a chain code for the
boundary of aregion isillustrated below (vide fig. 17.6 and 17.7).

2

Fig. 17.6: The direction indices for chain coding: the angle between
two consecutive directionsis 45 degrees.
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Fig. 17.7: A region boundary to illustrate the construction
of the chain code.

Suppose we arbitrarily start coding from point A along AB. Suppose
we have a small fixed length stick, by which we measure line AB and write
the code for horizontal right (0) (vide fig. 17.6) as many times as the number
of the measuring stick. Last time the stick length may have been a little
larger/smaller than the actual length of the remnant line. Let us assume that
AB is 4 times the length of our measuring stick; so we write 4 zeroes to
describe AB. Proceeding in this manner, we find the chain code of the closed
boundary as follows.

Chain code= { 00003311333445557755}

Rewriting repeated consecutive symbols once only, we find the
modified code = {03134575}. Since it is a closed chain, we can start
anywhere. But the code must start with the minimum index. Here, it is
already in the required form. For a specific example let the chain code be
{2304568} ; we would express it in the form { 0456823}, which starts with the
minimum index. Such representation helps matching the code of an unknown
boundary with known ones. It may be noted that for two distinct shapes of
boundaries the chain code must be different. If it is not the case, then direction
indices need to be increased.

17.4 High Level Vision

The major task of high level vision is to recognize objects from their feature
space, obtained at earlier levels, and interpret the scene comprising of one or
more objects. For instance, suppose a football tournament is going on and the



machine has to narrate the game online. This undoubtedly is a very complex
problem and present day systems are incapable to do so. But where are the
hurdles? Suppose low and medium level image processing are done very fast
in real time. So, the difficulty may not be at these steps. In fact for narrating
the game, the machine has to see the position of the ball, the players and
recognize them. In many occasions, the players may be visible partially and
the machine has to identify them from their partial side images. Translating
the scene into language for interpretation also is not an easy task. This section
will be devoted to presenting recent techniques for recognition and
interpretation of images.

The feature-space of objects sometimes comprises of geometric
information like parallelism or perpendicularity of lines. Detecting these is
also a complex task. For instance paralel rail lines at a far distance do not
look parallel. The highway at a far end seems to be unparallel. But realy they
are not so. This happens dueto a inherent characteristic of the lens in our eye
or camera. This characteristic is called perspective projection. We will
discuss theseissues briefly in this section.

17.4.1 Object Recognition

Recognition problems are concerned with two major issues. feature extraction
and classification. Features are essential attributes of an object that
distinguishes it from the rest of the objects. Extracting features of an object
being a determining factor in object recognition is of prime consideration. The
well-known supervised, unsupervised and reinforcement algorithms for
pattern classification are equally useful for recognition of objects. The choice
of a particular technique depends on the area of application and the users
experience in that problem domain. In this section, we present an
unsupervised (more specifically, reinforcement) learning by employing a self-
organizing neural network. Experimental evidences show that the pixel gray
levels are not the only features of an object. The following case study
illustrates the principal component analysis to determine the first few eigen
values and hence eigen vectors as image attributes. These vectors are
subsequently used as the features of a self-organizing neural net for
classification of the object.

17.4.1.1 Face Recognition by Neurocomputing
Approach

This section describes two approaches for face recognition. The first is
accomplished by principal component analysis, and the latter by self-
organizing neural nets. There feature extraction parts for both the methods are
common, as evident from fig. 17.8.



Principal component analysis: The detail of the analysis [4] is beyond
the scope of the book. We just illustrate the concept from a practical
standpoint. We, in this study, considered 9 facial images of (32 x 32) size for
40 individuals. Thus we have 360 images each of (32 x 32) size. The average
gray value of each image matrix is then computed and subtracted from the
corresponding image matrix elements. One such image after subtraction of the
average value is presented in fig. 17.9. This is some form of a normalization
that keeps the image free from illumination bias of the light source. Now, we
construct amatrix X of ((32 x 32) x 360) = (1024 x 360) dimension with the
above data points. We also construct a covariance matrix by taking the
product X X" and evaluate the eigen vectors of X X" Since X is of dimension
(1024 x 360), X X" will have a dimension of (1024 x 1024). X X" thus will
have 1024 eigen values, out of which we select the first 12, on experimental
basis. The eigen vectors corresponding to these 12 eigen values are called the
first 12 principal components. Since the dimension of each principal
component is (1024 x 1), grouping these 12 principal components in column-
wise fashion, we construct a matrix of dimension (1024 x 12). We denote this
matrix by EV (for eigen vector).

To represent an image in the eigen space, we first represent that image
in (1 x 1024) format and then project it onto the face space by taking the dot
product of the image matrix IM, represented in (1 x 1024) format and the EV
and call it apoint (PT) in the face space. Thus

(PT) 1x12 = (IM) 151024 - (EV) 1024 x 12. (17.11)

The projection of images onto face space as 12-dimensional pointsis
presented in fig. 17.10. Representing all 360 images by the above expression,
we thus get 360 points in 12-dimensional image space.

Now, suppose given atest image and we want to classify it to one of the
40 persons. One simple way to solve this problem is to determine the
corresponding image point (PT) in 12-dimensional space and then determine
the image point (out of 360 points) that has the least Euclidean distance w.r.t
the test image point. The test image thus can be classified to one of 360
images.

The principal component analysis (PCA) thus reduces the dimension of
matching from (32 x 32) to (1 x 12) but requires computing the distance of a
test point with all image points. An aternative scheme that reduces less
computing time is by a self-organizing neural net. The self-organizing scheme
inputs the (1 x 12) points for al of the 360 images, constructs a network and
searches a test point by the best first search paradigm in the search space. A



schematic diagram, briefly outlining the two approaches, is presented in fig.
17.8 below.
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Fig. 17.8: A schematic architecture of the overall system.



Fig. 17.9: A facial image after subtracting the average value from
the pixels of theimage.

Self-organizing neural nets for face recognition: Let us assume
that 12-dimensional vectors, one each for the 360 images, are aready
available by principal component analysis. We now consider each 12-
dimensional point as input and adapt the weights of the neurons on a two-
dimensional plane. Remember that for mapping a feature vector (here the 12-
dimensional vector), we need to find the neuron on the 2-D plane, where the
error || TP —W|| is minimum for some weight vector W of a neuron [7]. We
then have a selected small square region centering that neuron and adjust the
weights of al neurons within that encirclement. Now, we find a next point,
where again the error || IP — W || is minimum. We now consider a smaller
square around the point on the 2-D space, where this error too is minimum.
The process of adaptation of weights of neurons is thus continued, until we
reach a situation, when the weights of a node do not change further. Thus the
12-dimensional point is mapped to one point on the 2-D neuronal plane.
Sometimes instead of a single point, a small cluster of pointsis found to have
almost no change in weights. In that case the 12-dimensional point is mapped
onto the cluster. In the same manner, we map all the 360 points onto a 2-
dimensional surface.

It may so happen that more than one projected image point corresponds
to the same cluster on the 2-D surface. In that case the weight vectors of those
neurons are again mapped hierarchically to another 2-D surface. Repeating the



same process for all clusters, we got a hierarchical organization of self-
organizing map (SOM) in fig. 17.11. The main advantage of this structure is

Face space of A

Roberts
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(d) (e)

(@ b)

(a) Jm, (b) Jack, (C) Robert, (d) Lucy and (€) Margaret

Fig. 17.10: Projection of different facial poses of persons mapped on 12-
dimensional space as points; we considered 9 poses per person
that together form acluster; all 9 pointsin a cluster, however,
have not been shown for clarity.



that it can always map a new projected image point on to the leave surfaces of
the structure. Here is the significance of SOM over the back-propagation
learning. For a new input-output pattern the back-propagation net is to be re-
trained, whereas for a new input pattern the incremental classification of SOM
just maps the new point onto one of the existing leaves of the 2-D surfaces.

After the structural organization of the SOM is over, we can classify a
test image by the structure. Let IP be the projected point corresponding to the
test image. Let W be the weight vector of a neuron. We first compute the ||IP
-W || for al neurons mapped on the surface at level 0 and identify the neuron
where the measure is minimum. We then compute |[IP —W || for al neurons
of a surface in level 1, which is pointed to by the winning neuron at level 0.
The process is thus continued until one of the leaves of the structure is
reached. The search procedure in a SOM thus is analogous to best first search.

17.4.1.2 Non-Neural Approaches
for Image Recognition

There exist quite a large number of non-neural approaches for pattern
recognition. For instance Bayes classifier, rule based classifier, and fuzzy
classifier are some of the well-known techniques for pattern classification,
which have also applications in recognition of human faces. The simplest
among them is the rule based classification. The range of parameters of the
feature space is mentioned in the premise part of the rules. When all the
preconditions are jointly satisfied, the rule fires classifying the object. One
illustrative rule for classification of sky is presented below.

Rule: If (the location-of-the-region = upper) and
( Intensity-of-the-region-is-in {0.4,0.7}) and
(Color-of-region = (blue or grey)) and
(Texture-of-the-region-is-in {0.8, 1})
Then (region = sky).

One drawback of the rule based system is that in many occasions the
precondition of no rules are supported by the available data space. Fuzzification
of the data space is required under this circumstance to identify the rules having
partially matched preconditions. The application of such fuzzy rule based
systems for facial image matching will be presented in a subsequent chapter of
this book. Bayes' classification rule and fuzzy c-means classification schemes
are beyond the scope of this book.
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Fig. 17.11: Hierarchical structure of self-organizing neural systems.

17.4.2 Interpretation of Scenes

Interpretation of scenes includes a wide class of problems. The simplest form
of the problem is to interpret an object from the labels of its recognized
components. For instance, if we can identify the back plane, the seat and the



legs of a chair, we should interpret it to be a chair. Even the simplest problem
of this type is difficult to realize. Naturally the question arises. why? In fact,
we cannot always grab al components of a chair in its image. So, for
determining it to be a chair, we need to grab several images of it and then
design schemes to fuse these images or their attributes for interpretation of the
object. Further, the paralel lines of the objects may not be paralel in its
image, especially when the lines are long and away from the camera. For
understanding these, we need to learn the geometric aspects of image
formation. The most fundamental issue in geometric aspects of image
formation isthe perspective projection.

17.4.2.1  Perspective Projection

The concept of perspective projection stems from the principle of image
formation in a pinhole camera. Light passes through a pinhole of a camera and
forms an inverted image in the back plane, also called the image plane of the
camera. Generally, the image plane is defined as a plane perpendicular to the
direction of light and located at a distance of f, the focal length of the camera
lens from the pinhole. A schematic diagram of the geometry of image
formation in a camera is presented in fig. 17.12. It shows two sets of axes:
one representing the global axes denoted by X, Y and Z, and the other
corresponding to the camera axes denoted by X., Y., and Z.. In fig. 17.12,
however, al the axes of the global coordinate system and the camera
coordinate system are aligned.

A light ray passing through the optical center of the camera forms an
image point (u, v) on the image plane of the camera corresponding to point P
having a global coordinate (x, y, z). From the properties of similarity of
triangles, the following relations are evident:

xlz =-ulff

P u=-x.f/z (17.12)
ylz=-v/f

b v=-y.f/z (17.13)

The expressions (17.12) and (17.13) are jointly referred to as the
perspective projection relations that describe the mapping of point (X, y, 2)
to (u, v) on the image plane. The negative signs in the right hand side of these
expressions indicate that the image at (u, v) will be inverted, both left-right
and up-down.
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Fig. 17.12: Camera model of 3-D perspective projection.

The reason: why parallel rail lines at the furthest end seem to be
unparallal (converging) can now be ascertained. Let us consider a point Py, on
the line passing through (X, y, z) in the direction (p, q, r). The coordinate of
the point then will be(x + mp, y+ mq, z+ mr). The perspective projection
of Py, on the image plane is given by

uv)y=(-f(x+mp)/(z+mr),-f(y+maq)/(z+mr)). (17.14)

When m approaches infinity, (u, v) approaches (- fp/r, -f q/r), then
wecal Pha m® u to be the vanishing point. It may be noted that asm ® .,
the projected image point does not depend on the point (X, y, z). Thus parallel
lines are mapped at a given point (- f p/r, -f q/r) and consequently the
parallel lines seem to be converging at the furthest end.

17.4.2.2 Stereo Vision

The objective of stereo vision is to recover the geometric structure of objectsin
a scene from multiple images. Generally the images of a scene are taken from



different viewpoints and the correspondence between the points in two images
is accomplished. Sometimes al the points in one image are not available in the
other images because of different viewpoints. In this section we illustrate the
concept of triangulation that helps in identifying the corresponding points in
images. Suppose we see an object by a camera. The location of the point must
lie on the line passing through the center of projection and the image point. So,
if we see a point through two cameras, vide fig. 17.12, the 3-D point must lie
on the intersection of the lines passing through the center of projections and the
image points.

Epipolar plane

Object point

@)

Left center of

proiection Right center of

proiection

Epipolar lines

Fig. 17.13: The epipolar geometry showing that the epipolar lines are formed
by the intersection of the epipolar plane with the image planes.

It must be added here that when two cameras are used to see an object
from different viewpoints, a hypothetical plane passes through the center of
projections and the object point. This plane is called epipolar plane. The



epipolar planes meet the image planes at epipolar lines. From the epipolar
geometry of fig. 17.13, it is clear that for a given image point, there must be a
corresponding point on the second image. Thus if the image point in the first
image is shifted, the corresponding point will also be shifted on the epipolar
line of the second image.

Finding the corresponding points in images is generally referred to as
the correspondence problem [3]. There are many approaches to handle the
correspondence problem. In this book we will first determine the 3-D points of
an object from its 2-D image points and then for more than two images
determine the correspondence by measuring the shortest Euclidean distance
between the point sets of the two or more images. If the 2-D to 3-D mapping of
the points are satisfactory and the images consist of common points, then
determining the correspondence between the points of two or more images is
not a complex problem. For determining the 3-D points from their 2-D images
we, in this book, will use Kalman filtering [1]. However, before introducing
Kalman filtering, we briefly outline the minimal representation of 2-D lines, 3-
D lines and 3-D planes. With a minimal representation, we can extract 3-D
points from multiple 2-D points in different images by using Kalman filtering.
We use Kalman filtering because it has an advantage of recursively operating
on incoming data stream like 2-D points from n number of images. The more is
the value of n the better will be the accuracy of the results. The other least
sguare estimators, unlike Kalman filtering, demand all the data set together; so
the user has no choice to control the level of accuracy at the cost of
computational time. In Kalman filtering, one can observe the improvement in
accuracy in the estimation of the parameter of lines or planes and accordingly
decide about the submission of new data points.

17.4.2.3 Minimal Representation
of Geometric Primitives

For estimation of parameters of 2-D lines, 3-D points, 3-D lines and 3-D
planes, we first represent them with minimal parameters. Further the
selected representation should be differentiable, so that we can employ the
principles of Linear Kalman filtering.

Representation of Affine lines in R?: A 2-D line can be represented by
at least two independent parameters. The simplest form of representation of a
2-D lineis given by the following expressions.

Case 1: When the lines are not parallel to the Y-axis, they are represented

by
ax+y+p=0 (17.159)



Case 2: When the lines are not parallel to the X-axis, they are represented

by:
x+ay+p=0 (17.15b)

In brief, the representation of a 2-D line is given by a vector (a, p),
where the line passing through (0, 0) and (a, 1) isnormal to the line under
consideration, which also passes through the point (0, -p). This is
illustrated in fig. 17.14.

©-p)

(a 1)

(0,0

Fig. 17.14: A 2-D line represented by (a, p).

Representation of Affine lines in R’: The 3-D affine line can be
represented minimally by four parameters given by (a, b, p, ). Other
minimal representations are possible but there exists scope of ambiguity in
other representations [1]. For example, when the line is parallel to the
direction vector (a, b, 1)" and touches the x-y plane at (p, g, 0)", it can be
represented by the following two expressions (vide fig. 17.15).

X =az+p

y =bz+q
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Fig. 17.15: A 3-D representation of aline by (a, b, p, 9).

This, however, is a specia case. In general, we have the following three
cases representing 3-D lines

Case L Line not orthogonal to the Z axis:

X =az+p (17.16a)
y =bz+q

Case II: Line not orthogonal to the X axis:

y =ax+p (17.16b)
Z=bx+q

Case I1I: Line not orthogonal to the Y axis:

zZ=ay+p (17.16¢)
X =by+q



The representation is preferred by the following counts:
i) It imposes no constraints on the parameters (a, b, p, ).

i) Parametric representations of the lines remain linear, which are
advantageous to Kalman filtering optimization.

Representation of Affine planes in R’: One way of representing 3-D
planes is by a 3-D vector (g, b, p) such that points (X, y, z) of the plane are
defined by the following equation.

ax+by+z+p=0

Here the vector (a, b, 1)" is the normal to the plane and the point (0, 0, -p)"
isthe point of intersection of the plane with the Z-axis.
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Fig. 17.16: A 3-D plane representation by (a, b, p).

The limitation of this notation is that planes parallel to the Z axis can not be
represented. More formally, we have three cases:

Case I: Planesnot parallel to the Z axis

ax+by+z+p=0 (17.173)
Case II: Planes not parallel to the X axis

X+ay+bz+p=0 (17.17b)



case III: Planes not parallel tothe Y axis
bx+y+az+p=0 (17.17¢)

17.4.2.4 Kalman Filtering

A Kaman filter is a digital filter that attempts to minimize the measurement
noise from estimating the unknown parameters, linearly related with a set of
measurement variables. The most important significance of this filter is that it
allows recursive formulation and thus improves accuracy of estimation up to
users' desired level at the cost of new measurement inputs.

Let

fi (x;, @) = 0 be a set of equations describing relationships among a
parameter vector a and measurement variable vector X,

x; * =x +I,suchthat E[ ;] =0, E [I; ;'] = positive symmetric
matrix L;, and E[I;1; ] =0,

a_1* =a+s;_q, suchthat E[Si_l] =0,E [ Si1 Sj_]T] = pOSitive
symmetric matrix S;_y, E[Si_; Si_1" ] =0.

Expanding f; (xj,a) by Taylor's series around (x; *, a;_1), we find
fi (x;, a)

= fix*,a %)+ WH/ I (xi-x*) +(Tfi/Ta)(a—a4%)
=0.

After some elementary algebra, we find

i=M at+ w

where y; = - fi(xi*, ai.1) +(1f/Ta)(a—a; %)

is a new measurement vector of dimension (p; x 1).

M; = (1fi/Ta)and

w; =(T£/9x) (xi — x; *) isameasurement noise vector of

dimension (p; x 1).



We also want that E [w;] =0 and define
W,=E[ww' 1= (16/I9L; (T£/1%".
Let S; =E [(a—ap) (& — %) |

An attempt to minimize S; yields the filter equations, given by:

a*=a_*+ K (yi— M a_¥)
K=Si.iM" " Wi+MS;_MH ™! (17.18)
Si=(d-KiM;)S;_1.

Given Sy and ay, the Kalman filter recursively updates a;, K;, S; until the error
covariance matrix S; becomes insignificantly small, or all the number of data
points have been submitted. The a; obtained after termination of the algorithm
isthe estimated value of the parameters.

The Kalman filter has been successfully used for determining
i) affine2-D linesfrom aset of noisy 2-D points,

ii)  3-D pointsfrom aset of noisy 2-D points,

iii) affine 3-D lines from noisy 2-D points and

iv) 3-D planes from 3-D lines.

In the next section, we illustrate the formation of 2-D lines and 3-D lines from
a set of noisy points by Kalman filtering.

17.4.2.5 Construction of 2-D Lines from
Noisy 2-D Points

We shall directly apply the filter equations for the construction of affine 2-D
lines from noisy 2-D points. Here, given the set of points x; * = (U *, v *),
we have to estimate the parameters a =(a, p)’. The f (x; , a) in the present
context is given by

fi(xi,a)=au +v +p=0.
Yi= M a+ Wi,

where



yi=-fi (%% a_*) +(T£i/Ta)(a—a;%)

=- v

M;= (T1£f/Ta)
=(u, 1

The measurement noise w; is given by

wi= (TH/Tx)@&-x%),

where @ fi/8x)=[a_1%*,1]
The covariance matrix W is given by
Wi=@6/8x)Li @fi/§x)"
whereL; = 1.

Computer simulation: We now present a computer simulation to
construct 2-D lines from noisy 2-D points [7].

Procedure Construct 2-D-Lines (2D-image-points: u, v)

Input: the coordinates of the image points from a input file 2d.dat.

Output: the state estimate A (2° 1), along with the covariance error S (2° 2),
associated with the estimate.

Begin
Initialize the Initial Covariance matrix S and the state estimate:
S- Very largeinitia value
a~ Arbitrary value preferably [000]";

For ( no-of -points = 1 to n)
Compute the perspective matrix from the
input camera parameters;
Compute the measurement vector y (1" 1),
the linear transformation M (2" 1) obtained after linearizing
measurement equation from input parameters at each iteration;
Initialize all the matrices involved in matrix multiplication;
Compute gain K using previousS and M values;



Compute covariance matrix S recursively using its vaue at
previous iteration;
Compute the state estimate a' recursively using its value at
previous iteration;
End For,
End.

Traces of the Procedure: Construct-2-D-Lines

This program is taking the input data from the 2d.dat, which is given below.
Each row of thisfile contains (X, y) coordinate of a point.

File: 2d.dat
9.500000 0.500000
9.400000 1.000000
9.500000 1.500000
9.000000 2.000000
8.700000 2.300000
8.800000 2.800000
8.400000 3.000000
8.500000 3.500000
7.800000 4.000000
8.000000 4.500000
7.500000 5.000000
7.500000 5.500000
7.300000 6.000000
6.800000 6.200000
6.800000 6.600000
6.500000 7.000000
6.500000 7.500000
6.200000 7.800000
6.200000 8.200000
5.800000 8.300000
5.900000 8.900000
5.500000 9.000000
5.500000 9.500000
4.900000 10.000000
5.000000 10.500000

The sample output of this program in terms of the parameters of the extracted
lineisgiven for only 6 iterations and the graphical output is also presented
infig. 17.17.



Sample Execution:

Thisis aprogram for constructing 2-D line from 2-D points
2-D points are stored in aninput file Enter a:2d.dat to get
datafromtheinput file

Enter the input file name:a:\2d.dat

value of u entered for iteration 1 is 9.500000
value of v entered for iteration 1 is 0.500000
value of 'a for iteration 1is-0.052579

value of 'p' for iteration 1is -0.000498

Press enter to get the next data from the input file

value of u entered for iteration 2 is 9.400000
value of v entered for iteration 2 is 1.000000
value of 'a for iteration 2 is 0.166446

value of 'p' for iteration 2is -2.318713

Press enter to get the next data from the input file

value of u entered for iteration 3 is 9.500000
value of v entered for iteration 3 is 1.500000
value of 'a for iteration 3is-0.090538

value of 'p' for iteration 3is -0.134702

Press enter to get the next data from the input file

value of u entered for iteration 4 is 9.000000
value of v entered for iteration 4 is 2.000000
value of 'a for iteration 4 is 1.271064

value of 'p' for iteration 4 is -13.124207

Press enter to get the next data from the input file

value of u entered for iteration 5 is 8.700000
value of v entered for iteration 5 is 2.300000
value of 'a for iteration 5is 1.399287

value of 'p' for iteration 5is -14.335988

Press enter to get the next data from the input file

value of u entered for iteration 6 is 8.800000
value of v entered for iteration 6 is 2.800000
value of 'a for iteration 6 is 1.644827

value of 'p' for iteration 6is -16.664473

Press enter to get the next data from the input file

continued.



Fig. 17.17: The 2-D line from noisy 2-D points, obtained through simulation.

17.4.2.6 Construction of 3-D Points
Using 2-D Image Points

The 3-D object points are mapped onto an image plane by using the principle
of perspective projection. Let the 3-D object point be P having co-ordinates
(xy,2)", which is mapped onto the image plane at point (U, V, S)™. Let T be
the perspective projection matrix. Then
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where t;j; isthe (i, j) th element of the perspective projection matrix. Let u=
U/S and v=V/S. Now, after elementary simplification, let us assume for
brevity that t; = (tix tix tiz ta) ' and Pis (x, y, )" Also assume that
a=(tytiatotosts )T. For a match of an image point | with an associated scene
point P, we now have the following relationships between P, u and v.

PT 11+ tiy -uU (PT 13 +1) =0 and

PT o +toy -V (PT i3 +1) =0.

Now suppose we have x = (U , Vi )’ and we have to evaluate a =(x, y, 2)"-.
The measurement equationis given by

fi(x , @) =0yields
(' —uti')a+t) —Uty) =0
and (t' —vits')a+ 1ty —Vits4 =0
Wheretji comes from perspective matrix T; from camerai.
Further, yi=M; a + w;
where
Yi= tag U * -taq

i i
tag Vi * -tog



and M= [-(uti—t," )"

-Vt -t )T
1H/9x= [-6 a_* s 0
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0

The following algorithm may be used for the construction of 3-D points from
noisy 2-D points.

Procedure 3-D-Point-Construction (2-D image points: u,v; camera
parameters: X, Yo, Zo, A,B,C)

Input: coordinates of the image points along with the six camera parameters
determined by its position (X, v, z, )and orientation (A,B,C) w.r.t global
coordinate system.
Output: the state estimate a (3” 1), along with the covariance error S (3" 3),
associated with the estimate.
Begin
For (no. of points: = 1to n) do
Initialize the Initial Covariance matrix S and the state estimate
So— Very largeinitial value
ag~ Arbitrary Value preferably [00 0] ;

For (j: =1to no. of iterations) do
Compute the perspective matrix from the input camera
Parameters;
Compute the measurement vector y (2 1), the linear
transformation M (2 3) and W (2 2) the weight matrix



obtained after linearizing measurement equation from the input
parameters at each iteration ;
Initialize all the matrices involved in matrix multiplication;
Compute gain K using previousS and M values;
Compute covariance matrix S recursively using its vaue at
previous iteration;
Compute the state estimate 'a’ recursively using its value at
previous iteration; j:=j + 1;
End For;
End For;
End.

Traces of Procedure 3-D-Point-Construction

Input file for the above program: In this input file first two columns
contains the (u, v) co-ordinates of the image points. Next three columns
correspond to the (X, Yo, Zo) co-ordinates of the camera position and last three
columns represent orientation of the camera co-ordinate system (A, B, C)
w.r.t. some user selected reference co-ordinate systems. Here, A represents
the pan angle of the camera, B represents the tilt angle and C represents the
skew angle of the camera w.r.t. the global co-ordinate system. The whole data
set comprises of 6 blocks, each of 6 rows. The first row corresponds to the
pointl from image 1, the second row for pointl from image 2 and so on for
six different images. Similarly the second block is for point 2 and so on. The
output datafile, on the other hand (row-wise), presents the estimated (X, y, z)
points. All the input and output data files are given below.

Input file: Setl.dat

-1.8 1.7 9.0 14.0 285 -0.262 -1974 0.0
-1.8 2.0 18.0 155 285 0.0 -1.974 0.0
-4.4 17 24.0 135 285 0.0 -1.974 0.0
-1.7 1.0 26.5 13.7 285 0227 -1974 0.0
-3.2 0.8 325 148 285 0262 -1974 0.0
-5.0 -0.5 28.0 3.0 285 0.0 -1.974 0.0

55 0.7 9.0 140 285 -0.262 -1974 0.0
6.5 17 18.0 155 285 0.0 -1.974 0.0
3.8 14 24.0 135 285 0.0 -1.974 0.0
6.3 17 26.5 13.7 285 0222 -1974 0.0
4.5 1.8 325 14.5 285 0262 -1974 0.0
15 -0.7 28.0 3.0 285 0.0 -1.974 0.0



-15 4.9 9.0 140 285 -0.262 -1974 0.0
-15 52 18.0 155 285 0.0 -1.974 0.0
-3.8 4.7 24.0 135 285 0.0 -1.974 0.0
-15 4.2 265 13.7 285 0227 -1974 0.0
-295 3.8 325 148 285 0262 -1974 0.0
-4.6 2.3 28.0 3.0 285 0.0 -1.974 0.0

52 3.6 9.0 140 285 -0262 -1974 0.0
6.0 4.5 18.0 155 285 0.0 -1.974 0.0
3.7 4.4 24.0 135 285 0.0 -1.974 0.0
6.0 4.5 26.5 13.7 285 0227 -1974 0.0
4.40 4.6 325 14.8 285 0262 -1974 0.0
17 2.0 28.0 3.0 285 0.0 -1.974 0.0

3.8 -1.0 9.0 14.0 285 -0.262 -1974 0.0
54 -0.5 18.0 155 285 0.0 -1.974 0.0
31 0.6 24.0 135 285 0.0 -1.974 0.0
584 -044 2654 1374 2854 0227 -1974 0.0
4.7 -0.5 325 14.8 285 0.262 -1974 0.0
14 -215 280 3.0 285 0.0 -1.974 0.0

-25 0.0 9.0 140 285 -0.262 -1974 0.0
-15 0.0 18.0 155 285 0.0 -1974 0.0
-4.0 -0.2 24.0 135 285 0.0 -1.974 0.0
-0.8 -0.6 26.5 13.7 285 0.227 -1974 0.0
-1.8 -0.8 325 148 285 0.262 -1974 0.0
-4.0 -1.8 28.0 3.0 285 0.0 -1.974 0.0

Corresponding Output file: Outl.dat

13. 558480 48. 728981 8. 969839
33. 009026 46. 612656 10. 612383
13. 892322 48. 551067 -1.117031
32.706348 46.120842 3. 406096
33. 843052 57.854473 11. 443270
13. 166441 60. 997398 8.871586

17.4.2.7 Fusing Multi-sensory Data

Generaly images of a scene are taken from different orientation w.r.t the
camera co-ordinate systems. Since many cameras are used from different
angles, the images need to be represented in a global co-ordinate system. The
2-D points on the image, therefore, are now transformed to the global



co-ordinate systems. The correspondence between each two points on
different images is then determined. One simple way to handle the
correspondence problem is to first represent all 2-D points into 3-D points and
then identify which point in one image has a close resemblance in another
image. There are many other approaches for multi-sensory data fusion.
Dempster-Shafer (D-S) theory, for instance, is one significant tool to handle
this problem. The mapping of real image data onto basic probability
assignments in D-S theory, however, is a problem of practical interest. Neural
tools can also be used for eliminating uncertainty in multi-sensory data, but
here too mapping from image domain to neural topology is a practical
problem.

17.5 Conclusions

Vision systems can be functionally classified into three main levels, namely,
low, medium and high level vision. Al is mostly used in the high level vision.
The high level vision mainly deals with recognition and interpretation of 3-D
objects from their 2-D images. There exist many approaches to interpret a
scene from more than one image. Kaman filtering is one of such techniques.
Its main advantage is that it employs a recursive algorithm and thus can
update an estimator from input datain an incremental fashion. The vertices of
points in a 2-D image can be first mapped to their 3-D locations by
supplying the same 2-D points from multiple images. Now, we can construct
the equation of 3-D lines from 3-D points by a second stage of Kalman
filtering. Lastly, we can determine the equation of the planes containing more
than one line. The spatial relationships among the planes are then analyzed to
determine the 3-D planer object.

Exercises

1. Draw on a graph paper a 2 level (binary) image and verify the edge
detection algorithms manually. Note that here one pixel is equal to one
smallest cell on the graph paper.

2. Write a program to find edges from a given (64 x 64) gray image using
Sobel masks.

3. Wrteaprogram to verify the gaussian filter.

4. Can you derive the gaussian filter mask from the supplied filter
equations?



[1]

(2]

(3]

[4]

5]

(6]

[7]

For a small image of (16 x 16) determine the eigen values and eigen
vectors. Do you know any other numerical methods to compute the eigen
values of large matrices? If yes, can you compute it for large images of
dimension (1024 x 1024)?

Verify the image recognition scheme by principal component analysis.

Using MATLAB can you verify the self-organizing scheme for face
recognition?

List the parameters required to compute the estimator ‘a (slope and y-
intercept) for construction of a 2-D line from supplied 2-D points by
Kaman filtering. Also write a program to realize this.

Do the same thing with the least square method. Can you identify any
benefits of Kalman filter over the |least square estimation?
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13

Linguistic
Perception

Building perception about the syntactic, semantic and pragmatic usage of
natural language is a complex and tedious process. We require several years
to learn and use them. Realizing ‘linguistic perception’ on machines too is a
hard problem. This chapter presents various levels of analysis of natural
language with special reference to English and formalizes a few concepts
through illustrations to make the readers understand their importance in
building natural language understanding programs.

18.1 Introduction

The process of building perception by human beings involves construction of
an internal representation of knowledge (and concepts) from the sensory
information acquired by them. The phrase ‘linguistic perception’ refers to
building perception to enhance our capability to understand and reason with
linguistic information. Linguistic information could be of two basic forms: i)
spoken and ii) written. Written information generally is more structured and
free from much noise than spoken words. The spoken information includes
many semantically incomplete clauses than the listener can follow because of
his subjective knowledge on the topics being discussed. Written semantics, on
the other hand, when meant for non-specialized readers, require less semantic



skills of the readers. While talking of the linguistics, we would often use the
words ‘syntax’ and ‘semantics’, where the former implies the grammar
involved and the latter corresponds to the association of the words in a
sentence for its understanding. The act of understanding a sentence in a
natural language thus requires background knowledge of the syntax of the
language and the concept on the subject. For instance, a sentence: ‘A cow ate
a tiger’ is syntactically correct but semantically wrong. A child having no
perception about a cow and a tiger cannot determine the semantic weakness of
this sentence. Forming perception of the world comprising of animals like
cows and tigers, therefore, should precede the act of understanding the
sentence.

This chapter covers in detail the principles of representing syntax and
semantics of natural languages by specialized data structures and
computational tools. For the purpose of illustrating the concepts, we take a
fragment of the English language as the domain of our case study. Besides
syntax and semantics, a natural language requires the following types of
analysis for its comprehension. These are i) prosody, ii) phonology, iii)
morphology, iv) pragmatics and v) world knowledge. An overview to these
types of analysis is outlined below.

Prosody: It deals with the rhythm and intonation of a language. Rhythm is
often used in the babbling of infants and children’s wordplay. In religious
ceremony and poetic competition, the importance of rhythm is felt.
Unfortunately this type of analysis is difficult and is thus ignored in most
natural language understanding programs.

Phonology: It examines the sounds of the words that are combined to form
sentences in a language.

Morphology: A ‘morphene’ is the smallest component of words. Morphology
deals with the rules that allow adding prefix and suffix to already known
words. Morphological analysis is useful for identifying the role of a word in a
sentence including tenses, number and part of speech.

Pragmatics: It describes the study of the ways by which the language is
expressed. It also considers the effect of words on the listener. As an example,
if someone asks “What is your date of birth?”, one should answer a date and
this is expected.

World Knowledge: The world knowledge stands for the domain knowledge
of the environment, without which the semantic understanding of the
sentences is difficult.

The types of analysis mentioned above do not have clear-cut
boundaries. In fact, this partition is artificial with a motivation to represent the



psychological aspects of understanding the natural languages. The first step to
understand natural languages is parsing, which analyses the syntactic structure
of sentences. It serves two basic purposes. First it determines the linguistic
relations such as subject-verb, etc. and finally checks the syntactical
correctness of the sentences. Generally, the parser learns the sentence as a
structured object (tree/graph) for subsequent semantic analysis.

18.2 Syntactic Analysis

In this section we shall discuss three distinct methods for syntactic analysis of
sentences. These are: i) by using context free grammar, ii) by employing
transition network and iii) by using context sensitive grammar.

18.2.1 Parsing Using Context
Free Grammar

A context free grammar G is generally defined by a 4 tuple, given by G =
{Vn,Vi,S,P } , where V,, is a set of non-terminal symbols, V, denotes a set of
terminal symbols, S denotes the starting symbol and P represents a set of
production rules that cause a change. It may further be noted that V, U V,
denotes the entire set of symbols. The above definition of context free
grammar is prevalent in automata theory and compilers. The tuples in G are
illustrated below with an example.

Example 18.1: Let us consider the following sentence and illustrate the
parameters involved in the definition of G in connection with the problem of
natural language understanding.

Sentence: The man killed a deer.

Here, V= {the, man, killed, a, deer}
V, = {noun-phrase, verb-phrase, article, noun, ---}.
S = initial symbol

P: 1) S — noun-phrase verb-phrase,
2) noun-phrase —noun,
3) noun-phrase — article noun,
4) verb-phrase — verb,

5) verb-phrase — verb noun-phrase,



6) article — a,
7) article — the,
8) noun — man,
9) noun — deer,
10) verb — killed,

11) verb — likes.

It is to be noted from the above set of production (re-write) rules that
the terminals do not appear in the left-hand side of the rules.

The sentence: ‘The man killed a deer’ now can be analyzed by the
following sequence of re-write rules. We here onwards abbreviate noun-phrase
as NP, verb-phrase as VP, noun as N, verb as V and article as ART. Now,
starting with re-write rule 1, we have:

S — NP VP (by 1)
— ART N VP (by 3)
— the man VP (by7&8)
— the man V NP (by 5)
— the man killed NP (by 10)
— the man killed ART N (by 3)
— the man killed a deer (by 6 & 10)

The above example describes a top-down derivation. It starts with the
sentence symbol S and continues replacing the left-hand side of the selected re-
write rules by their right-hand side, so that ultimately the complete sentence
appears at the end of the derivation. An alternative form called the bottom-up
derivation starts with the string of the sentential representation and continues
replacing the right-hand side of the re-write rules by their left-hand side until
the starting symbol S is reached.

A tree, called the parse tree, can also represent the derivations
presented above. The parse tree for the sentence under consideration is
presented in fig. 18.1.

Fig.18.1 has similarity with the derivation of the sentence, presented in
example 18.1. It is however observed from fig.18.1 that VP and NP occur
more than once at different levels of the tree. This happened so as we did not
expand VP or NP at its first occurrence. Had it been so, the resulting tree
would look like fig.18.2.
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Fig. 18.1: The parse tree for the sentence ‘the man killed a deer’.
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Fig. 18.2: The modified parse tree.



One important issue in the process of parsing is the selection of the re-
write rules at any step of expanding the parse tree. One simple way to explore
this is to expand a non-terminal by the first possible means and check whether
the expansion supports the part of the sentence. If yes, the selection of the re-
write rule is done correctly. If no, then a backtracking has to be made upto the
node in the tree, just expanded, delete the older expansions from that node and
select a second alternative re-write rule for expansion. The process is to be
continued recursively until all the productions terminate to terminal nodes.
Such type of parsing is called recursive descent parsing. An alternative
approach is to check the input string prior to selection of the re-write rule,
called look-ahead parsing. It is also prevalent in the literature [6]. For the
purpose of computing, the parse tree can be realized by a structure with
pointers and list. The representation of the parse tree of fig.18.2 by pointers to
structures and list is presented below.

| m
|_>ART ’V NP

H
L N killed ART N

> the man a deer

F Fig.18.3: Pointer to structure representation of the parse tree of fig. 18.2.

Since the re-write rules have at most two symbols at the right hand
side, we kept two pointer fields and one name field of each structure. The null
pointers have been denoted by crossed lines within the field.

The list representation of the parse tree, shown in fig.18.2 is presented
now.



(S (NP ((ART the)
(N man))
(VP (Vkilled)
(NP (ART a)
(Ndeer)))))

The re-write rules we presented earlier can handle only a narrow class of
English sentences. A further extension of the grammar is possible by the
inclusion of the following determiners (DET), adjectives (ADJ), auxiliary
verbs (AUX), adverbs (ADV), prepositions (PREP) and prepositional phrases
(PP).

PP — PREP NP

VP -V NP PP

VP -V PP

VP -V ADV

VP - AUX V NP

DET — ART DET — ART ADJ

The augmentation of these re-write rules in P helps constructing the parse tree
for the following type of sentences. ‘The man killed the deer with a gun’ or
‘The beautiful girl danced Kathak to receive appreciation from the audience’.
One point should be added before concluding this section. Parsing can be
carried out for semantically wrong sentences as well. For instance, the
sentence like: ‘The deer killed the man with a stick’ could be parsed correctly,
though it does not have logically correct semantics.

18.2.2 Transition Network Parsers

Transition networks are used in ‘automata theory’ [4] to represent grammar.
The process of parsing can be done analogously by using transition nets. A
transition net, used for parsing, comprises of nodes and labeled arcs where the
nodes denote states and arcs correspond to a symbol, based on which a
transition is made from a given state (node) to the next state. The re-write
rules and the corresponding transition networks are presented below.

Sentence:

Starting NP Intermediate \ VP Terminal
State State State

Fig. 18.4(a): Transition network for ‘sentence’ constructed using
S — NP VP.



NP:

Starting ntermediate Terminal
State State State

N
Fig. 18.4(b): Transition network for noun phrase, constructed
from re-write rules: NP>ART N and NP—N.

VP:

Terminal
State

\%
Starting
State

Fig. 18.4(c): Transition network for verb phrase using the re-write
rules: VP—V. NP, VP—>V.

Intermediate
State

For analyzing sentences with transition networks, one has to first start
with the transition networks for sentence S. In case the sentential
representation matches with the part (noun-phrase) of the transition network,
the control jumps to the transition network for NP. Suppose, there exists an
article and noun in the beginning clause of the sentence. So, the transition
network for NP succeeds, transferring the control to the transition network for
sentence at the intermediate state and then proceeds to check the verb-phrase.
In the transition network for VP, suppose the entire VP matches. The control
then jumps to the terminal state of the sentence and stops. The transition
diagram for the sentence: ‘The man laughed’ thus looks like as in fig.18.5.

The transition network, shown in fig.18.5, includes 10 outlined line
segments, depicting the flow of control within the states of the network. First,
when the control finds NP at S, it moves to NP transition network via dotted
arc 1. Now, again finding ART at Sy of NP transition network, it moves to
ART network via dotted arc 2. It selects ‘the’ from the ART transition
network and returns to S; of NP network via dotted arc 3. Now, at S; of NP, it
finds N and accordingly moves to the starting state Sy of transition network N
via arc 4. The process continues in this manner, until S, of ‘sentence transition
network’ is reached via arc 10. The traversal on the transition networks is not
always smooth, as shown in fig.18.5. There exist circumstances, when the
control moves to wrong states and backtracks to the previous state, when it
fails to match symbols. To illustrate backtracking in the transition network,
we attempt to represent the sentence ‘dogs bark’ by this nomenclature.
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Number against the dotted arc denotes order of transversal.
Fig. 18.5: Trace of ‘the man laughed’ by transition network parsing.

The backtracking is needed in fig.18.6 to return the control to Sy of NP from
Sy of ART, as no articles are found in the sentence: ‘dogs bark’.

18.2.3 Realizing Transition Networks with
Artificial Neural Nets

This section presents an alternative representation of transition networks by
artificial neural networks (ANN). For the simplicity of design, we consider
exhaustive connectivity between neurons of each of two successive layers.
Fig.18.7 describes a multi-layered neural net with such exhaustive
connectivity. The i-th layer of neurons in this figure corresponds to the
determiner d;, adjective a;, noun n;, verb v; and start /end of sentence symbol
¢;. The zeroth layer, for instance, comprises of d,, aj, ng, vy and the start of
sentence symbol e,. The output layer (here the 6-th layer), here, comprises of



neurons dg, a4, N6,V and end of sentence symbol es. For mapping an English
sentence, one should consult a dictionary that provides the parts of speech for
each word in the sentence. Based on the parts of speech, each word will
activate one or more element in a column. Within each column, every node
will inhibit the other nodes. As an example, let us consider the following
sentence: ‘The cat killed a rat’, where the parts of speech of the elements in
the sentence are found from the ‘data dictionary’ as follows:

the € {ART}
cate {N}
killed € {V}
a € {ART}
rate {N}
Sentence:
So NP p Si L’ S,
i
Bl Yo L
! .
NP: * ART
SO S| S2
rT > L
: A --q A A
| : H :
] 1 ) I
] 1 ) I
! e < :
! | . .
| 12| 3(failure) E
ART;: E a :
i i — < |
| |
i the !
|
]
o penmnnen .
{4 :
N: v dogs !
So s,

> call for VP

Fig. 18.6: Backtracking from S, of ART transition network to S, of NP
due to failure in symbol matching for articles in ‘dogs bark’.

Here, ¢, in the zeroth layer, a, in the first layer, n; in the second layer, v

in the third layer, a, in the fourth layer, ns in the fifth layer and e4 in the sixth
layer are activated by the input parts of speech of the words in the sentence.



18.2.3.1 Learning

For adaptation of weights in the neural net, shown in fig.18.7, one simple
method is to first map the patterns from different sentences onto the nodes of
the neurons and then update the weights by employing the principles of bi-
directional associative memory (BAM) [5]. For instance, suppose we have
two sentences:

1. Acatkilled a rat.
2. A man threw a stone.

@
e

cat killed
N) V)

.(—activated node

Fig. 18.7: A neural net with exhaustive connectivity (not shown for clarity)
between nodes of each two successive layers.
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The activated nodes in the neural net of fig.18.7 for these patterns may
be evaluated. The activated node 1 will have a node value a;=1 and the rest of
the non-activated nodes in the net will have node value=-1. The weight w;
from neuron n; to n; is now given by

Wij = ZV pattern k (ai~ aj)k (18 1)
In this example we have only two patterns; so k has a maximum value 2. Thus

wij = (ai.a)1 T (a;.2), (18.2)
18.2.3.2 Recognition

For recognizing the parts of speech of a missing word in a sentence, the
following recognition rules may be employed.



netj (t) = ZViWij.ai(t) (1 83)

where netj(t) denotes the net input to node j at time t, a;(t) is the activation
level of node i at time t and w;; is the weight connected between neuron i and j

[8].

The non-linearity associated with the neurons is presented in fig.18.8.

*

out;(t) =1

+1

+1

net(ty —
Fig.18.8: The nonlinearity of neurons in fig.18.7.

When net; (t)>0,

a(t+1) = a; (t) + out; (t) (1-a;(t)) (18.4)
When net; (t)<0,

aj (t+1) = a; (t) + out; (t) a; (t) (18.5)

We now present the recognition process with an example. Suppose we have
already trained the neural net for the two sentences, mentioned earlier. Now,
we present a sentence with two missing words:

A man kicked a ball.

where the bold words are missing from the above sentence. In the sentence
with those two missing words, when mapped onto the proposed neural
network, the parts of speech of the dropped words can easily be recognized
[8]. The recognition process will result in a large positive value (close to one)
for the nodes n, and a4 in the neural net of fig.18.7.

18.2.4 Context Sensitive Grammar

It should be pointed out once again that the context free grammar parses
sentences based on the syntax of the rewrite rules supplied. Thus syntactically
correct but semantically ill sentences are also parsed by the context free
grammar. A context sensitive grammar, on the other hand, can check the
singularity/plurality of a noun and its corresponding verbs or the persons
(1°/2°4/3™) used in a noun and the corresponding verbs in a sentence. The



context sensitive grammar is thus more useful than its context free
counterpart.

One important point needs mention about the context sensitive
grammar. Unlike the context free grammar, the context sensitive counterpart
can have more than one literal in the left-hand side of the re-write rules. One

typical re-write rule that illustrates this is: x y z—x w z, which means if y is
between x and z, replace it by w.

For the sake of simplicity, we present below a fragment of the context
sensitive grammar that enforces number agreement between article and noun
and between subject and verb, as presented below:

S — NP VP

NP - ART NUM N //NUM=Number//
NP - NUM N

NUM — singular

NUM — plural

ART singular — a singular
ART singular — the singular
ART plural — the plural

9. ART plural — some plural
10. Singular N — bird singular
11. Plural N — birds plural

12. singular VP — singular V
13. plural VP — plural V

14. singular V — flies

15. singular V — loves

16. plural V — fly

17. plural V — love

PRI =

Now, with this context sensitive grammar that checks
singularity/plurality, we want to parse the sentence: ‘Birds fIy’. The derivation
includes the following steps.

1. S

2. NP VP (by rule(1))
3. NUMN VP (by rule(3))
4. Plural N VP (by rule(5))
5. Dbirds plural VP (by rule(11))
6. birds plural V (by rule(13))
7. birds fly

The context sensitive grammar presented in this section is meant for a
limited vocabulary and includes checking of persons, numbers, etc. Then



matching time of the re-write rules’ left part with sentential representation (in
top-down parsing) will be significantly large. An alternative approach to
parsing is to employ augmented transition networks that can define context
sensitive languages, but is more powerful than the context sensitive grammar.

18.3 Augmented Transition Network Parsers

Augmented transition networks (ATN) [6] extend transition networks by
attaching procedures to the arcs of the networks. When an arc is traversed, the
ATN parser executes the procedure, attached to that arc. These procedures 1)
assign values to grammatical features, and ii) check whether the number or
person (1%, 2™, 3™) conditions are satisfied and accordingly allow or fail a
transition. For instance, the ATN that may be employed for parsing part of the
sentence ‘the boy’ is presented below. Suppose the grammatical
characteristics or features of the words ‘NP’, ‘the’ and ‘boy’ are available in a
data dictionary, as shown in fig.18.9. Also assume that the procedures are
attached to the arcs of the article and noun, as described below.

NP: DET Noun Number
(a)
the: Part of Speech Root Number
ART the Singular/
Plural
(b)
boy: Part of Speech Root Number
N boy Singular
()

Fig. 18.9: The grammatical characteristics of the word (a) NP, (b) the
and (c) boy, represented by structures.

Now, for parsing the string sequence: ‘the boy’, suppose we use the
ATN for NP. So, at state S, of NP, it first assigns ART:= the and checks
whether the part-of-speech = ART. If yes, it assigns NP.DET:=ART;
otherwise it fails and the control returns to wherefrom it was called.



Generally, we start the sentence S that contains NP and VP. So, the control
from NP ATN should return to starting state of the ATN for S.

NP, ART N
So Sy

N

Tagged
procedure

Tagged procedure
N:= next string of input
If (N. Part-of-speech = N)
and (N. number = NP.
DET. number)

Then do begin NP. N:=N;
NP. Number =N. Number
Return NP

End;

ART:= next string of input
If ART. Part-of-speech =ART
Then NP.DET:=ART

Else Fail;

Fig.18.10: The ATN grammar for NP used to check number agreement to build
parse trees.

Thus, if we have the structural definitions of the ATNs for sentence,
NP,VP, data dictionary definitions of the words ‘the’, ‘crocodile’ and ‘smiled’
and known procedures at the arcs of the transition nets for NP and VP, we
shall be able to parse the tree employing them. An example is given below to
parse the tree for the sentence: the crocodile smiled.

Some of the required definitions have already been presented; the rest
are presented in fig.18.11, 18.12 and 18.13 below.

Sentence: NP VP
()
(a)
VP: Verb Number Object
(b)

Fig. 18.11: Structure definitions for (a) sentence and (b) VP.



Crocodile:
Part of speech Root Number
N Crocodile Singular
(a)
Smiled:
Part of speech Root Number
v smile Sing./Plural
(b)

Fig. 18.12: Dictionary definition of (a) crocodile and (b) smiled.

Sentence (S): VP

O

Tagged

procedure Tagged procedure
VP:=strucure returned by
NP:=structure returned by VP netwo_rk;
NP network; If NP. Number =VP.
S. NP:=NP; Number )
Then do begin S.VP:=VP;
Return S; End;
Else fail;

Fig. 18.13 (a): The ATN grammar of a sentence that checks number agreement.

The parse tree for the sentence ‘the crocodile smiled” can now be
drawn (fig. 18.14) following the above definitions.

In constrhcting the ATN parsers throughout our discussion, we used
conceptual graphs. Besides conceptual graphs there exist quite a large number
of other techniques for constructing ATN. These include frame, script and
level logic representations.



VP:

So

—

Tagged
procedure

V:= next string of input;
If V. Part-of-speech =
Verb Then

VP. Verb: = Verb;

VP. Number: = Number

Return VP;

Tagged
procedure

NP:= structure returned by
NP network;
VP. Object: =NP;

Tagged
procedure

V:= next string of input;
If V. Part-of-speech=Verb

Then do begin

VP. Verb: = Verb;

VP. Number: =

Verb. Number;

VP. Object: = unspecified
Return VP

end;

Fig.18.13(b): The ATN grammar for VP that checks number agreement.

Sentence: NP VP

| |

|

NP: ¢ VP:
DET Noun Number Verb Number Object
| Sing. Sing.
v ’ v
Part-of-Speech root Number Part-of-Speech root Number
ART the Plu./sing. N crocodile Sing.
h 4
Part-of-Speech root Numb.
smile Sing.

Fig. 18.14: The parse tree for the sentence ‘the crocodile smiled’, built with
ATN grammar.




18.4 Semantic Interpretation by Case Grammar
and Type Hierarchy

The parse tree we constructed by ATN can be semantically interpreted [3] by
using case grammars [2] and type hierarchy. A type hierarchy describes a
subsethood relationship between the child and its parent in the hierarchy. In
other words, the parent nodes are more generic than the children. It has
similarity with lattice diagrams [1], where there exists a lower bound and
upper bound to such hierarchy and a strict relation to construct the hierarchy.
The ‘type hierarchy’ is useful for constructing knowledge about verbs and
their object space, if any, or to determine the meaning of a noun or verb, from
the generalized and specialized events / items in the hierarchy. For
demonstrating the concept of hierarchy, we consider the animal kingdom.

R

event entity event
act Animals act

RN

Mammals Birds

A

Cries cow dog person cuckoo Lips Laughs

L

Fig. 18.15: The type hierarchy for the animal kingdom.

The verbs in the type hierarchy have a significant role for interpreting
the semantics of an ATN. We thus use case grammars to describe the actions
of an agent by an instrument. For instance, the verb ‘laugh’ can be described
as an action of an agent by his lips to give himself and others enjoyment. Thus
we can represent laugh as a case frame as presented below in fig. 18.16.



Laugh animal
i e | G

Fig. 18.16: Case frame for the verb ‘laugh’.

In fig. 18.16, we presented the description of the world by rectangular boxes,
while the relationship between each of two boxes is done by a relation
represented by an ‘ellipse’.

ATN.

)

iii)

iv)

v)

The following points may be noted for describing semantics from an

While starting with the sentence S in the ATN, determine the noun
phrase and verb phrase to get a representation of the noun and the
verb. Bind the noun concept with the subject (agent) of the
corresponding case frame.

While processing the noun phrase, determine the noun; the

singularity/plurality of the article and bind marker to noun concept.

While processing the verb phrase, determine the verb. If the verb is
transitive, then find its corresponding noun phrase and declare this as
object of the verb.

While processing the verb, retrieve its case frame.

While processing the noun retrieve the concept of noun.

The following example illustrates the principle of generating semantic
inferences from a dynamically expanding ATN.



Example 18.2: The sentence calls the noun phrase and the noun phrase in
turn calls the noun. The noun returns a concept for the noun crocodile. As the
article is definite, the NP instantiates an individual to the concept. Next the
VP is called, which in turn calls verbs, the case frame of which is known.
Since the verb is intransitive, we need not bind an object to it. The semantics
derived from the parse tree of fig.18.4 is presented here [fig.18.17], by
replacing ‘smile’ there by ‘laugh’.

Sentence

laugh Crocodile#l

Noun
Phras

lips

Crocodile #1

VP
laugh 9%

animal

/ Noun

crocodile

entity

entity

verb

animal

o>

entity

T ey

entity

Fig.18.17: Semantic derivation from the parse tree of fig.18.14, with

the replacement of smile by laugh.



18.5 Discourse and Pragmatic Analysis

Syntactic and semantic analysis are essential but not sufficient to understand
natural languages. The discourse and pragmatic concept [7] in which a
sentence is uttered are equally useful for understanding the sentence. For
instance, consider the following dialogs.

Dialog 1: Did you read the Al book by Konar? The last chapter on robotics is
interesting.

Dialog 2: Mr. Sen’s house was robbed last week. They have taken all the
ornaments Mrs. Sen possessed.

Dialog 3: John has a red car. Jim wanted it for a picnic.

In the last three examples, the first sentence asserts a fact or a query
and the second sentence refers to it directly or indirectly. In example 1, ‘the
last chapter’ refers to the last chapter of Konar’s book. The subject ‘they’ in
the second example corresponds to the robbers. The word ‘it’ in example 3
refers to John’s car. It is thus evident that to represent part or whole of entities
and actions, we often refer to it by a word or phrase.

Programs that can accomplish multiple sentence understanding rely on
large knowledge bases, which is difficult to construct for individual problems.
Alternatively, a set of strong constraints on the domain of discourse may be
incorporated in the program, so that a more limited knowledge base is
sufficient to solve the problems. To realize the pragmatic context in the
programs, the following issues may be considered.

a) Focussing the relevant part in the dialog: While understanding
natural language, the program should be able to focus on the relevant
parts of the knowledge base available to it. These knowledge bases may
then be employed to resolve ambiguity among the different parts of the
uttered message. For example, in the first noun phrase in the sentence:
‘the last chapter on robotics is interesting’, the knowledge base should
identify the phrase ‘the last chapter’ and determine its significance in
connection with a book (see dialog 1). The ‘part-whole’ relationship
thus should be stressed and the related rules are to be checked for firing.

b) Modeling individual beliefs: In order to participate in a dialog the
program should be efficient to model the beliefs of the individuals. The
modal logic should be used to represent such beliefs. We illustrate the
use of two modal operators in this regard. The first one is Believe (A,P),
which is true, when A believes that the proposition P is true. The other



d)

operator is Know (A,P), which means Know (A,P) is true when A
knows P is true. A formal relationship between the two modal operators
is: Believe (A,P) A P — Know(A,P), which means that if A believes P
to be true and P is true then ‘A knows P’ is true. It is to be noted that
Believe(A,P) may be true, even when P is false.

An alternative way to represent individuals’ belief is to partition
the knowledge base in a manner so that it would use those rules for
firing that instantiate the shared belief and ignore the contradictory
beliefs of the participants. One part of the knowledge base that support
shared beliefs thus will be active.

Identifying goals and plans for understanding: The third pragmatic
context to understand natural language is to identify the other
participants’ goals and the plans to realize the goals. The understanding
system should keep track of the other’s goal throughout the dialog. For
example, suppose the participant says ‘I am planning to visit Delhi for
an interview. Tickets, however, have not been booked yet.” From these
sentences opponents should realize that the speaker’s goal is to visit
some place and he is talking of air tickets. But if the goal is missed the
second sentence will be difficult to understand, as it can have many
alternative meanings. In this example the word ‘plan’ was explicitly
mentioned. However, there are situations, when one has to determine the
goal and the plan from implicit description of the problem. For instance,
consider the following story “John’s mother was severely ill. She was
admitted to a nursing home. John will go to see his mother this
evening.”

Here the goal is to visit a nursing home, which is not explicitly
mentioned in the paragraph. The program used to understand the above
spoken sentences, should thus take care to identify the goal and then
continue reasoning in the direction of the goal.

Speech acts: This refers to the communicative acts that the speaker
wants to realize. For instance, suppose the speaker wants to get his pen
from the drawer to sign his banker’s cheque. He requests his spouse to
bring the pen for him. This speech act presumes that his spouse knows
where the pen is kept. Let A be the person, S be the spouse and P be the
pen. Then by modal logic [7] we represent it

Request (A, S, P)
Precondition: Believe (A, knows-whereabout (S, P))
Believe (A, willing-to-do (S, P)



Thus the elements of communicative plans can be formalized and used
for executing a task.

18.6 Applications of Natural Language
Understanding

Natural language understanding programs have wide usage starting from
commercial software to high performance VLSI CAD tools design. In the
long run it will be part and parcel of most of the software. It is mainly
required as a front-end tool for communication with the users. One of the first
successful applications of the natural language understanding program was in
a ‘question answering’ system. In this system, a paragraph is first supplied to
the machine, which constructs an internal representation of the paragraph and
then matches the question part with the internal representation to answer it.
Winograd’s SHRDLU [9] system in this regard needs special mention. In
database management systems, the natural language understanding program is
equally useful for building front-end tools. The user may submit his query in
plain English and the machine will answer him in English as well. In expert
systems, natural language processing is very much useful for submitting many
facts to the database /working memory. For augmenting knowledge in the
expert systems, this will also play a vital role. In VLSI CAD tool design, the
users are expert electronic or electrical engineers. They do not want to
remember rigid format of the syntax of the end-users’ command. So, if a
natural language interface is present as a front tool, they will be able to save
their valuable time and consequently will improve their productivity. In
banking, library management, post office and telephone diagnostic software
the natural language understanding program will be employed as a front-end
tool in the short run.

Exercises

1. Draw the parse trees for the following sentences:

a) The boy smoked a cigarette.
b) The cat ran after a rat.
¢) She used a fountain pen to write her biography.

2. Parse the following sentence by a transition network parser: The man
reacted sharply.



[5]

[6]

[9]

Design a formalism to represent each word of a given vocabulary by a
numerical code, so that any two distinct words should not have the same
code. Now, with this coding arrangement, can you use the Back-
propagation algorithm to understand sentences?

Using the ATN grammar, show how to check the number agreements
between the noun phrase and the verb phrase in the following sentence:
He swims across the river.

Represent the following sentence in modal logic: I know that you know
that he does not believe it.
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19

Problem Solving
by Constraint
Satisfaction

The chapter presents three different types of constraint satisfaction problems,
dealing with algebraic, logical and geometric constraints. The propagation of
constraints through constraint nets to solve a given algebraic problem is
illustrated with examples. An algorithm for testing constraint satisfiability is
introduced. The principles of constraint logic programs have been outlined
with examples. The junction labeling problem of trihedral objects has also
been covered in sufficient details. Examples have been taken from electrical
circuits, crypto-arithmetic and map coloring problems.

19.1 Introduction

Many of the real world problems demand the solution to satisfy a set of
algebraic or logical conditions, called constraints. The class of problems,
whose search space is constrained by a set of conditions, is generally referred
to as ‘Constraint Satisfaction Problems (CSP)’ [1]-[8]. We have come across
quite a large number of CSP problems since our childhood. Linear
optimization problems where we want to maximize Z= Y, ¢; x; subject to a set
of linear constraints of the form: Y, a;x; < b, for instance, is a CSP.



Here a;, b, ¢;, and x; € R and one has to determine x;s for known constants
a; and b, so that Z=Y¢; x; is maximized. The search space of the solution x; s,
here, is constrained by the set of linear inequalities. Making a change for a
10$ note is also a CSP problem, where the constraints for the solution x; s
are given by . ¢; x;= 10$ and 3x; > 0, where x; denotes the valid notes 18, 2$
and 5$ and c; denotes the count of x;. For example, if we consider x;,x, and x;s
to correspond to 18, 28 and 53 notes and c; c,, cs be their respective counts,
then a few possible solutions are {xs=2} or {xs= 1 ,x,=2,x;= 1} or {X,=5} or
{x; =10}or {x,= 4,x;= 2}. The last two examples involve the algebraic
constraints. Many formulations of the problems, however, require satisfying
logical or geometric constraints. For example, finding the grand-fatherhood
relationship between X; (=d) and X; (=I) from the definition of grandfather
and father, discussed below, is a CSP. To be more specific, suppose, given the
following set of constraints:

1.Grandfather (X;,X;) :-
Father (X,,X)),
Father (X;3,X5).

2. Father (d, r).

3. Father (1, 1).

We want to determine: Grandfather (X3, X;) ?

The above problem can be solved by constructing an SLD-resolution
tree, which finally yields the solution: Grand-father(d, 1). Problems that deal
with such logical constraints also belong to the category of CSP. Before
switching to the next section, we present an example of geometric constraint
satisfaction problem. Suppose, we want a set of three dimensional objects
like a i) Box , ii) Pyramid, iii) Cone (see fig.19.1) and we recognize the box
among them by a set of geometric constraints, presented below.

1. (Object =Box) :-
Has-no-of- vertices = 8, No-of-planes-meeting-at-each-vertex =3,
Angle-between-any- two-planes-meeting- long-an-edge =90 °.

2. (Object = Pyramid) :-
Has-no-of- vertices =4,
No-of-planes- meeting- at-each-vertex > 3,
Angle-between-any-two-planes-meeting-along-an-edge <90°.

3. (Object = Cone) :-
Has-no-of -vertices =1,
Has-no-of-circular-plane-surface =1,
Has-curved-surface = 1.



The recognition problem is the present content needs to check the
geometric feature of the object under test and determine the object by
satisfying the premises of one of the above three constraints.

While dealing with CSP we should consider the following three issues:

i) whether the constraints are satisfiable, i.e., does the
problem has solutions that satisfy all the constraints?

ii) simplification of the constraints by equivalent simpler
ones,
iii) optimization of the solution based on some other criteria, if

more than one solution exists.

19.2 Formal Definitions

We now present a few definitions, which will be referred to throughout the
chapter.

Definition 19.1: Constraints are mathematical/ logical relationships among
the attributes of one or more objects.

To understand the above definition, let us consider the ‘make-changes of 10%$’
problem, where the 18, 2$, 5% notes are objects and their counts are the
attributes in the problems. Thus the mathematical relationship among them is
the expression Y, ¢; x; = 10$ , which is the constraint.
Elx;

Definition 19.2: The legitimate set of operators like ‘“+> , “* °, ‘A’ or *V’
and the type of the variables and their domains, the type of functions used
and their range and the arguments of the operators are specified by a
domain, called constraint domain.

Formally, the constraint domain D is a 5 tuple, given by
D: {V’ f) Op7 d) r}

where v denotes the set of variables,
f denotes the set of functions,
op stands for the set of legal operators to be used on variables or
functions,
d is the domain of variable, and
r is the range of the functions employed in the constraints.



Definition 19.3: A primitive constraint comprises of one or more
constraint relation symbols together with their arguments, but cannot have a
conjunction (A) in it.

For example, x <2, (x +y ) £ 2 are primitive constraints.

Definition 19.4: A non-primitive or generic constraint is a conjunction
(A) of primitive constraints.

For example, (x+y <2) A (y<3) is a non-primitive constraint.

Thus formally a constraint of the form C; A C, A .............. AC, n>lisa
non-primitive constraint, when C;, C,, ............ C, all are primitive
constraints [4].

Definition 19.5: A valuation 0 for the set of variables v is an assignment
of the values from the constraint domain to the variables v [4] . An expression
E having variables v is given a value O(E), computed by replacing the
variable by its assigned value in the expression.

For example, let v= {v, ,v,}; the domain of v, v, being | <v;, v, <2 ; let
E=v/’+vy’; now O(E)=[v/’+ V"] vi . -y Where 1 <x,y <2.

Definition 19.6: A constraint is called satisfiable, if there exists at least one
solution satisfying the constraint.

For instance, {(x+ y <2 ) A (0 <x, y <2 ) } are satisfiable constraints for
integer X, y as there exists a solution x = y =1 that satisfies the constraints.
On the other hand, {(x+y <2) A (x>2) A (y>2)} does not have a solution for
integer x, y. Consequently, constraint (x+y <2) A(X>2) A (y>2)is
called unsatisfiable.
Definition 19.7: Two constraints C; and C, having same solution set are
called equivalent and the equivalent relation between C; and C, is denoted
by
Cl > C2 .
For example, C;={ (xty<2) A (x=1) A (y<2) A (y>0)}

and C= { (Xt y<2D)AO<x) AXL2)A(0<y) A(y22) }

are equivalent when X, y are elements of positive integer sets.



CSP deals with two classical problems: 1) solution problem and ii) satisfaction
problem. The solution problem is concerned with finding the solutions
satisfying all the constraints. The satisfaction problem requires clarification
about the existence of a solution. An algorithm that is capable of determining
the satisfaction of a constraint is called a ‘Constraint Solver’. Since, a
satisfaction problem also constructs a solution as a bi-product, we emphasize
the satisfaction problem over the solution problem.

Definition 19.8: A linear Constraint is a conjunction of linear equation /
inequalities.

For example, {(xty <2) A (x<1)A (y<1)} is alinear constraint as it is a
conjunction of linear inequalities.

Definition 19.9: A Constraint is called a Boolean constraint, if it comprises
of Boolean variables, having only two values: true and false.

Boolean constraints include operators like AND (&), OR (v), implication
(=), bi-directional implication (<) and exclusive—OR (@) . It is to be noted
that we deliberately used & for AND instead of ‘A’ as it is used for
conjunction of constraints in an expression.

Definition 19.10: A variable x is determined by a set of constraints C, if
every solution of C is a solution of x= e, where e is a variable-free
expression. We illustrate it in the next section.

19.3 Constraint Propagation in Networks

Determination of the value of variables and their substitution in other
constraints simplify them, which subsequently lead to the solution of the CSP.
For example, let us consider a simple circuit comprising of two resistances
anda D.C. cell (fig.19.1).

Fig.19.1: A simple circuit.



By applying elementary network theorems, we derive the following
constraints:

Vi=1*R,
V,=L*R,
V= V1
V= V2
1= II+I2
I
G
R] +
L
V> =
R,

Fig. 19.2 (a): The constraint network corresponding to fig. 19.1.

These constraints together take the following form:
C=(ViEL*R) A (V2= 1L*Ry) A (VEV)) A (VEV) A (IEL D),
which can be represented by a constraint network (fig.19.2(a)). The

propagation of constraints in the network are illustrated in fig.19.2(b) and (c)
for computation of 1.

Now, given V=10V, R|=R,=10Q, we can evaluate I by the following
steps using the constraint network.
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Fig. 19.2 (b): Propagation of constraint: First V=10 is propagated
to V; and V, and next V=10, R; =10 is propagated
to I;; and V, =10, R, =10 is propagated to I,.

In this example, V; and V, are ‘determined’ (by definition 19.10) as their
variable free values were found by the constraints V=V and V,=V. The
variables I; and I, were also ‘determined’ as they were not replaced by other
variables. In fact we found I, from 10 I,=10 and I, from 10 1,=10. So, I, and I,
yield constant values, which were propagated to I for its evaluation. There,
however, exist situations when the constraints containing variables need to be
propagated. We call it simplification of constraints. The following example
illustrates simplification of constraints by using constraint networks.
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Fig. 19.2 (¢ ): Propagation of constraints from I; and I, to I.

Consider the circuitry, shown in fig.19.3. Here, the list of constraints are

Vi=1L*R,
Vo =1L*R,
V;=1%R;
I, = L+
V,=V;

V =V+V,
V =V+V3,

which can, on conjunction, yield C, given by

C=(ViELi* R) A (Vamh* Ry) A (Vs=I3* R3) A (Ii= Ltl;) A (Vo=V3)
A (V=VHV) A (VEV+VS)



R, —o0 V, —oO Vs
— <
L, —> VL v

Fig. 19.3: A more complex circuit.

Since, V,=V3, we find from the above relations
L*R; = 3*R;
= I3 =L R,/R;
Substituting this value of I5 in the constraint I; = I,+1;, we find
I, =1,.R3/(RytR3).

We may thus use only the following constraints to find the value
of 1.

A\ :V1+V2
Vl = II*RI
V2: Iz*Rz

12 = II.R3/ (R2+R3)

However, if we want to find a constraint C’, equivalent to C, we may take C’
as follows,

C = (V=Vi+ Vo) A (ViEL*R)) A (V=L *Ry) A (V=13*Rs) A
(11212+I3) N (12211.R3 / (R2+R3))

C’ need not be unique. In fact, we could replace I;=I,+ I; from the last
expression by [;_ 1R,/ (Ry+R3).



For computing I, we may simplify further as given in the constraint nets
(vide fig. 19.4).

Fig. 19.4 (a): The representation of C'.

Fig. 19.4 (b): A simplified 19. 4 (a).



O

Fig. 19.4 (c): A further simplified constrained network of fig. 19.4.

Now assuming the values of V, R;, R, and R;, we find the dotted box of fig.
19.4 (c) that yields

10=51; + (100 I, /20)

=I[,=1A.

It may be added that for finding the solutions, the constraint network
should be simplified with the substitution of the given variables as early as
possible. Also note that some part of the constraint network may not be useful
for finding the solution of the problem.

Here V;=I;:R; part of the network has not been used in fig. 19.4 (c) for
evaluating I;. However, if V; was to be computed then we had to use this
constraint at the last step. Lastly, it is needless to say that the simplified
constraint networks are equivalent.



Many optimization problems need to satisfy a set of constraints. For
instance let the constraint C be given by C= (x+y < 4) A (x >0) A(y>0) for
all integer x, y. Suppose we want to maximize z = x> + y% The possible
assignments of (x ,y) are

{x=1,y=1}, {x=1,y=3},
{x=3,y=1}, {x=2,y=2}
{x=2,y=1}, {x=1y=2}.
Out of these 6 (x, y) points {x=1,y=3} and {x=3,y=1} yield the highest
value of z=x*+y* =10. Such problems, where one has to optimize an

objective function z = f(x, y), satisfying a set of constraints C, are called
constraint optimization problems.

Optimization problems need not be restricted to arithmetic constraints
only. They may equally be useful for logical reasoning. For instance, consider
the blocks world problem we considered in the chapter of intelligent planning.
Suppose there are 4 objects on a table: 2 boxes, one cone, and one sphere.

o ©

Fig. 19.5: The initial state of a blocks world problem.

Suppose, we want to keep the cone at the highest position from the
surface of the table. What should be the plan for object positioning that would
lead us to this requirement?

The initial state for the problem is given in fig. 19.5. We can represent
this state by



On (A, Ta) A On (B, Ta) AOn (C, Ta) A On (D, Ta) A Box (A)
ABox (B) ACone (C) A Sphere (D).

Suppose we have the following rules to define the height of an object from the
table.

1. IfOn(X,Y )AOn(Y,Z)AOn (Z, Ta) Then Height-of (X, 3).
2. IfOn(X,Y ) AOn (Y, Ta) Then Height-of (X, 2).
3. IfOn (X, Ta) Then Height-of (X, 1).

We could define height by a generic approach. But to illustrate the
concept of the optimization, the present definition is adequate.

The optimization problem in the present context is: Maximize h, such
that On(c, ) A Height-of (c, h) is true, where ° ’ denotes something. The
solution of the problem can be evaluated easily by considering all the possible
stacking, such that C is on top. Note that D being spherical is excluded from
the stack.

The possible stackings are:

i) On (C, Ta) A Height-of (C,1).

ii) On (C,A) AOn (A, Ta ) A Height-of (C, 2)

iii) On (C, B) AOn(B, Ta) A Height-of (C,2)

iv) On(C, B) A On(B, A) AOn(A, Ta) A Height-of (C,3).
v) On(C, A) AOn(A, B) AOn (B, Ta) A Height-of (C,3).

Out of these 5 possible stackings, the last two yield Height (=3) for C.
So, we may select any of them as the solution (see fig 19.6 (a) &(b)).

®

(a) On(C,B)A On(B,A) A On (A, Ta) A Height- of (C, 3).
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(b)On(C,A) A On(A,B) A On (B, Ta) A Height -of (C,3).

Fig. 19.6: Stacking in blocks word problem to find the greatest
height of C.

19.4 Determining Satisfiability of CSP

A CSP now can be defined as a problem, consisting of a constraint C over a
set of variables x; Xp , «.c.e.... X, and a domain D that describes the finite
valuation space of each variable x;. = This finite valuation space of Xx; is
denoted, hereafter, by D(x;) . Thus a CSP represents

CAXIAXQA XS

In this section, we present several illustrations to understand the
mechanism of constraint satisfiability. Remember that ‘satisfiability’ means to
prove at least one solution for the problem. In fact CSPs are NP-hard. So, it is
unlikely that there will be a polynomial time algorithm to find all the solutions
of a CSP.

The following examples illustrate the way of testing satisfiability of a CSP.
Example 19.1: Consider the ‘map coloring problem’ where a given map is

to be colored in a manner so that no neighboring states contain the same
color. Fig. 19.7 describes a hypothetical map, consisting of 6 states.



A;

Az AG
Ay

A
1 As

Fig. 19.7: Map of a hypothetical country having 6 states.

We now represent the neighboring relationship by a graph (fig. 19.8),
where the nodes denotes the states and the arcs between nodes correspond to
the neighborhood relationship between the nodes. Further, we include the
constraint at the arcs.

A,

Ay

Ay

Fig. 19.8: The connectivity graph among states A; and their adjacency by

Arcs. ‘#’ against the arcs denote that color of the adjacent nodes
should be different.



Suppose there exist 3 colors {red, green, yellow} by which we have to
color the map satisfying the constraint that no two adjacent states have the
same color. We start with an arbitrary state and arbitrary color assignment for
it. Let us choose r, g, and y for red, green and yellow respectively in our
subsequent discussions. The constraints we get after assigning r to A, are
also recorded in the list. Thus we find step 1. In our nomenclature A; # r
denotes color of A;is different from red.

Step 1: {A; <1, Ay #1}

Step 2: {A] 1, (A g, Aszg, Ay#g)}

Step 3: { A1 — T, A2 g, (A3(—y , A4 iy, A6 iy),A4¢ g}
Step4: { A| 1, Ay 8 A3y, (Ay 1, As #1,Ac# 1),Ac2Y}
Step 5: { A| «—1,A; g Ay, Ay 1, (As g, Ag%g),A¢#T }
Step 6: { A| «—1,A) g A3y, Ay 1, As g ,Ag—y}

In step 2, we replaced A, #r of step 1 by A, <—g and added the
constraints with it in the parenthesis. From fig. 19.8, the constraints imposed
on Az and Ajare As= g, Ay #g.

In step 3, we replaced A; # g of step 2 by A; <y and added the
constraints Ay#y and Ag# y and lastly copied the remaining entries from the
last step. The process continues until an inconsistency occurs at a step, when
one has to backtrack to the last step for alternate solutions. Fortunately, in our
proposed solutions we did not observe inconsistency.

If at least one solution is obtained we say that CSP is satisfiable. Here
step 6 yields one of the possible solutions for the problem.

Example 19. 2: In this example we consider a problem with a constraint set
which exhibits a partial satisfaction w.r.t primitive constraints but total
satisfiability is not feasible. The problem is: given the constraint
C=(x<y)A(y<z) where x, y, z € {1, 2}, test the satisfiability of the constraint.
Here (x<y) and (y<z) are two primitive constraints and their individual
(partial) satisfiability holds. For instance if x=1,y=2, then x<y holds. But
(total) satisfiability that requires (x<y) A (y<z) does not hold for x, y, z €
{1,2}. So, backtracking will take place, when the total satisfiability fails.
Unfortunately, the whole search space will be exhausted for this problem with
no feasible solution. The steps of satisfiability testing are presented below.



Step 1:

Step 2:

Step 3:

Step 4:

(x<y) A (y<2)

x=1

(I<y) A (y<2)

(@)

(x<y) A (y<2)
x=1

(I<y) A (y<2)
y=L7 77

7’
7’
z

(1<1) A (1<2)
false

backtracking

(b)

(x<y) A (y<2)
x=1

(I<y) A (y<2)

y=1 y=2

(1<) A (1<z)
false

(0

(1<2) A (2<2)

x<y)A(y<2z)

x=1

(I<y) A

(y<2z)

(1<2) A (2<2)

(1<1) A (1<2)
false

V4 —///l/l

(1<2) A (é<1)
false

7

backtracks



Step 5: (x<y) A, (y<z)
x=1 =7

(I<sy)A (y<z) N

(1<) A (I<z) (1<2) A (2<z) <<-_backtracking
false z=1 z=2 "~

= -

(1<2) A (2<1) (1<2) A (2<2)
false false
(e)
Step 6: (x<y)an (y<z)
x=1 x =2

(I<y)ay<z = @<y) A (y<2)

YY\Y_ 2T
(1< 1) A (1<z) (1<2) A (2<2) N,
z=1 =2
(1<2) A (212) (1<2) A (2<2)
false false
(f)

Fig. 19.9: The first 6 steps: (a)-(f) of constraint satisfiability testing.

The first 6 steps for testing constraint satisfiability are given in
fig.19.9(a)-(f). Two more steps will be required to complete the search
process for a solution. The next two steps are for y=1 and y=2 respectively.
This is left as an exercise for the students to test that they too yield false
condition.

Let us now try to construct an algorithm that will check the
satisfiability of the constraints. How should we proceed? First, we should list
the constraint C and assign one of the variables a value from its domain and
then check whether that assignment causes an inconsistency. Note that the
first variable assignment cannot cause an inconsistency. After a variable x; is
assigned a value, see what other variables are linked through some constraints
with the variable x; . If there is no such variable, do nothing, But if there exists



such variable x; , Xy, etc., attach the constraints with them. If we could achieve
this one pass will be over.

In the next pass, repeat the above by assigning a value to x; that does
not violate the constants over x; we defined in the last pass. If we could find a
suitable value foe x; then we will check the variable (say x;’, xi’,etc.), which
are linked with x; through some constraints and mark the constraints for them.
Suppose the constraints together are consistent. Then we will move to the next
step to assign values to x;’. But if the constraints are inconsistent themselves
or inconsistent with the current assignment to Xx;, then we should backtrack to
the previous step for generating an alternative solution.

The process will continue until either of the following occurs:
(i) no consistent variable bindings are possible to move further,
(ii) a solution has been arrived at with consistent bindings of all the variables.

To formalize the above concept, let us define S to be the set of
variables in the constraint C. The decision is a binary variable, stating the

status of satisfiability of C.

Procedure Satisfiability-test (C, S, decision)

Begin
For ecach variable x; € S do
Begin
Repeat
x; < Next (Domain (x;)) do
Substitute x; in C ;
If C is not partially satisfiable
Flag « false;
End;
Until Next (Domain(x;)) = Nil
If flag = false report “unsatisfiable”, return;
End For;
report ‘decision = satisfiable’;
End;

In the above algorithm, Next (domain(x;)) gives the first element from
Domain(x; ). After one call of function Domain(x;), its first element is lost
and the next element comes to the position of the first element.

One major modification in the last algorithm w.r.t our previous
discussion is that we selected variables randomly in the algorithm to keep it
simplified. In our previous discussion, we however had a strategy to select the
variables for assignment from their domain.



19.5 Constraint Logic Programming

We already introduced Constraint logic programming (CLP) in chapter 6.
Here, we will show how efficiently we can code a problem in CLP. We start
with the well-known Crypto-arithmetic problem that needs to find the integer
values of the variables {S, E, N, D, M, O, R, Y} in the range [0,9], so as to
add to produce
SEND
+

MORE
MONEY

We could solve the problem by the method covered in the last section.
But a simple and efficient approach is to code in CLP language.

Crypto-arith (S, E, N, D, M,0, R,)Y):-
[S,E,.N,D,M,O,R,Y]::[0...9],
Constraint ( [S,E,N,D,M,0O,R,Y]),
labeling ([ S,E,;N,D,M,0O,R,Y ]).
Constraint ( [ S,E,N,D,M,O,R,Y ] ):-
S0, M= 0,
All-unequal ( [ S,E,N,D,M,0O,R,Y ] ),
(1000*S +100*E + 10*N+D) +
(1000*M+ 100*O+10*R+E )
=10000*M + 1000 *O+ 100 * N+ 10*E+Y.
Goal: Crypto-arith ( S,E,N,D,M,0O,R,Y ) —
Given the above goal, the program correcting determines
{S=9, E=5, N=6, D=7, M=1, 0=0, R=8, Y=2}.

The predicate labeling in the above program is a library function that
ensures the search in [0, 9] for each variable. The rest of the algorithm is
simple and clear from the statements themselves.

When no satisfiable solution for the constraint is available, the constraint

is broken into priority-wise components. Let C be the constraint, which is
broken into C;,C, and C; say. Let the priority of C;> priority of C, >priority



of Cs. If the constraints are listed in the program in a hierarchical manner
according to their priority, then a solution that satisfies the minimal constraint
from the priority list may be accepted. This is the basis of hierarchical
constraint logic programming.

19.6 Geometric Constraint Satisfaction

The CSP is not only useful for algebraic or logical problems but it may also
be employed to recognize objects from their geometric features [9-10]. The
features in the present context are junction labeling. In this book, we will
restrict our discussion to trihedral objects, i.e., objects having three
intersecting planes at each junction (vertex). However the concept may easily
be extended for polyhedral objects as well. For labeling a junction of a
trihedral object (vide fig.19.10), we require two types of formalism to mark
the edges meeting at the junctions.

i) Mark the boundary edges of the objects by arrowheads

ii) For each non boundary edge of the object, check whether it is convex or
concave. If convex, mark that edge by ‘+’ else by -’

Fig 19.10: A typical trihedral object.

One question then naturally arises: how to test the convexity or concavity of
an edge. The following principle, in this regard, is worthwhile mentioning.

A C
B

E

Fig. 19.11: Testing convexity of edge BE.



Look at the planes that form an edge, whose convexity/concavity you want to
determine. Find the outer angle between the planes that form the boundary
edges. If the angle > 90 degrees, call the edge convex, else it is concave. In
fig.19.11, BE is a convex edge as the outer angle between the planes ABEF
and BCDE is greater than 90 degrees around the edge BE.

Let us now try to mark the edges of fig.19.10. We show the marking
in fig.19.12. B

G F
Fig. 19.12: The edge labeling of the (expanded) block of fig.19.10.

Here the boundary is ABCDEFGHA, which is denoted by a clockwise
traversal around the object. The edge JE is concave, and the inner edges are
convex. This is represented according to our nomenclature (‘“+° for convex, ‘-’
for concave) mentioned above. We can now label each junction by one of the
18 possible types (vide fig.19.13)

L types: \L /l\/ + )

wYYYYY

T types: -

Fig. 19.13: Typical 18 junction types.




The possible labels of the junctions of fig.19.12 are presented below (Table
19.1) based on their nearest matching with those in fig.19.13.

Table 19.1: Possible labels of the junctions of fig. 19.12.

Index Junction of fig.19.12 Possible type
1. A
(a) (BN
2. B
+7(0)

3, ¢
(d) <— (
4. D
gh

)

i ’ ﬁ) \ﬁo _ S(m
6. F ﬂL\(i)
bl L ®) ¢%(l)

9 1 + +
R
10. J
+ +

In the above table, we considered rotation of the elementary types. For
instance, the exact form of the junction A is not present in the prescribed
types. However, by rotating the standard L types, we got two possible



matches (a) and (b). Similarly, we labeled other junctions. Now, in many
junctions we have more than one possible label. We can overcome it by
considering the ‘constraints of neighboring junctions’ [8], so that the type of
each junction is unique for a realistic object. Careful observation yields that
since A and B are neighboring junctions, trying to connect (a) with (c) and (b)
with (c) shows that (a)-(c) connection is feasible. The constraints of
neighborhood junctions are applied to each label to reduce it to a single type
per junction. The result of the type reduction is presented below.

Table 19.2: Junction type reduction.

Junctions possible name of label
A (a)
C (d)
E (8)
G (k)

The algorithm for junction labeling, also called the waltz algorithm [9], is
presented below.

Procedure junction-labeling (edges, labels)
Begin

1. Label boundary by clockwise encirclement;
. Label interior edges by ‘+’ or ‘-’ as convenient;
3. Label junction types from the possible match with fig. 19.13. You may
allow rotation of types and the types need not be uniqu;
4. Reduce the types of each junction to a single one by considering the
types of the neighboring junctions;
5. Repeat step 4 until each junction of the object has a single type.

End.
19.7 Conclusions

The chapter introduced three basic types of CSP dealing with algebraic,
logical and geometric constraints. The concept of constraint simplification and
equivalence is discussed and constraint propagation in networks has been
illustrated. The principles of constraint logic programming are also presented
with examples. An algorithm for constraint satisfiability testing is discussed.
The concepts of recognizing trihedral objects from their junction labeling
have also been covered briefly.



The main part of CSP is the formulation of the problem, as the solution is

done automatically by searching in the entire domain. Improving the search
efficiency by employing heuristics may give a new flavor to the CSP.

[2]

[3]

Exercises

Draw a map of your country and shade the states carefully with a
minimum number of colors, so that no two neighbors have the same
color. Draw an equivalent constraint graph for the problem and hence
determine theoretically the minimum number of colors you require to
color the map.

Draw a passive electrical circuit with at least two loops, and then
construct the constraint net for your circuit. Instantiate the input variables
and show how the constraints propagate through the network to compute
the output variables.

Write three ineqalities, each of 3 variables, and solve them by the

approach presented in the chapter.

Draw a right angled pyramid with 4 planes and label its junctions: convex
or concave. Is there any uncertainty in your labeling? If yes, then how
will you resolve it?

References

Cohen, J., “Constraint logic programming languages,” Communications
of the ACM, vol. 33, no. 7, pp. 52-68, 1990.

Freuder, E. and Mackworth, A., Constraint Based Reasoning, MIT
Press, Cambridge, MA, 1994.

Jaffer, J. and Maher, M., Constraint logic programming: A survey,
Journal of Logic Programming, vol. 19/20, pp. 503-582, 1994.

Marriot, K. and Stuckey, P. J., Programming with constraints: An
introduction, MIT Press, Cambridge, MA, 1998.

Stefik, M., Planning with constraints (MOLGEN: Part 1), Artificial
Intelligence, vol. 16, pp. 111-139, 1981.



[6] Tsang, E., Foundations of Constraint Satisfaction, Academic Press,
New York, 1993.

[71  Hentenryck, P. Van, Constraint Satisfaction in Logic Programming,
MIT Press, Cambridge, MA, 1989.

[8] Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New
York, pp. 367- 375, 1991.

[9] Waltz, D. L., “Understanding the drawing of scenes with shadows,” In

The Psychology of Computer Vision, Winston, P., Ed., McGraw-Hill,
New York, 1975.

[10] Winston, P. H., Artificial Intelligence, Addison-Wesley, Reading, MA,
pp. 231-280, 1992.



20

Acquisition of
Knowledge

Acquisition of knowledge is equally hard for machines as it is for the human
beings. The chapter provides various tools and techniques for manual and
automated acquisition of knowledge. Special emphasis is given to knowledge
acquisition from multiple experts. A structured approach to knowledge
refinement using fuzzy Petri nets has also been presented in the chapter. The
proposed method analyzes the known case histories to refine the parameters
of the knowledge base and combines them for their usage in a new problem.
The chapter concludes with the justification of the reinforcement learning and
the inductive logic programming in automated acquisition of knowledge.

20.1 Introduction

The phrase acquisition (elicitation) [2]-[7], [9], [12]-[17] of knowledge, in
general, refers to collection of knowledge from knowledge-rich sources and its
orderly placement into the knowledge base. It also allows refinement of
knowledge in the existing knowledge base. The process of acquisition of
knowledge could be carried out manually or automatically. In manual mode,
a knowledge engineer receives knowledge from one or more domain experts,
whereas in automatic mode, a machine learning system is used for



autonomous learning and refining knowledge from the external world. One
main difficulty with manual acquisition of knowledge is that the experts often
fail to correctly encode the knowledge, though they can easily solve a complex
problem of their domain. Further, the ordering of the pieces of knowledge
carried out by the experts, being sometimes improper, causes a significant
degradation in search efficiency of the inference procedure. Lastly, the
certainty factor of the pieces of knowledge, set by the experts, too, is not free
from human bias and thus may lead to inaccurate inferences. The need for
automated knowledge acquisition is, therefore, strongly felt by the scientific
community of Al

20.2 Manual Approach for
Knowledge Acquisition

Knowledge acquisition is a pertinent issue in the process of development of
expert systems. A good expert system should contain a well-organized,
complete and consistent knowledge base. An incomplete or inconsistent
knowledge base may cause instability in reasoning, while a less organized
system requires quite a significant time for search and matching of data. The
malfunctioning of the above forms originates in an expert system generally
due to the imperfections in i) the input resources of knowledge and ii) their
encoding in programs. The imperfection in the input resources of knowledge
can be overcome by consulting proved knowledge-rich sources, such as
textbooks and experts of respective domains. The encoding of knowledge
could be erroneous due to either incorrect understanding of the pieces of
knowledge or their semantic misinterpretation in programs. A knowledge
engineer, generally, is responsible for acquiring knowledge and its encoding.
Understanding knowledge from experts or textbooks, therefore, is part of his
duties. A clear understanding of the knowledge base, however, requires
identification of specific knowledge from a long narration of the experts. The
knowledge engineer, who generally puts objective questions to the expert,
therefore, should allow the expert to answer them in sufficient detail,
explaining the points [6]. The semantic knowledge earned from the experts
could be noted point-wise for subsequent encoding in programs. Occasionally,
the experts too are not free from bias. One way to make the knowledge base
bias-free is to consult a number of experts of the same problem domain and
take the view of the majority of the members as the acquired knowledge.

20.3 Knowledge Fusion from
Multiple Experts

Fusion of knowledge from multiple number of experts can be implemented
in either of the following two ways. First the knowledge engineer may



invite the experts to attend a meeting and record the resulting outcome of
the meeting. Alternatively, she may visit the office of the experts and record
his view about the concerned problem and finally combine their views
together by some principle. The former scheme suffers from the following
limitations [6], [13]:

a) Less participation of an expert because of dominance of his
Supervisor or senior experts.

b) Compromising solutions generated by a group with conflicting
opinions.

c) Wastage of time in group meetings.

d) Difficulties in scheduling the experts.

All the above limitations of the former scheme, however, can be
overcome by the latter scheme. But how can we integrate the views of the
multiple number of experts in the latter scheme? An answer to this question
is presented here following Rush and Wallace [17]. In a recent publication,
Rush and Wallace devised a scheme to combine ‘the influence diagrams’
(ID) of several experts for constructing a ‘multiple expert influence
diagram’ (MEID). The MEIDs represent the causal dependence
relationship of facts, supported by a majority of the experts, and thus may be
used as a collective source of knowledge, free from human biases and
inconsistencies.

20.3.1 Constructing MEIDs from IDs

Formally, “an ID is a directed graph which displays the decision points,
relevant events and potential outcomes of a decision situation [17].” The
rectangular nodes in an ID represent facts or decisions, while the directed
arcs denote causal dependencies. For understanding the definition, let us
consider the “oil wildcatter decision problem [17]”. Here the decision is
whether to drill at a given geographical location for possible exploration of
natural oil. An ID for the above problem, provided by an expert, is
presented in fig. 20.1.

The IDs can be represented by incidence matrix with (i, j)-th element
denoted by wj;, where



wij =1, if there exists an arc from rectangular component i to j,
=0, otherwise.

For instance, the ID presented in fig. 20.1 has the following incidence
matrix W.

To
A B C D E F G
From
A 0 1 0 0 0 0 0
B 0 0 1 0O 0 O 0
C 0 0 0 1 0 0 0
W =

D 0 0 0 0O 0 0 O
E 0 1 0 0O 0 0 0
F 0 0 0 1 1 0 0
G 0o 0 O 1 O 0 O

For comparing the IDs from two sources ID; and ID,, let us call their
incidence matrices W; and W, respectively. Now, the symmetric difference
metric d (W, W,) is given by

d (W, W) =Tr [ (W, -W,)" (W, -W,)] (20.1)

The function d (W, W) denotes the count of the number of discrepant edges
between two influence diagrams.

The following properties directly follow from the definition of d (W;, W,),
vide expression (20.1).



A= test ?, B =test results, C = drill ?, D = profit ?,
E= seismic structure, F= amount of oil ? , G = cost of drilling.

Fig. 20.1: An influence diagram for testing significance of oil exploration.

i) (W), Wa) =0, iff W, =W, (reflexive) (20.2)
1) d (W, Wy)=d (W,, W)) (symmetric) (20.3)
i11) d (Wy, Wy) <d (W), W) +d (W5, W,) (triangle inequality)

(20.4)
Bank and Carley [1] defined the following probability measure:

P(w) =c(s) exp (-s . d(w, W)), for each matrix w in W, (20.5)
where s is a dispersion parameter and c(s) is a normalizing constant.

Given the above expression, we can determine W and s*, the estimate of W
and s respectively, by means of classical likelihood techniques. For a sample



of expert influence diagram of size n, the log likelihood of the sample [17] is
given by

L[W,s]=nlogc(s) -s>d(w, W). (20.6)
Vwe W

It can be easily shown that L [W, s] is maximized in W by W, which
maximizes the quantity

>d(w, W), Vwe W.

W’ is first constructed according to the following rule: if an edge is present in
more than 50% of the influence diagrams, then it should be present in W,
Once W is found, one can obtain s by differentiating L[W, s] with respect to
s and setting it to zero, which yields

s=-In{[en)'Z]/[1- (rn)'2Z]} (20.7)
where Z=Yd (w, W),Vwe W

andr=m(m-1),

given that m is the number of nodes in each influence diagram. It may be
noted that s denotes a measure of disagreement among the experts.

20.4 Machine Learning Approach
to Knowledge Acquisition

Manual acquisition of knowledge is difficult for two main reasons. First the
knowledge engineer has to remain in constant touch with the experts for a
significant amount of time, which sometimes may be of the order of years.
Secondly, the experts themselves in many cases cannot formally present the
knowledge. The above difficulties in acquisition of knowledge can, however,
be overcome by autonomously encoding knowledge through machine learning.
The schematic view for elicitation of knowledge by the machine learning
approach is presented in fig. 20.2.



The database in fig. 20.2 is extracted from experts or other reasoning
systems. The machine learning unit grabs these data and attempts to acquire
new knowledge out of it. The acquired knowledge is then transferred to the
knowledge base for future usage. In some systems, the knowledge base need
not be extended, but may be refined with respect to its internal parameters. For
instance, certainty factor of the rules in a knowledge base may be refined
based on the estimated certainty factors of proven case histories. A generic
scheme for knowledge refinement is presented in fig. 20.3.

Machine learning

System
Database
A

Acquired

knowledge
Dynamic Other reasoning
Knowledge base Systems

Experts

Fig. 20.2: Principles of automated knowledge acquisition.

Fig. 20.3 presents a scheme for automatic estimation of some
parameters in an expert system. For instance, certainty factor of knowledge
may be refined from their initial values and steady-state inferences of n
number of proven case histories. The refinement should be carried out in a
manner, so that steady-state inferences are consistent with the derived
certainty factors. However, all n problems being similar, it is likely that some



pieces of knowledge may be common to two or more number of knowledge
bases. So, the resulting certainty factors of a common piece of knowledge may
come up with different values from different knowledge bases. A scheme for
normalization, therefore, has to be devised to take into account such certainty
factors.

( C C Case
z‘lse z‘lse ,,,,,,,,,,,,,,,,,,,,,,,,, History n
History 1 History 2 Initial CF+
Initial CF+ Initial CF+ | steady
steady steady -state inference
-state inference -state inference
Unsupervised Unsupervised Unsupervised
Learning Learning Learning

Refined
certainty factors

Knowledge
bases

Fig. 20.3: A scheme for refining expert system parameters.

The unsupervised learning algorithm used in fig. 20.3 differs from one
system to another depending on the type of knowledge representation and
reasoning schemes. For example, if a Bayesian Belief network is employed to
represent the knowledge base, the unsupervised learning network could be a
Hopfield network. The nodes in the Hopfield net in the present context could
represent the beliefs of evidences, while the weights could be the conditional
probabilities, representing certainty factors of knowledge. Alternatively, if the
knowledge-based systems are realized with Petri nets, then a Hebbian
learning could be adopted to derive the steady-state certainty factors,
represented by its weights.



20.5 Knowledge Refinement by
Hebbian Learning

This section presents a new method for automated estimation of certainty
factors of knowledge from the proven and historical databases of a typical
reasoning system. Certainty factors, here, have been modeled by weights in a
special type of recurrent fuzzy neural Petri net. The beliefs of the propositions,
collected from the historical databases, are mapped at places of a fuzzy Petri
net and the weights of directed arcs from transitions to places are updated
synchronously following the Hebbian Learning principle until an equilibrium
condition [15],[9] following which the weights no longer change further is
reached. The model for weight adaptation has been chosen for maintaining
consistency among the initial beliefs of the propositions and thus the derived
steady-state weights represent a more accurate measure of certainty factors
than those assigned by a human expert.

20.5.1 The Encoding Model

The process of encoding of weights consists of three basic steps, presented
below:

e Step-I: A transition tr; is enabled if all its input places possess tokens. An
enabled transition is firable. On firing of a transition tr;, its FTT t; is updated
using expression (20.8)[8], where places py € I (tr;), ny¢ is the belief of
proposition mapped at place py, and th; is the threshold of transition tr;,

GE+D=(A 1, 0) A ul( A n, (0)-th] (20.8)

Expression (20.8) reveals thatif A n, > th,,
1

<k<n

L+ = A 0y (1)

k<n

<
= 0, otherwise.



Step-II : After the FTTs at all the transitions are updated synchronously, we
revise the fuzzy beliefs at all places concurrently. The fuzzy belief n; at place
p; is updated using expression 20.9 (a), where p; € O (tr;) and by using 20.9(b)
when p; is an axiom, having no input arc.

m

ni(t+l) = V (tj(t""l) le(t)) 209(3)
j=1

= n;(t) , when p; is an axiom 20.9(b)

e Step-III : Once the updating of fuzzy beliefs are over, the weights w;; of
the arc connected between transition tr; and its output place p; are updated
following Hebbian learning [10] by expression (20.10).

Wij (H‘l) = tj (t+1) A l’li(t+1) (2010)

The above three step cycle for encoding is repeated until the weights become
time-invariant. Such a time-invariant state is called equilibrium. The steady-
state values of weights are saved for subsequent reasoning in analogous
problems.

Theorem 20.1: The encoding process of weights in an associative memory
realized with FPN is unconditionally stable.

Proof: Proof is simple and omitted for space limitation. O

20.5.2 The Recall / Reasoning Model

The reasoning model of a recurrent FPN has been reported elsewhere [8-9].
During the reasoning phase, we can use any of these models including the new
model proposed below.

The reasoning / recall model in an FPN can be carried out in the same way
as in the first two steps of the encoding model with the following exceptions.

e  While initiating the reasoning process, the known fuzzy beliefs for the
propositions of a problem are to be assigned to the appropriate places. It is
to be noted that in the encoding model the fuzzy beliefs of propositions
were submitted using proven case histories.

e The reasoning model should terminate when the fuzzy beliefs
associated with all propositions reach steady-state values, i.e., when for
all places,



% % *
n;(t +1)=pn;(t) at t=min (¢+). The steady-state beliefs thus

obtained are used to interpret the results of typical analogous reasoning
problems. The execution of the reasoning model is referred to as belief
revision cycle [8].

Theorem 20.2: The recall process in an FPN unconditionally converges to
stable points in belief space.

Proof: Proof is simple and omitted for space limitation. O

20.5.3 Case Study by Computer Simulation

In this study, we consider two proven case histories described by (Rule base I,
Database I) and (Rule base II, Database II). The beliefs of each proposition in
the FPNs (vide fig. 20.4 and 20.5) for these two case histories are known. The
encoding model for associative memory presented above has been used to
estimate the CFs of the rules in either cases. In case the estimated CF of a rule,
obtained from two case-histories differs, we take the average of the estimated
values as its CF.

Case History I

Rule base 1:
PRI1: Loves(x,y), Loves(y,x) — Lover(x,y)
PR2: Young(x), Young(y),
Opposite-Sex (x,y) — Lover(x,y)
PR3 : Lover(x,y), Male(x), Female(y) — Marries(x,y)
PR4: Marries(x,y) — Loves(x,y)
PRS: Marries(x,y), Husband(x,y) — Wife(y,x)
PR6 :  Father(x,z), Mother(y,z) — Wife(y,x)
Database 1:
Loves (ram,sita), Loves(sita,ram), Young(ram),
Y oung(sita), Opposite-Sex(ram,sita),
Male(ram), Female(sita), Husband(ram,sita),
Father(ram, kush), Mother (sita, kush)

While reasoning in analogous problems, the rules may be assigned with the
estimated CFs, as obtained from the known histories. In this example, case-
IIT is a new test problem, whose knowledge base is the subset of the union of
the knowledge bases for case-I and case-II. Thus the CFs of the rules are
known. In case-III, the initial beliefs of the axioms only are presumed to be



known. The aim is to estimate the steady-state belief of all propositions in the
network. Since stability of the reasoning model is guaranteed, the belief
revision process is continued until steady- state is reached. In fact steady-state
occurs in the reasoning model of case-III after 5 belief revision cycles. Once
the steady-state condition is reached, the network may be used for generating

new inferences.

Table 20.1: Parameters of case history 1.

Initial Weights wj

W71:O.8, W72:O.7, W93:O.6,
W14:O.9, W13~5:0.8, W13’6:O.5

Initial Fuzzy Beliefs n;

n120.2, 1’1220.8, n3:0.75,
ns=0.9,

n5=0.6, ng=0.75, n;=0.35,
l’lg:O.SS, n9:0.45, 1’110:0.85,
1’111:0.7, n12:0.65, 1’113:O.

Steady-state weights after 4 iterations

W71:O.35, W72:O.60, W93:O.35,

W14:O.35, W13’5:0.35,
W13,6:0-50

th; =0 for all transitions tr;

The FPN, given in fig. 20.4, has been formed using the above rule-base and
database from a typical case history. The fuzzy beliefs of the places in fig.
20.4 are found from a proven historical database. The initial weights in the
network are assigned arbitrarily and the model for encoding of weights is used
for computing the steady-state value of weights (vide Table 20.1).
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L= Loves, Y = Young, OS =Opposite-Sex, Lr = Lover, M = Male, F = Female,
Mr = Married, H = Husband, W = Wife, Fa = Father, Mo = Mother
r = Ram, s = Sita, k = Kush

Fig. 20.4: A FPN with initially assigned known beliefs and random weights.



Case History 11

Rule base 1I :

PR1:
PR2:
PR3 :
Database 1I :
p1
H(j,m)
L(j,m)
p2

Wife(y,x), Loves(x,z), Female(z) — Hates(y,x)
Husband(x,y), Loves(x,y) — Wife(y,x)
Hates(z,x) — Loves(x,y)

Husband(jadu,mala), Loves(jadu,mala),
Loves(jadu,rita), Female(rita)

L(j0) s

Ps
Ht(m,j)

F(r)

Ht=Hates
j=Jadu, m = Mala, r = Rita

Fig. 20.5: A second FPN with known initial beliefs and random weights.



The FPN of fig. 20.5 is formed with the rule base and database given above.
The system parameters of the FPN of fig. 20.5 are presented in Table 20.2.

Table 20.2: Parameters of Case History 2.

Initial WelghtS Wi W31:0.75, W62:0.95, W43:0.8
Initial Fuzzy Beliefs n; n;=0.8, n,=0.7, n;=0.1, n,=0.2,
n5:0.9, n6:0.3

Steady-state  weights after 3 | w3;=0.7, wg=0.10, w43=0.10
iterations

th; =0 for all transitions tr;

The Current Reasoning Problem

Now, to solve a typical reasoning problem, whose knowledge and databases
are presented herewith, we need to assign the derived weights from the last
two case histories. The reasoning model can be used in this example to
compute the steady-state belief of the proposition: Hates (lata,askoke), with
the given initial beliefs of all the propositions. The system parameters of the
FPN in fig. 20.6 are presented in Table 20.3.

20.5.4 Implication of the results

The analysis of stability envisages that both the encoding and the recall model
of associative memory are unconditionally stable. The time required for
convergence of the proposed model is proportional to the number of
transitions on the largest path (cascaded set of arcs) [9] in the network. The
model could be used for determination of CF of rules in a KB by maintaining
consistency among the beliefs of the propositions of known case histories.



Current Rule base:

PRI1: Loves(x,y), Loves(y,x) — Lover(x,y)

PR2: Young(x), Young(y), OS(xy) —
Lover(x,y)

PR3: Lover(x,y), Male(x), Female(y) —
Marries(x,y)

PR4: Marries(x,y) — Loves(x,y)

PR5: Marries(x,y), Husband(x,y) — Wife(y,x)

PR6: Father(x,z), Mother(y,z) — Wife(y,x)

PR7: Wife(y,x), Loves(x,z), Female(z) —
Hates(y,x)

PR8: Hates(z,x) — Loves(x,y)

Current Database:

Loves(ashoke,lata), Loves(lata,ashoke),
Young(asoke), Young(lata), Opposite-
Sex(asoke, lata), Male(ashoke),
Female(lata), Husband(ashoke,lata),
Father(asoke, kamal), Mother(lata,
kamal), Loves(ashoke,tina), Female(tina)

Table 20.3: Parameters of the current reasoning problem.

Initial weight w;; taken from the | w;,=w7,(1)=0.35, w7,=w,(1)=0.60,

Steady-state CFs of W93:W93(I):0.35, W14:W14(I):0.35,
corresponding rules from earlier | wy; s=w135(1)=0.35, w3 =w136(1)=0.50,
case histories I & II shown in Wi67=We2(I1)=0.10, w5 s=w43(I1)=0.10
parenthesis

Initial Fuzzy Beliefs n; n;=0.4, n,=0.8, n;=0.75, n,=0.85,

n5:0.65, n6:0.9, n7:0.3, n8:0.7, n9:0.3,
n10:0.95, n11:0.65, n12:0.6, n13:0.25,
n14:0.55, n15:0.35, n16:0.40

Steady-state Belief at place n;=0.10
pis for proposition Hates(l,a)

th; = 0 for all transitions tr;




Y(1)

0S(a,l

Fa(a,k@
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1= Lata, a = Ashoke, t = Tina, k = Kamal

Fig.20.6: An FPN used for estimating the belief of Ht(l,a) with known initial belief and CFs.

20.6 Conclusions

Acquisition of knowledge itself is quite a vast field. The chapter introduced
the principles of knowledge acquisition through examples. It demonstrated:
how the opinion of a number of experts can be combined judiciously. It also
presented an unsupervised model of knowledge acquisition that works on the
principles of Hebbian learning.

The subject of knowledge acquisition is an active area of modern
research in Al. Researchers are keen to use recent technologies such as
inductive logic programming and the reinforcement learning for automated
acquisition of knowledge. Fractals, which correspond to specialized



mathematical functions of recursive nature, have also been employed recently
in knowledge acquisition.

With the added features of multi-media technology, the next generation

systems will acquire knowledge automatically from the video scenes or voice.
We look to the future, when robots will develop skill to automatically learn
new pieces of knowledge from their environment. Such systems will find
massive applications in almost every sphere of life.

(1]

(2]

Exercises

Prove the theorems 20.1 and 20.2.
Verify the results presented in the tables 20.1 and 20.2.

Can you use supervised learning for knowledge acquisition? If the
answer is yes, should you prefer it to unsupervised or reinforcement
learning?

How can you use reinforcement learning to acquire information in a
robot’s world (partitioned cells of equal size with obstacles in a few
cells)? Illustrate with one reinforcement learning model from chapter
13.

Use Petri nets to extend the inverse resolution process, and show how you
can use it for knowledge acquisition. Use the elementary model of Petri
nets, presented in chapter 8. [open ended for researchers)]
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21

Validation,
Verification and
Maintenance Issues

The chapter provides a detailed overview of the latest tools and techniques
required for ‘performance evaluation’ of intelligent reasoning systems.
Performance evaluation serves two main objectives. First, one can test:
whether the designed system performs satisfactorily for the class of problems,
for which it is built. This is called validation. Secondly, by evaluating the
performance, we can determine whether the tools and techniques have been
properly used to model “the expert”. This is called verification. Besides
validation and verification, the third important issue is “the maintenance”,
which is required to update the knowledge base and refine the parameters of
an expert system. The chapter covers all these issues in sufficient detail.

21.1 Introduction

Validation, verification and maintenance are the three widely used terms
commonly referred to to evaluate and improve the performance of a
knowledge based system. ‘Validation’ and ‘verification’, though having a



finer level of difference in their usage, are being used interchangeably in the
existing literature of expert systems. Strictly speaking, ‘validation’ refers to
‘building the right system’ [3]-[4] that truly resembles the system intended to
be built. In other words, validation corresponds to testing the performance of
the system, and suggests reformulation of the problem characteristics and
concepts based on the deviation of its performance from that of the ideal
system. The ‘ideal system’, in general, could be the expert himself or an
already validated system.

‘Verification’, on the other hand, deals with implementational issues. For
instance, it includes redesigning the organization of the knowledge base and
refinement of the pieces of knowledge so that the performance of the expert
system is comparable to that of an ideal system.

Buchanan [8] first proposed the life cycle of expert systems with regard
to the various stages of their development. For illustrating the scope of the
validation and verification schemes in an expert system, we slightly extend
this model (vide fig. 21.1). In this figure, the first four major steps are

nvolve d to represent the problem by an equivalent knowledge base, and the
remaining two steps are employed to improve the performance of the system
through feedback cycles. To illustrate the figure, let us consider the domain of
‘circuit problems’. An electrical circuit consists of components like resistors,
inductors, capacitors, transistors and electrical conductors (wire).

Problems of common

domain
Problems
Characteristics Finding concepts to Designing structures Represent
identification [~ ™|represent problems  T¥™{to represent concepts [PH{knowledge for each T
structures
t i .
Redesign structures Redesign
knowledge
Verify knowledge base
]
Validate knowledge |——++
Reformulate problem

characteristics

Fig. 21.1: Life cycle of an expert system.



Here the problem characteristic is to determine current through a
component or the voltage drop across a component and the specifications for
the problem include voltage drop across or current through a different
component. Once the (input) specifications and the (output) requirements of
the problems are known, we have to search concepts that can represent the
problems. In case of electrical circuits, Kirchoff’s laws, Ohm’s laws,
Thevenin’s theorem, reciprocity theorem, superposition theorem, etc.
correspond to concepts that may be used to represent the problem. The next
task is to design structures to organize knowledge. In electrical circuit
problems, ‘finding structures’ means determining the appropriate rules
(laws/theorems) to represent the problem. For instance, in a simple loop, when
the current through a passive component is known, and the value of the
component is also known, we can employ Ohm’s law to find the drop across
it. When the currents through some of the components and /or voltage drops
across one or more components are known and there exist a number of loops,
we could employ Kirchoff’s law or Maxwell’s loop equation. Thus the
structures in the present context could be of the following type.

IF <input specification> & <output requirement> & <configuration>
THEN use <rule/ theorem>.

Here, the input specification and the output requirement correspond to
voltage and currents supplied and to be evaluated respectively. The
‘configuration’ in the present context may refer to number of loops (one or
more). A look at fig. 21.2 will be useful to understand the structure used to
formulate concepts.

1. IF <voltage/current > & <voltage/current > & <single loop>
THEN apply <Kirchoff’s voltage law (KVL) >.

2. IF <voltage across a component> & <current through that component>
&
<undefined number of loops>
THEN apply <Ohm’s law>.

3. IF <voltage/current> & <voltage/current> & <many loops>
THEN apply <Maxwell’s loop equation / Thevenin’s theorem>.

Fig. 21.2: Instances of the structure representing a concept.

It may be added here that the structure describing the concepts need not
be always IF-THEN statements. Structure and pointers, filler and slots or any
other Al techniques commonly used to represent knowledge could equally
represent it. After the construction of the structure is over, its component,



here, for instance, the THEN part of each rule has to be encoded by some
pieces of knowledge. Ohm’s law, for example, can be formalized as follows:

IF V= (voltage across a component) &
Z= (impedance of the component) &
1= (current through the component)

THEN V:=1*Z.
Kirchoff’s voltage law (KVL) in a loop can be represented as follows:

IF (no. of circuit component in a loop = n) &
(voltage across and current through Z; are V; and I, ) &
(voltage across and current through Z, are V,and I,) &

(voltage across and current through Z, are V, and 1) &
(total driving emfin a loop = V)

THEN (V=V,+Vs+ ...t V,) OR
(V:II *Z[ +]2 *Z2+ +In*Zn)

After the construction of the knowledge base, the performance of the
system in fig. 21.1 is evaluated through verification and validation of the
system. A question that then naturally arises is how to compare the
performance of the proposed system with an ‘ideal’ one. One way to solve the
problem is to call the expert, based on whose knowledge the system is built.
Suppose the expert selects superposition theorem to solve a problem but the
expert system built with his expertise cannot identify ‘superposition’ theorem
as the best choice for solving the problem. Obviously, there is a problem with
the system design. Most likely there exist some loopholes in the identification
of problem characteristics. So, reformulation of the problem characteristics
through validation of the system could overcome this problem. In case
reformulation of the new problem characteristics cannot be inferred by the
validation procedure, then the structures used to represent concepts or the
knowledge base could be re-designed. This is done by invoking a verification
procedure.

Apart from validation and verification, another significant issue in
improving the performance of an expert system lies with its maintenance. The
knowledge base of an expert system is gradually enriched with new pieces of
knowledge. Unless there is some formalization of entering new rules,
inconsistencies in various forms may creep into the system. Further, there
must be some sort of partitioning in the knowledge base; otherwise, the
system will suffer from inefficient pattern matching cycle.



The chapter will cover various issues relating to validation,
verification and maintenance of knowledge-based systems.

21.2 Validation of Expert Systems

Validation of an expert system involves comparing the performance of the
system with an ideal system (or the expert) and then updating the knowledge
base and the inferential procedures, depending on the deviation of the expert
system performance from that of the ideal system. Validating a system, thus,
not only means checking its performance with the expert, but it also includes
the procedures to adjust the systems’ parameters. A schematic view for
validation of an expert system is presented in fig. 21.3.

Expert System - g
Problem i 7 Procedure to adjust
/ 1~ KB & IE
e Inference
B & Explanation

| \9 -

Human Expert

Inference & Explanation

Fig. 21.3: Validating an expert system.

The expert system in fig. 21.3 comprises of three modules: the database
(DB), the knowledge base (KB) and the inference engine (IE). The IE
interprets the DB with the KB and thus derives inferences and presents
explanation to the performance evaluator (PE). A human expert is also given
the same problem, to infer its conclusion and present a suitable explanation
for its conclusion. If the conclusions generated by the expert system deviates
from the inferences by the expert, the explanation traced by the system and
the expert may be compared to determine the disparity in rule firing. Let the
state-space graph corresponding to the system and the expert be like those in
fig. 21.4.



Conclusion 1
Rules: fact;, fact,—fact;
Fact;, facty—facts

(@)

Conclusion 2

Rules: fact; , facty — factg
factg, facts — facty

(b)

Fig. 21.4: State-space graph used for explanation tracing:
(a) by the expert system, (b) by the expert.

A comparison of the two state-space graphs (Petri nets) in fig. 21.4
reveals that the conclusions derived by the expert are different from that
derived by the system. The explanation traced by them also differs
considerably. For instance, when fact; is derived by the system from fact; and
fact,, the expert derives factg from fact; and fact, Since {fact,, fact,, fact, and
factq} are available in the database, one possible reason of excluding the firing
of the rule: fact;, fact;—factg by the system is because of the lack of this
knowledge from the KB of the expert system. The validation scheme should,
therefore, ensure inclusion of this rule in the knowledge base of the expert
system.



21.2.1 Qualitative Methods for Performance Evaluation

Validation of an expert system is carried out by qualitative means. Qualitative
Validation employs subjective comparison of performances [4]. This section
reviews a few methods for qualitative validation for expert systems. Among
the qualitative validation schemes, the most popular is Turing test [7] and
sensitivity analysis.

Turing Test: This test is named after Alan Turing, a pioneering Al
researcher. Turing’s view on intelligence can be stated as follows. A problem
solving machine is intelligent, if a person trying to assess the intelligence of
the machine cannot determine its identity, while working with a human
problem solver and a computing machine. This method of testing intelligence
of a machine is called Turing test. Turing’s test has successfully been applied
to evaluate performance of expert systems like MYCIN and ONCOCIN [4].

For assessing the performance of an expert system by Turing’s test, the
expert based on whose expertise the system is built and the expert system are
assigned common problems. The assessment of the system performance is
then compared with that of a human expert by another expert, without
disclosing the performer’s identity. If assessments can be measured
objectively, then statistical techniques may be employed to measure the
variations or consistency between the performance of the expert and the
system. Examples of objective measurement of performance include number
of correct inferences or the level of performance in grade points like excellent,
good, fair, poor, etc. Turing’s test, however, is not applicable to systems,
where finding objective measurement of performance itself is a complex
problem and thus is not amenable.

b1 p2 %3
Input variables inferences

Vi Expert System
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Fig. 21.5: Validating an expert system performance through
sensitivity analysis.
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Sensitivity Analysis: ‘Sensitivity’ in electrical engineering means change
in response of a system, when there is even a small change in its input
excitation. Thus an electrical system M; is more sensitive than the system M,,
if M; when compared to M, responds to smaller changes in the input.
Sensitivity in expert systems, however, has a wider meaning. It corresponds to
a change in inferences for a change in input variables or parameters of the
expert system. Fig. 21.5 describes the scheme for validating an expert system
performance through sensitivity analysis.

Let the value of the input variables supplied by the problem be v;=v |,
vy, - v» and v3 = v3 and the internal parameters (like certainty factors,
conditional probabilities, etc.) of the expert system be p; = pi, p> - P2, P3 =Ps.
Suppose, the inferences derived by the expert system match the inferences
drawn by the expert for the above settings of input variables and parameters.
The performance evaluator now adjusts each variable/parameter one by one
by a small amount over their current value and observes the change in
response of the system and the expert. If the responses are closer (w.r.t. some
evaluator), then the design of the expert system is satisfactory; otherwise the
system has to be updated with new knowledge or its inference engine has to
be re-modeled. Sensitivity analysis, though a most powerful qualitative
method for performance evaluation, has not unfortunately been exploited to
any commercial expert systems. We hope that in the coming decade, it will
play a significant role in performance evaluation of commercial systems.

21.2.2 Quantitative Methods for Performance
Evaluation

When the responses of an expert system can be quantified (numerically), we
may employ quantitative (statistical) tools for its performance evaluation.
Generally, for quantitative evaluation of performance, a confidence interval
for one or more measure is considered, and the performance of the expert
system w.r.t. the expert is ascertained for a given level of confidence (95% or
99%). If the confidence interval obtained, for an expert system for a given
level of confidence, is satisfactory the system requires no adjustment;
otherwise we need to retune the knowledge base and the inference engine of
the system. An alternative way of formulation is to define a hypothesis Hy and
test whether we would accept or reject the hypothesis w.r.t. a predefined
performance range. The hypothesis Hy may be of the following form.

Hy: The expert system is valid for the acceptable performance
range under the prescribed input domain.

Among the quantitative methods, the most common are paired t-test [4] and
Hotelling’s one sample T test.



Paired t-test: Suppose x; € X and y; € Y are two members of the sets of
random numbers X and Y. Let X and Y be the inferences derived by the
expert system and the expert respectively. Also assume that for each x; there
exists a unique corresponding y;. The paired t-test computes the deviation d; -

—y;, Vi and evaluates the standard deviation Sq and mean d  for d;, 1<i<n,
where there exist n samples of d;. A confidence interval for derived d is now
constructed as follows:

g*tn—l,mS d S21_’_tn—l,()c

where t , 1 is the value of the t-distribution with n-degrees of freedom and
a level of confidence a. The hypothesis Hy is accepted, if d = 0 lies in the
above interval.

One main difficulty of realizing the t-test is that the output variables of
the system have to be quantified properly. The method of quantification of the
output variables for many systems, however, is difficult. Secondly, paired t-
test should be employed to expert systems having a single output variable Xx;
(and y; for the expert), which may be obtained for n cases. It may be added
that for multivariate (i.e., systems having more than one variable) responses, t-
test should not be used, as the variables x; may be co-related and thus the
judgement about performance evaluation may be erroneous. Hotelling’s one
sample T>-test may be useful for performance evaluation for multivariate
expert systems.

Hotelling’s one sample T-test: Suppose that the expert system has m
output variables. Thus for k set of input variables, there must be k output
vectors, each having m scaler components. The expert, based on whose
reference the performance of the system will be evaluated, should also
generate k output vectors, each having m components. Let the output vectors
of the expert system be [Xi]n x 1,1< 1 <k and the same generated by the expert
be [Y; |mx 1,151 <m. We now compute error vector E; = X; — Y; 1<V1 <k and
the mean ( E ) of error vectors E; , 1<=i<=k . The one sample T -test is then
employed to check whether the E is significantly different from the null
vector [4]. If the difference is not significant, then the hypothesis Hy is
acceptable.

21.2.3 Quantitative Method for Performance
Evaluation with Multiple Experts

The last section discussed the methods for evaluating performance of an
expert system based on the opinion of a single expert. This section explores
the possibility of measuring the performance of an expert system based on



multiple  expert responses. The main problem here is to measure the
consistency among the experts, often called inter-observer reliability. The
‘inter-class correlation co-efficient’ is a common measure for consistency
among the experts. After a correlation co-efficient is estimated, we can use a
related statistic to compare the joint expert agreement with the system [4]. If
the experts’ opinions are categorical variables like good, average, poor, etc.,
rather than continuous variables, Kappa statistics may be used to measure
their composite reliability and then a related statistic to compare their joint
agreement with the system agreement [4].

21.3  Verification of Knowledge Based System

Errors creep into knowledge based systems in various stages. First during
knowledge acquisition phase, experts miss many points to highlight to the
knowledge engineers. Secondly, the knowledge engineer misinterprets the
expert’s concept and encodes the semantics of expert’s concept incorrectly.
Thirdly, there is a scope of programming error. Lastly, as the knowledge base
is developed in incremental fashion over several years, the entry of
inconsistency, redundancy and self-referencing (circularity) in the knowledge
base cannot be ignored. The knowledge base of an expert system, thus, needs
to be verified before it is used in commercial expert systems.

Graph theoretic approaches [9-10] have been adopted for eliminating
various forms of shortcomings from the knowledge-base. One such well-
known graph is the Petri net, which has already been successfully used in
knowledge engineering for dealing with imprecision of data and uncertainty
of knowledge. In this section, we will use Petri nets for verification of
knowledge base. It may be noted that various models of Petri nets are being
used in knowledge engineering, depending on the type of application. The
model of Petri nets that we will use here is an extension of the model
presented in chapter 8. For the sake of convenience of the readers, we
represent a set of knowledge by a Petri net (fig. 21.6).

Knowledge base:

Ancestor (X, Y) « Parent (X,Y).

Ancestor (X, Y) «— Parent (X,Z), Ancestor (Z,Y).
Parent (d, j).

Parent (j, m).

N~

The Petri net shown in fig. 21.6 consists of a set of places P, a set of
transitions Tr, arc functions A and two tokens at place p,, given by



<X,Y> <XY>  (dj)
Ancestor
<Z,Y>

P

P = {pi,p>}

Tr = {tr},try, tr3, try}

A= {<X,Y><Z,Y><X,Z>}.
Tokens at p, = { (d, j), (j, m)}.

tr; tr3

parent
P2
J, m)
<X,Y>
tr, <X,Z> try

Fig. 21.6: A Petri net representation of a knowledge
base.

The place p,, transition tr; and place p; in sequence describes rule 1 in

the given knowledge base. Place p,, place p;, transition tr, and consequent
place p; together represent rule 2 of the system. The third and the fourth rules
are presented by tokens of place p, .

We now describe different forms of incompleteness of the knowledge

base and their representation by Petri nets.

21.3.1 Incompleteness of Knowledge Bases

We will formalize three basic forms of inconsistency discussed below.

1.

Dangling condition: Given a rule: Q «Py,P,,...,P,, where P; and Q
are predicates; the arguments of the predicates are not presented here for
brevity. Now, if any of the premises/antecedents of the rule are absent
from the database and consequent part of all rules, then that rule can
never be fired. Such a rule is called a dangling rule.

A dangling rule is represented by a Petri net in fig. 21.7. Here,
the predicate P; of the antecedent part of rule: Q «Py,P,,...,P,, is absent
from both the available database and the consequent part of any rule.
Consequently, P; can never be generated by firing of any rules. As a
result, the last rule also cannot fire because of the non-existence of P
from the database. Many ‘recognition-act’ cycles are unnecessarily lost
because of the presence of such dangling rules in the knowledge base.



Fig. 21.7: A dangling rule Q <P, P,.... P,
represented by a Petri net.

2. Useless Conclusion: When the predicates in the consequent part of a
rule are absent from the antecedent part of all rules in the knowledge
base, then that consequent predicate is called a useless conclusion [9-10].
In the Petri net, shown in fig. 21.8, R is a useless conclusion as no other
rules use it as an antecedent predicate.

Fig. 21.8: R is a useless conclusion.

3. Isolated Rules: A rule is said to be isolated, if all the predicates in its
antecedent part are dangling conditions and its predicate in the consequent
part is a useless conclusion. Fig. 21.9 describes an isolated rule.

P,

P,

Fig. 21.9: An isolated rule represented by a Petri net.



21.3.2 Inconsistencies in Knowledge Bases

The following four types of inconsistencies are discussed in this section.

1.

Redundant Rule: A rule is called redundant in a set of rules S, if all
the predicates in the antecedent part of more than one rule in S are
identical, the order of the predicates in the antecedent part of the rule
being immaterial. For example, one of the following two rules is
redundant.

Rule 1: R < P, P,, Ps.
Rule 2: R FPz, P3, P].

It is to be noted that the Petri net representation of both the above rules
is identical.

Subsumed Rule: If the consequent part of two rules includes some
predicate, and the antecedent predicates of one rule are the subset of the
antecedent predicates of the other rule, then the latter rule is called
‘subsumed’. In the following set of rules, rule 2 is subsumed.

Rule1: P < Q, R.
Rule2: P — Q, R, S.

tr; P

Fig. 21.10: Representation of a circular rule.



Circular Rules: A set of rules together is called circular, if their Petri
net representation includes one or more cycles. The following are the
examples of circular rules.

Rule I: R < P, O
Rule2: T— R, S
Rule3: P < T, W

The Petri net corresponding to the above rules is given in fig. 21.10.
Since it contains a cycle (through tr, tr, and tr3), the corresponding rules
are circular.

Conflicting Rules: Two rules are called conflicting if their antecedent
part contains the same predicates, but the consequent parts are mutually
exclusive. For example, the following two rules having some antecedent
literal and different consequent literal are conflicting.

Rule 1: Bus(X) « Four-wheeler(X), carries-passenger(X)
Rule 2: Car(X) < Four-wheeler(X), carries-passenger(X)

It may be noted that conflict arises in two rules because of incorrect
specification. For instance, to describe car (or bus) some other attributes
of them are needed, rather than the common attributes only.

21.3.3 Detection of Inconsistency in

Knowledge Bases

We shall formalize a scheme for the detection of incomplete and inconsistent
rules by using the structural properties of Petri nets. The following definitions
in this regard will be useful.

Definition 21.1: A subnet is a closed connection, if its underlying graph
consisting of places and transitions is a circle, irrespective of the arc direction.

The Petri net of fig. 21.11 is a closed connection. It contains n closed

patterns of places and transitions that form the cycles (closed path), when the
direction of the arcs are ignored. The closed patterns are listed below for
convenience.

P, trla q, trZa pl,
P2, tr1, q, tr2, P2,

Pns try, q, try, Pn-



Fig. 21.11: A closed connection.

A generic form of closed pattern thus is given by place;, transition;,
placey, transition,, place;. Formally, if we denote

a place by ‘a’,
the arc from a place to a transition by ‘b’,
the transition by ‘c’ and

the arc from a transition to a place by ‘d’,

then we could represent the closed connection of fig. 21.11 by (abcdadcb)
(abcdadcb)....(abcdadcb) where a sub-string in each pair of parenthesis
describes a closed connection in the pattern. It may, however, be added that a
certain order is implied here, when counting the closed connections.

Definition 21.2: Given two special strings oo = abed and B= adcb, the
resulting pattern,

i) (of)”, n>0 corresponds to redundant or subsumed rules,
ii) o', n>0 corresponds to circular rules, and
iii) (o*B*)", n> 0 corresponds to conflicting rules,

where 03 denotes concatenation of o and  and x" denotes concatenation of
x with itself n times.

We now present a grammar for syntactic recognition of the different
patterns. Let G = (V,, Vi, P, S) where the grammar G has four tuples; V, = a
set of non-terminals, V, = a set of terminals, P = a set of production/re-write
rules, S = a starting symbol. The following definitions of the grammar are
useful for recognizing four distinct types of patterns.



Definition 21.3: A grammar G = G, is for redundant or subsumed pattern
if V,={S, A, B, C), Vi= {a, b, ¢, d}, P = {S—>A, A->AA, A>BC, B—abed,
C—adcb} and S is the starting symbol.

Definition 21.4: A grammar G = G, is for circular patterns, if G,= {V,, V,,
P, S} where V, = {S, A}, V, = {a,b,c,d}, P = {S>A, A—>AA P—abcd} and S
is the starting symbol.

Definition 21.5: A grammar G = G; is for conflicting pattern if G; = {V,,
V,P.S},where V, = {S,ABC), Vi = f{abcdl, P = {SA, AsAA,
A—BBCC, B—abced, C—adcb} and S is the starting symbol.

Given a set of rules, they may be represented by Petri nets and the
strings corresponding to the Petri net may be evaluated. Now, to check the
type of inconsistency in the Petri net, each of the above three grammars has to
be evolved one by one to generate languages for testing whether the string
generated belongs to the language L(G;) of grammar G; . If yes, then the type
of inconsistency can be determined by the corresponding grammar. If no, then
the process is repeated with the next grammar type, until the membership of
the string is L(G; ), 3i can be correctly identified. Zhang and Nguyen [9]
designed a prototype software named PREPARE that includes the above
procedure for determining inconsistency in knowledge base. For detecting
incompleteness, the Petri net representation of rules provided them additional
advantage, as the dangling condition, useless conclusions and isolated rules
could be easily traced from the network itself.

21.3.4 Verifying Non-monotonic Systems

The last section was devoted to detect inconsistency and incompleteness of
monotonic rule-based systems. Recently, Chang, Stachowitz and Combs [1]
designed a scheme for verifying non-monotonic systems by detecting
inconsistency and incompleteness of knowledge. We employ a new predicate
ab(X), which denotes X is abnormal, to overcome the ‘qualification
problem’. It may be remembered that qualification problem deals with
qualifying all possible exceptions of a fact. For instance, to state that Fly
(birds), we need to qualify that Has-no-broken-wings(X), Has-power-of-
flying(X), Not-penguin(X), etc. So, to represent birds fly, we add the
qualifications as follows.

Bird (X) A Has-power-of-flying (X) A Not-penguin (X) — Fly (X).
Since such qualifications have no finite limit in realistic cases, it would be

convenient, if we write the above statement as presented below.
Bird (X) A = ab(X) — Fly (X)



A rule may also include a number of abnormal predicates. For
instance, one simple rule to test the capability of car driving of X is given
below.

Adult (X) A Car (Y) A —ab (X) A —ab (Y)—Can-drive (X,Y).

We would now prefer to write ‘,” instead of ‘A’ in the L.H.S. of the
‘—’ operator. Thus the above rule can be expressed as

Adult (X), Car(Y), —ab(X), = ab(Y) — Can-drive(X,Y).

In this section, we would use a closed-world model for all predicates,
except the ab predicates and postpone the commitment of the closed-world
model for the ab predicates until we do not see other evidences [1]. We now
illustrate the above principle by an example. Consider the following
knowledge base.

Tall persons are normally fast-runners.
Diseased persons are normally not fast-runners.
John is a tall person.

John is diseased.

Ao~

The above pieces of facts and knowledge are represented below in non-
monotonic logic using ab predicates.

1. Tall(X), —ab;(X)— Fast-runner(X).

2. Diseased (X), — aby(X) — — Fast-runner(X).
3. Tall (john).

4. Diseased (john)

Now, postponing commitment to ab; and ab, predicates, we by
resolution principle find

— ab (john) — Fast-runner (john)
— ab, (john) — — Fast-runner (john).

Now, unless we know anything about —ab,(john) and —ab, (john), these
two contingent facts are not inconsistent. In fact, we would assume ab, and
ab, to be false, unless we discover anything about them. But, it is to be noted
that setting ab, and ab, false yields a contradiction Fast-runner (john) and —
Fast-runner (john). To solve this problem, we have to rank the level of ab; and
ab, Suppose, we assume ab, is more likely to be false than ab;, then we can
infer —Fast-runner (john) is more likely to be true than Fast-runner (john).

We now define a strategy for redundancy checking.



Redundancy checking: If rank of ab, < rank of ab,. Consequently, the rule
having — ab; in the L.H.S. of ‘—’ operator will be redundant. With reference
to our previous example, for the same reason, we preferred

—ab,(john) — —Fast-runner (john)
over —ab;(john) — Fast-runner (john).

Here, the last rule is redundant. We now present the principle for
inconsistency checking in non-monotonic systems.

Inconsistency checking: Suppose we want to check inconsistency
between the rules:

— ab,(john) — —Fast-runner (john)
and —ab;(john)— Fast-runner (john).

If the rank of ab, and ab; are equal, then the above rules are inconsistent, else
they are consistent.

Lastly, we conclude this section with the principle of incompleteness
checking in non-monotonic systems.

Incompleteness checking: A non-monotonic knowledge base in many
cases cannot produce correct inferences because of incompleteness, i.e., lack
of rules or fact. For instance, consider the following rules and facts.

1. Match (X), Struck (X), —ab; (X)—Lighted (X).
2. Match (a).

3. Wet(a).

4. Struck (a).

Here, from rule 1, 2 and 4 we define:
—ab; (a)—Lighted (a)

which, however, is false as Wet (a) is true. In fact, this occurs due to
incompleteness of knowledge that

Match (a), Wet (a), —ab, (a)—> —Lighted (a).

To overcome the incompleteness of knowledge, we may add this rule
to the knowledge base with a setting of

rank of ab, < rank of ab,.



21.4 Maintenance of Knowledge
Based Systems

Maintenance of knowledge based systems has not been given much priority
during the last two decades of historical development in Al. The need for
maintenance of expert systems is recently felt, as many of the commercial
expert systems nowadays require updating of their knowledge bases on a
regular basis. It may be noted that an augmentation of the knowledge base
causes a significant decrease in inferential throughput and thus efficiency of
the system. Designing the knowledge base in a structured manner and
partitioning it into smaller modules thus help improving the efficiency of an
expert system. An obvious question naturally arises: can we partition the
knowledge base arbitrarily? The answer to this is obviously in the negative.
The knowledge base is generally partitioned in a manner such that the related
rules belong to a common partition.

The issues to be addressed in this section include i) effects of
knowledge representation on maintainability, ii) difficulty of maintenance of
systems built with multiple knowledge engineers, iii) difficulty in maintaining
the data and control flow in reasoning.

21.4.1 Effects of Knowledge Representation
on Maintainability

Production systems have some inherent advantages of knowledge
representation. First of all, it is the simplest way to encode knowledge and
thus the experts themselves can play the role of knowledge engineers by
directly coding their expertise. This reduces the scope of errors in semantic
translation of ‘human expertise’ into machine intelligence. This idea, in fact,
motivated expert system developers to use production systems. It has been
noted recently that typical production systems offer no resistance to the entry
of inconsistency to the knowledge base. Thus for maintenance of knowledge
in production systems, we require to ‘verify’ the knowledge base to reduce the
scope of inconsistency. This is explained in fig. 21.12.

The knowledge acquisition system in fig. 21.12 generates new pieces of
knowledge, which are subsequently added to the existing knowledge base.
The knowledge base is now verified to check the existence of contradiction or
incompleteness in it. If methods for eliminating inconsistency and
incompleteness are known, that must be executed to overcome this problem.

Lee and O’Keefe [2] recently made experiments to study the effect of
knowledge representation on the maintainability of expert systems. They
observed that the time required to update knowledge by production systems



approach is a bare minimum. They, however, concluded that a frame is more
efficient than production systems in connection with the maintenance of
knowledge. This is due to the reason that for augmentation of knowledge, a
few pointers have to be attached only to the existing frame systems, whereas
the complete rules have to be encoded in production systems. Thus from the
point of view of memory requirement, frame is undoubtedly more efficient
than production systems.

"~~~ ~—=>| Knowledge acquisition system

Facts New Knowledge

Knowledge base Inconsistency
TT u free knowledge
Verifier

Fig. 21.12: Augmentation of knowledge, followed by verification,
makes the knowledge base free from inconsistency.

21.4.2 Difficulty in Maintenance, When the System
Is Built with Multiple Knowledge Engineers

An expert system, during the developmental cycle, is maintained by several
knowledge engineers. The more the number of engineers, the more difficult is
the maintenance problem. The problem is more severe, when languages like
LISP are used for realization of the system, besides expert system shells or
object oriented paradigms. This is obvious because each knowledge engineer
has his own way of developing programs; so uniformity of coding may be
lost, when the system is built by many knowledge engineers.

21.4.3 Difficulty in Maintaining the
Data and Control Flow

The prototype model system of the expert system should be designed in a
manner that the ‘flow of control’ is not affected by the augmentation of the
knowledge bases. This is possible in relational model-based programs. On the
other hand, in object-oriented systems, the flow of control does not have a
clear path and is thus difficult to maintain. In relational models the flow of



control of data and knowledge is unique, depending on their position in the
program.

21.4.4 Maintaining Security in Knowledge
Based Systems

‘Security’ [5], like other software, is equally useful in expert systems. It
prevents unauthentic use / change of system resources. For instance, if there is
no password check, anyone can change the knowledge base. A clever
programmer may also affect the inference engine. Thus while updating
knowledge, maintaining the security is a fundamental requirement in expert
systems technology.

21.5 Conclusions

Performance evaluation of knowledge base systems is a fundamental issue of
knowledge management. In this chapter we discuss different means for
verifying the knowledge base. The key issues of knowledge verification are to
keep the knowledge base free from incompleteness and inconsistency. For
verifying non-monotonic systems the most important issue is to rank the level
of the ab predicates in the same knowledge base. In my opinion, here the
binary logic fails to yield a stable inference. In fact, multi-level logic may be
used to overcome this difficulty of non-monotonic systems. Currently, special
emphasis is given on the maintenance of the knowledge-based systems. This
is useful as every year around 800-1000 new pieces of knowledge [7] are
being added to expert systems. While augmenting the knowledge base,
checking for inconsistency should be carried out to keep the system running
smoothly over several years. Security of knowledge based systems should
also be maintained to prohibit the unauthorized access to the system
resources.

Exercises

1. Given the following knowledge base R, determine which of the rules in
set R is dangling. R = {IF A, B THEN C, IF C THEN D}, Database =
{A, C}.

2. Which is the useless conclusion in problem 1? Is there any isolated rule in
the above system?

3. Determine the type of inconsistencies in the following knowledge bases
(KB)



KB1= { IF A THEN B, IF B THEN A},
KB2= {IF A, B THEN C, If A THEN C},
KB3={ IF A, BTHEN C, IF A, B THEN D}

Draw the Petri nets to illustrate the following type of rules and then detect
the type of inconsistencies by using the Grammars, presented in the text:

(a) redundant rules,
(b) circular rules,
(c) conflicting rules.

Examine inconsistency of the following system, if any:

Man(X), Woman (Y), — ab(X), = ab (Y) — Loves (X, Y)
Man (X), Woman (Y), Sister-of (Y, X) —— Loves (X, Y)
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Parallel and
Distributed
Architecture for
Intelligent Systems

An analysis of Al programs reveals that there exists a scope of massive
parallelism in various phases of reasoning and search. For instance, the
search problem in a given state-space can be subdivided and allocated to a
number of processing elements. Further, many modules of the reasoning
programs can also be realized on a parallel and distributed architecture.
Generally, the parallelism in a reasoning program can appear at the
following three levels: the knowledge representation level, the compilation
and control level and the execution level. The chapter provides a brief
introduction to the architecture of intelligent machines with special reference
to representation and execution level parallelism in heuristic search,
production systems and logic programming.

22.1 Introduction

As Al applications move from laboratory to the real world and Al software
grows in complexity, the computational cost and throughput are becoming
increasingly important concerns. The conventional Von Neuman machines



are not suitable for Al applications because they are designed mainly for
sequential, deterministic and numeric processing. The architectural features of
Al machines depend largely on the tools and techniques used in Al and their
applications in real world systems. The issues of designing efficient Al
machines can be broadly classified into the following three levels:

1. Representational level
2. Control and Compilation level
3. Execution / Processor level.

The choice of an appropriate technique for knowledge representation and
its efficient utilization are main concerns of representational level. Control and
compilation level mainly deals with detection of dependencies and parallelism
in the algorithms or programs for the problem and scheduling and
synchronization of the parallel modules in the program. Execution level deals
with maximization of the throughput by special architectures like CAM [8] for
efficient search and matching of literals and fullest utilization of all the
processors in the system.

22.2 Salient Features of AI Machines
An Al machine, in general, should possess the following characteristics [2]:

a) Symbolic processing: An AI machine should have the potential
capability of handling symbols in the phase of acquisition of knowledge,
pattern matching and execution of relational operation on symbols.

b) Nondeterministic computation: In a deterministic system, the
problem states and their sequence of occurrences (or dependence) are known.
In an AI problem, the occurrence of a state at a given time is unpredictable.
For example, in a production system, which rule will be fired at a particular
problem state cannot be predicted before arrival of the state. Such systems are
usually called nondeterministic, and require special architecture for efficient
and controlled search in an unknown space.

¢) Dynamic execution: Because of nondeterministic nature of the Al
computation, the size of data structures cannot be predicted before solving the
problems. Static allocation of memory before execution of programs is, thus,
not feasible for many Al programs. Dynamic allocation, which means creation
of appropriate data structures as and when needed and returning the
unnecessary data structures after execution of a module of a program, is
preferred in Al programs. Besides dynamic allocation of memory, deadlocked
tasks should also be dynamically allocated to different processors and
communication topology should also be dynamically altered.



d) Massive scope of parallel and distributed computation: In
parallel processing of deterministic algorithms, a set of necessary and
independent tasks are identified and processed concurrently. This class of
parallelism is called AND- parallelism. The large degree of nondeterminism in
Al programs offers an additional source of parallel processing. Tasks at a non-
deterministic decision point can be processed in parallel. The later class is
called OR-parallelism. The above kinds of parallelism will be discussed in
detail later.

Besides parallelism, many of the Al problems that include search and
reasoning can be realized on a distributed architecture. System reliability can
be improved to a high extent by such a distributed realization of the Al tools
and models. The throughput and the reliability of the system thus can be
enhanced jointly by fragmenting the system on a parallel and distributed
architecture.

¢) Knowledge management: Knowledge is an important component in
reducing the complexity of a given problem. The richer is the knowledge base,
the lesser is the complexity in problem solving. However, with the increase of
the knowledge base, the memory requirement also increases and, thus,
partitioning of the knowledge base is required. Besides storage of knowledge,
its automated and efficient acquisition is also an important issue. While
designing architectures of Al machines, management of knowledge for its
representation and acquisition should be considered.

f) Open architecture: Al machines should be designed in a way, so that it
can be readily expanded to support modification or extension of algorithms for
the given problems.

The following sections elucidate various functional forms of parallelism
in heuristic search and reasoning and illustrate the scope of their realization on
physical computing resources.

22.3 Parallelism in Heuristic Search

In chapter 4 we covered the A* algorithm and the IDA* algorithm for heuristic
search on OR graphs. The A* algorithm selects nodes for expansion based on
the measure of f = g+ h, where g and h denote the cost of generating a node
(state) n and the predicted cost of reaching the goal from n respectively. The
IDA* algorithm, on the other hand, selects a node n for expansion as long as
the cost f at node n is within a pre-defined threshold. When no solution is
found within the pre-defined threshold, it is enhanced to explore further search
on the search space.



Because of non-determinism in the search process, there exists ample
scope to divide the search task into possibly independent search spaces and
each search sub-task may be allocated to one processor. Each processor could
have its own local memory and a shared network for communication of
messages with other processors. Usually there exist two common types of
machines for intelligent search. These are i) Single Instruction Multiple Data
(SIMD) and ii) Multiple Instruction Multiple Data (MIMD) machines [9]. Ina
SIMD machine, a host processor (or control unit) generates a single
instruction at a definite interval of time and the processing elements work
synchronously to execute that instruction. In MIMD machines, the processors,
instructed by different controllers, work asynchronously. In this section, we
present a new scheme for parallel realization of heuristic search on SIMD
machines, following Mahanti and Daniels [6].

Mabhanti and Daniels considered a SIMD architecture (fig. 22.1) with n
processors: Py, Py, ...., P, , each having a list for data storage. This list should
have the composite features of PUSH and POP operations like those in a stack
and DELETION operation like that in a queue. A host processor (controller)
issues three basic types of commands to other processors (also called
processing elements). These are

i) Balance the static load (on processors),
ii) Expand nodes following guidelines and
iii) Balance the dynamic loads (on processors).

The static load balancing is required to provide each processor at least
with one node. This is done by first expanding the search tree and then
allocating the generated nodes to the processors, so that each get at least one
node. Each processor can now expand the sub-tree rooted at one of the
supplied nodes. The expansion of the sub-trees is thus continued in parallel.
The expansion process by the processors can be done by either of two ways:
i) Partial Expansion (PE) and ii) Full Expansion (FE). The algorithms for
these expansions along with the corresponding traces are presented in fig.
22.2- 22.5. During the phase of expansion, some processors will find many
generated nodes, while some may have limited scope of expansion. Under
this circumstance, the dynamic load balancing is required. Now, the host
processor identifies the individual processors as needy, wealthy and content
based on their possession of the number of nodes in their respective lists. A
wealthy processor, that has many nodes, can donate nodes to a needy
processor, which has no or fewer nodes. The transfer of nodes from the lists



of wealthy processors is generally done from the rear end. The readers may
note the importance of DELETION operation (of Queue) at this step. A
content processor has a moderate number of nodes and thus generally does
not participate in the process of transfer of nodes. The principle of node
transfer has been realized in [6] by two alternative approaches: i) stingy
sharing and ii) Generous sharing. The algorithms describing the sharing of
nodes among processors and their traces will be presented shortly, vide fig.
22.6-22.7.

List 2
L $ | L $ ||
PE,; PE,
Balance static load /
Expand nodes/
Balance dynamic load.
Controller/
Host Processor
PE; PE,
L L
List 3 Listn

Fig.22.1: A SIMD architecture for IDA*.



Procedure Partial-Expansion
Begin
While the list is not empty do
Begin
Delete the front element n from the list L;
Generate a new child ¢ of n;
If n has yet an ungenerated child
Then place n at the front of L;
If f(c) < threshold
Then If ¢ is the goal
Then return with solution;
Else enter c at the front of L;
End While;
End.

Procedure Full-Expansion
Begin
While the list is not empty do
Begin
Delete the front element n from the list L;
Generate a new child ¢ of n;
If f(c) < threshold
Then If ¢ is the goal
Then return with solution;
Else enter c at the front of L;
If n has yet an ungenerated child
Then place n at the front of L;
End While;
End.



Fig.22.2: A tree expanded following the ascending order of nodes
using the PE algorithm.
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Fig. 22.3: Trace of the procedure PE on the tree of fig. 22.2 for a particular
processor, where the elements of the list p (¢, ¢y, ...,c,) represents
a node p with its ungenerated children c;, ¢, , ...c,.



Fig.22.4: A tree expanded by procedure FE.

Step:

Fig. 22.5: Trace of the procedure FE on the tree of fig. 22.4.
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Procedure Stingy-Sharing
Begin
Repeat
Tag the empty lists as needy;
Tag the lists containing multiple nodes as wealthy;
For every wealthy list
If its corresponding needy list exists
Then donate a node from the rear end of the
Wealthy list and put it at the front of the needy list;

Until no lists are tagged needy or wealthy;

End.

Tag Before balancing After balancing
0 n;
1 Ng
0 sy ny n3 n, ng sy ng | N3 n,
1 ng [ Ny Ng ng [ Ny
2 Ng3| My Ny Ny | Ny ng3 Ny | Ny | Ny
2 g

Each wealthy list donates an element from its rear end to its corresponding
(having same tag number) needy list.

Fig. 22.6: One step of load balancing by procedure stingy sharing.



Procedure Generous-Sharing

Begin

Floor: = Laverage list-size] ;
Ceil: = [ average list size 1;
Repeat

For every list with less than min (B-1, floor) nodes,
tag the list as needy; // B = bound of needy lists//
For every list with more than min (B, ceil) nodes, tag it wealthy;
If no lists are tagged as needy Then tag all lists with
min (B-1, floor) nodes as needy
Else If no lists are tagged wealthy Then tag all lists
with ceil nodes wealthy;
For every wealthy list and a corresponding needy list,
donate a node from wealthy to needy list;
Until no lists are tagged as needy or wealthy;
End.
Procedure IPPS
Begin
1. Perform static load balancing to give one node
to each processor;
2. Repeat
For each processor do
Begin
If f(start node) < threshold
Then place the start node in the front of a list;
Repeat
Generate nodes by PE or FE;
If some lists are empty apply dynamic load balancing
by either of the two procedures mentioned above;
Until the goal is found or all lists are empty;
2. Update threshold value;
Until the goal is identified;
End.



Tag Before balancing After first balancing

0 n

1 ng

0 Ns| Ny n; | m n; ns ny n3 n;
1 ng | Ny g ng |y

2 N3 Mgy | Ngp | Ny | Ny N3Ny | Nyg | Ny
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Tag After second balancing After third balancimg

0 n, | ng n; |ng

1 Nyl ng Nyo| Ng
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Fig. 22.7: Steps of GS load balancing with floor =2 and ceil =3.




To evaluate the performance of the parallel heuristic search algorithms,
Mahanti and Daniels defined two alternative formula for speed-up.

Let S(P) be the speed-up due to P processors; let N(P) be the number of nodes
generated on P processors. So, the average generation cycle time is N(P) / P.
Thus for a uniprocesor, the generation time is N(1) /1. Consequently, the
speed up S(P) is given by

S(P) = [N(1)/1]/ [N (P) / P]

=P N(1)/N (P) =S, ,say. (22.1)

The above calculation presumes the full utilization of the processors. But
during the load balancing phase, the processor will be idle. Thus the following
correction can be made in the last formulation.

Let Cg (P) be the actual number of generation cycles, then

S(P)=Cg (1) / Cg (P) = N(1) / Cg (P) (22.2)

Let tg be the time required in single node generation cycle and Ty (P) be the
averaged load balancing time. Then

SP)=[Cc (D t] /[ Ca (P) (tc+ T (P)/ Cq (P)) (22.3)

Mabhanti and Daniels experimented with 4K, 8K and 16K number of
parallel processors and found the speed-up by the second formula to lie in the
range of ( 2/3 to 3 /4) for most cases. They also observed that the maximum
experimental speed-up occurs when partial expansion and generous load
balancing are employed.

It may be noted that there exist a number of related works [9] on
realization of intelligent search techniques on parallel architecture. This book,
which is aimed at a wider audience, unfortunately does not have the scope to
report them.



22.4 Parallelism at Knowledge
Representational Level

Distributed representation of knowledge is preferred for enhancing parallelism
in the system. A Petri net, for example, is one of the structural models, where
each of the antecedent and the consequent clauses are represented by places
and the if-then relationship between the antecedent and consequent clauses are
represented by transitions. With such representation, a clause denoted by a
place may be shared by a number of rules. Distribution of fragments of a
knowledge on physical units (here places and transitions) enhances the degree
of fault tolerance of the system. Besides Petri nets, other connectionist
approaches for knowledge representation and reasoning include neural nets,
frames, semantic nets and many others.

22.4.1 Parallelism in Production Systems

A production system consists of a set of rules, one or more working memory
and an inference engine to manipulate and control the firing sequence of the
rules. The efficiency of a production system can be improved by firing a
number of rules concurrently. However, two rules where the antecedents of the
second rule and the consequents of the first rule have common entries are in
pipeline and therefore should not be fired in parallel. A common question,
which may be raised: is how to select the concurrently firable rules. A simple
and intuitive scheme is to allow those rules in parallel, which under sequential
control of firing yield the same inferences. For a formal approach for
identifying the concurrently firable rules, the following definitions [3] are
used.

Let L; and R; denote the antecedents and consequents of production rule
PR; Further, let

Ki = Li M Ri. (224)

The following definitions are useful to identify the concurrently firable rules in
a Production system.

Definition 22.1: If the consequents of rule PR, have elements in common
with the elements added to the database by firing of rule PR, i.e.,

R, N (Ry-Ky) % O, (22.5)

then rule PR is said to be output dependent on rule PR, [3].



Definition 22.2: If the antecedents of rule PR; have elements in common
with the part of data elements eliminated as a result of firing of rule PRy, i.e.,

Lin(L-K) %D, (22.6)

then rule PR is called input dependent on rule PR,.

Definition 22.3: If persistent part of two rules PR, and PR, have common
elements, i.e.,
KinK,# @, (227)

then one rule is said to be interface dependent to the other rule.

Definition 22.4: If the antecedents of rule PR, have elements in common
with the elements added to the database due to firing of rule PR,, i.e.,

Lin ( Rz-Kz) * @, (228)
then rule PR is called input-output dependent to rule PR..

Definition 22.5: If the consequents of rule PR; have elements in common
with the data elements eliminated due to firing of rule PR,, i.e.,

Rim (L2 -Kz) z @, (229)
then rule PR; is said to be output-input dependent to rule PR,.

Definition 22.6: Two rules PR; and PR, are said to be compatible, if they
are neither input dependent nor output-input dependent in both directions.

Definition22.7: Firing of rules PR; followed by PR, or vice versa and
concurrent firing of PR, and PR, are equivalent from the point of view of
changes in database, if the rules are compatible.

The list of concurrently firable rules of a Production system can be
easily obtained following definition 22.7 with the help of a matrix called
parallelism matrix, defined below.

Definition 22.8: In a Production system with n rules, a binary square matrix
P of dimension (n X n) is called a parallelism matrix, if

pij = 0, when rule PR; and rule PR; are compatible

=1, otherwise.



The largest set of compatible rules can be easily determined by inspecting the
following property of the P matrix.

Property: When p;; =p;; =0, rules PR; and PR; are compatible.

Example 22.1: Let us consider a production system with 6 rules having the
following P matrix:

101000
011010
P= 111010
000110
0Or11i1u11
000010

From the above matrix, the following set of compatible rules can be
determined by using the property of the matrix, stated above.

S1= { PR39 PR4a PRG}
S2= { PRI; PRZa PR49 PRG}
S3= { PRI, PR5}

For efficient execution of a rule-based system, the elements in a set of
compatible rules should be mapped onto different processing elements. If the
mapping of the compatible rules onto different processing elements is not
implemented, the resulting realization may cause a potential loss in
parallelism. While mapping rules onto processing elements, another point that
must be taken into account is the communication overhead between the
processing elements. When two rules are input dependent or input-output
dependent, they must be mapped to processing elements, which are
geographically close to each other, thereby requiring less communication time.

22.4.2 Parallelism in Logic Programs

In this section, the scope of parallelism in Logic Programs and especially in
PROLOG is discussed briefly. A Logic program, because of its inherent
representational and reasoning formalisms, includes four different kinds of
parallelisms. These are AND parallelism, OR parallelism, Stream parallelism
and Unification parallelism [2], [10].



a) AND -Parallelism

Consider a logic program, where the body of one clause consists of a number
of Predicates, also called AND clauses, which may be unified with the head of
other clauses during resolution. Generally, the resolution of the AND clauses
is carried out sequentially. However, with sufficient computing resources,
these resolutions can be executed concurrently. Such parallelism is usually
referred to as AND parallelism. It is the parallel traversal of AND sub-trees in
the execution tree [2]. For example, let us consider the following program.

1. Parent ( Mo, Fa, X) «Father (Fa, X), Mother (Mo, X).
2. Mother (jaya, tom) <
3. Mother (ipsa, bil) «
4. Father (asit, tom) <«
5. Father (amit, bil) <«

Query: « Parent (Mo, Fa, bil)

The AND parallelism in the above Logic Program is demonstrated, vide
fig.22. 8.

<« Parent (Mo, Fa, bil)

X=bil by (1)

« Father (Fa, bil), Mother (Mo, bil)

) Mo= ipsa
Fa= amit

Fig. 22.8: Demonstration of AND parallelism, where concurrent resolution
of two AND clauses of one clause (rule) with two other clauses
takes place.



If the AND-subtrees of the execution tree are executed in parallel, the
resulting unification substitutions may sometimes be conflicting. This is
often referred to as binding conflict. For example, in the following Logic
Program

1.LFX) < A (X), B (X).
2.A() «
3.B(2) «

the literals A(X) and B(X) in the body of the first clause are resolvable with
the heads of the second and the third clauses concurrently. However, the
binding variable X takes the value {1 /X, 2/ X}, which are conflicting. In an
AND-parallelism, where the goals/sub-goal, that include shared variables are
allowed to be resolved independently in parallel, is generally called
Unrestricted AND-parallelism. Some sort of synchronization of shared
variables and some method of filtering from the set of variable bindings are
required for correctly answering the query in such systems. Since considerable
runtime overhead is introduced for implementing such a scheme, AND-
parallelism is allowed, only when variable bindings are conflict-free. Such
AND-parallelism is referred to as restricted AND-parallelism [2]. For
detection of the conflict freedom of the wvariable bindings, a program
annotation is used to denote which goals/sub-goals produce or consume
variable values.

b) OR- Parallelism

In a sequential PROLOG program, each literal in the body of a clause is
unified in order with the head of other clauses during the resolution steps. For
example, consider the following program:

1. main « A (X), P(X).
2.A(1) « b,c,d.
3.AQ) « e, f, g
4.A(3) « h,i.
5.P3) «< p,q.

Here, to satisfy the goal, main, one attempts to unify the first sub-goal
(principal functor) A (x) with A (1) and after setting X=1, one starts searching
for P (1) in the head of other clauses but unfortunately fail to get so. The same
process is then repeated for X=2, but unfortunately P(2) is not available in the
head of some clauses. Finally, the goal main is satisfied by unifying A(X) and
P (X) with heads A(3) and P(3) of the last two clauses.



However, given sufficient computing resources, it is possible to perform the
unification of A(X) with A(1), A(2) and A(3) in parallel (vide fig. 22.9 ). Such
concurrent unification of A(X) with OR- clauses A(1), A(2) and A(3) is called
OR-parallelism. The prime difficulty with OR- parallelism, with respect to the
last example, is the propagation of the correct bindings of variables to P(X).
This, however, calls for some knowledge about the existence of P(3) as a head
of some clauses. Perhaps, by maintaining concurrency of AND as well as OR-
parallelism with the help of synchronization signals, this could be made
possible in future PROLOG machines.

main <« A (X), P(X).

main «b,c,d,P(1). main ee,\f, g, P (2). maine h, i, P (3).

Fig. 22.9: Demonstrating the concurrent resolution of a clause with
three OR clauses.

¢) Stream Parallelism

Stream parallelism occurs in PROLOG, when the literals pass a stream of
variable bindings to other literals, each of which is operated on concurrently.
Literals producing the variable bindings are called producers, while the
literals that use these bound values of variables are called consumers. As an
example, consider the following logic program :

1. main < Int (N), Test (N), Print(N).
2. Int (0) «
3.Int(N) < Int(M),Nis M+ 1.

In the above program, Int (N) produces the value of N, which is passed
on to Test (N) and Print (N) in succession. However, the procedure for Test
(N) and Print(N) may be executed with old bindings of N, while new
bindings of N may be generated concurrently for alternative solutions. Such
parallelism is referred to as Stream Parallelism. Stream parallelism has



similarity with pipelining. Here, Test(N) and Print(N) could be like one
process, and Int(N) is another process. The former waits for the latter for data
streams. There lies the similarity with pipelining.

d) Unification Parallelism

In a sequential PROLOG program, if a predicate in the body of a clause
contains a number of arguments, then during unification of that predicate with
the head of another clause, each argument is matched one by one. However,
with adequate resources, it is possible to match the multiple arguments of the
predicate concurrently with the corresponding positioned terms in a head
clause. The parallelism of matching of variables of a predicate with
appropriate arguments of other predicates is generally referred to as
Unification Parallelism. As an example, consider the following logic
program.

1. main « A (X,Y), ...
2. A(f(b,c), g(d)) «

Here, the instantiation of X = f (b, ¢) and Y = g(d) should be done
concurrently in a PROLOG machine that supports Parallel Unification.

22.5 Parallel Architecture for
Logic Programming

It is clear from our discussion in the last section that 4 different types of
parallelisms may co-exist in a logic program. Petri nets, which we have
introduced in chapter 8, can be employed to represent these parallelisms by a
structural approach. This section begins with an n-tuple definition of a Petri
net. Next, the scope of parallelism in logic programs by Petri net models will
be introduced. The principles of forward and backward firing of a Petri net
will then be outlined. An algorithm for concurrent resolution of multiple
clauses will be constructed subsequently with the Petri net models. Finally a
schematic logic architecture of the system will be developed from the
algorithm mentioned above. An analysis of the time estimate will then be
covered to compare the relative performance of the architecture with respect
to SLD-resolution, the fundamental tool for a PROLOG compiler.

22.5.1 The Extended Petri Net Model

An Extended Petri Net (EPN) [1], which we could use for reasoning under
FOL, is an n-tuple, given by



EPN={P, Tr,D, f, m, A, a, I, o} where

P={pi, p2y------ , Pm} 18 a set of places,

Tr= {try, try,...... , trp} 1s a set of transitions,
D={d,, d,...... , dn} is a set of predicates,
PNTr nD=0,

Cardinality of P = Cardinality of D,
f: D — P” represents a mapping from the set of predicates to the set of places,

m:P—(x, ..., y, X, oeonnn. ,Y ) is an association function, represented by the
mapping from places to terms, which may include both constant(s),
variable(s) and function of variables,

A: (P— Tr ) u (Tr— P) is the set of arcs, representing the mapping from the
places to the transitions and vice versa,

a: A— (X, Y,...., Z) is an association function of the arcs, represented by the
mapping from the arcs to terms,

I: Tr—> P is a set of input places, represented by the mapping from the
transitions to their input places,

0: Tr — P is a set of output places, represented by the mapping from the
transitions to their output places.

Example 22.2: A Petri net consists of places, transitions, tokens at places
and are functions. A detailed representation of the given rules with Petri nets
is presented in fig. 22.10.

Given rules:

Son (Y, Z), Daughter (Y, Z) < Father (X, Y), Wife (Z, X) .
Father (r, 1) «

Wife (s, r) <

— Daughter (1, s) <



It may be noted that the first rule includes two literals in the head, while the
last rule includes negated literal in the head, both of which are violated in

standard logic programs, but valid in predicate logic.

p: Father D3 Son
Ay Aj
Ay Ay
(Z,X) -,2)
try

Daught
P Wife Pa Laughter

Fig. 22.10: Parameters of an EPN used to represent knowledge
in predicate logic.

Here, P={pi,p2,P3,P4},
Tr = {tr},
D = {Father, Wife, Son , Daughter },
f(Father ) = p, , f (Wife) = p, , f(Son) = p; , f (Daughter) = p,4,

m(pl) =<I, 1>7 m(p2 ) =<s, r>5 m(p3 ) =< ¢ >, m(p4 ) = _‘<17 s>
initially and can be computed subsequently through unification of
predicates in the process of resolution of clauses.

A= {Ala A25 A3 > A4}7
a(Al):(XsY)aa(AZ):(Z’X)sa(A3):_‘(YsZ)a
a (As)=— (Y, Z) are the arc functions,

I(tr; ) = {p1, p2 }, and O(tr> ) = {ps .p4 }.



It is to be noted that if- then operator of the knowledge has been represented in
the figure by tr; and the antecedent-consequent pairs of knowledge have been
denoted by input (I) — output (0) places of tr;. Moreover, the arguments of the
predicates have been represented by arc functions.

22.5.2 Forward and Backward Firing

For computing a token at a place, the transition associated with the place is
required to be fired. Firing of a transition, however, calls for satisfaction of the
following criteria.

A transition tr; is enabled,

(1) if all the places excluding at most one empty place, associated with the
transition tr; , possess appropriately signed tokens, i.e., positive literals
for input and negative literals for output places.

(2) if the variables in the argument of the predicates, associated with the
input and output places of the transition, assume consistent bindings.

It means that a variable in more than one arc function, associated with a
transition, should assume unique value, which may be a constant or renamed
variable [7] and should not be contradictory. For instance, if variable X
assumes a value ‘a’ in one arc function and ‘b’ in another arc function of the
same transition, then they are inconsistent. The bindings of a variable X in an
arc function are evaluated by setting its value to the same positioned term in
the token, located in the connected place.

When a transition is enabled, we can ‘fire’ the transition. After firing,
tokens are generated as a result of resolution and are transferred to its
input/output place. It is to be noted that the value of the token at these places
is decided by the corresponding arc functions.

In the case of forward firing, the empty place is on the output side,

whereas in the case of backward firing, it must be at the input side of the
transitions.

Examples of forward and backward firing

The concept of forward and backward firing in Petri nets is illustrated below
with examples.



Forward firing: Let us consider the Petri net shown in fig. 22.10. Here the
variables in the arc function corresponding to the arcs A;, A, A; and A, are
given by (X, Y), (Z, X), —=(Y, Z) and —(Y, Z) respectively. The places
connected through these arcs contain tokens < r, 1 >, <s, r >, < ¢ > and
<—l,s> respectively. Thus the instantiated values of arc function (X, Y) are
computed from its associated place p; and is given by a set: {r /X, | /Y}.
Similarly, we get the other instantiations for the variables of the arc functions
corresponding to arc A, and A,4. The resulting instantiations are

{s/Z, v/ X} and
{1/Y, s/Z}.

For the determination of the common variable bindings, we take an
intersection of the value of X from the first and the second sets: {r /X, 1/Y}
and { s/Z, 1/ X} respectively, which yields X =r. Similarly, the value of Y is
evaluated from the first and the third set, which is found to be Y =l and the
value of Z is from the second and the third set is computed as Z = s.

It may be noted that in case the result of an intersection is a null set, we
say that the corresponding variable bindings from the different arc functions
are inconsistent.

p: Father P3 Son
X, Y) (Y, Z)
A As
Ay Ay
(Z,X) -(Y,2)
try

p Wife ps  Daughter

Fig. 22.11: The Petri net of fig. 22.10 after forward firing of transition tr;.



After the bindings of the variables are evaluated by the above method,
the value of the tokens are computed by assuming an oppositely signed arc
function and the results are entered into all places associated with the fired
transition. If the generated token already exists in a place, it need not be
entered further. In the present context, the only new token is generated for
place ps, which is given by —{— (Y, Z)} = <l, s >. This has been entered in
place p; of fig. 22.11.

Backward reasoning: For backward reasoning we consider the following
knowledge base.

Paternal-uncle (X, Y) v Maternal-uncle (X,Y) < uncle (X, Y)
—Paternal- uncle <r, 1 > «

— Maternal- uncle <r, 1 > «

The Petri net representation of the above knowledge base is presented in fig.
22.12.

Paternal-uncle

—(X,Y)

Maternal-uncle

Fig. 22.12: Tllustrating the backward firing: Before firing p; is empty; after
firing a new token —<r, 1 > will appear in p;.

Here all output places contain negated tokens and only one input place
is empty; so the transition is enabled and thus fires resulting in a token at
place p;. The value of a token in the present context is also evaluated
through consistency analysis, as in the case of forward firing. The resulting



consistent variable binding here is {r /X, 1 /Y}. Thus the new token at place p,
is found to be {= (X, Y)} = (=<, | >). Note that there is no negation in the
arc. But, you have to assume an opposite sign to the arc function for
computing the token. Thus we assumed {— (X, Y)} and hence = (=<1, 1>).

22.5.3 Possible Parallelisms in Petri Net Models

The Petri net model presented in this chapter supports AND, OR, stream and
unification parallelisms, as outlined below.

AND - Parallelism

Consider the following three clauses, where clause 1 can be resolved with
clause 2 and 3 concurrently. From the previous section, we call such parallel
resolution of AND clauses A(X) and B(X) the AND—parallelism. Such type of
parallelism can also be represented and realized by Petri nets as shown in fig.
22.13.

F(x) < A(x) , B(X) 0]

A(l) « 2)

B(l) « 3)
A

B
Fig. 22.13: A Petri net representing AND-Parallelism.

OR - Parallelism

Consider the following set of rules, where the predicate A(X) in clause 1 can
be unified with the predicates A(1) and A(2) in clause 2 and 3.



F(x) < AX) , B(Y) (1

A(l) « )
A2) « 3)
B(1) « “4)

Since the resolution of the two OR-clauses (2) and (3) are done with
clause 1 concurrently, we may refer to it as OR-parallelism. OR-parallelism
can be realized easily with Petri net models. For instance, the above program
when represented with a Petri net takes the form of fig. 22.14.

p A

X) X)

(Y)

p. B
Fig. 22.14: A Petri net representing OR-parallelism.

The argument of predicates in clause (2) and (3) are placed together in place
p1, corresponding to the predicate A. Similarly the argument of the predicate
in clause (4) is mapped at place p,. The pre-conditions for the resolution
process of clauses (2), (4) and (1) as well as clauses (3), (4) and (1) can be
checked on the Petri net model concurrently. One important issue that needs
mention here is the requirement of extra resources for maintaining this
concurrency of the resolution process. In our proposed architecture for logic
programs (to be presented shortly), we did not attempt to realize OR-
Parallelism. However, with a little addition of extra logic circuits this could
be implemented easily.

Stream Parallelism

Stream-parallelism is often referred to as a special form of OR-parallelism.
This parallelism, as already stated, has similarity with the pipelining



concept. In pipelining, processes that depend on the data or instructions
produced by other process are active concurrently. Typical logic programs
have inherent pipelining in the process of their execution. For instance, in the
logic program presented below:

Grandson (X, Z)< Son(X,Y) , Father (Z,Y) (N
Father (Y, X) < Son(X, Y) , Male (Y) 2)
Son (r,d) « 3)
Son(l, r) « @)
Son (¢, 1) « %)
Male (d) « (6)
Male (1) « @)
Male (1) « (®)

ps Grandson

D

X, 2)
tr,
pi Son X, Y)
<r, d><l, r> X, Y) (Z,Y)
<c, >

(Y. X)
p; Father

Yy .

p. Male

Fig. 22.15: Representing stream parallelism by Petri nets.



the result produced by clause (2) may be used by clause (1) to generate new
solutions. Thus, while clause (1) is resolved with clause (2) and clause (4), the
clause (2) will be resolved with clause (3) and clause (6). Thus the pipelining
of clauses in the process of resolution exists in a logic program. However, it
requires some formalism to continue this concurrent resolution in an
automated manner.

Petri net models, presented in this chapter, can however be used to solve
this problem. For example, the Petri net of fig. 22.15 demonstrates that until
the token at place p; is computed, we cannot generate a token at place pj.
Thus the generation of a token at place py4 is pipelined with that of place ps.
Further, when token generation at place p4 and p; are made concurrently, so it
is likely that transition tr; and tr, may fire concurrently when proper tokens
are available at the input places of both transitions. Stream-parallelism has
been realized in the architecture, to be presented shortly.

Unification Parallelism

In unification parallelism, as already stated, the terms in the argument of a
predicate are instantiated in parallel with the corresponding terms of another
predicate. For instance, the Petri net corresponding to the logic program
presented below allows binding of the variables X and Y in the arc function
concurrently with the tokens a and b respectively at place P.

R (Z,X) « P(X,Y), Q(Y,Z) (1)
P (a,b) « (2)
Q (b, c) « (3)
p
X, Y)

>

Y,Z
Q (Y. 2)

Fig. 22.16: A Petri net to illustrate the scope of parallel unification.



22.5.4 An Algorithm for Automated Reasoning
We shall use the following notations in the algorithm for automated reasoning.

Current-bindings (c-b) denote the set of instantiation of all the variables
associated with the transitions.

Used-bindings (u-b) denote the set of union of the current-bindings up to the
last transition firing.

Properly signed token means positive tokens for input places and negative
tokens for output places.

The maximum value of the variable no-of-firing in the algorithm is set to
number of transitions. This is because of the fact that number of transition
denotes the largest possible reasoning path and the algorithm cannot generate
new bindings after this many iterations.

Procedure Automated Reasoning
Begin
For each transition do
Par Begin
used-bindings:= Null;
Flag:= true; // transition not firable.//
Repeat
If at least all minus one number of the input and
output places possess properly signed tokens
Then do
Begin
determine the set: current-bindings of all the
variables associated with the transition;
If (a non-null binding is available for all the variables) AND
(current-bindings is not a subset of used-bindings)
Then do Begin
Fire the transition and send tokens to the input
and the output places using the set current-bindings
and following the arc functions with a presumed opposite sign;
Update used-bindings by taking union with current-bindings;
Flag:= false; //record of transition firing//
Increment no-of-firing by 1;
End



Else Flag:= true;
End;
Until no-of firing = no-of-transition;
Par End;
End.

The above algorithm has been applied to the Petri net of fig. 22.17 and its
trace is presented in table 22.1.

Table 22.1: Trace of the algorithm on example net of fig. 22.17

Time slot | Tran | Set ofc-b Set of u-b Flag=0, if c-bz u-b

. =1, if c-b= u-i# {0}
First try {r/x,d/y,a/z} {{0}} 0
cycle try {n/x,a/y} {{o}} 0
Second try {r/x,n/y,a/z} {{r/x,d/y,a/z}} 0
cycle try {d/x,aly} {{n/x, aly}} 0
Third tr; {r/x,dly,a/z}/ | {{r/x,dly,a/z}, 1
cycle {r/x,n/y,a/z} {r/x,n/y,a/z}}

tr, {n/x,aly}/ {{n/x, aly}, 1

{d/x,aly} {d/x, aly}}

22.5.5 The Modular Architecture of the Overall System

It is evident from the discussion in section 22.5.3 that most of the possible
forms of parallelism of logic programs can be represented by Petri nets.
Section 22.5.4 described a scheme for concurrent resolution of multiple
clauses in a logic program. This section includes a mapping from Petri nets to
logic circuits for efficient realization of the algorithm presented in the last
section on a high speed inference engine.

Before executing the program, a compiler, specially constructed for this
purpose, is employed to parse the given program for syntax analysis. On
successful parsing, the variables used in the programs are mapped onto a
specialized hardwired unit, called Transition History File (THF) register.
The compiler also assigns the value of the variables, hereafter called tokens, at
specialized hardwired units, called Place Token Variable Value Mapper
(PTVVM). The sign of the arc function variables is also assigned to the
PTVVM by the compiler.




P,
Father —-(Y.,2)

Grandfather

- (X,Y)

P,
Ps

Paternal-uncle Maternal-uncle

Fig. 22.17: An illustrative Petri net with initial token assignments used to

verify the algorithm automated-reasoning.

The architecture of the proposed system consists of six major modules:

(i)

(i)
(iii)
(iv)

v)
(vi)

Transition History File (THF) for transition tr;, 1<V i <n;

Place Token Variable Value Mapper (PTVVM) for place p; ,
I£Vj<m;

Matcher for transition tr; , 1< Vi< n ;

First pre-condition synthesizer, realized with AND-OR Logic for
transition tr; , 1< Vi<n

Transition Status File (TSF) for transition tr;, 1< Vi<n ;

Firing criteria testing logic for transition tr;, 1< Vi< n

When a start command is issued from the power line, the Transition History
Files for each transition generates the place names associated with that



transition for the PTVVM. The PTVVM, on receiving the place names,
addresses its internal place buffers and consequently the signed arc functions
from the THF are propagated to the PTVVM to be used as tags. The tokens,
which were already saved in the place buffers of the PTVVM for a given place
pj, are now compared with the arc functions common to that place and one
transition. Thus in case there exists two arc functions between a place and a
transition, then the same initial token value will be loaded into two place
buffers for possible comparisons with the two arc functions. The consistency
of variable values associated with a given transition can be checked inside the
PTVVM. When there exists a single arc function between a place and a
transition, the two place buffers inside the PTVVM for that place will be
loaded with the same set of tokens by the compiler. The PTVVM thus can
generate consistent tokens for variables associated with a transition and
transfer them to the First Precondition Synthesizer Logic to check whether all
but one associated places of the transition tr; possesses consistent tokens. The
consistent value of tokens generated at different places associated with a
transition tr; are now transferred to the matchers of tr; for determining the
consistent value of variables X,Y,Z located at these places. The Transition
Status File for tr;, on receiving the start command, checks whether the current
set of instantiation received from the matcher for tr; is a subset of the used set
of instantiation for the same transition. It also issues a single bit flag signal to
represent the status of the condition referred to above. A firing criteria testing
logic is employed for each tr; to test the joint occurrence of the three
preconditions received from First Precondition Synthesizer Logic, the matcher
and the Transition Status File. If all these three conditions are jointly satisfied,
the firing criteria testing logic issues a ‘fire tr;’ command to the matcher,
informing it to transfer the value of new tokens for each place associated with
tr; to the PTVVM and the value of the current-bindings set to the Transition
Status File. The process is continued until the number of transition firings
becomes equal to the no-of-transitions.

22.5.6 The Time Estimate

An SLD resolution generally takes two clauses, one at a time. Thus for a
logic program comprising of n clauses, we require (n-1) no. of resolutions. If
T, denotes the time required for resolution of two clauses, then the time
requirement for resolving all the n clauses, taking two at a time, becomes

Tsip = (n-1) T (22.10)

A typical logic program, however, includes a number of concurrently
resolvable clauses. Let us assume that a logic program comprising of n
clauses includes m; , m, ,......... , m . no. of concurrently resolvable clauses.
So the total number of resolutions required for such a program



= {n-(m1+m2+.....+mk)—l} +1xk
=n-Xm; +(k-1)
=n-Xm+k (22.11)

Let us now assume that the time required for resolving m; no. of clauses is T;.

Thus the total time required (T, ) for resolving (n - £ m; + k ) no. of clauses
becomes
k
T.=(n-Z2m) T, +X T, (22.12)
i=1

If the time T; could be set to T, , the time required for binary resolution, then

the resulting time for resolving (n - X m; + k) number of clauses becomes
Tk.
k
TE:(H-Zmi)Tz“FETZ
i=1
:(n—zmi)Tz-i-sz

=n—(Zm;- k)T, (22.13)

It is evident that Ty < T gp if (X mj- k) > 1. The larger the value of
(Z m; - k), the better is the relationship Tp << T gp.

In our proposed architecture we kept provisions for resolving 5 clauses
one at a time [1]. Thus if m; < 5, T; remains constant. The schematic
architecture describing the major modules and their pipelining is presented in
fig. 22.18.

The logic architecture of the above system is available in [1]. An
analysis of the logic architecture reveals that the PTVVM requires
approximately 25 T., where T, is the time period of the system clock. The
THF requires approximately 1 memory access. The matcher requires 10 gate
delay, while the FPS requires approximately 2 gate delay.



For the sake of convenience, the pipelining and parallelism of different
modulus is presented in fig. 22.18. An estimation of the cycle time for firing a
transition is computed in fig. 22.19 following the pipelining of the stages in
fig. 22.18. It is evident from fig. 22.19 that the TSF works in parallel with the
pipelined stages comprising of THF, PTVVM and Matcher or THF, PTVVM
and FPS in sequence. The matcher and the FPS start working only when the
PTVVM completes the current task. The time required for the matcher being
larger than that of FPS we consider the time required by the matcher only
following THF and PTVVM. It is also clear from the figure that the matcher
finishes its tasks at time e, which is larger than the time d required by the
TSF. An additional 2 gate delay followed by a few memory access cycles plus
gate delay makes the total cycle time equal to g, which is the effective cycle
time for firing a transition. The time requirement for each unit is shown in the
fig. 22.19 itself and needs no further clarification.

1 Memory
access + | +
—» THF [P PTVVM Matcher [P

25T, 10 gate delay

Lﬁ FPS [P

2 gate dela
L » TSF g y

Delay

Fig. 22.18: Pipelining among the major modules of the architecture for
the execution of FOL programs; each circuit corresponds to
one transition.

Since a number of transitions are concurrently firable, it is expected that
the execution of a complete logic program will require an integer multiple of
this transition firing cycle time. Assuming a clock cycle time equal to T, and
ignoring smaller gate delays, it has been found that the total cycle time
required for firing a transition is 25 T, .

Thus assuming a 100M-Hz clock frequency, the cycle time for one
transition is equal to 25x10® S =250 nS (nanosecond ). Now for the sample
logic program represented by the Petri net of fig. 22.17, the total time for



executing the program thus becomes 3 transition firing cycle = 3 x 250nS =
750 nS.

iO gate delay
A :
. Matcher
PTVVM
25T, 2G  unused
[HF ¢ »4—>
I
EPS i;e ay
D M
delay +2G
Activated pipe- ‘TSF
lined nits I |
S FTMUXFTC 3G
<
1% cycle >
0 a b ¢ d e f g

Time
M= Memory access, G = gate delay, D = ignorable delay,
MUX = MUX delay, C= Comparison delay

Fig. 22.19: Cycle time estimation for the proposed parallel
architecture.

To have an idea of the timings, let us consider the execution of a logic
program on a PC. On the other hand, if the above logic is realized on a PC
with a 100 megahertz clock, the system has to execute 8 resolutions for a total
number of 9 clauses. For efficient execution of a PROLOG program, the
predicate names and their arguments are to be stored in memory locations.
Thus for unification of two predicates with n arguments, we require as
memory (2n+2) memory access time + (2n+2) /2 comparisons. Now, for
resolving two clauses, each having m predicates, we require m* comparisons.
Assuming m = m,,, = 4 and n=9 as an example, we found a total time estimate
tobe =8 {2 x 9+2 } M + 8 {(2x9+2)/2 + (4)* }C +9 stack handling + large
compilation time= 160 M + 208 C + 9 stacks + compilation, which is much
larger than (25 T.) x p, where p is the number of concurrent transition firing
cycles.



22.6 Conclusions

The chapter started with a SIMD architecture for parallel heuristic search and
then gradually explored the scope of parallelism in production systems and
logic programming.

The chapter emphasized a new scheme for analyzing logic programs by
Petri nets and presented an efficient realization of the proposed scheme on a
high speed parallel inference engine. The proposed system can resolve at most
5 clauses one at a time. With extra hardware resources, this limit of 5 clauses
can be extended to as many as desired.

Principles of resolution employed in Petri nets do not violate the
soundness and completeness of the fundamental resolution theorem of
predicate logic. Further the mapping from Petri nets to logic architecture too
does not add any extra constraints to the resolution theorem and thus does not
pose questions to the soundness and completeness of the inferential
procedures realized on the architecture.

The timing analysis of the proposed inference engine elucidates the
basis of parallelism and pipelining among the various modulus of the inference
engine. It is evident from the analysis that the transition firing requires 25
clock cycles, which is insignificantly small compared to memory access and
comparison times in SLD programs.

The compiler for the proposed system serves two purposes. First it
acts as a parser to the syntax of a given logic program. Secondly, it maps the
variables, constants and predicates onto different modules of the architecture
and initializes the flags of the system. The construction of the compiler and
the VLSI testing of the architecture is under progress.

The complete realization of the parallel inference engine will serve as a
new type database machine. Furthermore, it will be able to realize ‘datalog
programs’ on efficient inference engines and demonstrate an alternate means
to answer queries on high speed architecture.

Exercises

1. Determine which of the following rules are input dependent, output
dependent, interface dependent, input-output dependent and output-input
dependent on others. Hence, determine the compatible rules.



Rule I: p,q,r—>s,u,t
Rule 2: s,q,t >w, v, p
Rule 3: p,r,u >w, m, n
Rule 4: w, p, m— s, v, n
Rule 5:1r,t, w— v,p,s

Also construct the parallelism matrix P for the above rules.

2. Consider a processing element P;, which is growing a tree, presented in fig.
22.20.

Fig. 22.20: A tree being expanded by the PE algorithm.

Show the snapshots of the list maintained by processor P; by using procedure
PE.

3. Number the nodes in the tree of fig. 22.20 in order of their generation by
processor P; following the procedure FE and also show the snapshots of
the list maintained by the processor.

4. Tllustrate the stingy sharing and generous sharing with your own example
lists. Consider 8 lists: S; through S.

5. Construct a Petri net to represent the following pieces of knowledge.

Rule 1: P (X), Q(X) — R(X)
Rule 2: R(X), W(Y) >S(X, Y)



(1]

(2]

(3]

(4]

(3]

Rule 3: S(X,Y)—>Z (Y, X)
Rule4: = Z (b, a) «

Rule 5: W(b) «

Rule 6: Q(a) «

Apply procedure automated-reasoning on the Petri net you constructed in
problem 5 to compute the goal: P(X) —?.

Did you observe any parallelism in the firing of transitions in problem 6?
If no, why?

Extend the Petri net you constructed in problem 5, so as to demonstrate
parallelism in firing of transitions. List the concurrent firing like table
22.1.

Design the complete logic circuitry for the realization of the procedure
automated-reasoning. You may expand the modules like PTVVM,
matcher, etc. or design from grassroots level [open ended problem for
term paper or dissertation].
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Case Study I:
Building a System
for Criminal
Investigation

A new hierarchical scheme for criminal investigation, based on multi-sensory
data including voice, fingerprint, facial image and incidental description, has
been outlined in this chapter. The proposed system first attempts to classify a
given fingerprint of a suspect into any of the six typical classes and then
determines the fingerprint that matches best under the class. In case the
fingerprint matching fails, an automated scheme for matching facial images is
called for. On successful match, the suspect could be identified. In case the
matching results in poor performance, the speaker identification scheme that
works with phoneme analysis is utilized. When no conclusion about the
suspect could be detected by voice, incidental description is used as the
resource for criminal investigation. The incidental description based model is
realized on a Petri net that can handle imprecision and inconsistency of data
and uncertainty of knowledge about the criminology problem.



23.1 An Overview of the Proposed Scheme

The available techniques of automated criminal investigation generally rely
on fingerprint and facial imagery of suspects. Unfortunately, classification of
fingerprints by pixel-wise matching is tedious and the feature based schemes
often lead to misclassification and hence improper matching. Moreover, facial
imagery undergoes changes with aging and mood of the persons and thus
matching of facial images in many occasions fails to identify the suspects. The
chapter utilizes two more sets of information such as voice and incidental
description to uniquely identify the suspects by a hierarchical approach. The
steps of matching used in suspect identification follows a linear sequence,
vide fig. 23.1.

Fingerprint classification

v

Facial image matching

v

Suspect identification
by voice

!

Incidental description based
scheme for suspect identification

Fig. 23.1: A hierarchical scheme for suspect identification.

The matching of fingerprints of a suspect with a standard database,
recorded by the investigation departments, requires two main steps. In the first
step, the fingerprints of the suspect are classified into any one of the six
typical classes, based on the number and location of two features named core
and delta points [15]. After classification, the fingerprint of the suspect is
compared with all members under that class by an algorithm of image
matching, which is also used for matching facial images of the suspects. If
the fingerprint matching is satisfactory, no further steps are required.
Otherwise, the algorithm for matching facial images is invoked.

The ‘image matching’ algorithm attempts to partially match the facial
image of the suspects with known images. The main trick in this matching lies
in ‘fuzzy membership-distance product’, which keeps track of the important



features in human faces and their relative distances. The matching scheme has
other advantages of size and rotational invariance. This means that the
matching scheme is insensitive to variation of image sizes or their angular
rotation on the facial image plane. In case facial image matching also fails to
identify the suspects, a voice classification scheme may be employed to check
whether the suspect is a marked criminal of known voice.

The voice classification requires prior training instances. The input and
the output training instances in the present context are speech features and
recorded suspect number respectively. We trained a multi-layered feed-
forward neural net with the known training instances. The training is given
offline by the well-known back-propagation algorithm. During the recognition
phase, only the speech features of the suspect are determined and supplied to
the input of the neural net. A forward pass through the network generates the
output signals. The node with the highest value in the output layer is
considered to have correspondence with the suspect. In case these tests are
inadequate for identification of the suspects, the incidental description is used
to solve the problem.

The incidental description includes facts like Loved (jim, mita), Had-
strained-relations-between (jim, mita) and may contain both imprecision and
inconsistency of facts. We used a simplified model of fuzzy Petri net,
presented in chapter 10, to continue reasoning in the presence of the above
types of incompleteness of the database. The reasoning system finally
identifies the culprit and gives an explanation for declaring the person as the
culprit. The proposed system was tested with a number of simulated
criminology problems. The field testing of the system is under progress.

The next section covers image matching as it has been used in both fingerprint
and face identification from raw images.

23.2 Introduction to Image Matching

Fuzzy logic has been successfully used for matching of digital images [2],
[3]. However, the methods of matching adopted in these works are
computationally intensive and sensitive to rotation and size variation of
images. Further, the existing matching techniques, which search a reference
image among a set of images, often fail to identify the correct image in the
presence of noise. The present work attempts to overcome these limitations by
a new approach using the concept of ‘fuzzy moments’ [2].

In this work, a gray image has been partitioned into n* non- overlapped
blocks of equal dimensions. Blocks containing regions of three possible
characteristics, namely, ‘edge’, ‘shade’ and ‘mixed-range’ [14], are then
identified and the sub-classes of edges based on their slopes in a given block



are also estimated. The degree of membership of a given block to contain
edges of typical sub-classes, shades and mixed-range is measured
subsequently with the help of a few pre-estimated image parameters like
average gradient, variance and difference of maximum and minimum of
gradients. Fuzzy moment, which informally means the membership-distance
product of a block b[i ,w] with respect to a block b[j, k], is computed for all
1<14,w,j,k<n. A feature called ‘sum of fuzzy moments’ that keeps track of
the features and their relative distances is used as image descriptors. The
descriptors of an image are compared subsequently with the same ones of
other images. We used an Euclidean distance measure to determine the
distance between the image descriptors of two images. To find the best
matched image among a set of images, we compute the Euclidean distance of
the image descriptors of the reference image with all the available images.
The image with the smallest Euclidean distance is considered to be the ‘best
matched image’.

This section has been classified into six sections. Section 23.2.1 is
devoted to the estimation of fuzzy membership distributions of a given block
to contain edge, shade and mixed-range. A scheme for computing the fuzzy
moments and a method for constructing the image descriptors are presented in
section 23.2.2. Estimation of Euclidean distances between descriptors of two
different images is also presented in this section. An algorithm for image
matching is presented along with its time complexity analysis in section
23.2.3. The insensitivity of the matching process to rotation and size variation
of image is discussed in section 23.2.4. The simulation results for the
proposed matching algorithm are presented in section 23.2.5. Implications of
the results are included in section 23.2.6.

23.2.1 Image Features and Their
Membership Distributions

A set of image features such as edge, shade and mixed-range and their
membership distribution are formally defined in this section.

Definition 23.1: An edge is a contour of pixels of large gradient with
respect to its neighbors in an image.

Definition 23.2: A shade is a region over an image with a small or no
variation of gray levels.

Definition 23.3: A mixed-range is a region excluding edges and shades on
a given image.



Definition 23.4: A linear edge segment that makes an angle o with respect
to a well defined line (generally the horizontal axis) on the image is said to be
an edge with edge-angle . In this chapter we consider edges with edge-angle
-457,0,45 and 90'.

Definition 23.5: Fuzzy membership distribution Ly (x) denotes the degree
of membership of a variable x to belong to Y, where Y is a subset of a
universal set U.

Definition 23.6: The gradient [5] at a pixel (x, y) in an image here is
estimated by taking the square root of the sum of difference of gray levels of
the neighboring pixels with respect to pixel (X, y).

Definition 23.7: The gradient difference (G ) within a partitioned block
is defined as the difference of maximum and minimum gradient values in that
block.

Definition 23.8: The gradient average (G.,g ) within a block is defined as
the average of the gradient of all pixels within that block.

Definition 23.9: The variance (6°) of gradient is defined as the arithmetic
mean of square of deviation from mean. It is expressed formally as

02 = 24(G'Gavg)2P(G)

where G denotes the gradient values at pixels, and P(G) [7] represents the
probability of the particular gradient G in that block.

Fuzzy Membership Distributions: Once the features of the partitioned
blocks in an image are estimated following the above definitions, the same
features may be used for the estimation of membership value of a block
containing edge, shade and mixed-range.

For these estimations we, however, require the membership distribution
curves, describing the degree of a block containing edge, shade and mixed-
range. These distributions have been assumed intuitively by common sense
reasoning. To illustrate the concept of intuitive guess of the membership
functions, we present example 23.1.

Example 23.1: In this example we demonstrate the membership curve for a
block to contain edge, shade or mixed-range w.r.t. 6°. In order to keep the
method of estimation of membership values in a simplified way, we describe
the intuitive curves by standard mathematical functions. For example, the
membership curves for edge, shade and mixed-range w.r.t. o* may be
described as
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Hshaae(bj ) = €%, where x = 67, a>>0
2

Hegge(by ) = 1-€°* , where x = 6%, b>0

Wmixed-range(Dj k) = cx?/ (d+e>(2+fx3 ), where x = 0%, and ¢, d, e, £> 0.

The membership distributions with respect to Ggir and G,y have also been
defined analogously. Table 23.1 below presents the list of membership
functions used in this chapter.

Table 23.1: Membership functions for features.

Mixed Range Edge Shade
PARAMETERS | Membership | Membership | Membership
mx*) ax
2 3 8x c
Gavg (ptHox+0ox") 1-e
n,p,0,0 >0
—axz 1 'bxz -ax !
Gaitr (B+Ax*+3x") - ¢
o,BA5 >0
CX2 b 2
o’ (d+ex+xY) 1-e™ e?x
c,de,f>0 b>0 a>>0

The membership values of a block b[j, k] containing edge, shade and
mixed-range can be easily estimated if the parameters and the membership
curves are known. The fuzzy production rules, described below, are
subsequently used to estimate the degree of membership of a block b [j, k] to
contain edge (shade or mixed-range) by taking into account the effect of all
the three parameters together.

Fuzzy Production Rules: A fuzzy production rule is an If-Then relationship
representing a piece of knowledge in a given problem domain. For the
estimation of fuzzy memberships of a block b [j, k] to contain, say, edge, we
need to obtain the composite membership value from their individual
parametric values. The If-Then rules represent logical mapping functions from
the individual parametric memberships to the composite membership of a




block containing edge. The production rule PRI is a typical example of the
above concept.

PRI: IF (Gue > 0.142)  AND
(Gur>0.707)  AND
(08 =1.0)
THEN (the block contain edges).

Let us assume that the Gy, , Gier and o’ for a given partitioned block
have found to be 0.149, 0.8 and 0.9 respectively. The W c4q (bji) NnOW can be
estimated first by obtaining the membership values [ e (bji) W.I.t. Gayg , Gaitr
and o respectively by consulting the membership curves and then by
applying the fuzzy AND (minimum) operator over these membership values.
The single valued membership, thus obtained, describes the degree of
membership of the block b [j, k] to contain edge. For edges with edge-angle
o, we use the membership curves and obtain the composite membership of a
block containing edge with edge-angle oo by ANDing the membership of a
block containing an edge with the membership of its having an edge angle o.

The composite degree of membership of a block containing shade and
mixed-range has been computed similarly with the help of more production
rules, the format of which are similar to that of PR1.

23.2.2 Fuzzy Moment Descriptors

In this section, we define fuzzy moments and evaluate image descriptors
based on those moments. A few definitions, which will be required to
understand the concept, are in order.

ik
Definition 23.10: Fuzzy shade moment [M; y]snage 1S estimated by taking
the product of the membership value W g,qe(bj ) (of containing shade in the
block b[j, k]) and normalized Euclidean distance d; v, j i of the block b[j, k]
w.r.t. b[i, w]. Formally,

ik

[M; w]shade™ diw, j kc X Mshade(Dj 1) (23.1)

Fuzzy mixed-range and edge moments with edge-angle o are also estimated
using definition 23.10 with only replacement of the term ‘“shade” by
appropriate features.

Definition 23.11: The fuzzy sum of moments (FSM), for shade S;,, , w.r.t.
block b[i, w] is defined as the sum of shade moments of the blocks where



shade membership is the highest among all other membership values.
Formally,

Siw= 2 diwjk X Hshade(Dj ) (23.2)
ik

where Hgpade (bj1) = x(bjk) , X € set of features.

The FSM of the other features can be defined analogously following
expression (23.2).

After the estimation of fuzzy membership values for edges with edge-
angle o, shades and mixed-range, the predominant membership value for each
block and the predominant feature are saved. The FSMs with respect to the
predominant features are evaluated for each block in the image. For each of
six predominant features (shade, mixed-range and edges with edge-angle 45",
0,45 and 900) we thus have six sets of FSMs. Each set of FSM (for example
the FSM for shade) is stored in an one dimensional array and is sorted in a
descending order. These sorted vectors are used as descriptors for the image.

For matching a reference image with a set of known images, one has to
estimate the image descriptors for the known images. Normally, the image
descriptors for a known set of images are evaluated and saved prior to the
matching process. The descriptors for the reference image, however, are
evaluated in real time when the matching process is invoked. The time
required for estimation of the descriptors, therefore, is to be reduced to an
extent, whatever possible, to keep the matching process executable in real
time.

The matching of images requires estimation of Euclidean distance
between the reference image with respect to all other known images. The
measure of the distance between descriptors of two images is evident from
definition 23.12.

Definition 23.12: The Euclidean distance, [E;j]x  between the
corresponding two k-th sorted FSM descriptor vectors V; and Vj of two
images i1 and j of respective dimensions (n X 1) and (m X 1) is estimated first
by ignoring the last ( n - m) elements of the first array, where n > m and then
taking the sum of square of the elemental differences of the second array with
respect to the modified first array having m elements.

It may be added that the elements of the second and the modified first
array are necessarily non-zero.



Definition 23.13: The measure of distance between two images, hereafter
called image distance, is estimated by taking exhaustively the Euclidean
distance between each of the two similar descriptor vectors of the two images
and then by taking the weighted sum of these Euclidean distances.

Formally, the distance D, , between a reference image r and a image y is
defined as

DryZZBkX[Eij]k

where the suffix i andj in [E;; ] « corresponds to the set of vectors V; for
image r and V; for image y, for 1 <I,j<6.

For identifying the best matched image (among the set of known images)
with respect to the reference image, one has to estimate the image distance Dy,
where y ethe set of known images and r denotes the reference image. The
image Q for which the image distance D, 4 is the least among all such image
distances is considered the best matched image.

23.2.3 Image Matching Algorithm

The major steps of the image matching are presented in fig. 23.2 and the
details are included in procedure Image-matching, given below:

Procedure Image-matching (IM,, IM,,........ JdMp+1)
//IM | = reference image //
Begin

For p:=I to m+1 do begin
Partition IM,, into non-overlapping blocks of (n X n) pixels;
// estimation of parameters and membership values //
For block:=1 to n> do begin
Find-parameters (f(X,y),Gave »Gifr » oY)
Find-membership (Giyg,
Guitr, Gz:uedge(block)a Wshade(block), pyvr(block));
End For;
// Sum of moment computation //
For i:=1 ton do begin
For w :=1 to n do begin
k:=n x (i -1)+ w; // Mapping from 2-d with indices (i,w) to 1-d with
index k //
Find-moment-sum(S; y,, MR; , ,EO; , ,EP45;, E45; ,E90;);
Splk]:=S; w;
E45p[k]:=E45;;
EP45[k]:=EP45;;
EOp[k]:=E0;, ;



E90p[K]:=E90; ,;
MRp[K]:=MR; ;
End For;
End For;
Sort(Sp , MRy , E45;, , EP45;,, EOp , E90p );
// This procedure sorts arrays Sp , MRp, etc. into descending order and
places the resulting vectors into corresponding arrays //
// Image identification from Euclidean distance //
For p:=2to (m+1) do begin
// p= an index to represent image //
Euclidp :=0; Euclid, :=0;
For Xp € { Sp, MRy, EOp , E45; , EP45, , E90p} and
X; € {S;, MR, E0,, E45;, EP45;, E90,} in order do begin
Find-distance (Xp ,X; ,d x 3;

Euclidp :=[Euclidp +c12XP]”2 :

End For;
IF Euclidp > Euclidp_; then
image:=p-1;
ELSE image :=p;
End For;
End For;
End.

23.2.4 Rotation and Size Invariant Matching

In order to keep the matching process free from size and rotational variance of
the reference image, the following strategies have been used.

1. The Euclidean distances used for estimation of fuzzy moments are
normalized with respect to the diagonal of the image, which is assumed to
have a unit distance. Thus the Euclidean distance between each two blocks
of an image are normalized with respect to the image itself. This
normalization of distances keeps the matching process insensitive to the
size variation of the images.

2. The descriptor vectors are sorted so as to keep the blocks with most
predominant features at the beginning of the array, which only participate
subsequently in the matching process. Thus the matching process is free
from rotational variance of the reference image. The insensitivity of
matching process to size and rotational variance of the reference image has
also been proved through computer simulation.
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Fig. 23. 2: An outline of the image matching scheme.



23.2.5 Computer Simulation

The technique for matching presented in this chapter has been simulated in C
language under C"* environment on an IBM PC \ AT with 16 digital images,
some of which include the rotated and concise version of the original. The
images were represented by 64 x 64 matrices with 32 gray levels. The
simulation program takes each image in turn from the corresponding image
files and computes the gradients for each pixel in the entire image. The
gradient matrix for the image is then partitioned into 16 X 16 non-overlapping
sub blocks. Parameters like G,y , Ggigr and o° are then computed for each sub-
block. The fuzzy edge, shade and mixed-range moment vectors are also
computed subsequently. The above process is repeated for all 16 such images,
the first one being the reference (boy image) in fig. 23.3(a). The simulation
program then estimates the normalized Euclidean distance between the
reference image and all other subsequent images, of which the first four are
shown in fig. 23.3(b)-(e). The Euclidean distance between the reference boy
image and the fig. 23.3 (d) is minimum and found to be zero. It may be noted
that fig. 23.3 (b), which corresponds to the image of the same boy taken from
a different angle, has an Euclidean distance of 1.527 units with respect to the
reference boy image. The Euclidean distance of images 23.3 (c) and 23.3(¢)
with respect to 23.3(a) being large enough of the order of 4.92 and 5.15 units
respectively proves the disparity of matching. The rotational and size
invariance of the proposed matching algorithm is evident from the resulting
zero image distance between the reference boy image and the size-magnified
and rotated version of the same image.

It may be added that the feature extraction and descriptor formation for a
known set of images, which were performed in the real time by our program,
however should be carried out offline before the matching process is invoked.
This will reduce significantly the time required for the matching process.

23.2.6 Implications of the Results
of Image Matching

This section introduced a new concept for matching of digital images by
estimating and comparing the fuzzy moments with respect to each partitioned
block of images. The proposed method is free from size and rotational
variance and requires insignificantly small time for the matching process. The
smaller the size of the partitioned block in the image, the higher is the
computational time for matching. On the other hand, increasing the dimension
of the partitioned blocks hampers the resolution of matching. The choice of
the size of each partitioned block, therefore, is a pertinent decisive factor in
connection with the process of matching.



The fuzzy membership functions used in this context have been chosen
intuitively. There exists ample scope of selecting appropriate membership
functions in a judicious manner. Selection of membership functions that cause
the least error in the process of matching is yet to be identified. This is an
open problem to the best of the author’s knowledge to date.

REFERENCE IMAGE

(a)

IMAGES USED FOR MATCHING

(d (e)

Fig. 23.3: Matching of a reference image (a) with images (b) through (e).

23.3 Fingerprint Classification and Matching

Fingerprints are graphical flow-like ridges [11] present on human fingers.
Their formation depends on the initial conditions of the embryonic mesoderm
from which they develop [15]. Each fingerprint is a map of ridges and valleys
(explained later) in the epidermis layer of the skin. The ridge and valley
structure form unique geometric patterns that act as a basis for classification.

Fingerprints have long been used for personnel identification and criminal
investigation, and also in applications such as access control for high security
installations, credit card verification and employee identification because of
the following features:

i) Uniqueness, i.e., fingerprint images of two individuals are not alike.

ii) Permanence, i.e., fingerprint images of an individual do not change
throughout the life span.



The main reason for the popularity of automatic fingerprint
identification is to speed up the matching (searching) process. Manual
matching of fingerprints is a highly tedious task because the matching
complexity is a function of the size of the image database which can vary
from a few hundred records to several million records, which takes several
days in some cases. The manual classification method makes the distribution
of records uneven resulting in more work for commonly occurring fingerprint
classes. These problems can be overcome by automating the fingerprint based
identification process.

Speed of an automated fingerprint identification can be increased
drastically by grouping the images into different classes depending upon their
features, so that searching can be done only with images of that class, instead
of all the images thus reducing the search space. So, whenever an image is
submitted for identification, the following processes are to be carried out:

i) identification of the class, to which it belongs

il) comparison of the sample fingerprint with the existing fingerprint images
of that class.

23.3.1 Features Used for Classification

A ridge is defined as a line on the fingerprint. A valley, on the other hand, is
defined as a low region, more or less enclosed by hills of ridges. Each
fingerprint is a map of ridges and valleys in the epidermis layer of the skin.
Ridge and valley structure form unique geometric patterns. In a fingerprint,
the ridges and valley alternate flowing in a local constant direction. A closer
analysis of the fingerprint reveals that the ridges (or valleys) exhibit anomalies
of various kinds such as ridge bifurcation, ridge endings, short ridges and
ridge cross over [15]. These features are collectively called minutiae and
these minutiae have a pattern that is unique for each fingerprint. The
directions of the ridges, the relative positions of the minutiae and the number
of ridges between any pair of minutiae are some of the features that uniquely
characterize a fingerprint. Automated fingerprint identification and
verification systems that use these features are considered minutiae based.
Vast majorities of contemporary automated fingerprint identification and
verification systems are minutiae based systems.

In this work, we however considered singular points to classify the
fingerprints. Two distinct types of singular points have been used to identify
fingerprints. These are core and delta points. Fig. 23.4, presented below,
describes these singular points.
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Fig. 23.4: The delta and the core points in fingerprint images.

23.3.2 Classification Based on Singular Points

A point is detected as an ordinary point, core point or delta point by
computing the poincare index. Poincare index is computed by summing up
the changes in the direction angle around the curve, when making a full
counterclockwise turn around the curve in a directional image [15]; the
directional angle turns 0 degree, +180 degree, -180 degree during this trip. A
point is called ordinary if the angle has turned 0 degree, core if it has turned
+180 degree and delta if it has turned —180 degree.

Depending upon the number of core-delta pairs they can be categorized
into Arch (core-delta pair =0), Tented arch / Loop (core-delta pair = 1) or
Whorl /Twin loop (core-delta pair =2). If the number of core-delta pair is
greater than two then further processing is to be done to identify the exact
class.
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The triangles represent delta and the semicircles/ circles denote core points.

Fig. 23.5 (a): The six typical classes of fingerprints.

Distinction between Tented Arch and Loops: These classes contain one
core-delta pair. Suppose the core and delta points are connected by an
imaginary line. In tented arch class, this line orientation is along the local
direction vectors, while in a loop image type the line intersects local directions
transversely.

Let B be the slope of the line connecting the core and delta points. Let
Oly, O ... O be the local direction angles on the line segment. If the averaged

difference (1/n) X[ O — B] is less than a threshold, say (0.9), then the image
is classified as a tented arch; otherwise it is a Loop.

Distinction between the Whorl and the Twin Loops: As mentioned these
classes contain two core-delta pairs. Now, we try to connect the core points
along the direction vector. If the effort fails, it is said to belong to Twin class;
else it belongs to Whorl class.

Distinction between the Left and the Right Loops: Further classification of
Loop into Right loop or Left loop is possible based on whether the delta point
is located to the left or right of the core point. This discrimination is done as
follows. Starting from a core point and moving along the direction vectors, the
delta point remains to the left in a Left loop image and to the right in a Right
loop image [16].



Thus we have altogether 6 different fingerprints (fig. 24.5(a)), which can be
classified by using the classification tree presented in fig. 24.5 (b).

Fingerprints

Core/ delta
Pair=0

Core/ delta
Pair=1

Core/ delta
Pair=2

Class = Arch Class = Class = Whorl
tented Arch or Twin Loop
or Loop

Criterion 4

Criterion 1 Criterion 2
Criterion 3
Class = Class =

Class = Class = Whorl Twin
Tented Loop Loop
Arch
Delta in the left of Delta in the right of the
the core core

Class = Class =

Left Loop Right Loop

Criterion 1: Line joining the core and the delta is in the local direction, Criterion 2: Line joining
the core and the delta crosses the local direction, Criterion 3:Line joining the core points is along
the local direction, Criterion 4: Line joining the core points crosses the local direction vector.

Leaves, denoted by dark shaded nodes, are the final classes.

Fig. 23.5(b): The fingerprint classification tree used in the simulation.



Procedure find-fingerprint-class;

Begin

1 While number of core plus delta points exceed 2, use Gaussian
smoothing
End While;

2 If number of core-delta pair =0
Then class = arch;
Else If number of core-delta pair =1
Then class = tented arch or loop;
Else class = whorl or twin loop;
3 If number of core-delta pair = 1
Then If the line joining the core and delta point intersects
the line of local direction transversely
Then class = loop;
Else class = tented arch;
4 If number of core-delta pair =2
Then If the straight line joining the core points do not
touch the local direction
Then class = whorl
Else class = twin loop;

5 For class € loop;
If core is left to delta
Then class = left loop;
Else class = right loop.
End For;
End.

After the fingerprint is classified into one out of the above six possible
classes, it is searched among the set of fingerprint databases under the
identified class. If a suitable match is found by the image matching algorithm,
discussed in section 23.2.3, then the suspect could be detected; otherwise the
scheme for facial image matching is called for.

23.4 Identification of the Suspects from Voice

During phonation of the voiced speech, the vocal tract is excited by the
periodic glottal waveform generated by the vocal cords. The periodicity of
this waveform is called pitch period, which depends upon the vocal tract
shape that varies with the speakers. The shape of the vocal tract uniquely
determines the sounds that are produced and characterized by natural
frequencies (or formants) which correspond to the resonant frequencies of the
acoustic cavity [17]. Since formants depend upon the longitudinal



cross-section of the vocal tract, which is different for various speakers,
formant frequency is the unique parameter for the speaker identification [13].

For the production of the nasal sounds ( such as / m/ and /n/ ), the vocal
tract is blocked at some point determined by the identity of the nasal
consonant and the valum is moved to connect the nasal tract to the vocal tract.
The nasal sounds are radiated through the nostrils. The power spectrum of the
acoustic radiation produced during phonation of the nasal consonants provides
a good clue to the speaker identity [20]. So we find the average power spectral
density in different range of frequencies for the word “nam” in the Bengali
sentence “dinubabur desher nam phalakata”.

23.4.1 Extraction of Speech Features

The feature extraction scheme that was used in past includes a set of
measurements at 10 to 20 millisecond intervals throughout the utterances.
This approach has the following limitations. First limitation is regular and the
rapid sampling of the voice signal with the characterizing measurement
produces large sets of the data that have a high degree of redundancy.
Secondly, a given set of parameters is not optimally suited to every segment
of an utterance. Some of them are of no use during many spoken sounds, as in
the case of the fundamental frequency during voiceless intervals.

An alternative scheme of feature extraction uses characteristics
averaged over time such as long term spectra; here parameters are measured
over specific context or over long enough intervals to take the benefits of
context dependence. It leads to much smaller data sets, and virtually
eliminates the effect of the timing differences, but it excludes a large class
probability of the speech data having useful speaker dependent effects.

The most efficient approach, which is used in this work, is to perform
some degree of segmentation and recognition of the linguistic components of
the speech signal. In most of the speaker identification applications, it is
reasonable to assume that a known phrase or sentence is used for the speech
samples. In that case the speech segmentation and recognition would not be
difficult. Ideally the system designer would be free to record an advantageous
set of phonemes, which could be easily segmented. The ability to find its way
about the utterances allows the system to locate certain interesting points of
the speech events and then they are extracted to get the appropriate parameters
at each of these points.

The speaker dependent information could be easily extracted from the
pre-specified signal which in this context is a Bengali sentence: “dinubabur
desher nam phalakata’. The given sentence was digitized by a sonogram
(model no. 5500), maintained by the Indian Statistical Institute, Calcutta and



the digital spectra is broken up in to four parts corresponding to “dinubabur”,
“desher”, “nam”, and “phalakata”. The analysis of the complete sentence is
done to acquire some useful speech parameters, which help in the
identification of the speaker with the Speech Processing toolbox in MATLAB
on a PENTIUM based system. The various features acquired by the
MATLAB are:

1. Formant frequencies[18] (fundamental and the harmonics),
2. Peak power spectrum density (at different frequency ranges),
3. Average value of the spectral density of the word “nam” which is in the

CVC context (Consonant followed by a Vowel followed by the
Consonant) at different range of frequency, and

b

The pitch, which is estimated by counting the number of pulses per second
by taking the digitized data of sampling frequency 10240 Hz.

A sample of estimation of the formant frequencies, from the digitized speech
signal of a person, uttering the above sentence, is presented in fig. 23.6.
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Fig. 23.6: The speech spectrogram, showing the formant frequencies.



23.4.2 Training a Multi-layered Neural Net
for Speaker Recognition

The second part is the identification of the speaker, which is done with the
help of Artificial Neural Network (ANN). The ANN model is trained by the
well known Back-propagation algorithm. Although any conventional
approach of statistical classification can be used, we preferred the ANN model
for its accuracy and simplicity. To reduce the number of iterations adaptive
learning rate and momentum are added to the back-propagation, so that the
error goal is achieved earlier and the network is not stuck to a shallow
minimum in the error surface.

The input parameters for the training instances in the present context are
the first 6 formant frequencies, maximum power spectral density, average
power spectral density for two words and the pitch, while the output training
instances correspond to the decoded binary signals, where a high output at a
given output node corresponds to a given speaker. The training was given for
10 sets of training instances, each corresponding to one speaker by using the
MATLAB neural net toolbox.

The neural network model with four layers having ten neurons in the
first and the last layer and twelve neurons in the intermediate layers has been
used for the computer simulation. The network uses LOGSIGMOID function,
which generates the output between 0 and 1. The training is done by
TRAINBPX, which uses both the momentum and the adaptive learning rate to
speed up the learning. The learning rate and the number of iterations (epoch)
are chosen, so as to get the desired error goal accurately. An adaptive learning
rate requires some changes in the training procedure used by TRAINBP. First
the initial network output and error are calculated. At each epoch new weights
and biases are calculated using the current learning rate. New output and error
are then calculated. If the new error exceeds the old error by more than a pre-
defined ratio (typically 1.04), the new weights, biases, output and error are
discarded, and the learning rate is decreased (typically by multiplying by
0.7); otherwise the new parameters are saved. If the new error is less than the
old error, the learning rate is increased (typically by multiplying by 1.05).

Two layer sigmoid TRAINBPX adds momentum to back-propagation
to decrease the probability that the network will get stuck in to a shallow
minimum in the error surface and to decrease training times. The function
also includes adaptive learning rate to further decrease the training time by
keeping the learning rate reasonably high while ensuring the stability.

The training is given offline. Thus during recognition, only the speech
features of the unknown person are extracted and are submitted to the input of
the trained neural net. A forward pass through the network determines the



signals at the nodes of the output layer. The node with the highest value
corresponds to the suspect.

23.5 Identification of the Suspects from
Incidental Descriptions

When fingerprint, facial image and voice matching are inadequate to identify
the suspects, we have to rely on the incidental descriptions. The incidental
descriptions are generally incomplete and sometimes contradictory, especially
when received from multiple sources. In this section, we shall employ Fuzzy
Petri nets (FPN) for reasoning about the suspects from the incomplete and the
contradictory databases and a knowledge base, whose certainty also is not
guaranteed.

Imprecision and inconsistency are the most common forms of
incompleteness of information, from which the database of an expert system
(ES) suffers. Non-monotonic logic has established its success for tackling
inconsistency in database, whereas fuzzy logic had demonstrated its
capability of reasoning with imprecise databases. The reasoning process
of the two techniques, as reported in the current literature [6], is orthogonal
to each other. In this chapter, a combined approach for tackling all the above
forms of incompleteness of databases and uncertainty of knowledge bases has
been proposed based on the model for belief-revision and the same
formalisms have been applied for reasoning in a generic class of ES. The
proposed technique for handling incompleteness in databases has been
illustrated with reference to an ES for criminal investigation, designed by the
author and realized in Pascal by his students Abhijit Das and Abhik
Mukherjee (see Appendix A), while working for his (the author’s) Ph.D.
thesis at the Systems and Information laboratory of ETCE department,
Jadavpur University, India. The system presented in this chapter is an
extension of that expert system that includes facial images, speech and
fingerprints also as inputs.

The proposed ES comprises of three main modules, namely, i) the
database (DB), ii) the knowledge base (KB) and iii) the inference engine
(IE). A brief description of each of the modules with special emphasis on the
management of imprecision and inconsistency of database will be presented
in this chapter.

23.5.1 The Database

Fuzzy beliefs of the information, collected from sources with various degrees
of authenticity levels, are first normalized using a set of intuitively
constructed grade of membership functions, shown in fig. 23.7. The



information with their normalized values is then recorded in a database in
the form of a data-tree, to be described shortly.
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Fig.23.7: Normalization of fuzzy beliefs using membership functions.

As an illustration of the normalization process, it is observed from fig.
23.7 that an information with a fuzzy belief of 0.85, collected from a source
with very poor authenticity level (AL), gives rise to a normalized belief of
0.12 (shown by dotted lines).

23.5.2 The Data-tree

The database in the proposed ES has been organized in the form of a data-tree
(fig. 23.8) having a depth of 3 levels. The root simply holds the starting
pointer, while the second level consists of all the predicates, and the third
level contains the relevant facts corresponding to each predicate of the second
level. The normalized beliefs corresponding to each fact are also recorded
along with them at the third level. Such organization of the data-tree helps in
efficient searching in the database. To illustrate the efficiency of searching, let
us consider that there exist P number of distinct predicates and at most L
number of facts under one predicate. Then to search a particular clause, say
has-alibi (jadu) in the data-tree, we require P+L number of comparisons in
the worst case, instead of P* L number of comparisons in a linear sequential
search. Now, we present the algorithm for the creation of the data-tree.



Procedure create-tree (facts, fuzzy-belief);
Begin
create root of the data-tree;
open the datafile, i.e., the file containing the database;
Repeat
i) Read a fact from the datafile; //after reading, the file pointer increases//
ii) If the corresponding predicate is found at the second level of
the data-tree, Then mark the node Else create a new node at the
second level to represent the predicate and mark it;
iii) Search the fact among the children of the marked predicate;
iv) If the fact is not found, Then include it at the third level
as a child of the marked predicate
Until end-of-datafile is reached;
Close the datafile;
End.

Root

Has alibi (X)
abbreviated ha(X)

sustains-injury (X)
abbreviated si(X)

Murdered (X,Y)
abbreviated m(X,Y)
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Fig. 23.8: The data-tree representation of the database.

23.5.3 The Knowledge Base

The KB of the proposed ES comprises of a set of default rules (DR) [1], a
set of production rules (PR) and two working memory (WM) modules. DR
are used to guess about the suspects. The typical structure [1], [4] of the DR
is as follows:



SR(Y,X)ORM (X) AM(Y)AL (X, w(Y)))
DRI1:

S (Y, murderer-of(X))

which means that if (Y had strained relations with X ) or (X and Y are
males) and ( X loves wife of Y)) then unless proved otherwise, (suspect Y
as the murderer of X).

The variables X, Y, etc. of a predicate are instantiated by users through
a query language. A working memory WM2 in the proposed system [8] is
used to hold all the instantiated antecedents of a default rule. If all the
instantiated antecedents of a rule are consistent, then the rule is fired and
the values bound to Y for the predicate suspect (Y, murderer-of (X)) are
recorded. These values of Y together with a particular value of X (=x say) are
used subsequently as the space of instantiation for each variable under each
PR.

The list of suspects, guessed by the DR, is also used at a subsequent
stage for identifying the suspect-nodes of the FPN. The process of collecting
data from users through query language and representation of those data in
the form of a tree, called default-data-tree, can be best described by the
following procedure.

Procedure default-data-tree formation (no-of-predicates);
//mo-of-predicates denotes number of predicates
in the entire set of default rules//

Begin
Create root-node;
i=1;
While i < no-of-predicates do
Begin
writeln “Does predicate p; (X,Y) exist 77 ;
readln (reply);
If reply=no Then do
Begin

Create a predicate p; (X, Y) at the second level

under the root;

Repeat
writeln “predicate p; (X,Y), X=?,Y=7";
readln (X, Y);
If (X #null ) and (Y # null) Then
Create a data node with the read values of X and Y
under the predicate p; ;

Until (X =null ) and (Y =null)



End;
1:=1t+1;
End While;

End.

Once a default-data-tree is formed, the following procedure for suspect-
identification may be used for identifying the suspects with the help of
the file of default rules (DRs) and the default-data-tree.

Procedure suspect-identification (DRs, default-data-tree);
Begin
i:=1;
Open the file of DRs;
Repeat
If (all the predicates connected by AND operators OR at least
one of the predicates connected by or operator in
DR; are available as predicates in the default-data-tree)
Then do
Begin
Search the facts (corresponding to the predicates) of
the DR; under the selected predicates in the tree so
that the possible variable bindings satisfy the rule;
Fire the rule and record the name of suspects in a list;
End;
ir=i+1;
Until end-of-file is reached;
Close the file of DRs;
End.

The structure of a production rule (PR 1) used in our ES is illustrated
through the following example.

PRI1: murdered (X, Y) :-
suspect (Y, murderer-of(X)),
has-no-alibi (7),
found-with-knife ((Y), on-the-spot-of-murder-of (X)).

Variables of each predicate under a PR, in general, have to be instantiated as
many times as the number of suspects plus one. The last one is due to the
person murdered. However, some of the variable bindings yield absurd
clauses like has-alibi (ram) where ‘ram’ denotes the name of the person
murdered. Precautions have been taken to protect the generation of such
absurd clauses. The procedure for instantiating variables of PRs with the
name of suspects and the person murdered is presented below. In this



procedure, however, no attempts have been taken to prevent the generation of
absurd clauses to keep the algorithm simple.

Procedure variable-instantiation-of-PRs (PRs, suspect, person-

murdered);

Begin

Fori:=1 to no-of-PRs do
Begin

Pick up the PR (X, X5, ..., X );
Form new PRs by instantiating X, X, ...,X, by elements from the set of
suspects and the person murdered such that X; # X, # ... #X,;
Record these resulting rules in a list;
End For;
End.

Once the instantiation of the variables in the production rules is over
based on the procedure presented above, the facts of the resulting rules
are searched in the static database, represented in the form of a data-
tree. A working memory WMI keeps track of the instantiated clauses of
production rules, after these are detected in the data-tree. Moreover, if all the
AND clauses of a PR are found in the data-tree, the rule is fired and the
consequence of the PR is also recorded in the WMI1. The information stored
in WM is subsequently used for the encoding of the place-transition pairs (of
FPN), corresponding to the PR. The WM is then cleared for future storage.

23.5.4 The Inference Engine

The inference engine (IE) of the said ES comprises of five modules, namely,
i) the module for searching the antecedents of PRs on the data-tree, ii) the
FPN formation module, iii) belief-revision and limit-cycle detection &
elimination module, iv) non-monotonic reasoning module, and v) decision
making [19] and explanation tracing module.

Searching antecedents of PR in the datatree: The following procedure
describes the technique for searching the instantiated clauses of a PR in a
data-tree.

Procedure search-on-data-tree (data-tree, key-data);
//searches the antecedents of PRs on data-tree//
Begin
Search the predicate corresponding to the key-clause in the
second level of the data-tree; If search is successful Then do
Begin
Search the key-clause among the children of the predicate under
